

使用指南

LSE晶体使用指南

简介

本文档为设计者提供有关 LSE 及其晶振(32.768KHz 晶振)电路的设计指导。 帮助设计者了解晶振的工作原理,晶振参数的意义,以及如何合理的选择外围器件, 让 LSE 电路更加合理的驱动晶振。

目录

1.	晶振	电路工作原理	. 2
	1.1 1.2 1.3	晶振介绍 串/并联谐振介绍 晶振的起振条件	. 2
2.	LSE	低功耗晶振电路设计	. 5
	2.1 2.2 2.3 2.4	负载电容计算	. 5
3.	PCE	3 设计	. 9
4.	晶体	·兼容列表	10
5.	历史	·版本	13
6.	声!	明	14

1. 晶振电路工作原理

本章节主要介绍晶振的工作原理。

1.1 晶振介绍

构成通常指石英晶体材料,按其晶格方向以一定的角度切割成薄片,并在薄片对立面敷上电极层。晶振有明显的压电效应,在受到机械应力后,产生与压力相关的电场。利用该特性,在外部电场的驱动下,可形成一定的共振频率。

由于晶格特性,晶振呈现串联谐振特性,且谐振范围很窄,具有非常好的品质因数(Q值高),因此适合做为稳定的时钟源。

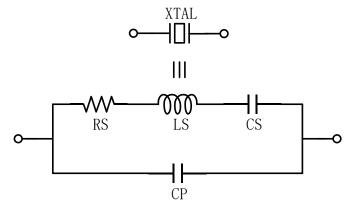


图 1-1 晶振的等效模型

上图为晶振的等效模型,其中:

RS 为谐振电阻,体现了晶振的热损耗;

LS 为谐振电感, CS 为谐振电容, 共同体现了晶振的机械振动特性;

CP 为晶振两端的寄生电容;

小信号分析可得晶振具有串联谐振和并联谐振特性。LS 值很大,因此晶振的 Q 值很高,带宽很窄。

1.2 串/并联谐振介绍

上一节说到晶振的模型有串联谐振特性,经典的串联谐振电路如图所示。

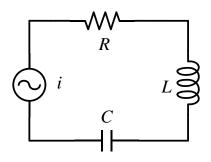


图 1-2 串联谐振电路

该电路总阻抗为 $Z_{total} = R + (\omega L - \frac{1}{\omega c}) \cdot j$,其复面平如下图。

网址: https://www.nsingtech.com 邮编: 518057

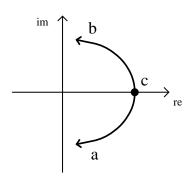


图 1-3 串联谐振复平面

当轨迹由 c 向 b 移动, $\omega L > \frac{1}{\omega c}$,电路呈感抗,输出超前输入一个向量角;当轨迹由 c 向 a 移动, $\omega L < \frac{1}{\omega c}$,电路呈容抗,输出滞后输入一个向量角;当轨迹在 c 点, $\omega L = \frac{1}{\omega c}$,电路呈阻抗,输出相位和输入相位相同,此时角速度 $\omega = \sqrt{\frac{1}{Lc}}$,该角速度称为串联谐振频率。若 L 值很大,其能量频谱图如下图 1-4(a),呈现 Q 值很高的带通滤波器特性。在谐振频率点 Fs,会有最大的通过能力。

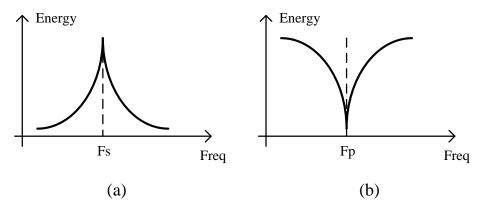


图 1-4 串联谐振频谱特性 (a), 并联谐振频谱特性 (b)

并联谐振的分析方法类似,其能量频率特性如图 1-4(b)。

1.3 晶振的起振条件

晶振的阻抗和相位频谱特性如图所示。

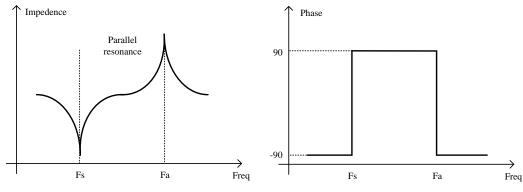


图 1-5 晶振的能量和相位频谱特性

Fs 是串联谐振频率,为一般晶振的标称频率。Fs 到 Fa 的区间为并联谐振区域,在此区域信号的通过晶振相位余度增加 180°。晶振起振满足 Barkhausen 判据,如下图:

- 开环增益 | A | × | F | 必须大于 0dB;
- 信号反馈回到输入端,必须转过 360°, ∠A+∠F=360°。

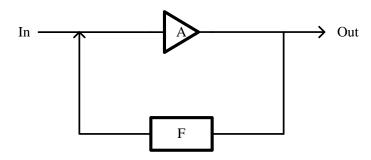


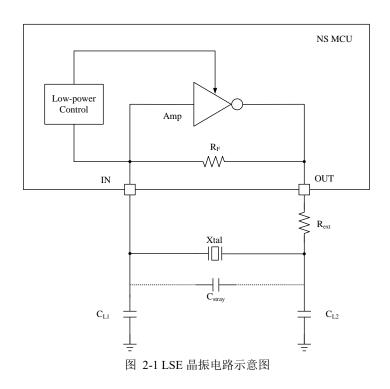
图 1-6 晶振的能量和相位频谱特性

由于晶振在 Fs 处呈现阻抗特性,该等效电阻称为 ESR:

$$ESR = Rs \times (1 + \frac{CP}{CL})^2$$

为满足 Barkhausen 判据,则需要晶振驱动电路满足以下两个条件:

- 提供-180°的相位;
- 等效电阻小于z_{LSE} < -ESR


电话: +86-755-86309900 传具: +86-755-网址: https://www.nsingtech.com 邮编: 518057

2. LSE 低功耗晶振电路设计

本章节介绍如何基于 N32H47x、N32H48x 芯片 LSE,设计出可靠的低功耗晶振电路。

LSE 和晶振的工作电路图如下图所示。Cstray 为 PCB 上,输入和输出管脚之间的寄生电容; Rext 为输出通路上的防过驱动电阻,如果 LSE 的驱动和晶振合理匹配,则 Rext 可为 0。

2.1 负载电容计算

如图 1-5,晶振期望工作在 Fs 到 Fa 之间的并联谐振区域,合理的负载电容选择可以使晶振的工作频率稳定在期望区间。负载电容 C_L 的值,受到 C Stray 和匹配电容 C_{L1} 、 C_{L2} 的影响,值为:

$$C_L = C_{strav} + (C_{L1}||C_{L2})$$

 C_L 的期望值有晶振说明书提供, C_{Stray} 可通过对 PCB 的测试得到,一般 C_{L1} = C_{L2} ,因此:

$$C_{L1} = C_{L2} = 2 \times (C_L - C_{stray})$$

需要注意的是,由于负载电容的存在,晶振实际工作在并联谐振区域,因此晶振的实际工作频率会和理想值略有差异,偏大的负载电容会导致工作频率偏低。如果负载电容过大,则晶振所需的驱动功耗会过大,导致无法起振。如果负载电容过小,则晶振偏出并联谐振区域,晶振无法起振。

2.2 驱动选择

● 负阻评估方法

章节 1.3 说到,LSE 电路需要为晶振提供足够的驱动能力,满足 $z_{LSE} < -ESR$ 的起振要求。 Z_{LSE} 称为 LSE 电路的负阻抗,其在复平面上的轨迹如下图所示。ESR 为晶振的等效电阻,gm 为 LSE 电路的 跨导,单位为 μ A/V。

若要满足起振调慢,需要调整 LSE 的 gm, 使得 LSE 负阻的实部小于-ESR, 可见过大或者过小 gm 值,都会使负阻的实部大于-ESR, 从而导致晶振无法起振。我们定义 Z_{LSE} 的实部为 R_N ,则有

 $|R_N| \ge ESR$

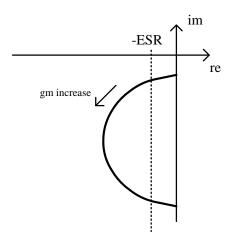


图 2-2 负阻特性的复平面

 $|R_N|$ 的计算方法为,参数 ω 是 LSE 工作的角速度。

$$|R_N| = \frac{g_m}{\omega^2 \times C_{L1} \times C_{L2}}$$

为了保证有足够的冗余度,

$$|R_N| \ge 5 \times ESR$$

● 跨导评估方法

另一种评估方法,是对晶振所需要的跨导进行计算,然后对比 LSE 所提供的跨导,是否能满足需求。晶振所需要的跨导值为

$$g_{xtal} = 4 \times \omega^2 \times ESR \times (C_P + C_L)^2$$

需要满足 LSE 的跨导

$$g_m \ge 5 \times g_{xtal}$$

● 跨导配置

芯片提供了3种档位的跨导选择,如下表所述:

档位	I CEDDVDIMII.AI耐果	跨导 gm(μA/V)				
1911	LSEDRVRIM[1:0]配置	Min	Тур	Max		
低	00	-	13	-		
中低	01	-	20	-		
高	11	-	40	-		

使用者可根据上诉计算方法,通过配置 PWR_CTRL4.LSEDRVRIM[1:0]选择合理的驱动档位。 注:配置前需要先通过对 PWR CTRL4 写 0x55AA 解锁寄存器

2.3 过驱动防护

如图 2-2 所示,过大的 gm 也会导致 R_N 无法小于-ESR,称之为过驱动。过驱动会导致晶振无法正常工作、缩短晶振寿命、甚至损坏晶振。

一般晶振说明书会提供最大驱动功率值,如果 LSE 的驱动功率大于 DL,则有可能导致过驱动。 LSE 的驱动功率可用电流法测量:使用电流探头测量流入晶振的电流的 RMS 值 I_{RMS} ,则晶振的驱动功率为 DL

$$DL = ESR \times I_{RMS}^{2}$$

如果 DL 超过晶振说明书会提供最大驱动功率值,则需要选择 LSE 驱动功率更小的档位,并重复上诉验证。也可在图 2-1 中增加 Rext, Rext 的值为

$$Rext = \frac{1}{\omega \times C_{L2}}$$

2.4 自适应方案

由于不同的晶振参数偏差较大,且晶振性能易受到温度、湿度、使用寿命等环境的影响。因此,我们提供了自适应配置方案,帮助设计者应对偏差较大的晶振和极端使用环境。

自适应方案原理如下:

- (1) 设计者通过章节 2.2 获取合理的驱动档位,并配置给芯片的 LSE 模块。
- (2) LSE 使能,芯片检测 LSE RDY 信号,如果超过 1 秒未置起,则 LSE 除能,LSE 驱动档位从 (1)中的配置档位自动切换到相邻档位,然后再使能 LSE。
- (3) 档位切换顺序为:默认档位 -> 相邻档位 -> 另一个相邻档位 -> 最后一个档位。 实现过程流程图如下:



图 2-3 API 实现

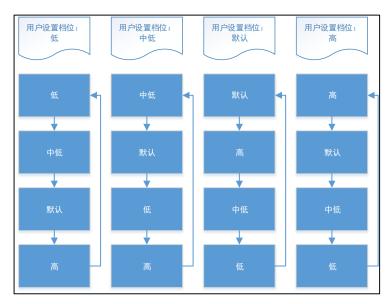


图 2-4 切换驱动档位

● 异常停振处理

如果在极端环境下,LSE 出现了中途停振现象,设计者可以使用 CSS 中断,重新配置 LSE。

3. PCB 设计

- 1. 晶振两端的 PCB 寄生电容要避免过大,否则会导致起振问题,并且无法找到合理的 C_{L1} 和 C_{L2} 值。
- 2. MCU 管脚到晶振的走线距离尽可能缩短。
- 3. 晶振走线需要做屏蔽,避免干扰信号。
- 4. 避免其它信号线穿越晶振及其走线所在区域。
- 5. 尽量避免 LSE 管脚隔壁的 GPIO 高速翻转。
- 6. 晶振两端节点,避免有额外的延伸走线,否则会形成天线效应,引入干扰。

4. 晶体兼容列表

在选择外接 32.768KHz 晶体时,需要注意所选晶体在全温度范围都可正常工作。 芯片晶体配置参数不同,可适配的晶体型号也不同,如下表所示:

晶体型号	封装	厂商	CL	C0	ESR	DL	温度范围
前件型写			(pF)	(pF)	(max)	(max)	(°C)
ABS06-32.768KHZ-T	2012	ABRACON	12.5		90	0.5	-40~85
SEIKO SC-							
20S(SMD2012-2P)	2012	SEIKO	7	1.3	90	0.5	-40~85
32.768kHz 7pF 20ppm							
FC-12M 32.768000 kHz							
7.0+20.0-	2012	EPSON	7	1.3	90	0.5	-40~85
20.0/X1A0000610006							
TJXM32768K2TGDCNT2	2012	TAE(雅晶鑫)	12.5		70	10	-40~85
T	2012	IAE(/性田鍂)	12.5		70	10	-40~83
FC-135R 32.768KHz 7PF							
20PPM/	3215	EPSON	7	1.1	50	1	-40~85
X1A000141000100							
FC-135R 32.768KHz 9PF	2215	EDCOM	0	1 1	50		40. 95
20PPM X1A0001410002	3215	EPSON	9	1.1	50		-40~85
FC-135 32.768KHz 9PF	2015	EDGON	0	1	70	1	40.05
20PPM/Q13FC13500003	3215	EPSON	9	1	70	1	-40~85
FC-135 32.768KHz 7PF	2215	EDGON	7	1	70	1	40.05
20PPM/Q13FC13500002	3215	EPSON	7	1	70	1	-40~85
FC-135 32.768kHz 6PF							
20PPM/Q13FC135000490	3215	EPSON	6	1	70	1	-40~85
0							
FC-135 32.768KHz							
12.5PF	3215	EPSON	12.5	1.2	70	0.5	-40~85
20PPM/Q13FC13500004							
SEIKO SC-32S							
(SMD3215-2P)	2215	CEIVO	7	1	70	1	40.05
32.768kHz 7pF 20ppm 编	3215	SEIKO	7	1	70	1	-40~85
带							
SEIKO SC-32S							
(SMD3215-2P)	3215	SEIKO	12.5	1	70	1	-40~85
32.768kHz 12.5pF 20ppm							
SEIKO SC-32S							
(SMD3215-2P)	2215	SEIKO	0	1	70	1	40.05
32.768kHz 9pF 20ppm 编	3215		9				-40~85
带							
SC-	2215	CEIVO	6	1	70	1	40.05
32S32.768kHz20PPM6pF	3215	SEIKO	6	1	///	1	-40~85

I	I	I	ĺ	i	I	I	ı i
S3132768092070	3215	JGHC(晶光华)	9	1	65	1	-10~60
SMD31327681252090	3215	JGHC(晶光华)	12.5	1	65	1	-10~60
S3132768072070	3215	JGHC(晶光华)	7	1	65	1	-10~60
DST310S 1TJF125DP1A000A	3215	KDS 大真空	12.5	1.3	80	1	-40~85
NX3215SA-32.768kHz- EXS00A-MU00202	3215	NDK	7	1	70	0.5	-40~85
7LC32768F12UC	3215	SJK(晶科鑫)	12.5	1.2	70	1	-40~85
7LC32768F07UC	3215	SJK(晶科鑫)	7	1.2	70	1	-40~85
SF32WK32768D71T005	3215	TKD(泰晶)	7	1.1	70	0.5	-40~85
SF32WK32768D61T002	3215	TKD(泰晶)	6	1.1	70	0.5	-40~85
FC31M2-32.768- NTLLLDT	3215	HCI(杭晶)	12.5	1.5	70	0.5	-40~85
FC31M2-32.768- N09LLDT	3215	HCI(杭晶)	9	1.5	70	0.5	-40~85
X321532768KGD2SI	3215	YXC 扬兴科技	12.5	1.2	70	1	-40~85
ETST00327000JE	3215	HOSONIC(台湾鸿星)	12.5	2	70	1	-40~85
TCXM32768K2NGDCZT 2T	3215	TAE(雅晶鑫)	12.5	2	80	1	-40~85
XDMCZLNDDF- 0.032768MHZ	3215	TAITIEN(泰艺电子)	12.5			0.5	-40~85
KFC3276812520	3215	(KYX)凯越翔电子	12.5	1.2	70	0.5	-40~85
F3K232768PWQAC	3215	JYJE(晶友嘉)	12.5		70	0.5	-40~85
CD01K032768FEPBAEA E	DT26	TKD(泰晶)	8	1.4	40		-20~70
CD01K032768ACNBAE AE	DT26	TKD(泰晶)	12.5	1.4	40		-20~70
CD01K032768DGRBAE AE	DT26	TKD(泰晶)	6	1.4	40		-20~70
Y26003271C2040DYJY	DT26	JGHC(晶光华)	12.5		40		-20~70
DT-26-32.768K 6pF 20PPM	DT26	KDS 大真空	6	1.1	40	2	-10~60
DT-26 32.768KHz	DT26	KDS 大真空	12.5	1.1	40	2	-10~60
X206032768KGB2SC	DT26	YXC 扬兴科技	12.5		40		-20~70
26S-32.768-12.5-10-10/B	DT26	LIMING(利明)	12.5		90	0.5	-40~85
WTL2T45292LZ	DT26	维拓(WTL)	12.5	1.5	40	1	-20~70
MC-146 32.768KHz 9PF							
20PPM LF/Q13MC14610004	MC-146	EPSON(爱普生)	9	0.8	65	0.5	-40~85
Q13MC1462000200	MC-146	EPSON(爱普生)	12.5	0.8	65	1	-40~85
SSP-T7-F 32.768kHz 20PPM12.5pF	MC-146	SEIKO	12.5	0.8	65	1	-40~85
SSP-T7-F 32.768kHz 20PPM7pF	MC-146	SEIKO	7	0.8	65	1	-40~85

FR07S4-32.768- N07LLDT	MC-146	HCI(杭晶)	7	0.8	65	1	-40~85
FR07S4-32.768- NTLLLDT	MC-146	HCI(杭晶)	12.5	0.8	65	1	-40~85
146-32.768-12.5-20-20/A	MC-146	LIMING(利明)	12.5				-20~70
7MC32768F12UC	MC-146	SJK(晶科鑫)	12.5	1.2	70	1	-40~85
M132768PWPAC	MC-146	JYJE(晶友嘉	12.5		65	1	-40~85
7L032768NW2	MC-146	HD(海德频率)	12.5	0.8	65	1	-20~70
X308032768KGB2SC	DT38	YXC 扬兴科技	12.5		40		-20~+70
CD02K032768AEPBAEA E	DT38	TKD(泰晶)	12.5	1.8	30		-20~+70
DT-38 32.768KHz	DT38	KDS 大真空	12.5	1.3	30	2	-10~60
38-32.768-12.5-10/A	DT38	LIMING(利明)	12.5				-20~+70
Y308327681252075	DT38	JGHC(晶光华)	12.5	1.1	40	1	-10~60
WTL3T45322LZ	DT38	维拓(WTL)	12.5	1.5	40	1	-20~+70
XNLCZLNDED- 0.032768MHZ	MC-306	TAITIEN(泰艺电子)	6				-40~85
XNMCZLNDED- 32.768KHZ	MC-306	TAITIEN(泰艺电子)	12.5		65~90	0.5	-40~85
6LC32768F12UC	MC-306	SJK(晶科鑫)	12.5	1.2	50	1	-40~85
6LC32768F06UC	MC-306	SJK(晶科鑫)	6	1.2	50	1	-40~85
Q13MC3062000600	MC-306	EPSON(爱普生)	6	0.9	50	1	-40~85
X803832768KID4GI	MC-306	YXC 扬兴科技	6		70		-40~85
FR08S4-32.768- N06LLDT	MC-306	HCI(杭晶)	6	0.9	50	1	-40~85

5. 历史版本

版本	日期	备注
V1.0.0	2025-5-28	初版发布

6. 声明

国民技术股份有限公司(下称"国民技术")对此文档拥有专属产权。依据中华人民共和国的法律、条约以及世界其他法域相适用的管辖,此文档及其中描述的国民技术产品(下称"产品")为公司所有。 国民技术在此并未授予专利权、著作权、商标权或其他任何知识产权许可。所提到或引用的第三方名称或品牌(如有)仅用作区别之目的。

国民技术保留随时变更、订正、增强、修改和改良此文档的权利,恕不另行通知。请使用人在下单购买前联系国民技术获取此文档的最新版本。

国民技术竭力提供准确可信的资讯,但即便如此,并不推定国民技术对此文档准确性和可靠性承担责任。

使用此文档信息以及生成产品时,使用者应当进行合理的设计、编程并测试其功能性和安全性,国民技术不对任何因使用此文档或本产品而产生的任何直接、间接、意外、特殊、惩罚性或衍生性损害结果承担责任。

国民技术对于产品在系统或设备中的应用效果没有任何故意或保证,如有任何应用在其发生操作不当或故障情况下,有可能致使人员伤亡、人身伤害或严重财产损失,则此类应用被视为"不安全使用"。不安全使用包括但不限于:外科手术设备、原子能控制仪器、飞机或宇宙飞船仪器、所有类型的安全装置以及其他旨在支持或维持生命的应用。

所有不安全使用的风险应由使用人承担,同时使用人应使国民技术免于因为这类不安全使用而导致被 诉、支付费用、发生损害或承担责任时的赔偿。

对于此文档和产品的任何明示、默示之保证,包括但不限于适销性、特定用途适用性和不侵权的保证责任,国民技术可在法律允许范围内进行免责。

未经明确许可,任何人不得以任何理由对此文档的全部或部分进行使用、复制、修改、抄录和传播。

网址: https://www.nsingtech.com 邮编: 518057