

N32H47X/N32H48X系列硬件设计指南

简介

本文档详细介绍 N32H47X/N32H48X 系列 MCU 硬件设计检查列表,以 便为用户提供硬件设计指导。

国民技术 版权所有

目录

1.	N32H47X/N32H48X 系列 MCU 硬件设计检查列表3								
	1.1	电源供电简介	3						
	1.2	供电方案	3						
	1.3	备用电池	3						
	1.4	外部引脚复位电路	3						
	1.5	外部时钟电路	4						
	1.6	启动引脚连接	4						
	1.7	ADC 转换器	4						
	1.8	PGA 应用参考	6						
	1.8.1	单端模式应用	6						
	1.8.2	差分模式应用	7						
	1.8.3	PGA 使用注意事项	9						
	1.9	IO 上电脉冲处理	9						
	1.10	IO 耐压值	10						
	1.11	防静电设计	11						
	1.11.	1 PCB 设计	11						
	1.11.2	2 ESD 防护器件	11						
	1.12	调试接口	11						
	1.13	BOOT 串口接口	12						
2.	整体设计	建议	13						
3.	最小系统	参考设计原理图	14						
	3.1	UQFN32-N32H473KEU7	14						
	3.2	LQFP48-N32H473CEL7	15						
	3.3	LQFP48-N32H474CEL7	16						
	3.4	QFN48-N32H473CGQ8	17						
	3.5	UQFN48-N32H473CEU7	18						
	3.6	UQFN48-1-N32H473CCU7E	19						
	3.7	UQFN48-N32H474CEU7	20						
	3.8	QFN52-N32H475UEQ7S	21						
	3.9	QFN60-N32H475REQ7	22						
	3.10	LQFP64-N32H473REL7	23						
	3.11	LQFP64-N32H474REL7	24						
	3.12	LQFP64-N32H481REL7K	25						
	3.13	LQFP64-N32H488REL7K	26						
	3.14	LQFP64-N32H482REL7	27						

	3.15	LQFP64-N32H487REL7	28
	3.16	LQFP64-N32H488REL7	29
	3.17	LQFP80-N32H473MEL7	30
	3.18	LQFP80-N32H474MEL7	31
	3.19	LQFP100-N32H474VEL7	32
	3.20	LQFP100-N32H473VEL7	33
	3.21	LQFP100-N32H482VEL7	34
	3.22	LQFP100-N32H487VEL7	35
	3.23	LQFP100-N32H488VEL7	36
	3.24	LQFP128-N32H474QEL7	37
	3.25	LQFP128-N32H473QEL7	38
	3.26	LQFP144-N32H482ZEL7	39
	3.27	LQFP144-N32H487ZEL7	40
	3.28	LQFP144-N32H488ZEL7	41
4.	PCB LAY	OUT 参考	42
5.	历史版本.		43
6	古 田		11

1. N32H47X/N32H48X 系列 MCU 硬件设计检查列表

1.1 电源供电简介

N32H47X/N32H48X 系列芯片工作电压(VDD)为 1.8V~3.6V。主要有: VDD、VDDA、VBAT 引脚。具体请参考相关数据手册。

1.2 供电方案

VDD 为 MCU 主电源,必须由稳定的外部电源供电。电压范围 1.8V~3.6V,所有 VDD 引脚都需就近放置一颗 0.1uF 去耦电容,其中一个 VDD 管脚还需增加一颗 4.7uF 去耦电容。去耦电容具体设计请参考第三章节各封装最小系统参考设计原理图.

VDDA 为模拟电源,为 ADC、DAC、COMP、PGA 提供供电。VDDA 输入管脚建议放置一个 0.1uF 和一个 2.2uF 的电容。

VREF+为参考电压,为 ADC、DAC 提供参考电平,当 VERF+使用内置参考源 VREFBUF 时,VREF+引脚建议就近放置一个 0.1uF 和一个 1uF 的电容。当 VERF+由外部供电时,VREF+引脚建议就近放置一个 0.1uF 和一个 2.2uF 的电容。

注: VREFBUF 严禁在内部输出模式的同时开启外部输入,输出模式与外部输入模式只能二选一。

1.3 备用电池

VBAT 引脚主要给备电域(RTC、LPTIM、Backup SRAM)供电,使得备电域模块在主电源(VDD)关闭时仍能正常运行。

1.4 外部引脚复位电路

当NRST引脚上出现低电平(外部复位)将产生系统复位。外部NRST引脚复位参考电路如下。

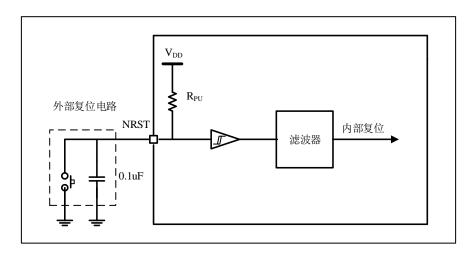


图 1-1 系统复位图

注:复位引脚NRST在设计时建议不悬空,外挂电容0.1uF作为典型参考值给出,若需加快复位时间,NRST引脚可外加上拉,另外用户可根据产品实际需要决定是否增加复位按键。

1.5 外部时钟电路

N32H47X/N32H48X 系列 MCU 包含 2 个外部时钟: 外部高速时钟 HSE (4MHz~32MHz) 和外部低速时钟 LSE (通常使用 32.768KHz)。

HSE 和 LSE 根据晶振特性配置相应的负载电容,详细请参考相关数据手册中外部时钟特性描述。

1.6 启动引脚连接

下图显示了 N32H47X/N32H48X 系列芯片选择启动存储器时所需的外部连接。关于启动模式请参考用户手册相关章节。

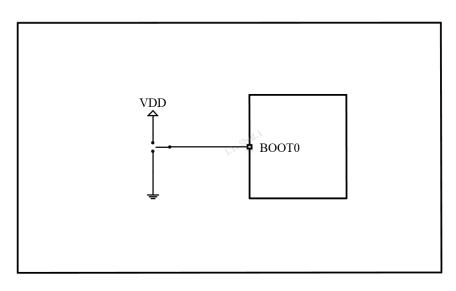


图 1-2 启动模式实现实例

BOOT引脚拉高,芯片复位后从BOOT区启动;BOOT引脚拉低,芯片复位后从用户区启动。

1.7 ADC 转换器

关于 ADC 电路设计,请注意如下几点:

- 1) 在使用 ADC 采样时,建议缩短 ADC 采样通道的外部走线距离;
- 2) ADC 的输入信号周边建议远离一些高频翻转信号;
- 3) 注意慢速通道和快速通道的最高支持速率:

N32H47X/N32H48X 系列在 ADC 输入时钟为 80MHZ 条件下,ADC 快速通道采样率不超过 4.7Msps,ADC 慢速通道采样率建议不超过 2.5Msps;

4) 在 ADC 转换期间,芯片不支持修改 ADC 配置,如需修改配置,需要等待当前转换结束或者关闭 ADC 后,再进行配置;

- 5) 在使用某一 ADC 通道时,不能在其它未使用的 ADC 采样通道施加负压(比如-0.2V),如果施加了此负电压,会导致正常采样的 ADC 通道电压被拉低,导致读取的数据不准;
- 6) 在使用某一 ADC 通道时,不能在其它未使用的 ADC 采样通道施加高压 (大于 VDD 电压),如果施加了此高电压,会导致正常采样的 ADC 通道电压被拉高,导致读取的数据不准;
- 7) 在使用 ADC 时,ADC 的采样速率和 R_{AIN} 是相关的,R_{AIN} 越小采样速率越快,具体见下表:

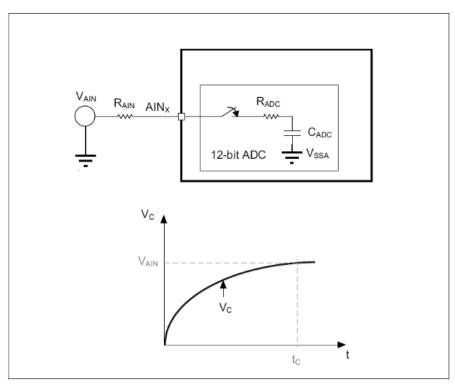


图 1-3 ADC 输入口串联电阻的影响

ADC 采样时间表:

八分位	D (10)	最小采样时间(ns)		
分辨率	$ m R_{AIN}~(k\Omega)$	快速通道	慢速通道	
	0.14	45.0	73.0	
	0.6	79.0	103.0	
12-bit	4.6	300.0	345.0	
12 - 01t	9.5	576.0	651.0	
	19	1131.0	1257.0	
	48	2776.0	3051.0	
10-bit	0.14	39.0	61.0	

地址:深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

	0.6	64.0	88.0
	4.6	250.0	357.0
	9.5	478.0	540.0
	19	935.0	1040.0
	48	2294.0	2526.0
	0.14	33.0	50.0
	0.6	52.0	71.0
0.1.4	4.6	202.0	234.0
8-bit	9.5	391.0	457.0
	19	800.0	1012.0
	48	1838.0	2027.0
	0.14	27.0	40.0
	0.6	41.0	56.0
6-bit	4.6	153.0	177.0
0-011	9.5	292.0	330.0
	19	569.0	642.0
	48	1435.0	1666.0

图 1-4 ADC 采样时间表

注:采样时间需根据输入时钟和ADC寄存器可选的采样周期综合配置,原则上ADC采样周期配置应大于等于表中最小采样周期数。

1.8 PGA 应用参考

N32H47X 系列芯片内包含 4 个灵活的可编程增益放大器 (PGA), 详见对应数据手册的引脚复用定义。任意一个差分 PGA 可拆分为两个单端 PGA 独立使用。

注: N32H48X 系列芯片不支持 PGA。

1.8.1 单端模式应用

PGA 的单端模式应用如下图所示:

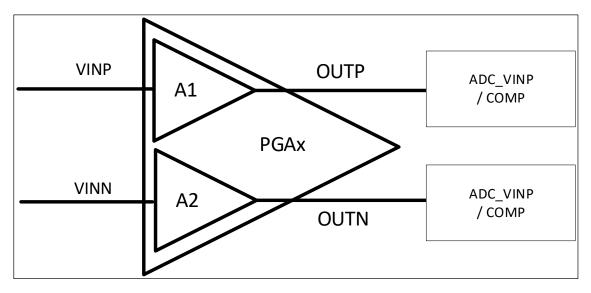


图 1-5 PGA 单端工作结构

此时一个 PGA 将拆分为两个独立的放大器,每一端输入对应单独的输出:

 $OUTP = A1 \times VINP$

 $OUTN = A2 \times VINN$

两个放大器的放大增益 A1/A2 通过不同的寄存器单独配置。此时 PGA 的输出可接到比较器工作或者接到 ADC 的正端输入进行测量。

PGA 的输入可以来自于外部硬件配置或内部 DAC 输出,通过寄存器选择特定输入通道。图 1-4 中左半部分虚线框内为一种硬件配置实例:

通过电流源 C1/C2 与 Rsense 采集需要放大的小信号电压。通过共模 Rcm 拉升到合适的适合放大的电压,再进入 PGA 进行放大。

注意要求阻值 Rcm >> Rsense.

1.8.2 差分模式应用

大多数情况下,由于输入噪声以及电路寄生参数的原因,使用单端模式会产生较大的误差,此时使用差分模式工作能够有效的提高输出精度。其工作模式如下图:

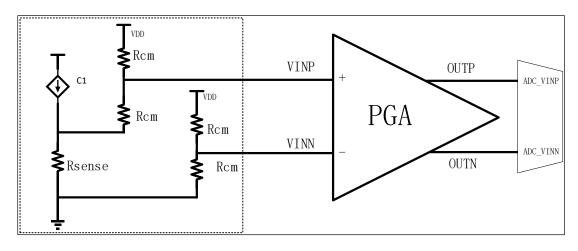


图 1-6 PGA 差分工作结构

差分模式下,两端的输入将通过 PGA 进行差分放大:

$$Voutp = Vinn + 1/2 \times A \times (Vinp-Vinn)$$

Voutn= Vinn - $1/2 \times A \times (Vinp-Vinn)$

差分输出的增益 A 由单独的寄存器配置,放大的差分信号同时进入 ADC 的正负端进行测量。

PGA 的输入可以来自于外部硬件配置或内部 DAC 输出,通过寄存器选择特定输入通道。图 1-5 中虚线框内为一种硬件配置实例:

通过电流源 C1 与 Rsense 采集需要放大的小信号电压。通过共模 Rcm 电阻分压提供共模电压,进入 PGA 进行差分放大:

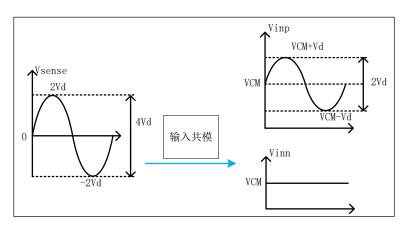


图 1-7 PGA 差分输入波形

设计要求阻值 Rcm >> Rsense,设 Vsense 产生摆幅为 4Vd 的正弦波电压。两端通过 VDD 分压电路分别 抬高 VCM, 一般 VCM=VDD/2, 此时 VINN 为 VCM 固定电压值, VINN 成为了共模电压 VCM, 摆幅 为 Vd 的正弦波电压。抬高后的电压成为 PGA 的正负两端输入。

提供的共模电压 VCM 是必要的,因为 PGA 两端放大后的输出要确保远离最大摆幅或者最小摆幅,否则会造成较大的精度损失。

信号进入 PGA 放大后由 OUTP/OUTN 两端输出,配置 PGA 差分增益为 A,两端输入信号放大后如图 所示:

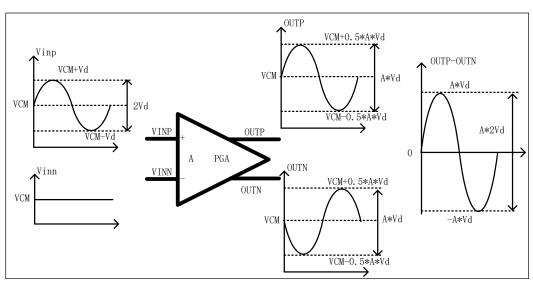


图 1-8 PGA 差分放大输出波形

差分输出与输入由公式:

 $Voutp = Vinn + 1/2 \times A \times (Vinp-Vinn)$

Voutn= Vinn - $1/2 \times A \times (Vinp-Vinn)$

计算。可以看到:

OUTP 输出为共模电压不变, PN 差分输入正向放大 0.5×A 倍

OUTN 输出为共模电压不变, PN 差分输入负向放大 0.5×A 倍

最后进入 ADC 的信号为共模消除摆幅为 A×2Vd 的信号,摆幅相较输入 2Vd 增大了 A 倍。

同时 VCM 保证了两端输出不接近电源与地,不会造成信号失真。

1.8.3 PGA 使用注意事项

为确保 PGA 正常工作以及精确度,使用时要注意以下几点:

1. 为防止输出失真单端/差分模式下输入范围要基于增益与理论输出电压考虑:

单端模式下确保: 0.3V < A×Vin < VDDA-0.3V

差分模式下,每一端的输出电压 Vout 要确保 0.3V < OUTP/N < VDDA-0.3V,

2. 差分模式必须给 N 端提供合适的共模电压 VCM, 通常 VCM=VDDA/2.

1.9 IO 上电脉冲处理

上电过程中由于 IO 处于高阻态及内部电路耦合特性,上电瞬间会引起 IO 上出现高电平脉冲(实际的高脉冲电压值请用户实测)。若该脉冲会影响其应用,建议在对应 IO 上挂适当电容(1nF~100nF)或外加适当下拉电阻(10K~100K)处理。

下图为开发板 N32H473CEU7 STB V1.0 上电过程中 IO(PB12)波形图:

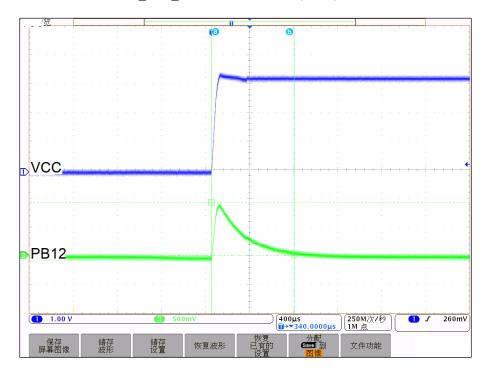


图 1-9 上电过程 IO(PB12)波形

下图为开发板 N32H473CEU7 STB V1.0 上电过程中 IO(PB12)外加 10K 下拉电阻后的波形图:

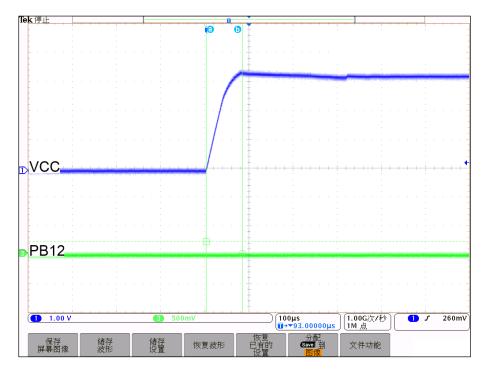


图 1-10 上电过程 IO (PB12) 外加下拉电阻处理后波形

1.10 IO 耐压值

芯片使用时请注意各 IO 耐压值,在数据手册引脚复用定义的 I/O 结构一栏,标注了 FT: 5V tolerant IO, 这类型 IO 在与外部其它不同电压域的 IO 进行通讯时,需要做电平转换。

封装。				ę.				÷	ξ j (2)	F "		可选的复用功能。	
UQFN32	UQFN48	LQFP48	LQFP64	LQFP80.	LQFP100	LQFP128	管脚名称。	类型(1)。	班	Fail- safe ⁽³⁾ 。 支持。	(3) 王切能	默认↩	重定义↩
-0	-47	- 4 ⁷	-4-	- 47	1₽	1₽	PE2. Shulli	I/O4	FT₽	Yes₽	PE2.	TRACECLK+ GTIM2_CH1+ SPI4_SCK+ ATIM3_CH1+ USART4_TX+ FEMC_A23+ EVENTOUT-	- e)
-4	- \$	-47	-47	- 4	2₽	2.0	РЕ3₽	I/O∻	FT₽	Yes	PE3÷	TRACED0+ GTIM2_CH2+ SPI4_NSS+ ATIM3_CH2+ USART4_RX+ FEMC_A19+ EVENTOUT-	- ¢)

图 1-11 数据手册引脚复用定义的 I/O 结构

注: FT/FTa: 5V tolerant IO; TTa: 3.3V standard IO。在使用芯片时需注意 IO 的耐压值。

1.11 防静电设计

1.11.1 PCB 设计

对于普通两层板的 PCB 设计,建议信号线周围做包地处理,PCB 板边也尽量做到铺地环绕。在成本允许的条件下,可以用四层板或多层板设计,在多层 PCB 中地线面作为一个重要的电荷源,可抵消静电放电源上的电荷,这有利于减小静电场带来的问题。PCB 地线面也可作为其对信号线的屏蔽体(当然,地线面的开口越大,其屏蔽效能就越低)。另外,如果发生放电,由于 PCB 板的地平面很大,电荷很容易注入到地线面中,而不是进入到信号线中。这样将有利于对元件进行保护,因为在引起元件损坏前,电荷可以泄放掉。

1.11.2 ESD 防护器件

在实际产品设计中,芯片自身有一定的抗静电能力,N32H47X/N32H48X 系列 MCU ESD(HBM)模式下静电等级为+/-4KV,但如果有更高的 ESD 防护等级要求,且有芯片的管脚需要直接外接作为产品的输出或输入口,此时,芯片的管脚就直接暴露在产品的最外面,不能通过铺地等方式进行隔离。这种条件下,一般需要考虑外加 ESD 防护器件,TVS 管是一种典型的 ESD 保护器件,以下是典型的连接方式示例。

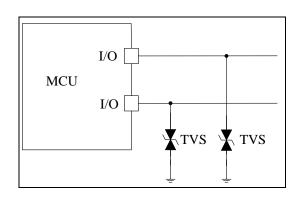


图 1-12 I/O 管脚上 TVS 连接方式

1.12 调试接口

N32H47X/N32H48X 系列芯片支持串行接口(SWD)和 JTAG 调试接口,详细应用请参考相关用户手册。

调试信号	GPIO 引脚
JTMS/SWDIO	PA13
JTCK/SWCLK	PA14
JTDI	PA15
JTDO	PB3
JNTRST	PB4

表 1-1 调试接口

1.13 BOOT 串口接口

N32H47X/N32H48X 系列芯片支持 BOOT 串口通讯,串口接口如下表:

BOOT 串口	GPIO 引脚	
USART1_TX	PA9	
USART1_RX	PA10	

表 1-2 串口接口

2. 整体设计建议

1) 印制电路板

建议使用有专门独立的接地层(VSS)和专门独立的供电层(VDD)的多层印制电路板,从而能提供好的耦合性能和屏蔽效果。在实际应用中,如考虑成本因素不能使用多层印制电路板,那么在设计电路时就需保证一个好的接地和供电的结构。

2) 器件位置

在 PCB 设计时根据各器件对 EMI 影响的不同,需把不同的电路分开布局。比如,大电流电路、低电压电路、以及高频器件等。从而减少 PCB 上的交叉耦合。

3) 接地和供电(VSS, VDD)

各模块(模拟电路、数字电路、敏感度低的电路)都应该单独接地,数字地和模拟地分开,所有的地最终都应在一个点上连到一起。根据印制线路板电流的大小,尽量加粗电源线宽度,减少环路电阻。同时,电源线、地线的走向和电流的方向应尽量一致,且电源应尽量靠近地线,减小回路的区域。这样有助于增强抗噪声能力。PCB上没有器件的区域,需要填充为地,以提供好的屏蔽效果。

4) 去耦合

所有的电源引脚都需要适当的连接到电源。这些连接,包括焊盘、连线和过孔应该具备尽量小的阻抗。通常采用增加连线宽度的办法,同时每对 VDD 与 VSS 引脚都必须在靠近芯片处放置去耦电容。下图为电源/地引脚的典型布局。

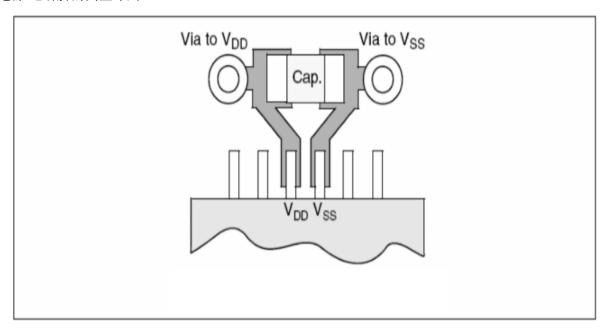


图 2-1 VDD/VSS 引脚的典型布局

3. 最小系统参考设计原理图

3.1 UQFN32-N32H473KEU7

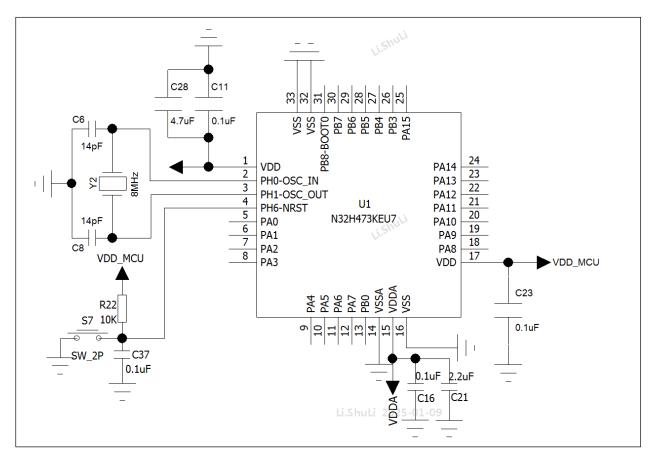


图 3-1 UQFN32 封装最小系统参考设计原理图

地址: 深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

3.2 LQFP48-N32H473CEL7

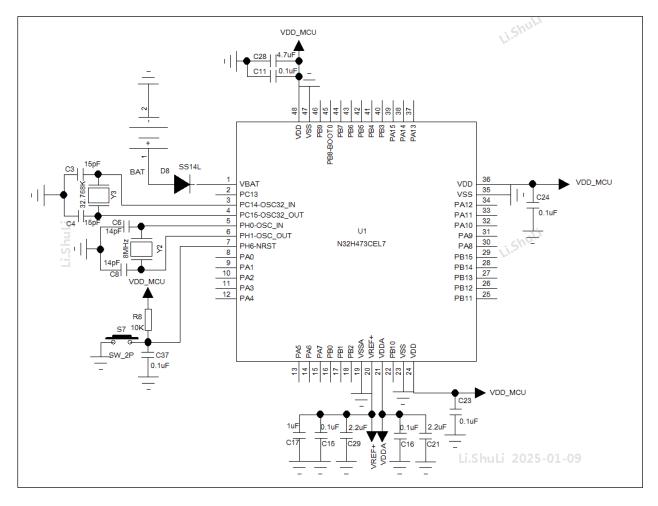


图 3-2 LQFP48 封装最小系统参考设计原理图

地址: 深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

3.3 LQFP48-N32H474CEL7

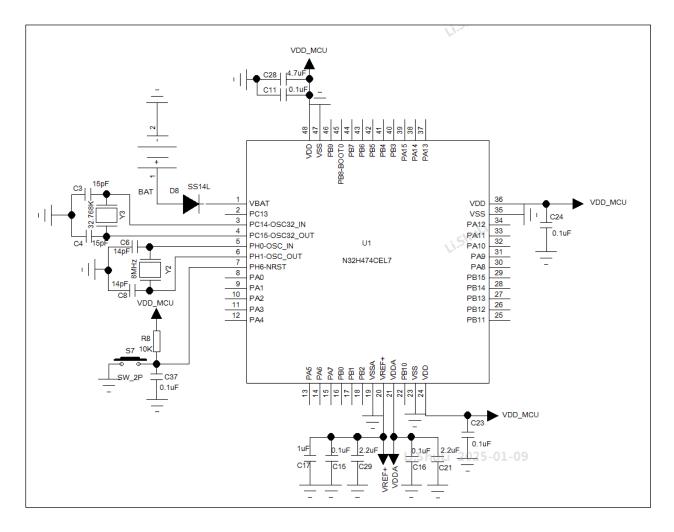


图 3-3 LQFP48 封装最小系统参考设计原理图

地址: 深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

3.4 QFN48-N32H473CGQ8

图 3-4 QFN48 封装最小系统参考设计原理图

地址: 深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

3.5 UQFN48-N32H473CEU7

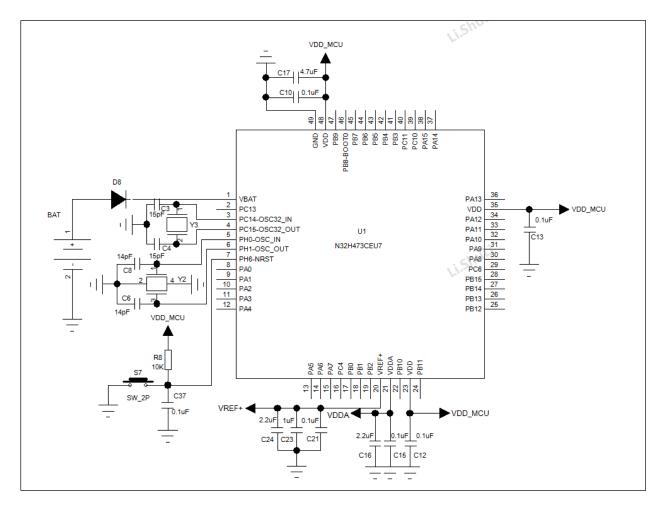


图 3-5 UQFN48 封装最小系统参考设计原理图

地址: 深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

3.6 UQFN48-1-N32H473CCU7E

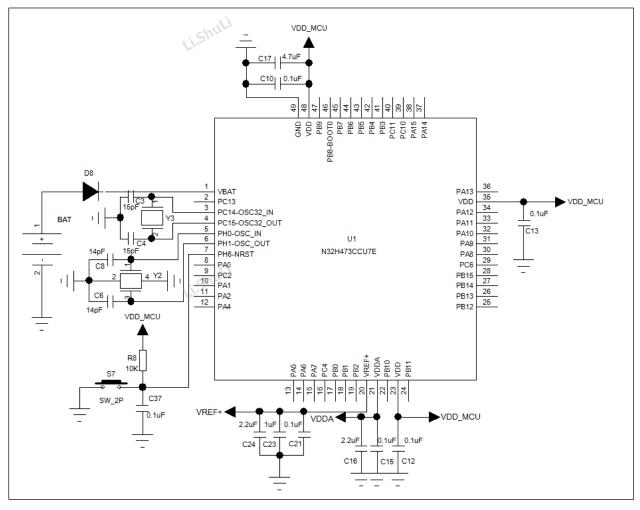


图 3-6 UQFN48-1 封装最小系统参考设计原理图

地址: 深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

3.7 UQFN48-N32H474CEU7

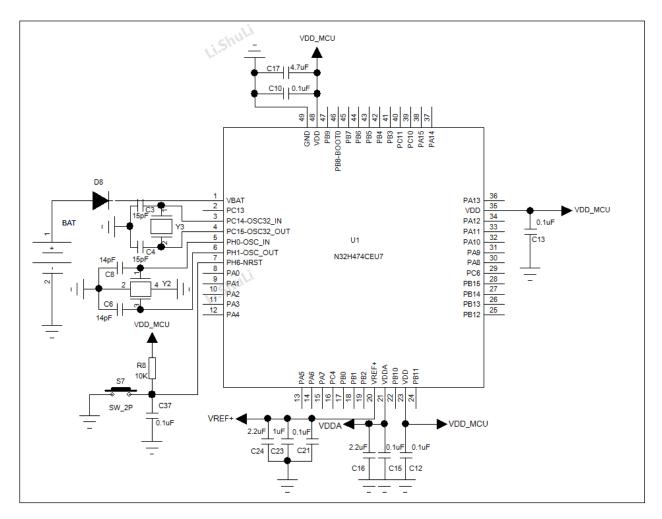


图 3-7 UQFN48 封装最小系统参考设计原理图

地址: 深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

3.8 QFN52-N32H475UEQ7S

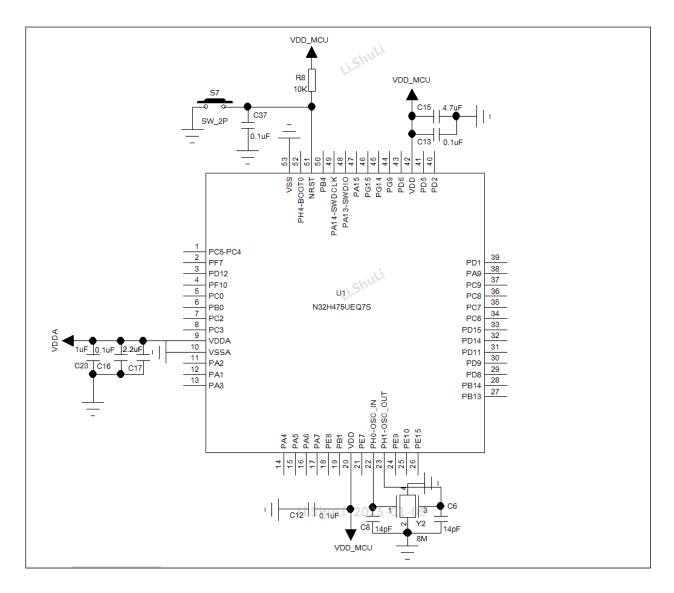


图 3-8 QFN52 封装最小系统参考设计原理图

地址: 深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

3.9 QFN60-N32H475REQ7

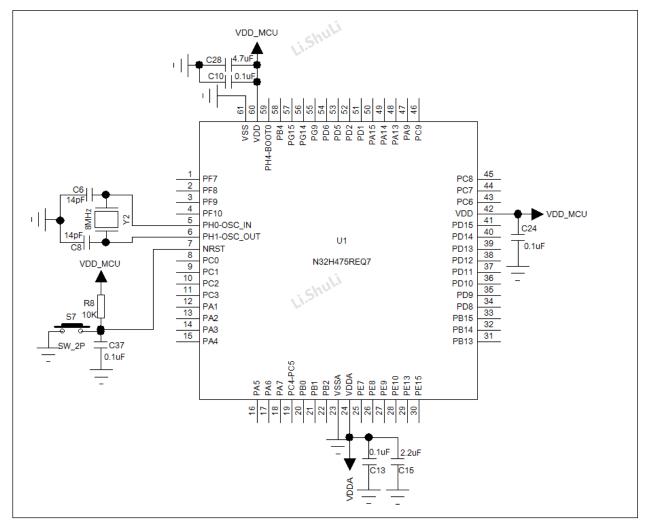


图 3-9 QFN60 封装最小系统参考设计原理图

地址: 深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

3.10 LQFP64-N32H473REL7

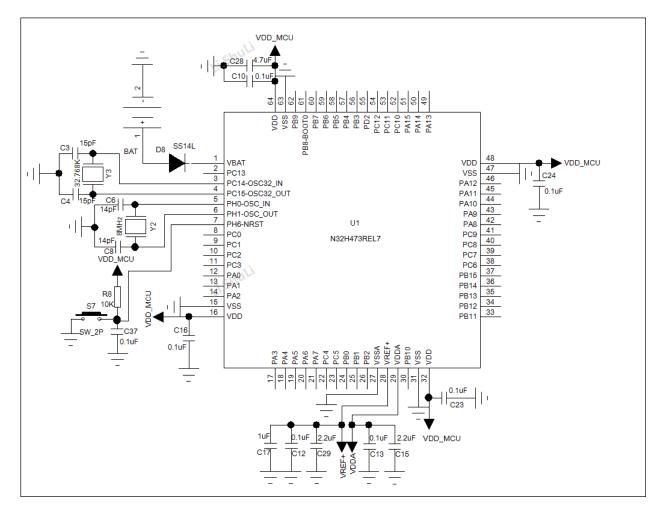


图 3-10 LQFP64 封装最小系统参考设计原理图

地址: 深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

3.11 LQFP64-N32H474REL7

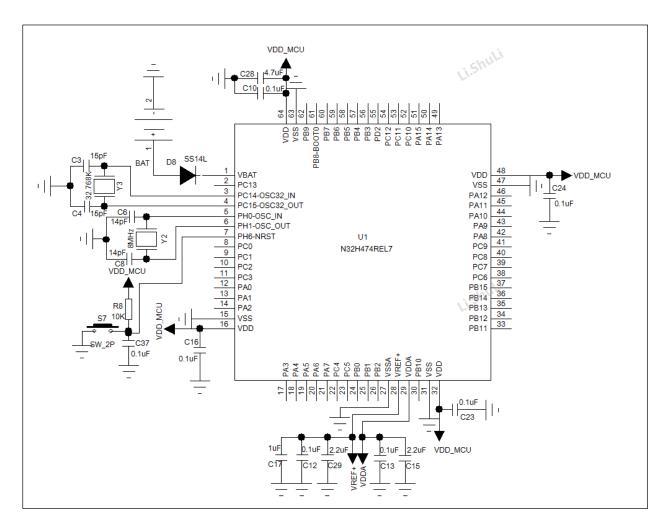


图 3-11 LQFP64 封装最小系统参考设计原理图

地址: 深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

3.12 LQFP64-N32H481REL7K

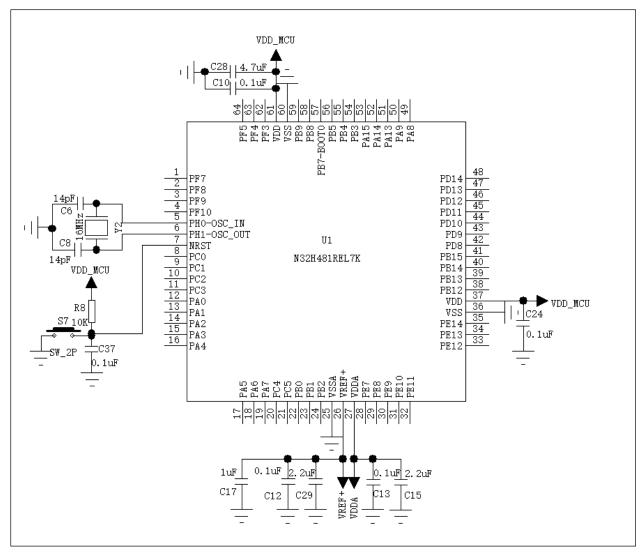


图 3-12 LQFP64 封装最小系统参考设计原理图

地址: 深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

3.13 LQFP64-N32H488REL7K

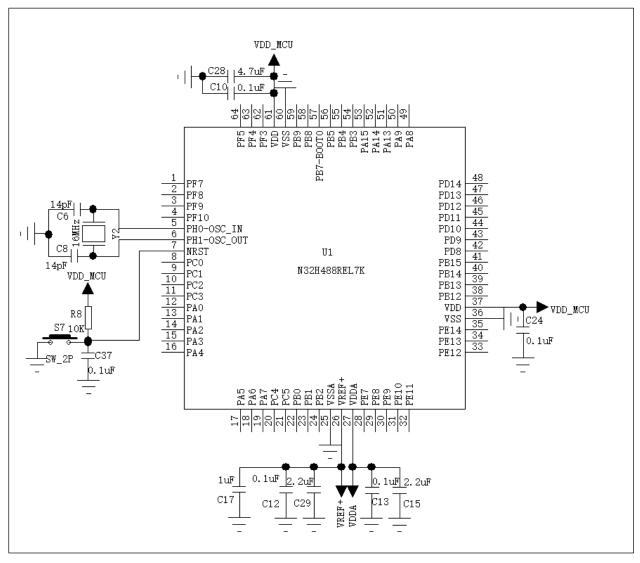


图 3-13 LQFP64 封装最小系统参考设计原理图

地址: 深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

3.14 LQFP64-N32H482REL7

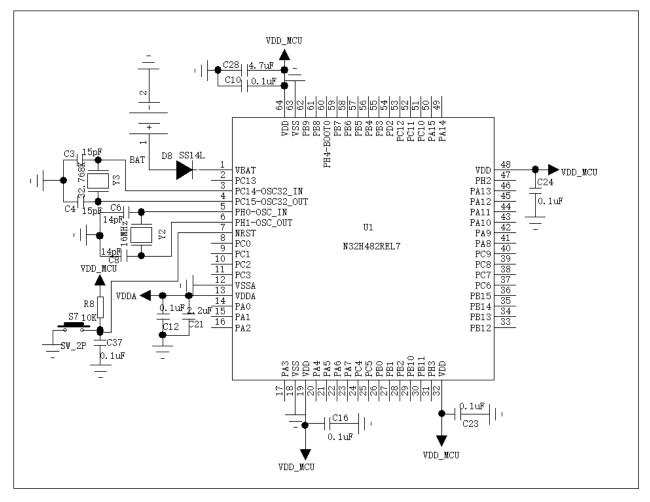


图 3-14 LQFP64 封装最小系统参考设计原理图

3.15 LQFP64-N32H487REL7

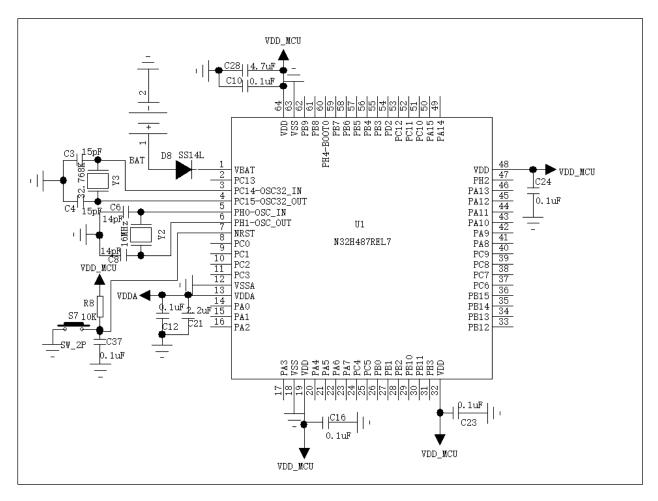


图 3-15 LQFP64 封装最小系统参考设计原理图

3.16 LQFP64-N32H488REL7

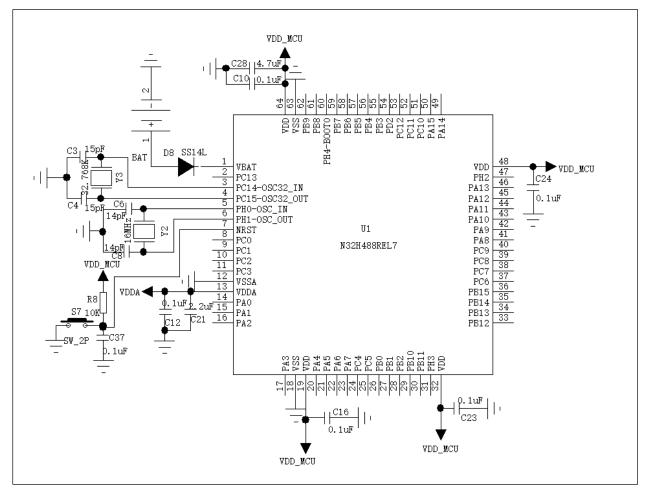


图 3-16 LQFP64 封装最小系统参考设计原理图

地址: 深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

3.17 LQFP80-N32H473MEL7

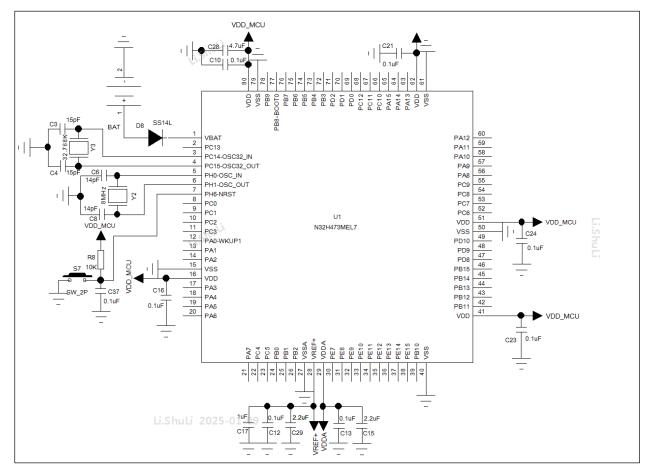


图 3-17 LQFP80 封装最小系统参考设计原理图

3.18 LQFP80-N32H474MEL7

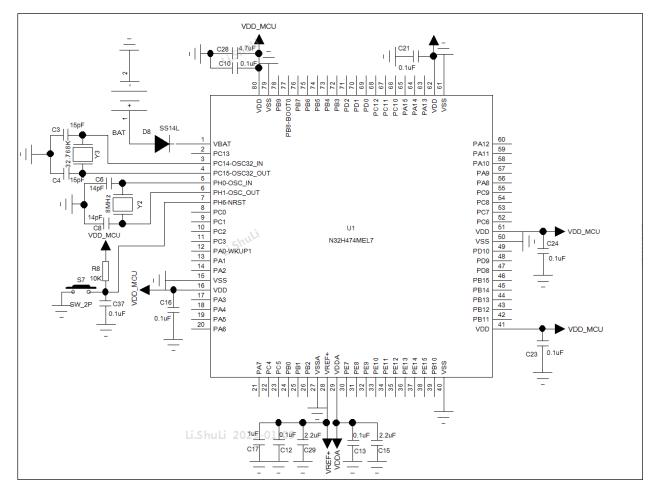


图 3-18 LQFP80 封装最小系统参考设计原理图

3.19 LQFP100-N32H474VEL7



图 3-19 LQFP100 封装最小系统参考设计原理图

地址: 深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

3.20 LQFP100-N32H473VEL7

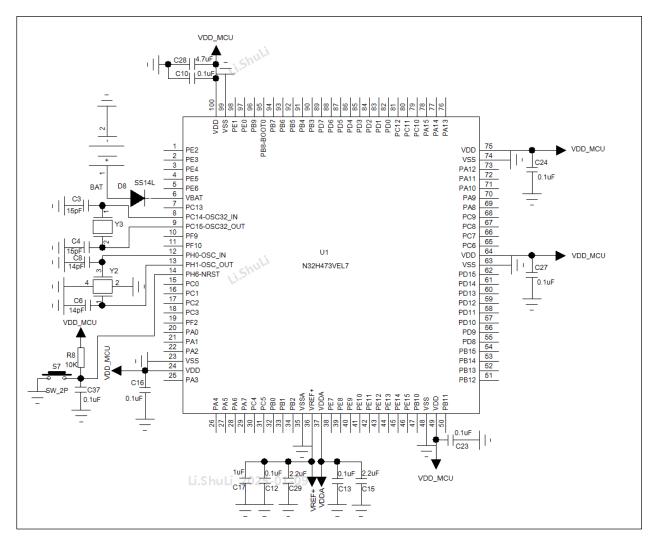


图 3-20 LQFP100 封装最小系统参考设计原理图

地址:深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

3.21 LQFP100-N32H482VEL7

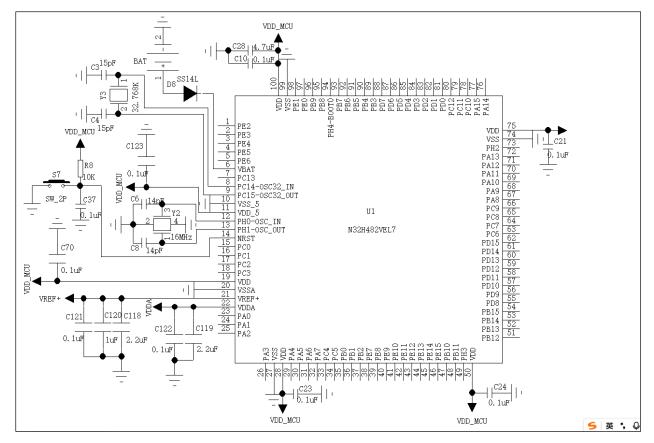


图 3-21 LQFP100 封装最小系统参考设计原理图

3.22 LQFP100-N32H487VEL7

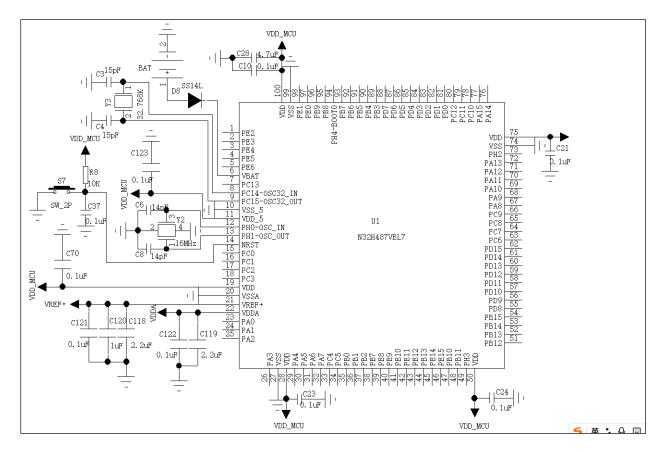


图 3-22 LQFP100 封装最小系统参考设计原理图

3.23 LQFP100-N32H488VEL7

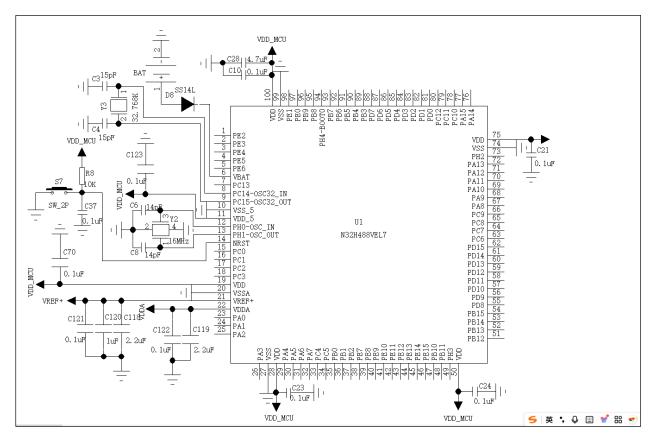


图 3-23 LQFP100 封装最小系统参考设计原理图

地址: 深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

3.24 LQFP128-N32H474QEL7

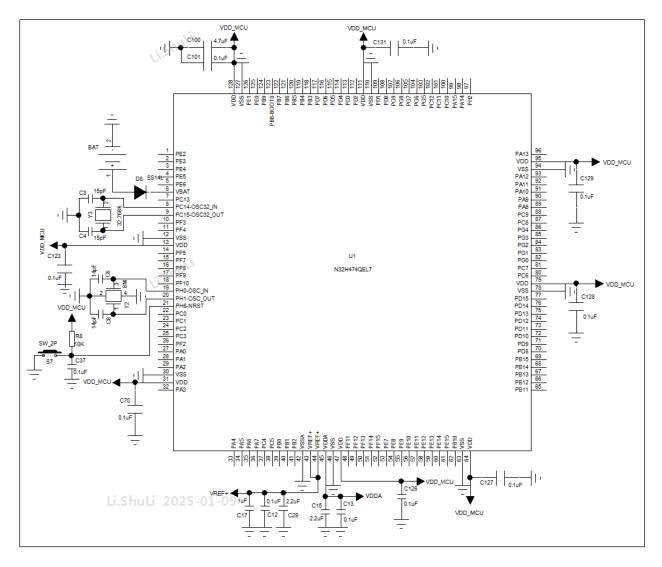


图 3-24 LQFP128 封装最小系统参考设计原理图

地址: 深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

3.25 LQFP128-N32H473QEL7

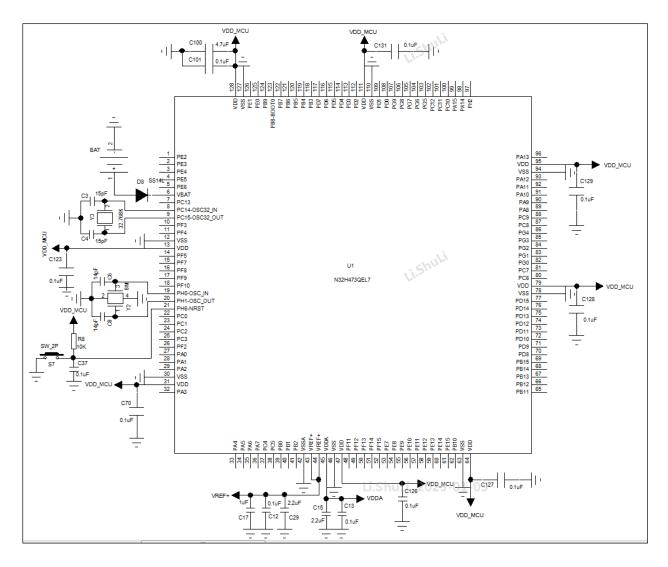


图 3-25 LQFP128 封装最小系统参考设计原理图

地址: 深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

3.26 LQFP144-N32H482ZEL7

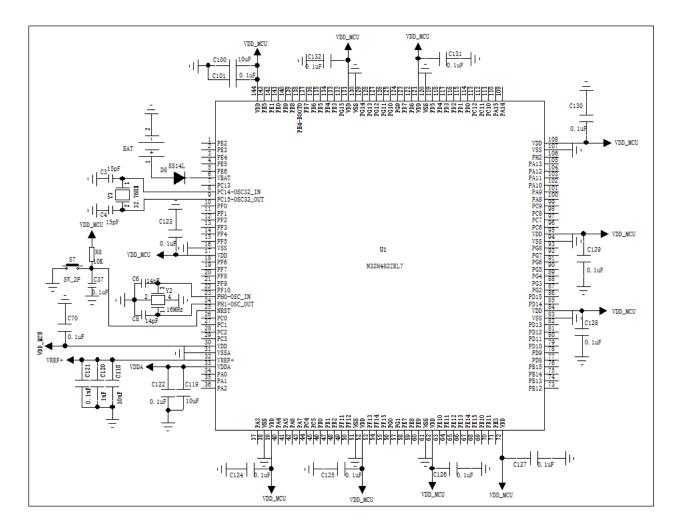


图 3-26 LQFP144 封装最小系统参考设计原理图

地址:深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

3.27 LQFP144-N32H487ZEL7

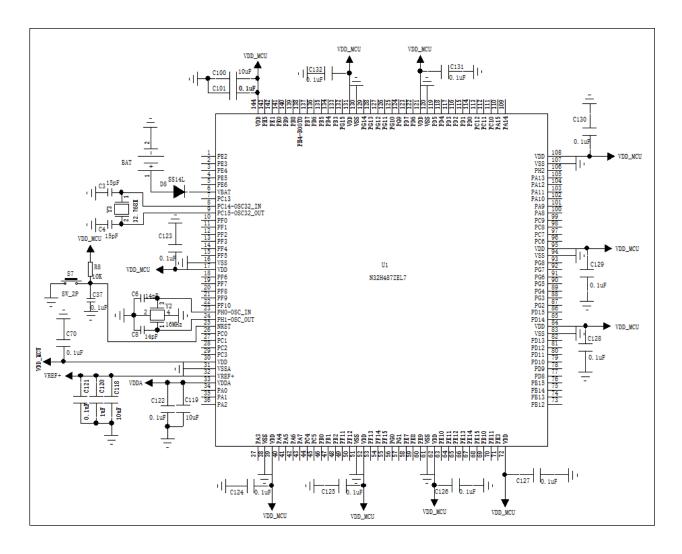


图 3-27 LQFP144 封装最小系统参考设计原理图

地址: 深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

3.28 LQFP144-N32H488ZEL7

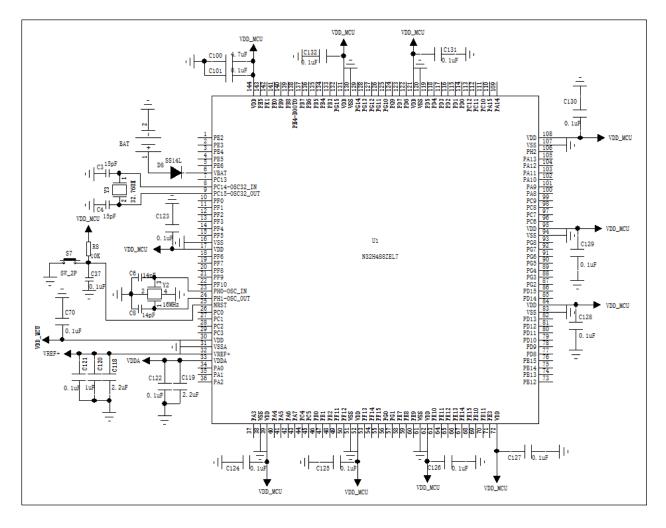


图 3-28 LQFP144 封装最小系统参考设计原理图

以上是不同封装最小系统参考设计原理图,主要体现供电电源去耦电容、时钟、复位电路等设计;时钟电路和备用电池取决于用户设计;

芯片内部支持内部高速和低速时钟可供用户选择;

模拟电源 VDDA 建议由外部稳定电源供电,若直连 VDD 供电,需做相应滤波处理。

对于 N32H473/474/481/482/487/488 系列芯片:

当 VERF+使用内置参考源 VREFBUF 时, VREF+引脚建议就近放置一个 0.1uF 和一个 1uF 的电容, 当 VERF+由外部供电时, VREF+引脚建议就近放置一个 0.1uF 和一个 2.2uF 的电容。

4. PCB LAYOUT 参考

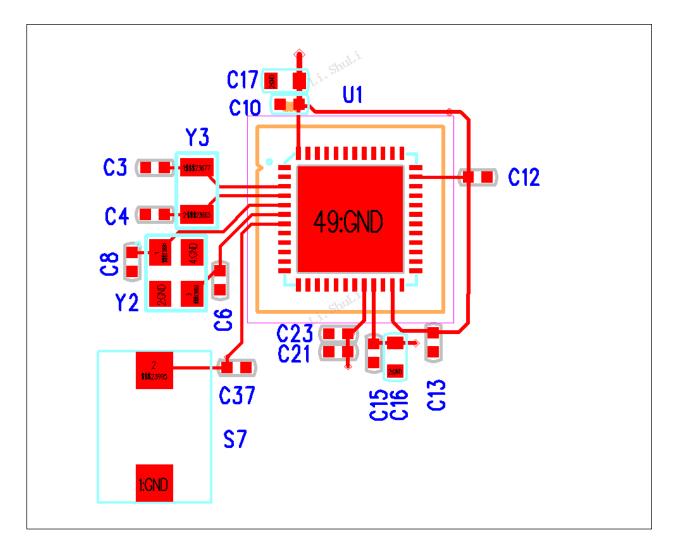


图 4-1 UQFN48 封装 PCB LAYOUT 参考图

注:

- 1、PCB LAYOUT 设计时,每一个电源管脚都需要就近放置去耦电容;
- 2、HSE 和 LSE 的外部晶体及走线尽可能在周围做包地处理,晶体下面一层靠近晶体的区域也需要铺地,不能有信号线穿过,防止信号线干扰晶体信号;
 - 3、HSE 和 LSE 用作晶振时, 走线不宜过长, 避免天线效应。

地址: 深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

5. 历史版本

版本	日期	备注
V0.7.0	2023-12-20	创建文档
V0.8.0	2024-4-8	 添加不同封装最小系统设计原理图 添加 PGA 应用参考 增加 ADC 采样时间表
V1.0.0	2024-11-18	1. 更新 N32H473CGQ8/ N32H473CCU7E/ N32H481REL7K/ N32H475UEQ7S/ N32H475REQ7/ N32H488REL7K/ N32H488REL7/ N32H488VEL7/ N32H488ZEL7 最小系统设计原理图
V1.1.0	2025-5-12	1. 修改 N32H48x 系列最小系统设计原理图 HSE 为 16M

6. 声明

国民技术股份有限公司(下称"国民技术")对此文档拥有专属产权。依据中华人民共和国的法律、条约以及世界其他法域相适用的管辖,此文档及其中描述的国民技术产品(下称"产品")为公司所有。

国民技术在此并未授予专利权、著作权、商标权或其他任何知识产权许可。所提到或引用的第三方名称或品牌(如有)仅用作区别之目的。

国民技术保留随时变更、订正、增强、修改和改良此文档的权利,恕不另行通知。请使用人在下单购买前联系国民技术获取此文档的最新版本。

国民技术竭力提供准确可信的资讯,但即便如此,并不推定国民技术对此文档准确性和可靠性承担责任。使用此文档信息以及生成产品时,使用者应当进行合理的设计、编程并测试其功能性和安全性,国民技术不对任何因使用此文档或本产品而产生的任何直接、间接、意外、特殊、惩罚性或衍生性损害结果承担责任。

国民技术对于产品在系统或设备中的应用效果没有任何故意或保证,如有任何应用在其发生操作不当或故障情况下,有可能致使人员伤亡、人身伤害或严重财产损失,则此类应用被视为"不安全使用"。

不安全使用包括但不限于:外科手术设备、原子能控制仪器、飞机或宇宙飞船仪器、所有类型的安全装置以及其他旨在支持或维持生命的应用。

所有不安全使用的风险应由使用人承担,同时使用人应使国民技术免于因为这类不安全使用而导致被 诉、支付费用、发生损害或承担责任时的赔偿。

对于此文档和产品的任何明示、默示之保证,包括但不限于适销性、特定用途适用性和不侵权的保证责任,国民技术可在法律允许范围内进行免责。

未经明确许可,任何人不得以任何理由对此文档的全部或部分进行使用、复制、修改、抄录和传播。