N32G435 系列勘误手册 V2.1.0

目录

1	勘误	误列表1					
2	电源	控制(PWR)	3				
	2.1	系统时钟切换	3				
	2.2	LP RUN 模式切换到 Stop2 模式	3				
	2.3	电源掉电后再上电	3				
3	复位	和时钟控制(RCC)	4				
	3.1	从 Run 模式进入 Stop2 模式	4				
	3.2	LSE-CSS 故障检测	4				
4	GPI)和 AFIO	5				
	4.1	GPIO 模拟功能	5				
5	模拟	/数字转换(ADC)	5				
	5.1	ADC 数据左对齐	5				
	5.2	ADC 注入通道触发规则通道转换	5				
	5.3	ADC 模拟看门狗	6				
	5.4	DMA 搬移 ADC 数据	6				
	5.5 题	当 ENDC(或 JENDC)标志置位后立即去读取 ADC 数据寄存器 ADC_DAT (或 ADC_JDATx)值异常的6	ij				
6	串行	外设接口(SPI)	7				
	6.1	SPI 接口	7				
	6.1.1	SPI 波特率设置	7				
	6.1.2	从模式 CRC 校验	7				
	6.1.3	SPI CLK GPIO 配置	7				
	6.2	I2S 接口	8				
	6.2.1	PCM 长帧模式	8				
7	I2C	接口	9				
	7.1	当前字节传输前必须被管理的软件事件	9				
	7.2	单次读取单或双字节时的注意事项	9				
	7.3	与其他外设同时使用 DMA	10				
	7.4	异常信号干扰	10				

地址:深圳市南山区高新北区宝深路109号国民技术大厦 电话: +86-755-86309900 传真: +86-755-86169100 网址: https://www.nsingtech.com 邮编: 518057

8	通	鱼用同步异步接收器(USART)	12
	8.1	校验错误标志	12
	8.2	RTS 硬件流控	12
9	调	周试接口(DBG)	13
	9.1	Debug 寄存器	13
10	定	E时器(TIM)	14
	10.1	定时器重复捕获检测	14
11	比	L 较器 COMP	15
	11.1	比较器 INP 输入	15
12	实	E时时钟(RTC)	16
	12.1	RTC 预分频	16
	12.2	RTC 亚秒中断	16
	12.3	RTC 中断	16
	12.4	RTC 周期性唤醒	16
	12.5	RTC 误触发 TISOVF 标志位	17
13	低	氐功耗定时器(LPTIM)	18
	13.1	LPTIM 最大计数值	18
14	控	空制器局域网(CAN)	18
	14.1	CAN 主动错误	18
15	芯	5片丝印及版本说明	19
16	版	反本历史	20
17	声	=明	21

1 勘误列表

表 1-1 勘误概述

勘误链接				芯片版本						
划厌從按			B版	C版	D版	E版	G版	H版		
	章节 2.1: 系统时钟切换									
章节 2: 电源控制 (PWR)	章节 2.2: LP RUN 模式切换到 Stop2 模式			•	•	•				
	章节 2.3: 电源掉电后再上电		•	•						
章节 3: 复位和时钟控制	章节 3.1: 从 Run 模式进入 Stop2 模式		•	•	•	•	•	•		
(RCC)	章节 3.2: LSE-CSS 故障检测		•	•	•	•	•	•		
章节 4: GPIO 和 AFIO	章节 4.1: GPIO	模拟功能	•	•						
	章节 5.1: ADC 数据左对齐		•	•	•	•	•	•		
	章节 5.2: ADC 注入通道触发规则通道转换			•	•	•	•	•		
章节 5: 模拟/数字转换	章节 5.3: ADC 看门狗			•	•	•	•	•		
(ADC)	章节 5.4: DMA 搬移 ADC 数据			•	•	•	•	•		
	章节 5.5: 当 ENDC(或 JENDC)标志置位后立即去读取 ADC 数据寄存器 ADC_DAT (或 ADC_JDATx)值异常问题		•	•	•	•	•	•		
		章节 6.1.1: SPI 波特率设置	•	•	•	•	•	•		
章节 6: 串行外设接口	章节 6.1: SPI 接口	章节 6.1.2: 从模式 CRC 校验	•	•	•	•	•	•		
(SPI)		章节 6.1.3: SPI CLK GPIO 配置	•	•	•	•	•	•		
	章节 6.2: I2S 接口	章节 6.2.1: PCM 长帧模式	•	•	•	•	•	•		

国民技术股份有限公司 NSING TECHNOLOGIES INC.

www.nsingu							
	章节 7.1: 当前字节传输前必须被管理的软件 事件	•	•	•	•	•	•
	章节 7.2: 读单双字节时的注意事项	•	•	•	•	•	•
章节7: I2C接口	章节 7.3: 与其他外设同时使用 DMA	•	•	•	•	•	•
	章节 7.4: 异常信号干扰	•	•	•	•	•	•
	章节 7.5:标准模式下 STOP 建立时间超过最小值限制	•	•	•	•	•	•
章节 8: 通用同步异步接收	章节 8.1: 校验错误标志	•	•	•	•	•	•
器(USART)	章节 8.2: RTS 硬件流控	•	•	•	•	•	•
章节 9: 调试接口(DBG)	章节 9.1: Debug 寄存器	•	•	•	•	•	•
	章节 10.1: 定时器重复捕获检测	•	•	•	•	•	•
章节 10: 定时器(TIM)	章节 10.2: 定时器 0%或 100%占空比 PWM 输出模式切换	•	•	•	•	•	•
章节11: 比较器(COMP)	章节 11.1: 比较器 INP 输入		•	•	•	•	•
	章节 12.1: RTC 预分频	•	•	•	•	•	•
	章节 12.2: RTC 亚秒中断	•	•	•	•	•	•
章节 12:实时时钟(RTC)	章节 12.3: RTC 中断	•	•	•	•	•	•
	章节 12.4: RTC 周期性唤醒	•	•	•	•	•	•
	章节 12.3: RTC 误触发 TISOVF 标志位	•	•	•	•	•	•
章节 13: 低功耗定时器 (LPTIM)	章节 13.1: LPTIM 最大计数值	•	•	•	•	•	•
章节 14: 控制器局域网 (CAN)	章节 14.1: CAN 主动错误	•	•	•	•	•	

2 电源控制 (PWR)

2.1 系统时钟切换

描述

选择 HSI/HSE 直接作为系统时钟,然后再切换到 MSI 作为系统时钟的过程中,如果此时发生系统复位,可能会导致芯片宕机。

解决方法

避免选用 HSI/HSE 直接作为系统时钟,建议选择 PLL 作为系统时钟。

2.2LP RUN 模式切换到 Stop2 模式

描述

MCU 从 LP RUN 模式切换到 Stop2 模式,唤醒后可能会产生复位。

解决方法

进入 Stop2 模式前,确保 PVDBOR 在 Stop2 模式下常开(清除 PWR_CTRL3 的 PBDTLPR 位为 0),可以解决此问题。

2.3 电源掉电后再上电

描述

电源掉电,降至600~100mV区间,再重新上电,可能上电不成功。

解决方法

MCU 掉电时,需保证芯片 VDD 电压降至 100mV 以下,然后才能给 MCU 上电。

3/19

3 复位和时钟控制(RCC)

3.1 从 Run 模式进入 Stop2 模式

描述

在一定的 AHB CLK 和 APB CLK 分频下, Run 模式极小概率进入不了 Stop2 模式,分频越大可能越容易发生。

解决方法

进入 Stop2 模式前,备份 AHB CLK 分频系数,然后配置 AHB CLK 为不分频后,再进入 Stop2 模式,当退出 Stop2 模式时,再恢复原来分频。

3.2LSE-CSS 故障检测

描述

LSE-CSS 检测到 LSE 停振后,不能通过软件切换到 LSI。

解决方法

重新上电。

4 GPIO 和 AFIO

4.1 GPIO 模拟功能

描述

PA1/PA2/PA3/PA4 这 4 个 GPIO 在输出高电平状态下,切换成模拟功能时,在切换过程中会短暂出现输出电压有 30mv 左右的压降。

解决方法

避免上述使用方法。

5 模拟/数字转换(ADC)

5.1ADC 数据左对齐

描述

ADC 单次转换模式,非 12bit 精度且左对齐情况下,软件触发转换规则通道,ADC_DAT 寄存器中,无效位的最高位为 1。

解决方法

仅保留有效数据位或使用右对齐模式。

5.2 ADC 注入通道触发规则通道转换

描述

ADC 连续转换,规则通道外部触发不使能,只软件触发注入通道转换时,规则通道可能会被启动转换,导致 ADC_DAT 中有数据产生,ADC_STS 规则通道转换相应的状态位会置起。

5/19

解决方法

忽略规则通道产生的标志位和数据。

5.3 ADC 模拟看门狗

描述

ADC 独立工作模式且单次转换且非 12bit 精度时,开启模拟看门狗功能,软件触发转换规则通道/注入通道,模拟看门狗高门限值有效位设置与 ADC 数据寄存器值相等,无效位全 0 时,可能会误触发模拟看门狗。

解决方法

此情况下,模拟看门狗高门限值无效位的最高位置1则不触发。

5.4 DMA 搬移 ADC 数据

描述

ADC 独立工作模式且连续转换,启动 DMA 搬移 ADC 数据,当搬移完配置的搬移数量,先禁能 DMA,再禁能 ADC,然后继续使能 DMA,在还未使能 ADC 情况下,会出现 DMA 搬移的第一个数据是禁能 DMA 前遗留的 ADC 转换数据。

解决方法

此情况下,如果循环禁能使能 DMA,则在搬移数量 N 基础上增加 1 个数量,首次禁能后,选择读取 DMA 搬移第 1 个~第 N 个数据使用,后续禁能则选择读取 DMA 搬移第 2 个~第 N+1 个数据使用。

5.5 当 ENDC(或 JENDC)标志置位后立即去读取 ADC 数据寄存器 ADC DAT (或 ADC JDATx)值异常问题

描述

当规则序列转换完成标志 ENDC (注入序列转换完成标志 JENDC) 置位,立即读 ADC 数据寄存器 ADC_DAT(ADC_JDATx),可能读到的是上一次转换的结果。

解决方法

- 1. 在 ADC 规则序列完成标志 ENDC(或注入序列转换完成标志 JENDC)置位后,延时 2 个 ADC_CLK 时钟再去读 ADC 数据寄存器(ADC_DAT/ADC_JDATx);
- 2. 在某些场景,使用任意规则通道完成标志 ENDCA(任意注入通道完成标志 JENDCA)代替 ENDC(JENDCA)标志。

6/19

6 串行外设接口(SPI)

6.1 SPI 接口

6.1.1 SPI 波特率设置

描述

SPI 主模式下, 当设置波特率控制位(BR[2:0])为 fPLCK/2 时, CRC 校验会出错。

解决方法

此情况下,避免设置波特率控制位(BR[2:0])为 fPLCK/2。

6.1.2 从模式 CRC 校验

描述

SPI 工作在从模式并且已经使能了 CRC 校验,即使 NSS 引脚为高电平,只要 SPI 接收到时钟信号,仍然会进行 CRC 计算

解决方法

在使用 CRC 校验前, 先将 CRC 数据寄存器清空,以便主从设备 CRC 校验保持同步清空步骤如下:

- 1. SPI 使能位复位(置 0)
- 2. CRC 校验位复位(置 0)
- 3. CRC 校验位置位(置1)
- 4. SPI 使能位置位(置1)

6.1.3 SPI CLK GPIO 配置

描述

SPI 时钟极性配置为高时,在 SPI 使能后会将 CLK GPIO 拉高后再输出时钟信号。从机有可能会将 这个边沿误判成时钟信号,从而导致从机接收到的数据移位。

解决方法

在 SPI 使能前将 CLK GPIO 根据时钟极性进行配置(时钟极性为高则配置 CLK GPIO 为上拉,时钟极性为低则配置 CLK GPIO 为下拉)

6.2**I2S** 接口

6.2.1 PCM 长帧模式

描述

当 I2S 工作在主模式, PCM 长帧模式, 数据格式为 16bit 扩展到 32bit 或 32bit 时, WS 信号是每 16bit 一个周期而不是 32bit。

解决方法

当 I2S 是主模式且必须使用长帧模式时,应当使用 16bit 数据模式。

7 I2C接口

7.1 当前字节传输前必须被管理的软件事件

描述

在 EV7、EV7_1、EV6_1、EV6、EV2、EV8 和 EV3 事件发生时,必须在当前字节传输之前对事件进行处理,否则可能会出现多读一个字节、读取到重复数据或丢失数据的问题。

如果在停止信号生成之前,软件没有读取第 N-1 个数据,则移位寄存器中的第 N 个数据会被损坏(向左移动一位)。

解决方法

- 1. 使用 I2C 传输大于一个字节时,尽量使用 DMA 方式
- 2. 使用 I2C 中断时,将中断优先级调至应用程序的最高优先级
- 3. 当读取数据到达第 N-1 个字节时:
- a) 检测 BSF 为 1
- b) 配置 SCL 为 GPIO 开漏输出,并设为 0
- c) 设置 STOPGEN 为 1
- d) 读取第 N-1 个字节
- e) 配置 SCL 为 I2C 复用功能开漏输出模式
- f) 读取最后一个字节

7.2 单次读取单或双字节时的注意事项

描述

在主机读模式,读取的字节长度为单字节和双字节时,可能会出现读取数据错误。

解决方法

- 1. 单字节读取时:
- a) 收到 ADDRF 之后
- b) 设置 ACKEN 位为 0
- c) 清除 ADDRF 位(通过先读 STS1 再读 STS2 清除)
- d) 设置 STOPGEN 为 1
- e) 读取一字节数据。

- 2. 双字节读取时:
- a) 收到 ADDRF 之后
- b) 设置 ACKPOS 位为 1
- c) 清除 ADDRF 位(通过先读 STS1 再读 STS2 清除)
- d) 设置 ACKEN 位为 0
- e) 检测 BSF 位为 1
- f) 设置 STOPGEN 为 1
- g) 连续读取2个字节数据

7.3 与其他外设同时使用 DMA

描述

I2C 在使用 DMA 通信期间,如果有别的外设(包括其它组 I2C)也在使用 DMA,会导致 I2C 通信异常。

解决方法

I2C 在使用 DMA 通信期间,关闭其他外设 DMA。

7.4 异常信号干扰

描述

I2C 在工作过程,SCL 和 SDA 在通讯过程中可能受到毛刺干扰,造成通讯异常。

解决方法

主机、从机自恢复:

- a) 通过 I2C CTRL1[15](SWRST)位进行 I2C 软复位
- b) 通过控制 RCC 模块内的 RCC APB1RSTR[21](I2CxRST)位来复位 IIC 模块,完成恢复
- c) 通过调用进行全局软复位 NVIC_SystemReset()函数来进行全局复位,从而恢复 IIC 模块 主机恢复从机:
- a) 通过控制从机硬件复位管脚复位从机,实现恢复
- b) 通过电源管理机制对从机重新上电,实现恢复
- c) 将 IIC 主机的通讯端口设置为 GPIO 模式,在 SCL 时钟线上发送 9 个 CLOCK 来恢复从机

7.5 标准模式下 STOP 建立时间超过最小值限制

描述:

主机模式下:通讯速率为 100K 的情况下,触发了从机的时钟延展后,STOP 建立时间会小于 4us。解决方法:

建议根据从机外设时序要求,降低通讯速率到 50K 及以下。

8 通用同步异步接收器(USART)

8.1校验错误标志

描述

在接收一个字节数据期间,接收到停止位之前,检测到校验错误,校验错误标志位被置起,在此期间,校验错误标志位不能通过软件方式(读状态寄存器,再读数据寄存器)清除。若使能了校验错误中断,会多次进入校验错误中断处理函数。

解决方法

在读数据缓冲区标志位被置起,接收到数据后,再进行清校验错误标志位操作。

若使能了校验错误中断,为避免多次进入中断处理函数,在第一次进入校验错误中断时,关闭校验错误中断,接收到数据后,再重新打开校验错误中断。

8.2 RTS 硬件流控

描述

使能 RTS 硬件流控,USART 接收一帧数据,当接收到第一个字节数据时,RTS 信号会自动拉高,如果这一个字节数据未及时从数据寄存器中读出,在接收到下一个字节数据后,RTS 信号会重新拉低, USART 重新等待接收下一帧数据。

解决方法

在接收到下一个新数据前,及时将数据从数据寄存器中读出。

9 调试接口(DBG)

9.1 **Debug** 寄存器

描述

 $DBGMCU_IDCODE$ 调试寄存器只能在调试模式下被访问(用户程序不能访问),在用户模式下读取返回的值为 0xFF。

解决方法

避免在用户应用程序中使用 IDCODE。

10 定时器 (TIM)

10.1 定时器重复捕获检测

描述

当产生输入捕获时,如果在读取 TIMx_CCDATx (捕获/比较寄存器 x)期间(读取操作会自动清除捕获标志位)又产生了新的输入捕获, CCxOCF(捕获/比较 x 重复捕获标记)可能仍然会被置位。

解决方法

无

10.2 定时器 0%或 100% 占空比 PWM 输出模式切换

描述

TIM 在其他模式(冻结模式除外)切换为 PWM1/2 模式时,如果 PWM 的占空比为 100%或 0%,那 么无法成功切换到 PWM1/2 模式,此时 PWM 占空比修改为非 100%或 0%时可以成功切换到 PWM1/2 模式输出。

解决方法

在强制有效/强制无效/通道匹配有效/通道匹配无效模式切换为 100%或 0%占空比的 PWM1/2 模式时,通过修改 CCxP 实现 100%或 0%占空比。

14 / 19

翻转模式切换为 100%或 0% 占空比的 PWM1/2 模式, 无解决方案。

11 比较器 COMP

比较器 INP 输入 11.1

描述

PAO/PA1/PA3 作为数字功能引脚且为高电平时,会影响 COMP1 的 INP 输入。

解决方法

使用 COMP1 时,不使用 PAO/PA1/PA3 作为数字功能引脚。

12 实时时钟(RTC)

12.1 RTC 预分频

描述

RTC 异步预分频系数和同步预分频系数不能设置为 0, 否则会导致 RTC 预分频失败。

解决方法

避免 RTC 预分频寄存器 TRC_PRE 的 DIVA[6:0](异步预分频段)和 DIVS[14:0](同步预分频段)设置为 0。

12.2 RTC 亚秒中断

描述

第一次 RTC 亚秒中断不响应。

解决方法

应用程序等待第二次及以后的亚秒中断。

12.3 RTC 中断

描述

两次 RTC 初始化时间间隔小于 1S,无法产生 RTC 闹钟和周期性唤醒中断。

解决方法

应用程初始化RTC时间间隔在1S以上。

12.4 RTC 周期性唤醒

描述

RTC 周期性唤醒无法作为 Standby 模式的唤醒源。

解决方法

选择 RTC 闹钟作为唤醒源。

12.5 RTC 误触发 TISOVF 标志位

描述

当系统从 STANDBY 模式唤醒,或者 IWDG 超时产生系统复位时,RTC 会概率性误触发 TISOVF 标志位。

解决方法

在进入 STANDBY 模式或者 IWDG 超时之前,当 SHOPF 标志位为 0 时,配置一次 RTC_SCTRL.SUBF[14:0]寄存器,该标志会被置 1。等到 SHOPF 标志位再次为 0 时,第二次配置 RTC_SCTRL.SUBF[14:0]寄存器即可,注意在软件执行上述过程中不可以触发 NRST。

13 低功耗定时器(LPTIM)

13.1 LPTIM 最大计数值

描述

LPTIM 时钟源选择内部时钟源(LPTIM_CFG 寄存器 CKSLE 位为 0),且计数器配置为 Input1 上的每个有效钟脉冲递增(LPTIM_CFG 寄存器 CNTMEN 位为 1),计数器最大计数值为 ARRVAL(自动重装载计数器)-1。

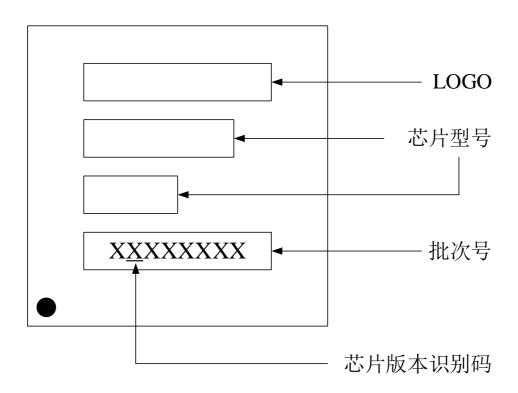
解决方法

LPTIM_CFG 寄存器 CKSLE 位为 0,且 LPTIM_CFG 寄存器 CNTMEN 位为 1 时,需将计算的 ARRVAL 目标值加 1 配置使用

14 控制器局域网(CAN)

14.1 CAN 主动错误

描述


CAN 处于正常模式下, CAN bit 位硬同步后如果总线其它节点的波特率偏差过大(接近或者超过同步段),则 CAN 模块容易报主动错误。

解决方法

无

15 芯片丝印及版本说明

16 版本历史

日期	版本	修改
2021.09.15	V1.0.0	初始版本
2021.11.30	V1.0.1	新增 5.3 ADC 模拟看门狗 新增 5.4 DMA 搬移 ADC 数据 新增 7.4 异常信号干扰 新增 12.2 RTC 亚秒中断
2022.02.22	V1.1.0	新增 6.1.3 SPI CLK GPIO 配置
2022.04.06	V1.2	修改表 1-1 勘误描述增加 E 版本 修改 12.2 章节将 RTC 亚皮秒改成 RTC 亚秒 增加 13 章节低功耗定时器(LPTIM) 增加 3.2 LSE-CSS 故障检测章节 修改 7.3 章节增加 I2C DMA 使用限制
2022.08.31	V1.2.1	增加 14 章节控制器局域网(CAN) 增加 12.3 RTC 中断章节 增加 12.4 RTC 周期性唤醒章节
2023.02.14	V1.3	增加 12.5 章节 RTC 误触发 TISOVF 标志位
2024.07.18	V2.0.0	增加 5.5 当 ENDC(或 JENDC)标志置位后立即去读取 ADC 数据寄存器 ADC_DAT (或 ADC_JDATx)值异常问题章节
2025.09.28	V2.1.0	增加 7.5 标准模式下 STOP 建立时间超过最小值限制章节增加 10.2 定时器 0%或 100%占空比 PWM 输出模式切换章节

17 声明

国民技术股份有限公司(下称"国民技术")对此文档拥有专属产权。依据中华人民共和国的 法律、条约以及世界其他法域相适用的管辖,此文档及其中描述的国民技术产品(下称"产 品")为公司所有。

国民技术在此并未授予专利权、著作权、商标权或其他任何知识产权许可。所提到或引用的 第三方名称或品牌(如有)仅用作区别之目的。

国民技术保留随时变更、订正、增强、修改和改良此文档的权利,恕不另行通知。请使用人 在下单购买前联系国民技术获取此文档的最新版本。

国民技术竭力提供准确可信的资讯,但即便如此,并不推定国民技术对此文档准确性和可靠 性承担责任。

使用此文档信息以及生成产品时,使用者应当进行合理的设计、编程并测试其功能性和安全 性,国民技术不对任何因使用此文档或本产品而产生的任何直接、间接、意外、特殊、惩罚 性或衍生性损害结果承担责任。

国民技术对于产品在系统或设备中的应用效果没有任何故意或保证, 如有任何应用在其发生 操作不当或故障情况下,有可能致使人员伤亡、人身伤害或严重财产损失,则此类应用被视 为"不安全使用"。

不安全使用包括但不限于:外科手术设备、原子能控制仪器、飞机或宇宙飞船仪器、所有类 型的安全装置以及其他旨在支持或维持生命的应用。

所有不安全使用的风险应由使用人承担,同时使用人应使国民技术免于因为这类不安全使用 而导致被诉、支付费用、发生损害或承担责任时的赔偿。

对于此文档和产品的任何明示、默示之保证,包括但不限于适销性、特定用途适用性和不侵 权的保证责任,国民技术可在法律允许范围内进行免责。

未经明确许可,任何人不得以任何理由对此文档的全部或部分进行使用、复制、修改、抄录 和传播。