

参考指南

N32WB452系列蓝牙OTA升级参考指南

简介

本指南主要针对 N32WB452 系列 MCU 提供蓝牙 OTA 升级参考,为开发者提供技术支持。

国民技术 版权所有

目录

1.	简介.	
	1.1	概述
	1.2	适用性
2.	OTA	升级功能概况2
	2.1	OTA 流程说明:
	2.2	OTA 工程说明2
	2.3	OTA 相关文件说明
3.	使用:	指南
	3.1	确立 FLASH 存储分区
		3.1.1 N32WB452 系列内部 Flash 划分
		3.1.2 外部 SPI Flash 划分
		3.1.3 各个存储区域说明
	3.2	Flash 的工程配置
	3.3	升级包文件生成
		3.3.1 Bin 文件的生成
		3.3.2 Json 文件的生成
		3.3.3 压缩文件的生成
	3.4	蓝牙广播配置9
4.	历史	版本10
5	中田	11

1. 简介

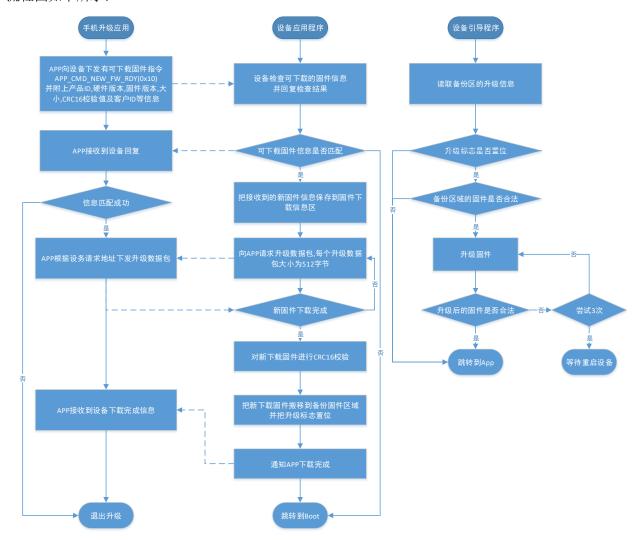
1.1 概述

欢迎使用国民技术 N32WB452 系列蓝牙 OTA 升级参考手册, 文档主要介绍 N32WB452 系列 MCU 蓝牙 OTA 升级过程说明及使用指南。

开发者可配合片上相关资源及 SDK 套件发出自己的蓝牙 OTA 升级流程。

1.2 适用性

- 本文档是基于 N32WB452 系列芯片开发蓝牙 OTA 升级功能,因此本文档中的蓝牙组件仅适用于 N32WB452 系列芯片。
- 本工程暂只支持 KEIL5 平台,其他编译平台正在完善中。

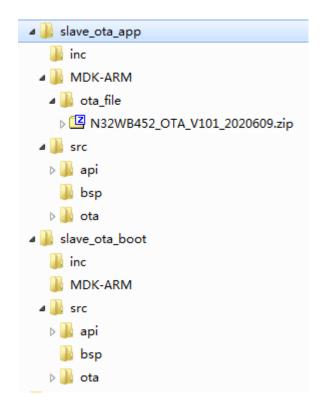

2. OTA 升级功能概况

2.1 OTA 流程说明:

OTA 升级流程为:

- 1. 需要升级固件时,手机 APP 向 N32WB452 下发升级固件信息,包括固件版本号、硬件版本号、产品 ID、客户代码、以及固件大小和 CRC16 校验码;
- 2. N32WB452 接收到升级固件信息后,根据当前版本信息判断是否符合,不符合则根据实际情况回复APP:
- 3. 在下载升级固件过程中, N32WB452 根据升级进度主动获取升级包, APP 根据 N32WB452 上报的 升级包下载地址下发升级包数据。每个升级包带有 CRC16 校验。

流程图如下所示:



2.2 OTA 工程说明

OTA 工程包括应用程序 Slave_ota_app 和引导程序 Slave_ota_boot,与 OTA 相关的程序都放在工程下的 OTA 文件夹中。Ota_file 里的 N32WB452_OTA_V101_20200609.zip 是 Demo 工程中的升级包。如下图

所示:

2.3 OTA 相关文件说明

OTA 相关文件如下图所示:

	2020/6/9 11:44	文件夹	
ll encrypt	2020/6/9 11:44	文件夹	
📗 sha1	2020/6/9 11:44	文件夹	
n32wb452_ble_ota_api.c	2020/6/8 17:01	sourceinsight.c_f	16 KB
n32wb452_ble_ota_api.h	2020/6/9 13:59	H 文件	4 KB
n32wb452_ble_protocol.c	2020/6/9 14:09	sourceinsight.c_f	22 KB
n32wb452_ble_protocol.h	2020/6/9 14:10	H 文件	16 KB
n32wb452_ota_conf.h	2020/6/5 14:40	H 文件	4 KB
n32wb452_ota_iap.c	2020/6/8 17:04	sourceinsight.c_f	5 KB
n32wb452_ota_iap.h	2020/6/5 10:15	H 文件	1 KB
n32wb452_ota_upgrade.c	2020/6/8 15:51	sourceinsight.c_f	9 KB
n32wb452_ota_upgrade.h	2020/6/8 15:51	H 文件	4 KB

其中:

crc16、encrypt、sha1 文件夹是蓝牙通信加密算法文件;

n32wb452 ble ota api.c 和 n32wb452 ble ota api.h 是蓝牙 OTA 升级的 API 接口文件;

n32wb452_ble_protocol.c 和 n32wb452_ble_protocol.h 是蓝牙通信协议处理文件;

n32wb452 ota conf.h 是划分各区域 flash 地址的配置文件;

n32wb452 ota iap.c 和 n32wb452 ota iap.h 是 bootloader 和 APP 之间跳转实现文件;

n32wb452_ota_upgrade.c 和 n32wb452_ota_upgrade.h 是对 OTA 中 Flash 操作的文件。

3. 使用指南

3.1 确立 FLASH 存储分区

Flash 分区是整个 OTA 升级功能的基础, 所以在工程最开始时, 就需要规划 Flash 的分区, 确定 bootloader 和应用程序的大小。

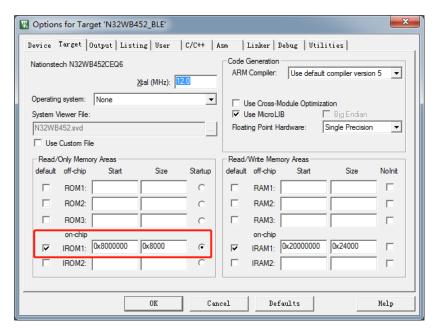
3.1.1 N32WB452 系列内部 Flash 划分

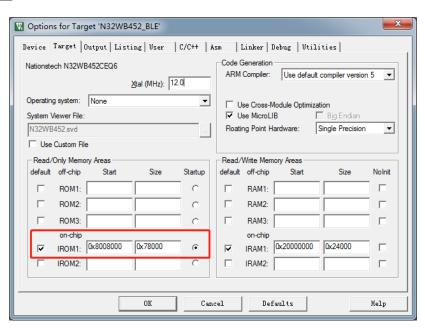
0x08000000	Bootloader 🗵
0x08007FFF 0x08008000	APP 应用程序区
0x0807FFFF	

3.1.2 外部 SPI Flash 划分

备份固件区
下载固件区
其他数据区

3.1.3 各个存储区域说明


- 1. Bootloader 区域:系统引导程序区,主要功能是对 APP 应用程序区进行升级,当备份固件区的升级标志置位时,bootloader 从备份固件区搬移升级程序到 APP 应用程序区;
- 2. APP应用程序区:系统应用程序区;
- 3. 备份固件区:应用程序的备份区,一般地,备份固件区与应用程序区的固件是一致的;当需要升级应用程序区时,从备份区中拷贝;
- 4. 下载固件区:应用程序接收到的升级固件包,预先存放在下载固件区,下载完成后,再把下载完的 固件搬移到备份固件区;
- 5. 其他数据区:可根据实际情况使用。


3.2 Flash 的工程配置

分区确定后,需要修改工程的相关配置:

Bootloader 引导程序配置

App 应用程序配置:

由于本工程用到加载文件,所以还需要修改加载文件的配置: 如下图,打开 slave ota app 工程文件下的加载文件 ble.sct:

\mu ota_file	2020/6/9 14:11	文件夹	
_Get_OTA_Info.exe	2020/6/8 18:43	应用程序	24 KB
💰 ble.sct	2020/6/4 19:25	Windows Script	2 KB
slave_ota_app.uvprojx	2020/6/9 11:48	礦ision5 Project	27 KB

把下列地址修改为项目所规划的地址,这里的 bootloader 划分的是 32K Flash, 因此, APP 应用程序的起始地址配置为 0x08008000;

同时修改 bootloader 和 APP 应用程序工程下面的程序配置文件 n32wb452 boot conf.h 里的 Flash 配置:

```
*/
/* OF - on flash --
/* bootloader起始位置 */
#define OF_BOOTLOADER_ADDR
                                 (0x08000000)
/* bootloader区预留空间大小 */
#define OF_BOOTLOADER_SIZE
                                 (0x8000)
/* n32wb452 内部flash大小*/
#define OF_INNER_FLSASH_SIZE
                                  (0x80000)
/* 应用代码起始位置 */
#define OF_FIRMWARE_ADDR
                                  (OF BOOTLOADER ADDR+OF BOOTLOADER SIZE)
#define OF_FIRMWARE_SIZE
                                  (OF_INNER_FLSASH_SIZE-OF_BOOTLOADER_SIZE)
```

3.3 升级包文件生成

升级包文件是压缩文件,例如 N32WB452_OTA_V101_2020609.zip, 包含 APP 应用程序升级固件 BIN 文件和升级固件信息 json 文件,如下图。

N32WB452_OTA_V101_2020609.bin	2020/6/9 12:10	UltraEdit Docum	84 KB
□ ver_info.json	2020/6/9 19:05	JSON File	1 KB

3.3.1 Bin 文件的生成

升级固件 bin 文件通过 slave ota app 工程编译即可获得,如下图:

🖟 ota_file	2020/6/9 19:02	文件夹	
_Get_OTA_Info.exe	2020/6/8 18:43	应用程序	24 KB
OTA_FW_info.txt	2020/6/9 19:01	文本文档	1 KB
💰 ble.sct	2020/6/4 19:25	Windows Script	2 KB
ble_ota.bin	2020/6/9 19:01	UltraEdit Docum	84 KB
slave_ota_app.uvprojx	2020/6/9 11:48	礦ision5 Project	27 KB

3.3.2 Json 文件的生成

Json文件包含 bin 文件名称(binFile)、模组名称(Lockmode)、硬件版本(HwVersion)、固件版本(FwVersion)、固件大小(ImageSize)、固件 CRC16 校验值(ImageCRC)和客户代码(CustomerCode)等信息;

Json 文件里的信息需要与 n32wb452_ble_ota_api.h 里的固件信息同步,如下图;

```
#define PRODUCE_ID "TZ3HBN1" //产品ID #define HW_VERSION "100" //硬件版本号 #define FW_VERSION "100" //软件版本号 #define CUSTOMER_CODE 14 //客户ID #define PRODUCE_SN "AM1001D001001219"
```

其中固件大小(ImageSize)、固件 CRC16 校验值(ImageCRC)可以在工程编译后的__OTA_FW_info.txt 文件中获得。

📗 ota_file	2020/6/9 19:02	文件夹	
Get_OTA_Info.exe	2020/6/8 18:43	应用程序	24 KB
OTA_FW_info.txt	2020/6/9 19:01	文本文档	1 KB
🏂 ble.sct	2020/6/4 19:25	Windows Script	2 KB
ble_ota.bin	2020/6/9 19:01	UltraEdit Docum	84 KB
slave_ota_app.uvprojx	2020/6/9 11:48	礦ision5 Project	27 KB

3.3.3 压缩文件的生成

准备好 bin 文件和 json 文件后,把两者保存到与 bin 同名文件夹,整个文件夹压缩成 zip 文件,即可得到升级包。

3.4 蓝牙广播配置

手机端 OTA APP 是通过蓝牙广播数据识别设备,在程序中需要设置蓝牙相关的配置。

填充蓝牙名称到蓝牙广播数据:

```
//fill name in addr data
app_env.adv_data_buf[app_env.adv_data_len++] = name_len + 1; // length
app_env.adv_data_buf[app_env.adv_data_len++] = 0x08; // device name tag
memcpy( &app_env.adv_data_buf[app_env.adv_data_len], device_name, name_len);
app_env.adv_data_len += name_len;
memcpy(app_env.dev_name, device_name, name_len);
```

填充蓝牙地址到蓝牙广播数据:

```
//在广播中增加manufacture数据

app_env.adv_data_buf[app_env.adv_data_len++] = 3+sizeof(app_env.bdaddr.addr); // device name tag

app_env.adv_data_buf[app_env.adv_data_len++] = 0xff; // device name tag

app_env.adv_data_buf[app_env.adv_data_len++] = 0x56; // device name tag

app_env.adv_data_buf[app_env.adv_data_len++] = 0x00; // device name tag

memcpy(&app_env.adv_data_buf[app_env.adv_data_len], app_env.bdaddr.addr, sizeof(app_env.bdaddr.addr));

app_env.adv_data_len += sizeof(app_env.bdaddr.addr);
```

填充蓝牙服务 ID 到蓝牙广播数据:

```
//在广播中增加服务ID数据
uint8_t service_uuid_len = sizeof(g_bt_init->service[0].svc_uuid);
app_env.adv_data_buf[app_env.adv_data_len++] = service_uuid_len + 1; // length
app_env.adv_data_buf[app_env.adv_data_len++] = 0x03; // service uuid tag
memcpy(&app_env.adv_data_buf[app_env.adv_data_len], (uint8_t *)&g_bt_init->service[0].svc_uuid, service_uuid_len);
app_env.adv_data_len += service_uuid_len;
```

填充设备 SN 到蓝牙扫描响应数据:

```
memcpy(bt_init.device_name, ble_name, MIN(strlen(ble_name), sizeof(bt_init.device_name)));
memcpy(bt_init.device_addr, ble_addr, MIN(strlen(ble_addr), sizeof(bt_init.device_addr)));
bt_init.scan_rsp_data[0] = 0x13;
bt_init.scan_rsp_data[1] = 0xff;
bt_init.scan_rsp_data[2] = 0x56;
bt_init.scan_rsp_data[3] = 0x00;
memcpy(&bt_init.scan_rsp_data[4], product_sn, MIN(strlen(product_sn), 28));
bt_init.scan_rsp_data_len = 4+strlen(product_sn);
```


4. 历史版本

版本	日期	备注
V1.0	2020-04-17	创建文档

5. 声明

国民技术股份有限公司(下称"国民技术")对此文档拥有专属产权。依据中华人民共和国的法律、条约以及世界其他法域相适用的管辖,此文档及其中描述的国民技术产品(下称"产品")为公司所有。

国民技术在此并未授予专利权、著作权、商标权或其他任何知识产权许可。所提到或引用的第三方名称或品牌(如有)仅用作区别之目的。

国民技术保留随时变更、订正、增强、修改和改良此文档的权利,恕不另行通知。请使用人在下单购买前联系国民技术获取此文档的最新版本。

国民技术竭力提供准确可信的资讯,但即便如此,并不推定国民技术对此文档准确性和可靠性承担责任。使用此文档信息以及生成产品时,使用者应当进行合理的设计、编程并测试其功能性和安全性,国民技术不对任何因使用此文档或本产品而产生的任何直接、间接、意外、特殊、惩罚性或衍生性损害结果承担责任。

国民技术对于产品在系统或设备中的应用效果没有任何故意或保证,如有任何应用在其发生操作不当或故障情况下,有可能致使人员伤亡、人身伤害或严重财产损失,则此类应用被视为"不安全使用"。

不安全使用包括但不限于:外科手术设备、原子能控制仪器、飞机或宇宙飞船仪器、所有类型的安全装置以及其他旨在支持或维持生命的应用。

所有不安全使用的风险应由使用人承担,同时使用人应使国民技术免于因为这类不安全使用而导致被 诉、支付费用、发生损害或承担责任时的赔偿。

对于此文档和产品的任何明示、默示之保证,包括但不限于适销性、特定用途适用性和不侵权的保证责任,国民技术可在法律允许范围内进行免责。

未经明确许可,任何人不得以任何理由对此文档的全部或部分进行使用、复制、修改、抄录和传播。