

N32G430 系列勘误手册 V1.4.0

目录

1		勘误列	列表	. 1
2		电源排	空制(PWR)	. 2
	2.1	l	按 NRST 按键无法从 DEBUG STOP2 模式下复位	. 2
3		定时智	器(TIM)	.3
	3.1	l	TIM1/2/3/4/5/8 在特定情况下无法产生比较事件	. 3
	3.2	2	定时器 0%或 100%占空比 PWM 输出模式切换	. 3
4		串行外	外设接口(SPI)	.4
	4.1	1	I2S 接口	. 4
		4.1.1	PCM 长帧模式	. 4
5		实时时	时钟(RTC)	.5
	5.1	l	RTC 自动唤醒	. 5
	5.2	2	芯片进入 STANDBY 模式同时产生 RTC 唤醒事件导致无法唤醒	. 5
	5.3	3	RTC 日历功能 1 秒内不能多次初始化	. 5
	5.4	1	RTC 误触发 TISOVF 标志位	. 5
	5.5	5	RTC 对亚秒进行 SHIFT 操作导致当前唤醒时间不准	. 6
	5.6	5	RTC_DATE 寄存器锁定	. 6
6		GPIO)和 AFIO	.7
	6.1	l	上电时 IO 出现毛刺	. 7
7		控制器	器局域网 CAN	.8
	7.1	1	CAN 主动错误	. 8
8		I2C 搜	妾口	,9
	8.1	l	标准模式下 STOP 建立时间超过最小值限制	.9
9		芯片纟	丝印及版本说明 1	10
10)	版本原	万史1	11
11	-	声明.		12

1 勘误列表

表 1-1 勘误概述

	芯片版本			
	C版	D版		
章节 2: 电源控制 (PWR)	章节 2.1: 按 NRST 按键无法从 DEBUG STOP2 模式下复位		•	
	章节 3.1: TIM1/2/3/4/5/8 在特定情况下无法产生比较事件		•	•
章节 3: 定时器 (TIM)	章节 3.2: 其他模式切换为占空比为 100%或 0%的 PWM1/2 模式不正常		•	•
章节 4: 串行外设接口(SPI)	章节 4.1: I2S 接口	章节 4.1.1: PCM 长帧模式	•	•
	章节 5.1: RTC 自动唤醒	Ī.	•	•
	章节 5.2: 芯片进入 STANDBY 之前产生 RTC 唤醒事件导致 无法唤醒		•	
章节 5:实时时钟(RTC)	章节 5.3: RTC 日历功能	£1 秒内不能多次初始化	•	
	章节 5.4: RTC 误触发 TISOVF 标志位		•	
	章节 5.5: RTC 对亚秒进行 shfit 操作导致当前唤醒时间不准		•	•
	章节 5.6: RTC_DATE 寄存器锁定		•	•
章节 6: GPIO 和 AFIO	章节 6.1: 上电时 IO 会有毛刺		•	
章节 7: 控制器局域网 CAN	章节 7.1: CAN 主动错误		•	
章节 8: I2C 接口	章节 8.1: 标准模式下 STOP 建立事件超过最小值限制		•	•

2 电源控制 (PWR)

2.1按 NRST 按键无法从 DEBUG STOP2 模式下复位

描述

当 DBG_CTRL.STOP 位置 1, 芯片进入 STOP2 模式后, 按下 NRST 按键芯片无法复位。

解决方法

芯片进入 STOP2 模式前,将 DBG_CTRL.STOP 位清零。

3 定时器 (TIM)

3.1 TIM1/2/3/4/5/8 在特定情况下无法产生比较事件

描述

在边沿对齐模式,向上计数 PWM1 模式下,当前 PWM 周期 CCDATx 影子寄存器>=AR 值时,下一个 PWM 周期 CCDATx 的影子寄存器值是 0,在这个 PWM 周期计数器为 0 的时刻,虽然计数值 =CCDATx 影子寄存器的值=0 且 OCxREF=0,但仍不会产生比较事件。

解决方法

如果不要求"比较事件产生在计数值=比较值的影子寄存器=0"的时刻,可通过另一个通道产生的比较事件替代未产生的比较事件。

3.2 定时器 0%或 100%占空比 PWM 输出模式切换

描述

TIM 在其他模式(冻结模式除外)切换为 PWM1/2 模式时,如果 PWM 的占空比为 100%或 0%,那么无法成功切换到 PWM1/2 模式,此时 PWM 占空比修改为非 100%或 0%时可以成功切换到 PWM1/2 模式输出。

解决方法

在强制有效/强制无效/通道匹配有效/通道匹配无效模式切换为 100%或 0% 占空比的 PWM1/2 模式时,通过修改 CCxP 实现 100%或 0% 占空比。

翻转模式切换为 100%或 0%占空比的 PWM1/2 模式, 无解决方案。

4 串行外设接口(SPI)

4.1**I2S** 接口

4.1.1 PCM 长帧模式

描述

当 I2S 工作在主模式,PCM 长帧模式,数据格式为"32bit" 或"16bit 扩展到 32bit" 时,WS 信号是每 16bit 一个周期而不是 32bit。

解决方法

当 I2S 是主模式且必须使用长帧模式时,应当使用 16bit 数据模式。

5 实时时钟(RTC)

5.1RTC 自动唤醒

描述

RTC 日历设置完成以后,配置自动唤醒功能,从使能自动唤醒到第一次唤醒的时间比唤醒自动重装载值小,后续的自动唤醒时间正常。

解决方法

忽略第一次唤醒。

5.2芯片进入 STANDBY 模式同时产生 RTC 唤醒事件导致无法唤醒

描述

芯片在进入 STANDBY 模式的同时,如果产生 RTC 唤醒事件,会导致芯片进入 STANDBY 模式后唤不醒。

解决方法

无

5.3 RTC 日历功能 1 秒内不能多次初始化

描述

RTC 日历功能在1秒内多次进行初始化,导致无法产生RTC 闹钟中断。

解决方法

RTC 日历功能两次初始化间隔要超过1秒。

5.4RTC 误触发 TISOVF 标志位

描述

当系统从 STANDBY 模式唤醒,或者 IWDG 超时产生系统复位时,RTC 会概率性误触发 TISOVF 标志位

解决方法

在进入 STANDBY 模式或者 IWDG 超时产生系统复位之前,当 SHOPF 标志位为 0 时,配置一次 RTC_SCTRL.SUBF[14:0]寄存器,SHOPF 标志位会被置 1。等到 SHOPF 标志位再次为 0 时,第二次配置 RTC_SCTRL.SUBF[14:0]寄存器即可,注意在软件执行过程中不可以触发 NRST。

5.5 RTC 对亚秒进行 shift 操作导致当前唤醒时间不准

描述

当 RTC 配置成周期性唤醒后,在触发周期性唤醒前对亚秒进行 shift 操作,会导致当前唤醒时间与设定时间不一致,后续唤醒时间正常。

解决方法

无

5.6RTC DATE 寄存器锁定

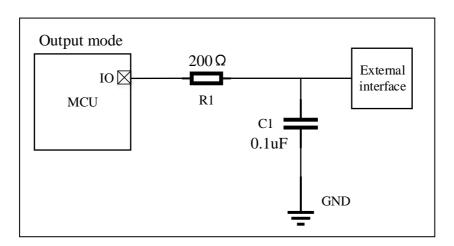
描述

- 1. 系统软件复位之前,读完 RTC_SUBS 或 RTC_TSH 影子寄存器后没有读 RTC_DATE 寄存器,系 统软件复位后初始化 RTC 而不配置或者读取 RTC_DATE 寄存器时,RTC_DATE 寄存器恢复默认值;
- 2. 读日历时,读完 RTC_SUBS 或 RTC_TSH 影子寄存器后,RTC_DATE 寄存器值一直保持不变;

解决方法

- 1. 初始化 RTC 之前读一下 RTC DATE 寄存器;
- 2. 读完 RTC SUBS 或 RTC TSH 影子寄存器后,读一下 RTC DATE 寄存器;

6 GPIO 和 AFIO


6.1上电时 IO 出现毛刺

描述

当 MCU 上电时, 部分 IO 会有毛刺出现。

解决方法

当 IO 作为输入时,毛刺对芯片没有影响;当 IO 作为输出时,外接 2000hm 电阻和 0.1uF 电容进行滤波。

7 控制器局域网 CAN

7.1 CAN 主动错误

描述

CAN 处于正常模式下, CAN bit 位硬同步后如果总线其它节点的波特率偏差过大(接近或者超过同步段),则 CAN 模块容易报主动错误

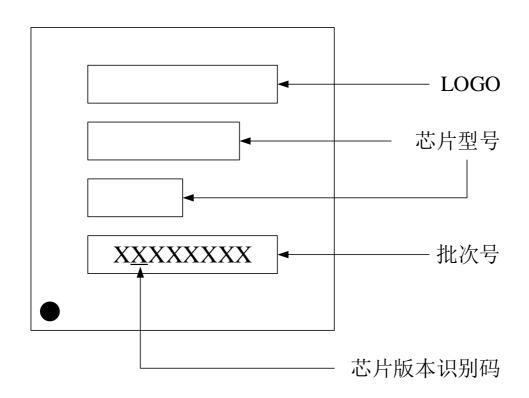
解决方法

无

8 I2C接口

8.1 标准模式下 STOP 建立时间超过最小值限制

描述:


主机模式下:通讯速率为 100K 的情况下,触发了从机的时钟延展后,STOP 建立时间会小于 4us。

解决方法

建议根据从机外设时序要求,降低通讯速率到50K及以下。

9 芯片丝印及版本说明

10 版本历史

日期	版本	备注
2022.5.12	V1.0	初始版本
2022.7.19	V1.1	增加第6章节
2023.3.21	V1.2.0	 增加第7章节,CAN 主动报错 修改 5.2章节,入侵事件改成唤醒事件 增加 5.4章节,RTC 误触发 TISOVF 标志位 增加 5.5章节,RTC 对亚秒进行 shift 操作导致当前唤醒时间不准
2023.5.9	V1.3.0	1. 增加 5.6 章节
2025.9.25	V1.4.0	 增加 3.2 章节 增加 8 章节 修改页眉页脚

11 声明

国民技术股份有限公司(下称"国民技术")对此文档拥有专属产权。依据中华人民共和国的法律、条约以及世界其他法域相适用的管辖,此文档及其中描述的国民技术产品(下称"产品")为公司所有。

国民技术在此并未授予专利权、著作权、商标权或其他任何知识产权许可。所提到或引用的第三方名称或 品牌(如有)仅用作区别之目的。

国民技术保留随时变更、订正、增强、修改和改良此文档的权利,恕不另行通知。请使用人在下单购买前 联系国民技术获取此文档的最新版本。

国民技术竭力提供准确可信的资讯,但即便如此,并不推定国民技术对此文档准确性和可靠性承担责任。

使用此文档信息以及生成产品时,使用者应当进行合理的设计、编程并测试其功能性和安全性,国民技术不对任何因使用此文档或本产品而产生的任何直接、间接、意外、特殊、惩罚性或衍生性损害结果承担责任。

国民技术对于产品在系统或设备中的应用效果没有任何故意或保证,如有任何应用在其发生操作不当或故障情况下,有可能致使人员伤亡、人身伤害或严重财产损失,则此类应用被视为"不安全使用"。

不安全使用包括但不限于: 外科手术设备、原子能控制仪器、飞机或宇宙飞船仪器、所有类型的安全装置以及其他旨在支持或维持生命的应用。

所有不安全使用的风险应由使用人承担,同时使用人应使国民技术免于因为这类不安全使用而导致被诉、 支付费用、发生损害或承担责任时的赔偿。

对于此文档和产品的任何明示、默示之保证,包括但不限于适销性、特定用途适用性和不侵权的保证责任,国民技术可在法律允许范围内进行免责。

未经明确许可,任何人不得以任何理由对此文档的全部或部分进行使用、复制、修改、抄录和传播。