

使用指南

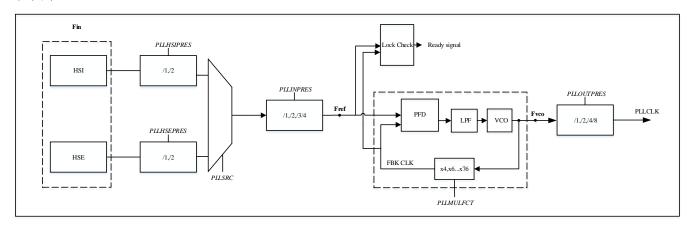
N3247x_48x系列PLL使用指南

简介

国民技术微控制器 N3247x_48x 系列内置 1 个 PLL 模块,为系统提供时钟。 本文档旨在帮助用户正确使用 PLL,提高 PLL 工作稳定性。

目录

1.	PLL 简介	1
	LL 模块框图	
	LL 参数特性	
2.	PLL 工作模式	1
3.	PLL 配置及限制	2
	寄存器接口	
	项率计算	
3.2	配置流程	3
4.	历史版本	4
5.	声明	5


网址: https://www.nsingtech.com 邮编: 518057

1. PLL 简介

1.1 PLL 模块框图

PLL (Phase-Loop-Lock)模块内部集成了相位频率检测器 (PFD)、电荷泵 (CP)、低通环路滤波器 (LPF)、压控振荡器 (VCO)及其他相关模块。所有基本构建模块以及全可编程分频器均集成在核心内部。PLL输出频率最高可达240MHz。

1.2 PLL 参数特性

- 输入频率 Fin 范围: 4 MHz 至 50MHz
- Fref 频率范围: 4 MHz 至 25MHz
- Fvco 频率范围: 64MHz 至 500MHz
- PLL 输出频率范围: 最大 240MHz
- 倍频系数范围: 8 倍至 76 倍
- 参考时钟源选项:
 - HSI 时钟
 - HSE 时钟
- 电源电压: 1.8V-3.6V
- 结温范围: -40°C~125°C

2. PLL 工作模式

PLL 可工作在 Run、sleep 模式下, STOPO、standby、VBAT 模式下自动关闭。

MCU 功耗模式	PLL 时钟源	寄存器配置	RCC_CFG.PLLSRC	RCC_CTRL.PLLEN
	HSI	PLLHSIPRES=0	0	1
Run 模式	HSI/2	PLLHSIPRES=1	0	1
Kun 侯八	HSE	PLLHSEPRES=0	1	1
	HSE/2	PLLHSEPRES =1	1	1

1

	HSI	PLLHSIPRES=0	0	1
Sleep 模式	HSI/2	PLLHSIPRES=1	0	1
Sieep 模式	HSE	PLLHSEPRES=0	1	1
	HSE/2	PLLHSEPRES=1	1	1
STOP0 模式	-	-	-	0
STANDBY 模式	-	-	-	0
VBAT 模式	-	-	-	0

3. PLL 配置及限制

3.1 寄存器接口

寄存器	Bit	描述(具体见用户手册)		
DCC CTDI	PLLRDF	PLL 时钟就绪标志位		
RCC_CTRL	PLLEN	PLL 使能位		
	PLLMULFCT[5:0]	PLL 倍频系数 倍频系数由软件写入,Fvco=Fref*M(M = 2*PLLMULFCT+4)。这些位只 能在 PLL 被禁用时写入。 注意: 需配置 Fvco 频率在 64MHz 至 500MHz 范围内 注意: 需配置倍频系数在 8 倍至 76 倍频范围内		
RCC_CFG	PLLHSIPRES	PLL 输入的 HSI 预分频器 由软件置位和清零,配置进入 PLL 之前 HSI 的分频。该位只能在 PLL 禁用时写入。		
	PLLHSEPRES	PLL 输入的 HSE 预分频器 由软件置位和清零,配置进入 PLL 之前 HSE 的分频。该位只能在 PLL 禁用时写入。		
	PLLSRC	PLL 时钟源 由软件置位和清零,配置选择 PLL 时钟源。该位只能在 PLL 禁用时写 入。		
	PLLOUTPRES[1:0]	PLL 输出分频 注意: 需配置 PLL 不超过 240MHz 注意: 配置为不分频时,占空比偏差为 50%+-5%,功耗较小; 配置为分 频时,占空比偏差 50%+-1%,但功耗更大		
	PLLINPRES[1:0]	PLL 输入分频 注意: 需配置 Fref 频率在 4 MHz 至 25MHz 范围内		
	DEADZEN	PLL 监频监相器死区调整		
RCC_PLLCTRL	LPFC2[2:0]	PLL 滤波环路的积分电容控制 根据 RCC_CFG.PLLMULFCT[5:0]对应的倍频系数选择不同的配置。 4~24 倍放大频率:配置 6 24~40 倍放大频率:配置 6 40~76 倍放大频率:配置 6		
	LPFR[3:0]	PLL 滤波环路的零点电阻控制 根据 RCC_CFG.PLLMULFCT[5:0]对应的倍频系数选择不同的配置。 4~24 倍放大频率: 配置 3 24~40 倍放大频率: 配置 7 40~76 倍放大频率: 配置 12		
	LPFC1[3:0]	PLL 滤波环路的旁路电容控制 根据 RCC_CFG.PLLMULFCT[5:0]对应的倍频系数选择不同的配置。 4~24 倍放大频率:配置 4 24~40 倍放大频率:配置 4		

40~76 倍放大频率: 配置 4

3.2 频率计算

Fref 频率 (4~25M) 计算如下:

当 PLLSRC=0 时,选择 HSI 时钟作为参考时钟源

$$f_{ref} = \frac{f_{HSI}}{\text{PLLHSIPRES} * \text{PLLINPRES}}$$

当 PLLSRC=1 时,选择 HSE 时钟作为参考时钟源

$$f_{ref} = \frac{f_{HSE}}{\text{PLLHSEPRES} * PLLINPRES}$$

Fvco 频率 (64~500M) 计算如下:

$$f_{vco} = f_{ref} * PLLMULFCT$$

注意: PLLMULFCT 配置的倍频系数应在8倍~76倍之间

PLL 输出频率 (8~240M) 计算如下:

$$f_{pll} = \frac{f_{vco}}{\text{PLLOUTPRES}}$$

3.2 配置流程

- 1. 配置 PLL 时钟源,选择 HSI, HSI/2, HSE 或 HSE/2 作为 PLL 时钟源
- 2. 配置 PLL 输入分频系数, 倍频系数, 输出分频系数, LPFC1\ LPFC2\ LPFR 滤波环路参数
- 3. 使能 PLL
- 4. 等待 PLL ready 标志
- 5. 切换系统时钟到 PLL

注意: VDD 电压在 1.7V 以上, 系统时钟才允许切换到 PLL, 可通过 PVD 监控 VDD 实现。

注意: PLL 配置不能动态修改,如果在PLL 作为系统时钟源运行时需要修改 PLL 配置,必须先将系统时钟源切换成 HSE 或者 HSI,切换完成后关闭 PLL 使能,再执行上述配置流程。

3

4. 历史版本

版本	日期	备注
V1.0.0	2025.8.18	初始版本

网址: https://www.nsingtech.com 邮编: 518057

5. 声明

国民技术股份有限公司(下称"国民技术")对此文档拥有专属产权。依据中华人民共和国的法律、条约以及世界其他法域相适用的管辖,此文档及其中描述的国民技术产品(下称"产品")为公司所有。

国民技术在此并未授予专利权、著作权、商标权或其他任何知识产权许可。所提到或引用的第三方名称或品牌 (如有)仅用作区别之目的。

国民技术保留随时变更、订正、增强、修改和改良此文档的权利,恕不另行通知。请使用人在下单购买前联系国民技术获取此文档的最新版本。

国民技术竭力提供准确可信的资讯,但即便如此,并不推定国民技术对此文档准确性和可靠性承担责任。

使用此文档信息以及生成产品时,使用者应当进行合理的设计、编程并测试其功能性和安全性,国民技术不对 任何因使用此文档或本产品而产生的任何直接、间接、意外、特殊、惩罚性或衍生性损害结果承担责任。

国民技术对于产品在系统或设备中的应用效果没有任何故意或保证,如有任何应用在其发生操作不当或故障情况下,有可能致使人员伤亡、人身伤害或严重财产损失,则此类应用被视为"不安全使用"。

不安全使用包括但不限于: 外科手术设备、原子能控制仪器、飞机或宇宙飞船仪器、所有类型的安全装置以及 其他旨在支持或维持生命的应用。

所有不安全使用的风险应由使用人承担,同时使用人应使国民技术免于因为这类不安全使用而导致被诉、支付 费用、发生损害或承担责任时的赔偿。

对于此文档和产品的任何明示、默示之保证,包括但不限于适销性、特定用途适用性和不侵权的保证责任,国民技术可在法律允许范围内进行免责。

未经明确许可,任何人不得以任何理由对此文档的全部或部分进行使用、复制、修改、抄录和传播。

网址: https://www.nsingtech.com 邮编: 518057