NSING

\/
A 7N

nsing.com.sg

User guide

General MCU RT_Thread Usage Guide

Introduction

This document mainly introduces the use of RT Thread system in NSING Technology general MCU, which is
applicable to N32G45x, N32G4FR, N32WB452, N32G43x, N32L40x, N32L.43x series chips. This document uses
N32G45x as an example to introduce the related usage instructions of RT Thread system.

NSING Technologies Pte. Ltd.

Address: 20 Science Park, #03-15/16
Teleteck Park, East Wing, Singapore 117674
Email: sales@nsing com sg

™

" v NSING
4 nsing.com.sg
CONTENTS

TRT TRIEAA ...ttt h e skt e s h e e e bt e b e e e s b e e e s R bt e s ab e e e b e e e eae e e nabeesmr e e an e e e nnneennne s 1
LT OVEIVIEW L.t h bbb bbb h b e bbb 1
1.2 RT-TRICAA QICHITECIUIE ... eeuviitetieiieteste sttt sttt sttt bbb bt it e b b e sb e e b b e bt s b e e b e e sb e s b e ebeebe et e sbesbeennenbennas 1
1.3 RT TRICAA KETNEL.....ccviiiiieiiiiiiieeets ettt ettt et r e nr e n et r e 3
1.4 RT Thread thread Management............c.corveiiiiirieieiniesre ettt ettt nr e re e 3
1.5 RT_Thread cloCK ManaGEIMENLccccvrviieiiiiririeieiiste sttt et nre e nre e 4
1.6 RT_Thread interrupt ManaQEMENTcovevrirrirreieirtisrereeesre ettt sse s sr e sesrenne e nenrenr e 4
1.7 RT _Thread memory Managementcccoiiiiiiiiiiiiiisie s e 5

2 RT _Thread appliCAtiOncooiiiiiiiiiie et e e e et e e sb b e e sab e e sb e e e ne e e nnneennneeaa 6
2.1 Thread Creation EXAMPIE.viivieiiieiieiieiti ettt sb e sb e b bt e b e e sb e e sb e e sbe e sbe e s be e sbe e sbeenbeenneennnennnes 6
2.2 Semaphore EXAMPLE.......ccoiiiiiiiiiic 6
2.3 MULEX EXAIMPLE ..ottt e 7
2.4 MesSage qUEUE EXAMPIEcoiviiiiiiiiiiiiiiie e 10
2.5 MailboX €XAMPLEcvviiiiiiiiiii i e 12
2.6 EVENT €XAMPIE ..ot e 12

3 Supplementary INSEIUCLIONScoouiiiiii bbb e s b e e sbe e e sa b e e snb e e s ne e e srneennne s 15

4 Version RIStOrY ... 16

SINOTICE ... HIRIASE A

NSING Technologies Pte. Ltd.

Address: 20 Science Park, #03-15/16
Teleteck Park, East Wing, Singapore 117674
Email: sales@nsing com sg

Qy,
"’. NSING

nsing.com.sg

1 RT _Thread

1.1 Overview

RT-Thread, the full name is Real Time-Thread, as the name suggests, it is an embedded real-time multi-threaded
operating system, one of the basic attributes is to support multi-tasking, allowing multiple tasks to run concurrently
does not mean that the processor is actually executing multiple tasks at the same time. In fact, a processor core can
only run one task at a time, because the execution time of each task is very short, Tasks are switched very quickly
through the task scheduler (the scheduler decides the task to be executed at the moment according to the priority),
gives the illusion that multiple tasks are running at the same time. In the RT-Thread system, tasks are implemented
by threads, and the thread scheduler in RT-Thread is the above-mentioned task scheduler.

RT-Thread is mainly written in C language, which is easy to understand and easy to transplant. It applies the object-
oriented design method to the real-time system design, which makes the code style elegant, the structure clear, the
system modularized and the tailorability very good. For resource-constrained microcontroller (MCU) systems, the
NANO version that only requires 3KB Flash and 1.2KB RAM memory resources can be tailored through easy-to-
use tools (NANO is a minimalist version of the kernel officially released by RT-Thread in July 2017); For resource-
rich 10T devices, RT-Thread can use online software package management tools, and cooperate with system
configuration tools to achieve intuitive and fast modular tailoring, seamlessly import rich software function packages
to realize complex functions such as Android-like graphical interface, touch and slide effects, and intelligent voice
interaction effects.

Compared with the Linux operating system, RT-Thread has the advantages of small size, low cost, low power
consumption, and fast startup. In addition, RT-Thread also has the characteristics of high real-time performance and
small resource consumption, which is very suitable for various resource constraints (such as cost, power
consumption constraints, etc.). Although a 32-bit MCU is its main operating platform, in fact many application
processors with MMUs, ARM9, ARM11 and even Cortex-A series-level CPUs are also suitable for RT-Thread in
specific applications.

1.2 RT-Thread architecture

In recent years, the concept of Internet of Things (10T) has been widely popularized, the Internet of Things market
has developed rapidly, and the networking of embedded devices has become the general trend. The terminal
networking has greatly increased the software complexity, and the traditional RTOS kernel has become more and
more difficult to meet the needs of the market. In this case, the concept of the Internet of Things Operating System
(loT OS) came into being. 10T operating system refers to the operating system kernel (which can be RTOS, Linux,
etc.), including relatively complete middleware components such as file systems and graphics libraries, and a
software platform with low power consumption, security, communication protocol support and cloud connectivity,
RT-Thread is an loT OS.

One of the main differences between RT-Thread and many other RTOSs such as FreeRTOS and uC/OS is that it is
not only a real-time kernel, but also has rich middle-layer components, as shown in Figure 1-1.

NSING Technologies Pte. Ltd.

Address: 20 Science Park, #03-15/16
Teleteck Park, East Wing, Singapore 117674
Email: sales@nsing com sg

Qy,
"'; NSING

nsing.com.sg
Figure 1-1 RT_Thread software framework diagram
Cloud SDK/FOTA Third-party cloud RTI/SystemView Dried persimmon Ul
access SDK

mDNS/uPnP TLS/DTLS Script engine Audio framework
Package
(env&
ackages i

packages) LWM2M/CoAP WebSocket Compression/ Database
decompression library
MQTT HTTP C/S AriKiss
POSIX API | C++ AP | RT-Thread API
Web framework Exception handling/logging Key-value database
Component and
service layer . i _ .
Wi-Fi Manager USB stack DFS virtual file system Security
framework
Device framework Low-power management FinSH console
Kernel layer RT-Thread core libcpu/BSP
ARM C-SKY MIPS Xtensa RISC-V

It specifically includes the following parts:

Kernel layer: RT-Thread kernel is the core part of RT-Thread, including the realization of objects in the kernel
system, such as multithreading and its scheduling, semaphores, mailboxes, message queues, memory
management, timers, etc.; libcpu/BSP (chip porting related files/board support package) is closely related to
hardware and consists of peripheral drivers and CPU porting.

Component and service layer: components are upper-layer software based on RT-Thread kernel, such as virtual
file system, FinSH command line interface, network framework, device framework, etc. Modular design is
adopted to achieve high cohesion within components and low coupling between components.

RT-Thread software package: running on the RT-Thread IoT operating system platform, general software
components for different application fields, consisting of description information, source code or library files.
RT-Thread provides an open software package platform, where official or developer-provided software
packages are stored. This platform provides developers with many choices of reusable software packages,
which is also an important part of the RT-Thread ecosystem. The ecosystem of software packages is crucial to
the choice of an operating system, because these software packages are highly reusable and highly modular,
which greatly facilitates application developers to create the system they want in the shortest time. The number
of software packages that RT-Thread has supported has reached 60+, for example:

® |oT-related software packages: Paho MQTT, WebClient, mongoose, WebTerminal, etc.

NSING Technologies Pte. Ltd.

Address: 20 Science Park, #03-15/16
Teleteck Park, East Wing, Singapore 117674
Email: sales@nsing com sg

o™

%) NSING |
nsing.com.sg
® Scripting language related packages: currently support JerryScript, MicroPython
® Multimedia related software packages: Openmv, mupdf
® Tool package: CmBacktrace, EasyFlash, EasyLogger, SystemView
® System-related software packages: RTGUI, Persimmon Ul, lwext4, partition, SQLite, etc.
® Peripheral library and driver software package: RealTek RTL8710BN SDK

1.3 RT_Thread kernel

The kernel is the most basic and most important part of the operating system. Figure 1-2 is the RT-Thread kernel
architecture diagram. The kernel is above the hardware layer, and the kernel part includes the kernel library and real-

time kernel implementation.

Figure 1-2 RT_Thread kernel and underlying structure

RT-Thread Kernel A
Object Management: object.c
. Real-time Scheduler: schedule.c
Kernel L)
ernel Library Thread Management: thread.c %
) C 3
Kservice.c Inter-Thread Communication: ipc.c _ 2
: Clock Management: clock.c,timer.c o
kservice.h 5
Memory Management: mem.c,memheap.c -
Device Management: device.c
S
CPU Architecture Support: libcpu
BSP(Borad Support Package): bsp
Hardware: CPU/RAM/Flash/lUART/EMAC etc.

The kernel library is a small set of C library-like function implementation subsets that ensure that the kernel can run
independently. It provides implementations of functions like "strcpy", "memcpy", "printf", "scanf", etc.The RT-
Thread kernel library only provides a small part of the C library function implementation used by the kernel. In order
to avoid the same name as the standard C library, the rt_ prefix will be added before these functions.

The implementation of real-time kernel includes: object management, thread management and scheduler, inter-
thread communication management, clock management and memory management, etc. The minimum resource
occupancy of the kernel is 3KB ROM and 1.2KB RAM.

1.4 RT _Thread thread management

In our daily life, when we want to complete a big task, we usually decompose it into many simple and easy-to-solve
small problems. The small problems are solved one by one, and the big problems are solved accordingly. In a
multithreaded operating system, developers are also required to decompose a complex application into multiple
small, schedulable, serialized program units, when the tasks are properly divided and executed correctly, this design

NSING Technologies Pte. Ltd.

Address: 20 Science Park, #03-15/16
Teleteck Park, East Wing, Singapore 117674
Email: sales@nsing com sg

Qy,
"’. NSING

nsing.com.sg

enables the system to meet the performance and time requirements of a real-time system, for example, let the
embedded system perform such a task,the system collects data through sensors and displays the data through the
display screen. In a multi-threaded real-time system, this task can be decomposed into two sub-tasks, as shown in
Figure 1-3, a subtask continuously reads sensor data and writes the data to shared memory, another subtask
periodically reads data from shared memory and outputs sensor data to the display.

Figure 1-3 Switching execution of sensor data receiving task and display task

Receive sensor data
——» Taskl | | | | | |

output display
————— > Task?2]] 1]

|
Timeline t

In RT-Thread, the program entity corresponding to the above sub-tasks is the thread, the thread is the carrier for
realizing the task, it is the most basic scheduling unit in RT-Thread, it describes the running environment of a task
execution, it also describes the priority level of this task. Important tasks can be set to a relatively high priority, non-
important tasks can be set to a lower priority, and different tasks can also be set to the same priority and run in turn.

When a thread is running, it will think that it is running in a way of exclusive CPU, and the running environment of
the thread execution is called context, specifically, various variables and data, including all register variables, stack,
memory information, etc.

1.5 RT_Thread clock management

The clock management of RT-Thread is based on the clock tick. The clock tick refers to the length of the interval
between two interrupts of the periodic hardware timer. This periodic hardware timer is called the system clock. The
clock tick (OS Tick) is the smallest clock unit in the RT-Thread operating system. The system tick is generally
defined as a 32-bit unsigned integer, which is provided to the application for all time-related services, such as thread
delay, thread time slice rotation scheduling and timer timeout, etc., the number of clock ticks counted from the start
of the system is called the system time. The clock beat is derived from the periodic interrupt of the timer, and an
interrupt represents an OS Tick. The length of the OS Tick can be adjusted according to the definition of
RT TICK PER SECOND, which is equal to 1/RT _TICK PER SECOND seconds. A clock with higher precision

will cause the timer to be checked frequently in the system.

1.6 RT_Thread interrupt management

The interrupt management function of RT-Thread is mainly to manage interrupt devices, interrupt service routines,
interrupt nesting, maintenance of interrupt stack, on-site protection and recovery during thread switching, etc.

When the CPU is processing internal data, an emergency occurs in the outside world, requiring the CPU to suspend
the current work and turn to process this asynchronous event. After processing, return to the original interrupted
address and continue the original work. This process is called interruption. The system that realizes this function is

NSING Technologies Pte. Ltd.

Address: 20 Science Park, #03-15/16
Teleteck Park, East Wing, Singapore 117674
Email: sales@nsing com sg

Qy,
"’. NSING

nsing.com.sg

called the interrupt system, and the request source that applies for the CPU interrupt is called the interrupt source.
When multiple interrupt sources request interrupts from the CPU at the same time, there is a problem of interrupt
priority. Usually, according to the priority level of the interrupt source, the interrupt request source with the most
urgent event will be processed first, that is, the interrupt request with the highest level will be responded first.

When an interrupt occurs, the CPU will execute in the following order:

1) Save the current processor state information

2) Load exception or interrupt handler function into PC register

3) Transfer control to the handler and start execution

4) Restores processor state information when handler function execution completes
5) Return to the previous program execution point from an exception or interrupt

Interrupts allow the CPU to process events as they occur, rather than having the CPU continually query whether a
corresponding event has occurred.

1.7 RT_Thread memory management

Static memory pool interface: memory pool is a memory allocation method used to allocate a large number of small
memory blocks of the same size. It can greatly speed up the speed of memory allocation and release, and can try to
avoid memory fragmentation. When the memory pool is empty, the allocated thread can be blocked (either return
immediately, or wait for a period of time to return, which is determined by the timeout parameter). When other
threads release memaory blocks to this memory pool, the blocked thread will be woken up.

Dynamic memory heap interface: Dynamic memory management is a real heap memory management module, which
can allocate memory blocks of any size according to the needs of users when the current resources are satisfied.
When the user no longer needs to use these memory blocks, they can be released back to the heap for allocation by
other applications. In order to meet different needs, RT-Thread system provides two different sets of dynamic
memory management algorithms, namely small heap memory management algorithm and SLAB memory
management algorithm.

B The small heap memory management module is mainly used for systems with less system resources and is
generally used for systems with less than 2MB memory space.

B The SLAB memory management module mainly provides a fast algorithm that approximates the multi-memory
pool management algorithm when the system resources are relatively abundant.

The two memory management modules can only choose one of them or not use the dynamic heap memory manager
at all when the system is running. The API interfaces provided by these two management modules are exactly the
same.

In addition to the above, RT-Thread also has a management mechanism for multiple memory heaps, namely
memheap memory management. The memheap method is suitable for the situation where there are multiple memory
heaps in the system. It can "paste”" multiple memories together to form a large memory heap, which is very
convenient for users to use.

NSING Technologies Pte. Ltd.

Address: 20 Science Park, #03-15/16
Teleteck Park, East Wing, Singapore 117674
Email: sales@nsing com sg

Qy,
"’. NSING

nsing.com.sg

2 RT_Thread application

2.1 Thread creation example

Real-time applications using RTOS can be structured as a set of independent threads. Each thread executes in its
own context without accidentally relying on other threads in the system or the RTOS scheduler itself. At any point
in time, only one thread in the application can execute, and the RTOS scheduler is responsible for determining which
thread that thread should be.

Below is an example on thread creation.

led0_thread: this thread toggles LEDO every 500 ms

Create thread:

/*1ed0_thread definition */

rt_thread init(&led0_thread,
"led0",

led0_thread entry,
RT_NULL,
(rt_uint8_t*)&led0_stack[0],
sizeof(led0_stack),

3,

5)

/* Start led0_thread™*/
rt_thread startup(&ledO_thread);

2.2 Semaphore example

A semaphore is a lightweight kernel object used to solve the synchronization problem between threads. A thread can

acquire or release it to achieve synchronization or mutual exclusion.

The schematic diagram of semaphore work is shown in Figure 2-1. Each semaphore object has a semaphore value
and a thread waiting queue, the value of the semaphore corresponds to the number of instances and resources of the
semaphore object. If the semaphore value is 5, it means that there are 5 semaphore instances (resources) that can be
used. When the number of semaphore instances is zero, the thread that applies for the semaphore will be suspended

on the waiting queue of the semaphore, waiting for available semaphore instances (resources).

NSING Technologies Pte. Ltd.

Address: 20 Science Park, #03-15/16
Teleteck Park, East Wing, Singapore 117674
Email: sales@nsing com sg

Qy,
"'. NSING

nsing.com.sg

Figure 2-1 Schematic diagram of semaphore work

Semaphore Thread#1
Control block Semaphore Thread#2
> ~ >
Semaphore value Thread#n
Semaphore:

/* Create the binary semaphore */
rt_sem_init(&key sem,
"keysem",
0,
RT_IPC_FLAG_FIFO);

/* Get the semaphore*/
rt_sem_take(&key sem,

RT_WAITING_FOREVER);

/* Relase the semaphore™*/

rt_sem release(&key sem);

2.3 Mutex example

The difference between a mutex and a semaphore is that the thread that owns the mutex has ownership of the mutex,
and the mutex supports recursive access and prevents thread priority flipping; and a mutex can only be released by

the holding thread, while a semaphore can be released by any thread.

There are only two states of a mutex, unlocked or locked (two state values). When a thread holds it, the mutex is
locked, and the thread takes ownership of it. Instead, when the thread releases it, the mutex is unlocked, losing
ownership of it. When a thread holds a mutex, other threads will not be able to unlock it or hold it, and the thread
holding the mutex can also acquire the lock again without being suspended, as shown in Figure 2-2 Show. This
feature is very different from the general binary semaphore: in the semaphore, because there is no instance, the thread

recursively holds will actively suspend (eventually form a deadlock).

NSING Technologies Pte. Ltd.

Address: 20 Science Park, #03-15/16
Teleteck Park, East Wing, Singapore 117674
Email: sales@nsing com sg

Qy,
"'. NSING

nsing.com.sg

Figure 2-2 Mutex working diagram

Thread#1

Thread#2
Mutex

Hold \
Hold thread > >

Thread#n

Another potential problem caused by using semaphores is thread priority inversion. The so-called priority inversion,
that is, when a high-priority thread tries to access a shared resource through the semaphore mechanism, if the
semaphore is already held by a low-priority thread, and this low-priority thread may be used by other threads during
the running process. Some medium-priority threads are preempted, thus causing high-priority threads to be blocked
by many lower-priority threads, making it difficult to guarantee real-time performance. As shown in Figure 2-3:
There are three threads with priority A, B and C, priority A > B > C. Threads A and B are in a suspended state,
waiting for an event to be triggered, and thread C is running. At this time, thread C starts to use a shared resource M.
During use, the event that thread A is waiting for arrives, and thread A turns to the ready state, because it has a higher
priority than thread C, so it is executed immediately. But when thread A wants to use shared resource M, because it
is being used by thread C, thread A is suspended and switched to thread C to run. If the event that thread B is waiting
for arrives at this time, thread B turns to the ready state. Since thread B has a higher priority than thread C, thread B
starts running, and thread C does not start running until it finishes running. Thread A can execute only after thread
C releases shared resource M. In this case, the priority inversion: thread B runs before thread A. This does not
guarantee the response time of high-priority threads.

NSING Technologies Pte. Ltd.

Address: 20 Science Park, #03-15/16
Teleteck Park, East Wing, Singapore 117674
Email: sales@nsing com sg

> NSING

4 nsing.com.sg

I\ /

Figure 2-3 Priority inversion (M is a semaphore)

high
priority
I I I I I
I I I I I
I I I I I
I I I I I
| |
A — A : : A(M)
I I : : I
I I I I I
I I I I I
I I I I I
I I I I I
I I I
B | | B |
I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
C — c(M) c(M) c(M)
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
)) I I I I I
low priority L . L L L >
> > v w© .
= = hy = O Timet
@ - [} = =
D [D S @
< 5 < 3 3
o
Q & 3
- <
<

In the RT-Thread operating system, the mutex can solve the priority inversion problem and implement the priority
inheritance algorithm. Priority inheritance solves the problem caused by priority inversion by raising the priority of
thread C to the priority level of thread A during the period when thread A is suspended while trying to acquire a
shared resource. This prevents C (and indirectly A) from being preempted by B, as shown in Figure 2-4. Priority
inheritance refers to raising the priority of a low-priority thread that occupies a resource to make it equal to the
priority of the thread with the highest priority among all threads waiting for the resource, then execute, and when
the low-priority thread releases the resource, the priority returns to the initial setting. Thus, threads with inherited

priorities avoid preemption of system resources by any intermediate-priority thread.

NSING Technologies Pte. Ltd.

Address: 20 Science Park, #03-15/16
Teleteck Park, East Wing, Singapore 117674
Email: sales@nsing com sg

Qy,
"’. NSING

nsing.com.sg

Figure 2-4 Priority inheritance (M is a mutex)

high priority
A

A — A c(M) AM)

|
I B cannot preempt

I

w
|

c — c(M)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
vs)
=
@
1)
(=}
<

ApeaJ Y-
MO| S8J0)sal [~~~ — "~ """ T T T T oo

low priority o - >
- &3 2> T > Timet
338 z @ 53
= & [} = 3
] R
=

I\ 196 01 Sy [~ T T TTTTTTTTTTTTTTTTT

Note: After obtaining the mutex, please release the mutex as soon as possible, and in the process of holding the

mutex, you must not change the priority of the thread holding the mutex.

Mutex

/* Create the mutex */
rt_mutex_init(&static_mutex,
"smutex",

RT IPC_FLAG _FIFO);

/* Get the mutex */
rt_mutex take(&static_mutex,

10);

/* Relase the mutex */

rt_mutex_detach(&static_mutex);

2.4 Message queue example

The message queue can receive messages of variable length from threads or interrupt service routines, and buffer
the messages in its own memory space. Other threads can also read the corresponding messages from the message
queue, and when the message queue is empty, the reading thread can be suspended. When a new message arrives,
the suspended thread will be woken up to receive and process the message. A message queue is an asynchronous

communication method.

As shown in Figure 2-5, a thread or interrupt service routine can place one or more messages into a message queue.
Likewise, one or more threads can get messages from the message queue. When multiple messages are sent to the
message queue, the message that enters the message queue first is usually passed to the thread first, that is, the thread

NSING Technologies Pte. Ltd.

Address: 20 Science Park, #03-15/16
Teleteck Park, East Wing, Singapore 117674
Email: sales@nsing com sg

Qy,
"’. NSING

nsing.com.sg

gets the message that enters the message queue first, that is, the first-in-first-out principle (FIFO).

Figure 2-5 Schematic diagram of message queue work

Message queue control block

Message queue

Send thread
Free list —»D D D
o)

,\(

Interrupt service v

roufine -------

Message list header
Waiting thread queue

Message list tail —»D D D ------ >’ Thread#1 ‘ ’ Thread#2 ‘ D

The message queue object of the RT-Thread operating system consists of multiple elements. When a message queue
is created, it is assigned a message queue control block: message queue name, memory buffer, message size, and
queue length. At the same time, each message queue object contains multiple message boxes, and each message box
can store a message; the first and last message boxes in the message queue are called the message list header and the
message list tail respectively, corresponding to msg_queue head and msg_queue_tail in the message queue control
block; some message boxes may be empty, and they form a linked list of free message boxes through
msg_queue_free. The total number of message boxes in all message queues is the length of the message queue,

which can be specified when the message queue is created.

Message queue

/* Create the message queue*/
rt mq_init(&mgq,
"mqt",
&msg_pool[0],
128- sizeof(void*),
sizeof(msg_pool),
RT_IPC_FLAG_FIFO);

/* Send the message queue™/
rt_mq_send(&mq,
&key info[0],
sizeof(key_info));

/* Receive the message queue™®/

rt_mq recv(&mgq,
&buf]0],
sizeof(buf),
RT_WAITING_FOREVER);

NSING Technologies Pte. Ltd.

Address: 20 Science Park, #03-15/16
Teleteck Park, East Wing, Singapore 117674
Email: sales@nsing com sg

Qy,
"’. NSING

nsing.com.sg

2.5 Mailbox example

The mailbox of the RT-Thread operating system is used for inter-thread communication, which is characterized by
low overhead and high efficiency. Each message in the mailbox can only hold a fixed 4-byte content (for a 32-bit
processing system, the size of the pointer is 4 bytes, so a message can hold exactly one pointer). A typical mailbox
is also called exchanging messages, as shown in Figure 2-6, the thread or interrupt service routine sends a 4-byte

message to mailbox from which one or more threads can receive and process it.

Figure 2-6 Schematic diagram of mailbox work

Mailbox control block

Send thread
[

Interrupt service
routine

Enter offset

Mailbox Waiting thread queue

% Out offset M M M ------ >’ Thread#1 ‘ ’ Thread#2 ‘ D

Mailbox

/* Create the mailbox*/

rt mb_init(&mb,
"mbt",
&mb_pool[0],
sizeof(mb_pool)/4,
RT_IPC_FLAG_FIFO);

/* Send the mailbox*/
rt mb_send(&mb,
(rt_uint32_t)&key info[0]);

/* Receive the mailbox™*/
rt_mb_recv(&mb,
(rt_uint32_t*)&str,
RT_WAITING_FOREVER);

2.6 Event example

The event set is mainly used for synchronization between threads. Unlike the semaphore, it is characterized in that
it can achieve one-to-many and many-to-many synchronization. That is, the relationship between a thread and
multiple events can be set as: any one event wakes up the thread, or several events arrive before waking up the thread
for subsequent processing; similarly, an event can also be multiple threads synchronizing multiple events. This
collection of multiple events can be represented by a 32-bit unsigned integer variable, each bit of the variable

NSING Technologies Pte. Ltd.

Address: 20 Science Park, #03-15/16
Teleteck Park, East Wing, Singapore 117674
Email: sales@nsing com sg

Qy,
"" NSING

nsing.com.sg

represents an event, and the thread associates one or more events through "logical AND" or "logical OR" to form
event combination. The "logical OR" of events is also called independent synchronization, which means that the
thread is synchronized with any one of the events; the "logical AND" of events is also called associative
synchronization, which means that the thread is synchronized with several events.

The event set defined by RT-Thread has the following characteristics:

B Events are only related to threads, and events are independent of each other: each thread can have 32 event
flags, which are recorded by a 32-bit unsigned integer, and each bit represents an event

B Events are only used for synchronization and do not provide data transfer function

B There is no queueing of events, that is, sending the same event to the thread multiple times (if the thread has
not had time to read it away), the effect is equivalent to sending it only once. In RT-Thread, each thread has an
event information flag, which has three attributes, namely RT EVENT FLAG AND (logical AND),
RT EVENT FLAG OR (logical or) and RT EVENT FLAG CLEAR (clear flag). When a thread waits for
event synchronization, it can judge whether the currently received event satisfies the synchronization condition
through 32 event flags and this event information flag.

Figure 2-7 Schematic diagram of event work

Send events in threads, interrupts

Eventl Event30
An event set 0 1 0 0 0 . 0 O O O 1 0

Thread#l receives event 1, event 30
(event condition check OR/AND)

As shown in Figure 2-7, bits 1 and 30 are set in the event flag of thread #1, if the event information flag bit is set to
logical AND, it means that thread #1 will only be triggered to wake up after both event 1 and event 30 have occurred,
if the event information flag bit is set to logical OR, the occurrence of either event 1 or event 30 will trigger the
wakeup of thread #1. If the information flag also sets the clear flag bit, then when thread #1 wakes up, it will actively
clear event 1 and event 30 to zero, otherwise the event flag will still exist (ie set to 1).

Event

/* Create the event™®/
rt_event_init(&event,
"event",

RT_IPC_FLAG _FIFO);

/* Send the event */

rt_event_send(&event,

NSING Technologies Pte. Ltd.

Address: 20 Science Park, #03-15/16
Teleteck Park, East Wing, Singapore 117674
Email: sales@nsing com sg

amy,
"'- NSING

nsing.com.sg

(1<<0));

/* Receive the event s*/
rt_event_recv(&event,
(I<<0)| (1 <<1)),
RT_EVENT FLAG_AND |RT_EVENT _FLAG _CLEAR,
10,
&evt);

NSING Technologies Pte. Ltd.

Address: 20 Science Park, #03-15/16
Teleteck Park, East Wing, Singapore 117674
Email: sales@nsing com sg

Qy,
"'. NSING

nsing.com.sg

3 Supplementary instructions

There are many different CPU architectures in the embedded world, such as Cortex-M, ARM920T, MIPS32, RISC-
V, etc. In order to enable RT-Thread to run on chips with different CPU architectures, RT-Thread provides a libcpu
abstraction layer to adapt to different CPU architectures. The libcpu layer provides a unified interface to the kernel,
including global interrupt switches, thread stack initialization, context switching, etc.

The libcpu abstraction layer of RT-Thread provides a unified set of CPU architecture porting interfaces downwards.
This part of the interface includes the global interrupt switch function, thread context switch function, clock beat
configuration and interrupt function, Cache and so on. The following table shows the interfaces and variables that
need to be implemented for CPU architecture porting.

Table 3-1 libcpu porting related APIL

Functions and variables

Describe

rt base trt hw_interrupt_disable(void);

Turn off global interrupt

void rt_ hw_interrupt_enable(rt_base t level);

Turn on global interrupt

rt_ uint8_t *rt_hw_stack init(void *tentry, void

*parameter, rt_uint8 t *stack addr, void *texit);

The initialization of the thread stack, the kernel will call this function in

thread creation and thread initialization

))] Context switching without source thread, invoked when the scheduler
void rt_hw_context switch_to(rt uint32 to); o
starts the first thread, and in signal

void rt_hw_context switch(rt_uint32 from,rt_uint32 to); | Switch from from thread to to thread for switching between threads

void rt_hw_context switch_interrupt(rt_uint32 Switch from the from thread to the to thread, which is used when

from, rt_uint32 to); switching in the interrupt

rt uint32 trt thread switch interrupt flag; Indicates the flag that needs to be switched in the interrupt

rt uint32_trt interrupt from thread,)
) Used to save the from and to threads when the thread switches contexts
rt_interrupt to_thread;

NSING Technologies Pte. Ltd.

Address: 20 Science Park, #03-15/16
Teleteck Park, East Wing, Singapore 117674
Email: sales@nsing com sg

Qy,
"'; NSING

4 Version history

nsing.com.sg

Date Version Remark
2021.01.08 V1.0 Initial version
2025.09.20 V1.0.1 Modify header and footer

NSING Technologies Pte. Ltd.

Address: 20 Science Park, #03-15/16
Teleteck Park, East Wing, Singapore 117674
Email: sales@nsing com sg

Qy,
"'. NSING

nsing.com.sg

5 Notice

This document is the exclusive property of NSING TECHNOLOGIES PTE. LTD. (Hereinafter referred to as
NSING). This document, and the product of NSING described herein (Hereinafter referred to as the Product) are
owned by NSING under the laws and treaties of Republic of Singapore and other applicable jurisdictions
worldwide. The intellectual properties of the product belong to NSING Technologies Inc. and NSING
Technologies Inc. does not grant any third party any license under its patents, copyrights, trademarks, or other
intellectual property rights. Names and brands of third party may be mentioned or referred thereto (if any) for
identification purposes only. NSING reserves the right to make changes, corrections. enhancements, modifications,
and improvements to this document at any time without notice. Please contact NSING and obtain the latest version
of this document before placing orders. Although NSING has attempted to provide accurate and reliable
information, NSING assumes no responsibility for the accuracy and reliability of this document. It is the
responsibility of the user of this document to properly design, program, and test the functionality and safety of any
application made of this information and any resulting product. In no event shall NSING be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages arising in any way out of the use of this
document or the Product. NSING Products are neither intended nor warranted for usage in systems or equipment,
any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such
applications are deemed, Insecure Usage’. Insecure usage includes, but is not limited to: equipment for surgical
implementation, atomic energy control instruments, airplane or spaceship instruments, all types of safety devices,
and other applications intended to supporter sustain life. All Insecure Usage shall be made at user's risk. User shall
indemnify NSING and hold NSING harmless from and against all claims, costs, damages, and other liabilities,
arising from or related to any customer's Insecure Usage Any express or implied warranty with regard to this
document or the Product, including, but not limited to. The warranties of merchantability, fitness for a particular
purpose and non-infringement are disclaimed to the fullest extent permitted by law. Unless otherwise explicitly
permitted by NSING, anyone may not use, duplicate, modify, transcribe or otherwise distribute this document for

any purposes, in whole or in part.

NSING Technologies Pte. Ltd.

Address: 20 Science Park, #03-15/16
Teleteck Park, East Wing, Singapore 117674
Email: sales@nsing com sg

	1 RT_Thread
	1.1 Overview
	1.2 RT-Thread architecture
	1.3 RT_Thread kernel
	1.4 RT_Thread thread management
	1.5 RT_Thread clock management
	1.6 RT_Thread interrupt management
	1.7 RT_Thread memory management

	2 RT_Thread application
	2.1 Thread creation example
	2.2 Semaphore example
	2.3 Mutex example
	2.4 Message queue example
	2.5 Mailbox example
	2.6 Event example

	3 Supplementary instructions
	4 Version history
	5 Notice

