

N32H76X/N32H78X系列硬件设计指南

简介

本文档详细介绍 N32H76X/N32H78X 系列 MCU 硬件设计检查列表,以 便为用户提供硬件设计指导。

国民技术 版权所有

目录

1.	N32H76X/N32H78X 系列 MCU 硬件设计检查列表1					
	1.1	电源供电简介	1			
	1.2	供电方案	2			
	1.2.1	1 N32H765/H78X 系列芯片 VCAP 供电:	6			
	1.2.2	2 N32H760/H762 系列芯片 VCAP 供电:	8			
	1.3	备用电池	9			
	1.4	外部引脚复位电路	9			
	1.5	外部时钟电路	9			
	1.6	启动引脚连接	9			
	1.7	ADC 转换器	10			
	1.8	高速通信接口设计建议	12			
	1.8.1	1 USBHS 接口	12			
	1.8.2	2 MIPI 接口	12			
	1.8.3	3 EtherCAT /ETH 接口	12			
	1.8.4	4 SDRAM 接口	13			
	1.9	IO 上电脉冲处理	14			
	1.10	IO 耐压值	15			
	1.11	防静电设计	15			
	1.11	.1 PCB 设计	15			
	1.11	.2 ESD 防护器件	15			
	1.12	调试接口	16			
	1.13	BOOT 串口接口	16			
	1.14	各模块设计注意事项	16			
	1.14	I.1 SDRAM	16			
	1.14	I.2 SDMMC	16			
	1.14	USBHS	17			
	1.14	I.4 VREFBUF	17			
2.	整体设计	· 一建议	18			
3.	PCB LAY	YOUT 参考	19			
1.	历史版本	<u> </u>	20			
5.	声 明		21			

1. N32H76X/N32H78X 系列 MCU 硬件设计检查列表

1.1 电源供电简介

N32H76X/N32H78X 系列芯片工作电压(VDD)为 2.3V~3.63V。主要外部电源有: VDD、VDD33_USB、VCAP、VDDA、VREF、VBAT 引脚。其中 VDD 是芯片电源,主要给供电系统、时钟系统和 IO 供电; VDDA 为模拟外设电源,主要给模拟外设供电; VDD33_USB 是 USB 专用供电电源; VCAP 是芯片核心供电电源; VREF 给模拟外设提供参考电源,以提供更高的精度; VBAT 连接电池,为备份域提供电源。电源引脚详细描述请参考芯片相关手册。

1.2 供电方案

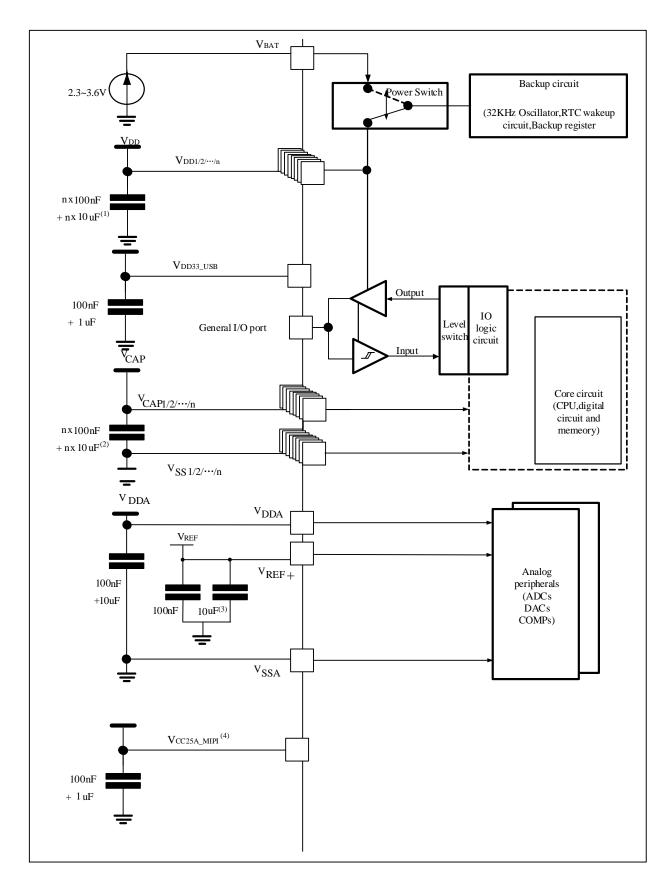
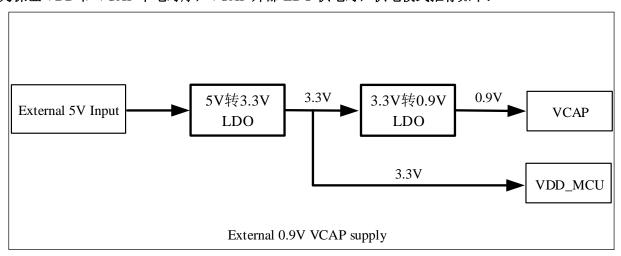


图 1-1 供电方案

地址: 深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100

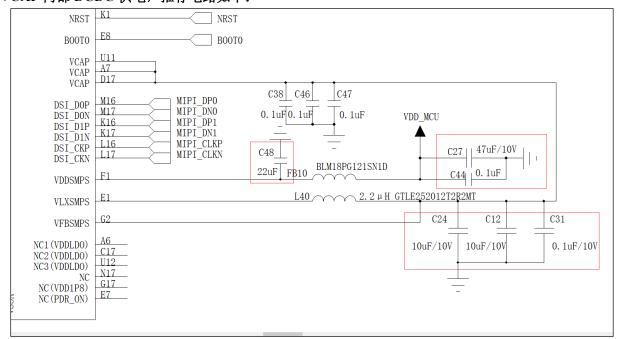
图 1-1 供电方案中 10μF 电容须连接到指定 VDD 引脚, 各型号芯片具体指定 VDD 引脚请见下表:

型号	封装	VDD	VCAP
	TFBGA100	VDD管脚上放置0.1uF	接近芯片端先放置一个22uF+0.1uF,靠近每个VCAP管脚上放置0.1uF
H760	LQFP100	pin27和pin75放置10uF+0.1uF,其余VDD管 脚上放置0.1uF	pin48和pin73放置10uF+0.1uF
	LQFP144	pin39和pin108放置10uF+0.1uF,其余VDD管脚上放置0.1uF	pin71和pin106放置10uF+0.1uF
	LQFP176	pin49和pin127放置10uF+0.1uF,其余VDD管 脚上放置0.1uF	pin81和pin125放置10uF+0.1uF
H762	UFBGA176+25	接近芯片端先放置一个10uF+0.1uF,靠近每个VDD管脚上放置0.1uF	接近芯片端先放置一个22uF+0.1uF,靠近每个VCAP管脚上放置0.1uF
11702	LQFP208	pin32和pin150放置10uF+0.1uF,其余VDD管脚上放置0.1uF	pin92和pin148放置10uF+0.1uF
	UFBGA240+25	接近芯片端先放置一个10uF+0.1uF,靠近每个VDD管脚上放置0.1uF	接近芯片端先放置一个22uF+0.1uF,靠近每个VCAP管脚上放置0.1uF
	LQFP144	pin42和pin106放置10uF+0.1uF,其余VDD管脚上放置0.1uF	除了在输出电感位置放置10uF+0.1uF,另外在pin68、 pin105和pin140分别放置10uF+0.1uF
H765	UFBGA144	接近芯片端先放置10uF+0.1uF,靠近每个 VDD管脚上放置0.1uF	接近芯片端先放置一个22uF+0.1uF,靠近每个VCAP管脚上放置0.1uF
11703	LQFP176	pin48和pin136放置10uF+0.1uF,其余VDD管脚上放置0.1uF	除了在输出电感位置放置10uF+0.1uF, 另外在pin80、 pin133和pin172分别放置10uF+0.1uF
	UFBGA176+25	接近芯片端先放置10uF+0.1uF,靠近每个 VDD管脚上放置0.1uF	在输出电感位置放置47uF+0.1uF
	LQFP176	pin48和pin136放置10uF+0.1uF,其余VDD管脚上放置0.1uF	除了在输出电感位置放置10uF+0.1uF, 另外在pin80、 pin133和pin172分别放置10uF+0.1uF
H785	UFBGA176+25	接近芯片端先放置10uF+0.1uF,靠近每个 VDD管脚上放置0.1uF	在输出电感位置放置47uF+0.1uF
	LQFP208	pin56和pin155放置10uF+0.1uF,其余VDD管 脚上放置0.1uF	除了在输出电感位置放置10uF+0.1uF,另外在pin89、 pin152和pin199分别放置10uF+0.1uF
	TFBGA240+25	接近芯片端先放置10uF+0.1uF,靠近每个 VDD管脚上放置0.1uF	在输出电感位置放置47uF+0.1uF
	LQFP176	pin48和pin136放置10uF+0.1uF,其余VDD管脚上放置0.1uF	除了在输出电感位置放置10uF+0.1uF, 另外在pin80、 pin133和pin172分别放置10uF+0.1uF
H787	UFBGA169	接近芯片端先放置10uF+0.1uF,靠近每个 VDD管脚上放置0.1uF	在输出电感位置仿置47uF+0.1uF
	LQFP208	pin56和pin155放置10uF+0.1uF,其余VDD管 脚上放置0.1uF	除了在输出电感位置放置10uF+0.1uF,另外在pin89、 pin152和pin199分别放置10uF+0.1uF
	TFBGA240+25	接近芯片端先放置10uF+0.1uF,靠近每个 VDD管脚上放置0.1uF	在输出电感位置放置47uF+0.1uF
H788	UFBGA176+25	接近芯片端先放置10uF+0.1uF,靠近每个 VDD管脚上放置0.1uF	在输出电感位置放置47uF+0.1uF


表 1-1 各封装电源去耦电容设计参考

- 4个电源区域,通过外部电源给不同电源区域供电:
- VDD 域: 电压范围为 2.3V~3.63V, 主要为大部分 GPIO、HSE、 HSI、 PLL、POR/PDR、 BOR、 PVD 供电。

- VDD33 USB 域: 电压范围为 1.8V~3.6V,专门为 USB PHY 供电。
- VDDA 域: 电压范围为 2.3V~3.63V, 主要为 ADC, DAC, COMP、VREFBUF、TS 等供电。
- VCAP 域: 电压范围为 0.9V~0.99V (包含电源纹波), 主要为 CPU、AHB、APB、SRAM、FLASH、RCC、TRNG 和大部分外设供电


注意: VCAP 外部 LDO 供电,下电时,需要保证 VDD 先下电到 1V 以下,VCAP 再下电;为保证 VDD 和 VCAP 下电时序,VCAP 外部 LDO 供电时,供电模式推荐如下:

LDO 选型要求: 0.9V/1A(@25℃)

- 输入电压在 1.45V 时, 仍能输出 0.9V, 电流至少 200mA
- 在高温 105 °C@3.6V 时, 电流至少输出 1A
- 推荐型号: RT2516GSP

VCAP 内部 DCDC 供电,推荐电路如下:

注:图中输入输出电容温度系数推荐 X7R 类型。

VDD 为 MCU 主电源,必须由稳定的外部电源供电。电压范围 2.3V~3.63V,所有 VDD 引脚都需就近放置一颗 0.1uF 去耦电容,其中指定的 VDD 管脚还需增加一颗 10uF 去耦电容,具体指定 VDD 引脚请参考表 1-1《各封装电源去耦电容设计参考》。

VDDA 为模拟电源, VDDA 输入管脚建议就近放置一个 0.1uF 和一个 10uF 的电容。

VREF+为参考电压,为 ADC、DAC 提供参考电平,当 VERF+使用内置参考源 VREFBUF 时,VREF+引脚建议就近放置一个 0.1uF 和一个 1uF 的电容。当 VERF+由外部供电时,VREF+引脚建议就近放置一个 0.1uF 和一个 10uF 的电容。

VBAT 引脚主要给备电域(RTC、IWDG、Backup SRAM)供电,在主电源(VDD)关闭时,电源切换器可以将备份域的电源切换到 VBAT 引脚,使得备电域模块仍能正常运行。

VCAP 为芯片核心供电电源:

1.2.1 N32H765/H78X 系列芯片 VCAP 供电:

(1) 芯片内部 DCDC 为 VCAP 供电:

图 1-2 VCAP 由内部 DCDC 供电

注:

- 1、L 电感量:2.2μH,饱和电流:1.2A。
- 2、C_{SNB} 和 R_{SNB} 为可选的阻容缓冲电路,可减少开关振铃,抑制 EMI.

(2) 芯片外部 0.9V 为 VCAP 供电:

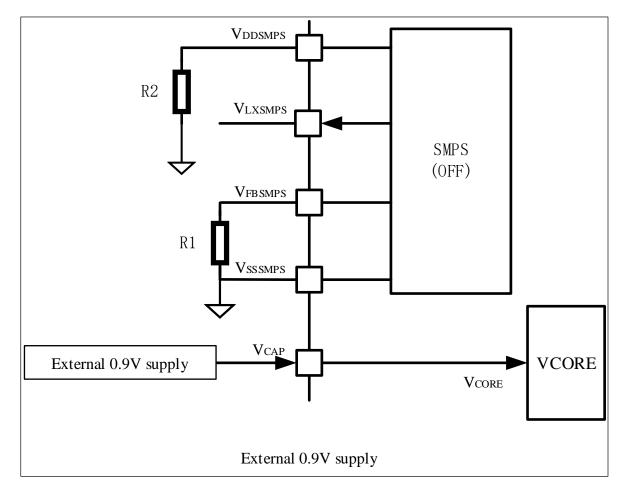


图 1-3 VCAP 由外部 LDO 供电

注:

- 1、 当不使用 DCDC 供电模式时,VDDSMPS 和 VFBSMPS 管脚需接 0 Ω 电阻下拉到地,防止漏电。
- 2、对于使用外部电源给 VCAP 供电的情况,要求外部电源能满足输入电压在 1.6V 及其以上时能稳定输出 0.9V, VCAP 供电电压范围为 0.9V~0.99V(包含电源纹波)。

1.2.2 N32H760/H762 系列芯片 VCAP 供电:

(1) 芯片外部 0.9V 为 VCAP 供电

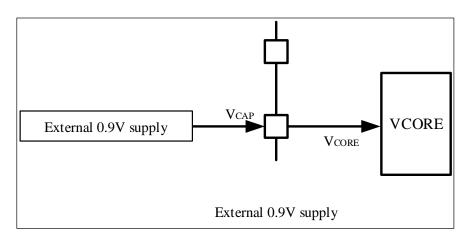


图 1-4 VCAP 由外部电源供电

注:

1、对于使用外部电源给 VCAP 供电的情况,要求外部电源能满足输入电压在 1.6V 及其以上时能稳定输出 0.9V, VCAP 供电电压范围为 0.9V~0.99V(包含电源纹波)。

1.3 备用电池

VBAT 引脚主要给备电域(RTC、IWDG、Backup SRAM)供电,使得备电域模块在主电源(VDD)关闭时仍能正常运行。如果应用中没有外部电池,VBAT 必须在外部连接到 VDD。

1.4 外部引脚复位电路

当NRST引脚上出现低电平(外部复位)将产生系统复位。外部NRST引脚复位参考电路如下。

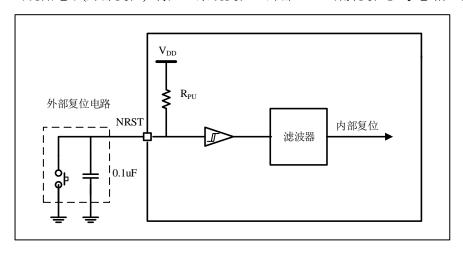


图 1-5 系统复位图

注:复位引脚NRST在设计时建议不悬空,外挂电容0.1uF作为典型参考值给出,若需加快复位时间,NRST引脚可外加上拉,另外用户可根据产品实际需要决定是否增加复位按键。

1.5 外部时钟电路

N32H76X/N32H78X 系列 MCU 包含 2 个外部时钟: 外部高速时钟 HSE (4MHz~48MHz) 和外部低速时钟 LSE (通常使用 32.768KHz)。

HSE 和 LSE 根据晶振特性配置相应的负载电容,详细请参考相关数据手册中外部时钟特性描述。

1.6 启动引脚连接

下图显示了 N32H76X/N32H78X 系列芯片选择启动存储器时所需的外部连接。关于启动模式请参考用户手册相关章节。

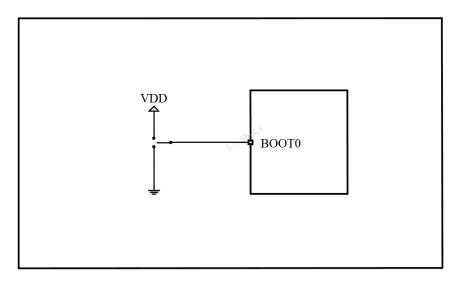


图 1-6 启动模式实现实例

BOOT引脚拉高,芯片复位后从BOOT区启动;BOOT引脚拉低,芯片复位后从用户区启动。启动模式请参考软件开发指南BOOT配置章节.

1.7 ADC 转换器

关于 ADC 电路设计,请注意如下几点:

- 1) 在使用 ADC 采样时,建议缩短 ADC 采样通道的外部走线距离;
- 2) ADC 的输入信号周边建议远离一些高频翻转信号;
- 3) 注意 ADC 采样通道的最高支持速率: N32H76X/N32H78X 系列在 ADC 输入时钟为 20MHZ 条件下, ADC 通道采样率不超过 5Msps;
- 4) 在 ADC 转换期间,芯片不支持修改 ADC 配置,如需修改配置,需要等待当前转换结束或者关闭 ADC 后,再进行配置:
- 5) 在使用某一 ADC 通道时,不能在其它未使用的 ADC 采样通道施加负压(比如-0.2V),如果施加了此负电压,会导致正常采样的 ADC 通道电压被拉低,导致读取的数据不准;
- 6) 在使用某一 ADC 通道时,不能在其它未使用的 ADC 采样通道施加高压 (大于 VDD 电压),如果施加了此高电压,会导致正常采样的 ADC 通道电压被拉高,导致读取的数据不准;
- 7) 在使用 ADC 时,ADC 的采样速率和 R_{AIN} 是相关的,R_{AIN} 越小采样速率越快,具体见下表:

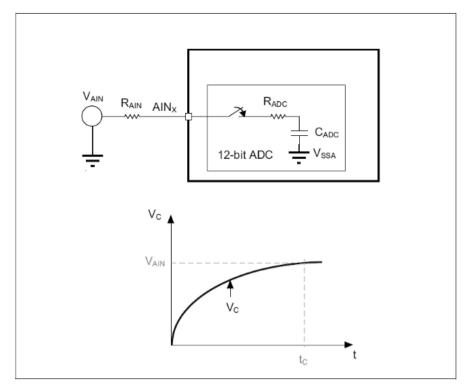


图 1-7 ADC 输入口串联电阻的影响

ADC 采样时间表:

分辨率	Rin (kΩ)	最小采样时间(ns)
	0	50
	0.45	100
	0.7	150
	0.95	200
12-bit	1.95	400
	2.95	600
	3.95	800
	4.95	1000
	9.95	2000

表 1-2 ADC 采样时间表

注:采样时间需根据输入时钟和ADC寄存器可选的采样周期综合配置,原则上ADC采样周期配置应大于等于表中最小采样周期数。

1.8 高速通信接口设计建议

1.8.1 USBHS 接口

- 1、DPDM 走线需做阻抗控制,差分阻抗需为 90Ω±10%;
- 2、DPDM 走线需做等长匹配,差分对长度差控制在±5mil 内;
- 3、DPDM 走线需对称走线,避免直角拐弯,减少阻抗突变;
- 4、在 DPDM 线上靠近连接器处添加 ESD 二极管, 防止静电损坏;
- 5、确保 DPDM 差分线下有完整参考地平面,避免跨越分割,减少回流路径干扰;
- 6、DPDM 走线应尽量避开电源、时钟等高频噪声区域,在差分线周围增加屏蔽地过孔;
- 7、部分设计需在差分线末端串联 22Ω 电阻,抑制反射。
- 8、 当使用 USBHS 模块时, 需要使用外部 HSE 晶体作为时钟源, 且 HSE 频率只能是 10MHz、12MHz、19.2MHz、24MHz、25MHz、27MHz、30MHz 或 40MHz。

1.8.2 MIPI 接口

- 1、MIPI 走线需做差分阻抗, 差分阻抗需控制为 100Ω±10%;
- 2、MIPI 走线需做等长匹配,差分对内等长误差需控制在 5mil 内,线对间误差不超过 10~20mil,可通过蛇形线调整长度:
- 3、MIPI 走线需对称走线,避免直角拐弯,减少阻抗突变;
- 4、确保 MIPI 走线有完整参考地平面,避免跨越分割,减少回流路径干扰;
- 5、MIPI 走线尽量减少过孔数量,建议不超过 2 个,换层时需对称打孔,并在过孔附近添加回流地孔以 优化信号回流路径,同时建议使用小孔过孔,以降低寄生电容影响:
- 6、MIPI 走线应尽量远离其他高速信号,与其保持至少3倍线宽线距,避免平行走线,同时在差分线周围要增加屏蔽地过孔;
- 7、为 MIPI 模块提供独立电源层,靠近电源引脚增加去耦电容,降低电源噪声。

1.8.3 EtherCAT/ETH接口

- 1、TXP/TXN,RXP/RXN 差分信号对,差分阻抗需控制为 100Ω±10%,同一对差分线的长度差需控制在 5mil 以内,以保持信号对称性,减少共模噪声和时序偏差;发送(TXP/TXN)与接收(RXP/RXN) 差分对的整体长度差建议控制在 50mil 以内,避免跨节点通信延迟不一致;
- 2、接口信号时钟线与数据线需做等长处理, EtherCAT 接口 TX_CLK 与 TX[3:0]、RX_CLK 与 RXD[3:0] 需组内等长, 长度差需控制在 50mil 以内; ETH GMII 接口 TX_CLK 与 TX[7:0]、RX_CLK 与 RXD[7:0] 需组内等长, 长度差需控制在 5mil 以内;
- 3、管理接口 MDC 与 MDIO 信号建议走线长度差<100mil,使用时需加电阻上拉,避免配置时序异常;
- 4、差分对走线应全程参考完整地平面,避免跨分割或换层;

- 5、避免直角走线,减少阻抗突变,可通过蛇形线调整走线长度;
- 6、 晶振尽量靠近 PHY 芯片, 时钟信号包地处理, 减少辐射干扰;

1.8.4 SDRAM 接口

- 1、SDRAM 的片选引脚建议优先选用 SDRAM_NCE0 与 SDRAM_CKE0,这样 SDRAM 既可以跑代码, 又可以读写数据;选择 SDRAM NCE1 与 SDRAM CKE1 时,仅支持 SDRAM 的数据读写;
- 2、电源平面尽量完整,减少阻抗,靠近电源引脚增加去耦电容,降低电源噪声。;
- 3、时钟信号 CLK 优先布线,保持最短路径,远离其他高速信号;
- 4、数据线(DQ0~DQ15、LQDM、UDQM) 走线需组内等长,长度差需控制在 50mil 以内
- 5、地址线(A0~A12、BS0、BS1) 走线需组内等长,长度差需控制在100mil 以内;
- 6、控制信号线(CS/RAS/CAS/WE)走线需组内等长,长度差需控制在100mil以内;
- 7、地址/控制线相对 CLK 时钟线长度差需控制在 100mil 以内;
- 8、采用完整地平面,避免跨分割,确保低阻抗回流路径;
- 9、地址线、控制线、数据线、LCK 信号可端接一个 22~33Ω 电阻,减少信号反射,提升信号完整性。

1.9 IO 上电脉冲处理

上电过程中由于 IO 处于高阻态及内部电路耦合特性,上电瞬间会引起 IO 上出现高电平脉冲(实际的高脉冲电压值请用户实测)。若该脉冲会影响其应用,建议在对应 IO 上挂适当电容($1nF\sim100nF$)或外加适当下拉电阻($10K\sim100K$)处理。

下图为开发板 N32H760VIB7 STB V1.0 上电过程中 IO(PB12)波形图:

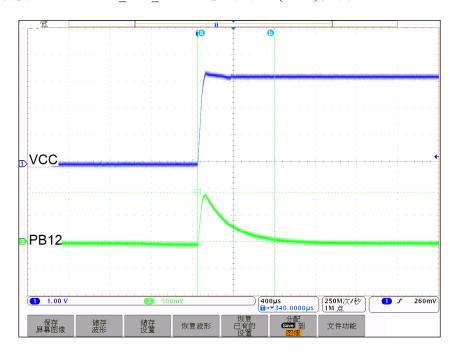


图 1-8 上电过程 IO(PB12)波形

下图为开发板 N32H760VIB7 STB V1.0 上电过程中 IO(PB12)外加 10K 下拉电阻后的波形图:

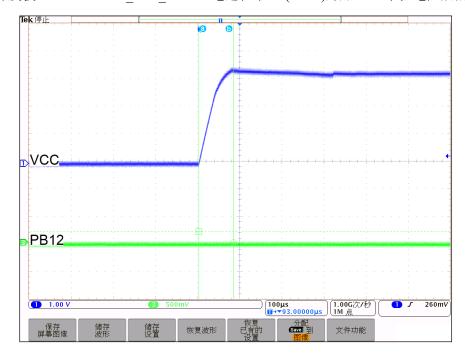


图 1-9 上电过程 IO (PB12) 外加下拉电阻处理后波形

1.10 IO 耐压值

芯片使用时请注意各 IO 耐压值, 在数据手册引脚复用定义的 I/O 结构一栏, 标注了 FT: 5V tolerant IO, 这类型 IO 在与外部其它不同电压域的 IO 进行通讯时, 需要做电平转换。

	封導	虔。					Fail			Fail	可选的复用功能。	
TFBGA240+ 25 -	LQFP208 .	LQFP176 .	UFBGA169 .	管脚。 名称。	类 型(i)。	I/O 结 构 ⁽²⁾ 。	结 safe	默认。	重定义。			
C3 ÷	1 ↔	1.0	A2 &	PE2 -	IO &	TT ÷	Yes ∘	TRACECLK + SPI6_SCK + ETH1_MII_TXD3/ETH1_GMII_TXD3 + GTIMB1_ETR + DVP2_D0 + FEMC_A23 + USART5_RX + FDCAN4_TX +	- 0			
ДЗ ф	2 &	2 &	C3 &	PE3 o	IO &	TT ÷	Yes ₽	TRACED0 + ETH1_MII_TXD2/ETH1_GMII_TXD2 + SHRTIM2_EEV + GTIMB1_BRK + DVP2_D1 + FEMC_A19 + USART5_TX + FDCAN4_RX -	- 0			

图 1-10 数据手册引脚复用定义的 I/O 结构

注: FT: 5V tolerant IO; TT: 3.3V standard IO。在使用芯片时需注意 IO 的耐压值。

1.11 防静电设计

1.11.1 PCB 设计

对于普通两层板的 PCB 设计,建议信号线周围做包地处理,PCB 板边也尽量做到铺地环绕。在成本允许的条件下,可以用四层板或多层板设计,在多层 PCB 中地线面作为一个重要的电荷源,可抵消静电放电源上的电荷,这有利于减小静电场带来的问题。PCB 地线面也可作为其对信号线的屏蔽体(当然,地线面的开口越大,其屏蔽效能就越低)。另外,如果发生放电,由于 PCB 板的地平面很大,电荷很容易注入到地线面中,而不是进入到信号线中。这样将有利于对元件进行保护,因为在引起元件损坏前,电荷可以泄放掉。

1.11.2 ESD 防护器件

在实际产品设计中,芯片自身有一定的抗静电能力,N32H76X/N32H78X 系列 MCU ESD(HBM)模式下静电等级为+/-4KV,但如果有更高的 ESD 防护等级要求,且有芯片的管脚需要直接外接作为产品的输出或输入口,此时,芯片的管脚就直接暴露在产品的最外面,不能通过铺地等方式进行隔离。这种条件下,一般需要考虑外加 ESD 防护器件,TVS 管是一种典型的 ESD 保护器件,以下是典型的连接方式示例。

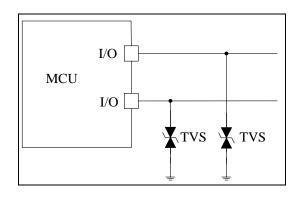


图 1-11 I/O 管脚上 TVS 连接方式

1.12 调试接口

N32H76X/N32H78X 系列芯片支持串行接口(SWD)和 JTAG 调试接口,详细应用请参考相关用户手册。

调试信号	GPIO 引脚
JTMS/SWDIO	PA13
JTCK/SWCLK	PA14
JTDI	PA15
JTDO	PB3
JNTRST	PB4

表 1-3 调试接口

1.13 BOOT 串口接口

N32H76X/N32H78X 系列芯片支持 BOOT 串口通讯,串口接口如下表:

BOOT 串口	GPIO 引脚
USART1_TX	PA9
USART1_RX	PA10

表 1-4 串口接口

1.14 各模块设计注意事项

1.14.1 SDRAM

1) SDRAM 的片选引脚建议优先选用 SDRAM_NCE0 与 SDRAM_CKE0,这样 SDRAM 既可以跑代码, 又可以读写数据;选择 SDRAM NCE1 与 SDRAM CKE1 时,仅支持 SDRAM 的数据读写;

1.14.2 SDMMC

1) 使用 SD 卡时,需要注意设计一个 NRST 引脚用于通过 IO 上下拉的形式对 SD 卡进行上下电,避免 MCU 复位而卡没有掉电导致的 MCU 端和卡端 IO 电压不匹配;

2) CLKIN 引脚是必须的,设计上需要预留这个引脚

1.14.3 **USBHS**

1) 当使用 USBHS 模块时, 需要使用外部 HSE 晶体作为时钟源, 且 HSE 频率只能是 10MHz、12MHz、19.2MHz、24MHz、25MHz、27MHz、30MHz 或 40MHz。

1.14.4 VREFBUF

1) 当使能内部参考源 VREFBUF 时, VREF+管脚不能外接电压。

2. 整体设计建议

1) 印制电路板

建议使用有专门独立的接地层(VSS)和专门独立的供电层(VDD)的多层印制电路板,从而能提供好的耦合性能和屏蔽效果。在实际应用中,如考虑成本因素不能使用多层印制电路板,那么在设计电路时就需保证一个好的接地和供电的结构。

2) 器件位置

在 PCB 设计时根据各器件对 EMI 影响的不同,需把不同的电路分开布局。比如,大电流电路、低电压电路、以及高频器件等。从而减少 PCB 上的交叉耦合。

3) 接地和供电(VSS, VDD)

各模块(模拟电路、数字电路、敏感度低的电路)都应该单独接地,数字地和模拟地分开,所有的地最终都应在一个点上连到一起。根据印制线路板电流的大小,尽量加粗电源线宽度,减少环路电阻。同时,电源线、地线的走向和电流的方向应尽量一致,且电源应尽量靠近地线,减小回路的区域。这样有助于增强抗噪声能力。PCB上没有器件的区域,需要填充为地,以提供好的屏蔽效果。

4) 去耦合

所有的电源引脚都需要适当的连接到电源。这些连接,包括焊盘、连线和过孔应该具备尽量小的阻抗。通常采用增加连线宽度的办法,同时每对 VDD 与 VSS 引脚都必须在靠近芯片处放置去耦电容。下图为电源/地引脚的典型布局。

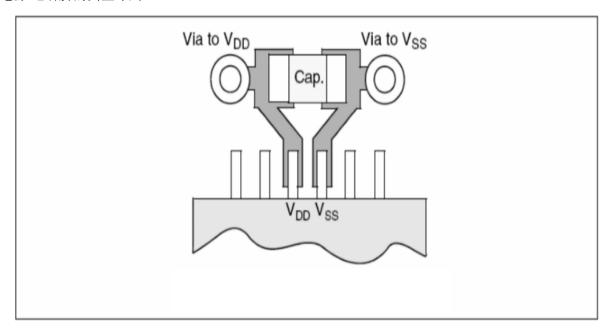


图 2-1 VDD/VSS 引脚的典型布局

3. PCB LAYOUT 参考

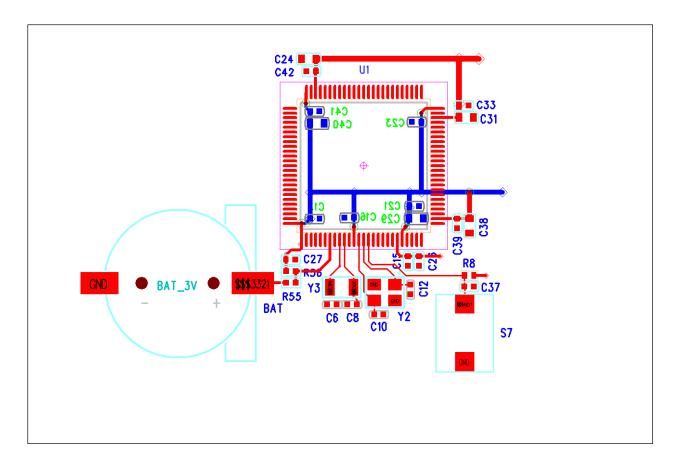


图 3-1 LQFP100 封装 PCB LAYOUT 参考图

注:

- 1、PCB LAYOUT 设计时,每一个电源管脚都需要就近放置去耦电容;
- 2、HSE 和 LSE 的外部晶体及走线尽可能在周围做包地处理,晶体下面一层靠近晶体的区域也需要铺地,不能有信号线穿过,防止信号线干扰晶体信号;
 - 3、HSE 和 LSE 用作晶振时,走线不宜过长,避免天线效应。

4. 历史版本

版本	日期	备注		
V1.0.0	2025-4-20 创建文档			
V1.1.0	2025-5-16	1.更新备用电池章节 VBAT 引脚连接注意事项 2.修改章节 EtherCAT/ETH 接口设计建议描述 3.删除表 1-2 ADC 采样时间表关于 10-bit 描述 4.补充 LDO 选型要求以及 DCDC 供电 VCAP 的推荐电路		

5. 声明

国民技术股份有限公司(下称"国民技术")对此文档拥有专属产权。依据中华人民共和国的法律、条约以及世界其他法域相适用的管辖,此文档及其中描述的国民技术产品(下称"产品")为公司所有。

国民技术在此并未授予专利权、著作权、商标权或其他任何知识产权许可。所提到或引用的第三方名称或品牌(如有)仅用作区别之目的。

国民技术保留随时变更、订正、增强、修改和改良此文档的权利,恕不另行通知。请使用人在下单购买前联系国民技术获取此文档的最新版本。

国民技术竭力提供准确可信的资讯,但即便如此,并不推定国民技术对此文档准确性和可靠性承担责任。使用此文档信息以及生成产品时,使用者应当进行合理的设计、编程并测试其功能性和安全性,国民技术不对任何因使用此文档或本产品而产生的任何直接、间接、意外、特殊、惩罚性或衍生性损害结果承担责任。

国民技术对于产品在系统或设备中的应用效果没有任何故意或保证,如有任何应用在其发生操作不当或故障情况下,有可能致使人员伤亡、人身伤害或严重财产损失,则此类应用被视为"不安全使用"。

不安全使用包括但不限于:外科手术设备、原子能控制仪器、飞机或宇宙飞船仪器、所有类型的安全装置以及其他旨在支持或维持生命的应用。

所有不安全使用的风险应由使用人承担,同时使用人应使国民技术免于因为这类不安全使用而导致被 诉、支付费用、发生损害或承担责任时的赔偿。

对于此文档和产品的任何明示、默示之保证,包括但不限于适销性、特定用途适用性和不侵权的保证责任,国民技术可在法律允许范围内进行免责。

未经明确许可,任何人不得以任何理由对此文档的全部或部分进行使用、复制、修改、抄录和传播。