

N32G430系列LSE晶体选型指南

简介

本文档为 N32G430 系列 MCU 的 LSE 晶体选型指南,提供客户选型参考。

目录

1.	LSE	晶体选型证	总明	1
	1.1	外接晶体的	电路	1
	1.2	LSE 匹配目	电容计算	1
	1.3	LSE 晶体》	则试	1
	1	1.3.1	LSE 配置参数	1
	1	1.3.2	晶体频率测试	2
	1	1.3.3	晶体兼容列表	3
•	뚀	此 上		_
2.	历史		•••••••••••••••••••••••••••••••••••••••	1
3.	声明	月		8

1. LSE 晶体选型说明

1.1 外接晶体电路

图 1-1 为 LSE 外接晶体的典型设计,其中 R_F 反馈电阻在芯片内部已有设计,用户不需要在片外加此电 Π 。

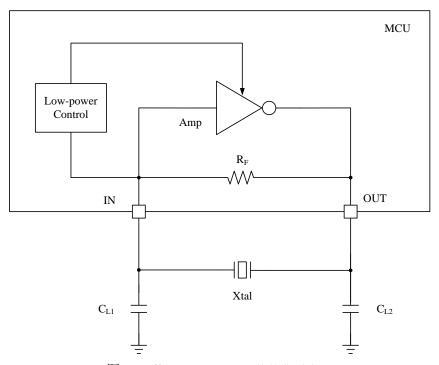


图 1-1 使用 32.768KHz 晶体的典型应用

1.2 LSE 匹配电容计算

低速外部时钟(LSE)可以使用一个 32.768kHz 的晶体/陶瓷谐振器构成的振荡器产生。在应用中,晶体和负载电容必须尽可能地靠近芯片的引脚,以减小输出失真和启动时的稳定时间。有关晶体的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

对于 C_{L1} 和 C_{L2} ,建议使用瓷介电容器,并挑选符合要求的晶体。通常 C_{L1} 和 C_{L2} 具有相同参数。

 C_{L1} 和 C_{L2} 由下式计算: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$,其中 C_{stray} 是引脚的电容和 PCB 板或 PCB 相关的电容。

例如:如果选择了一个负载电容 $C_L=7pF$ 的晶体,并且 $C_{stray}=2pF$,则 $C_{L1}=C_{L2}=10pF$ 。

1.3 LSE 晶体测试

1.3.1 LSE 配置参数

在使用LSE外部晶体时,调用void RCC_LSE_Config (uint32_t RCC_LSE, uint16_t LSE_Trim)函数,通过输入参数uint16 t LSE Trim实现对LSE配置参数,具体见下面代码示例:


```
*\*\param RCC LSE(the new state of the LSE):
*\*\ - RCC_LSE_DISABLE LSE oscillator OFF
*\*\ - RCC_LSE_ENABLE LSE oscillator ON

*\*\ - RCC_LSE_BYPASS LSE oscillator bypassed with external clock
*\*\return none
.**/
void RCC LSE Config(uint32 t RCC LSE, uint16 t LSE Trim)
    /* Enable PWR Clock */
   RCC_APB1_Peripheral_Clock_Enable(RCC_APB1_PERIPH_PWR);
    /* PWR DBKP set 1 */
   PWR->CTRL |= PWR_CTRL_DBKP;
    /* Reset LSEEN LSEBP bits before configuring the LSE */
    *(__IO uint32_t*)RCC_BDCTRL_ADDR &= (~(RCC_LSE_ENABLE | RCC_LSE_BYPASS));
    /* Configure LSE (RCC LSE DISABLE is already covered by the code section above) */
    switch (RCC LSE)
       case RCC LSE ENABLE:
           /* Set LSEON bit */
           *( IO uint32_t*)RCC_BDCTRL_ADDR |= RCC_LSE_ENABLE;
           RCC LSE Trim Config(LSE Trim);
           break;
       case RCC LSE BYPASS:
           /* Set LSEBYP and LSEON bits */
           *( IO uint32 t*)RCC BDCTRL ADDR |= (RCC LSE BYPASS | RCC LSE ENABLE);
       default:
          break;
    }
}
```

不同的配置值对最终晶体的特性影响较大,推荐的LSE配置参数值为0x1D7。

1.3.2 晶体频率测试

1.3.2.1 常温频率测试

参考图 1-1 的外围硬件设计,选取一款晶体并外接电容后测试晶体频率,晶体信号可通过 MCO 输出到频率计或其它频率测试仪器。

● 测试实例:

选取的晶体负载电容 CL=9pF,频率公差为 $\pm 20ppm$ 。 C_{stray} 按 4pF 计算,则 $C_{L1}=C_{L2}=10pF$ 。(C_{stray} 的取值和不同的测试板硬件相关,用户可以根据测试的频率值微调 C_{L1} 和 C_{L2})

参考图 1-2 为 LSE 配置参数值为 0x1D7 条件下, 常温 25℃晶体输出频率值。

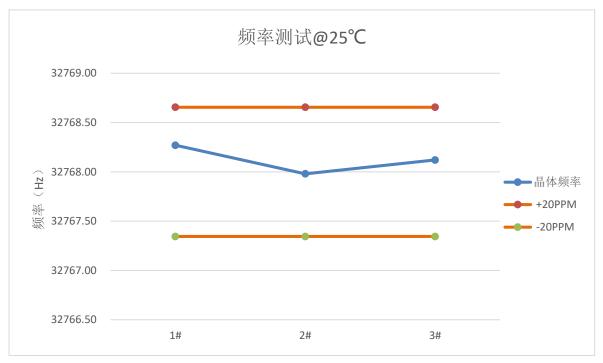


图 1-2 25°C, C_{L1}=C_{L2}=10pF, LSE 配置参数=0x1D7, 晶体输出频率

从图 1-2 可以看出,常温条件下,3 块测试板的输出频率都在±20ppm 以内。

1.3.2.2 高低温频率测试

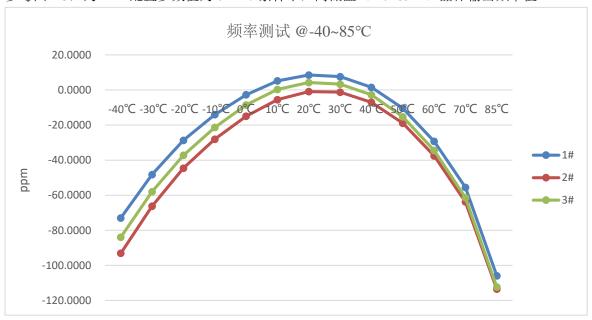


图 1-3 -40~85°C, C_{L1}=C_{L2}=10pF, LSE 配置参数=0x1D7, 晶体输出频率

1.3.3 晶体兼容列表

N32G430 芯片在选择外接 32.768KHz 晶体时,需要注意所选晶体在全温度范围都可正常工作。 LSE 配置参数不同,可适配的晶体型号也不同。

参考表 1-1 为晶体全温度测试兼容列表, LSE 配置参数为 0x1D7。

表 1-1 LSE 晶体兼容列表

No.	晶体型号	封装	厂商	负载电容 (pF)	CO (pF)	ESR(max) (kΩ)	温度范 围 (℃)
1	TFX-04-32.768K(7PF)	1610	RIVER(大河)	7	1.3	90	
2	TFX-04-32.768K			12.5	1.3	90	
3	1TJH090DR1A0086		KDS	9	1.3	90	
4	DST1610A 32.768KHz			12.5	1.3	90	
5	X1A0001210005		EPSON	12.5	1.2	90	
6	SC-16S 32.768kHz 20PPM 12.5pF		SEIKO	12.5	1.2	90	
7	ABS06-32.768KHZ-T		ABRACON	12.5		90	
8	SC-20S,32.768kHz,20PPM,7pF	1	SEIKO	7	1.3	90	
9	FC-12M 32.768000 kHz 7.0+20.0- 20.0/X1A0000610006	2012	EPSON	7	1.3	90	
10	TJXM32768K2TGDCNT2T		TAE(雅晶鑫)	12.5		70	
11	1TJG125DR1A0019	1	KDS	12.5	1.3	80	
12	FC-135R 32.768KHz 9PF 20PPM/ X1A0001410002			9	1.1	50	
13	FC-135 32.768KHz 9PF 20PPM/ Q13FC13500003			9	1	70	
14	FC-135 32.768KHz 7PF 20PPM/ Q13FC13500002	-	EPSON	7	7 1	70	
15	FC-135 32.768kHz 6PF 20PPM/ Q13FC1350004900			6	1	70	-40~85
16	FC-135 32.768KHz 12.5PF 20PPM/ Q13FC13500004			12.5	1.2	70	
17	FC-135 32.768KHz 9PF 20PPM			9	1	70	
18	SC-32S 32.768kHz 7pF 20ppm			7	1	70	
19	SC-32S 32.768kHz 12.5pF 20ppm	3215	SEIKO	12.5	1	70	
20	SC-32S 32.768kHz 9pF 20ppm			9	1	70	
21	SC-32S 32.768kHz 6pF 20ppm			6	1	70	
22	1TJF125DP1A000A		KDS	12.5	1.3	80	
23	NX3215SA-32.768kHz-EXS00A- MU00202		NDK	7	1	70	
24	7LC32768F12UC		SJK(晶科鑫)	12.5	1.2	70	
25	7LC32768F07UC			7	1.2	70	
26	SF32WK32768D71T005	1		7	1.1	70	
27	SF32WK32768D61T002		TKD(泰晶)	6	1.1	70	
28	FC31M2-32.768-NTLLLDT	1	HCI(杭晶)	12.5	1.5	70	
29	FC31M2-32.768-N09LLDT	1		9	1.5	70	
30	X321532768KGD2SI	1	YXC (扬兴科技)	12.5	1.2	70	
31	ETST00327000JE	1	HOSONIC(台湾鸿星)	12.5	2	70	
32	TCXM32768K2NGDCZT2T	1	TAE(雅晶鑫)	12.5	2	80	

33	XDMCZLNDDF-0.032768MHZ		TAITIEN(泰艺电子)	12.5			
34	KFC3276812520		KYX(凯越翔电子)	12.5	1.2	70	
35	F3K232768PWQAC		JYJE(晶友嘉)	12.5		70	
36	26S-32.768-12.5-10-10/B	DT26	LIMING(利明)	12.5		90	
37	MC-146 32.768KHz 9PF 20PPM/ Q13MC14610004		EPSON	9	0.8	65	
38	MC-146 32.768KHz 12.5PF 20PPM/ Q13MC14620002		22001.	12.5	0.8	65	
39	SSP-T7-F 32.768kHz 20PPM 12.5pF	MC 146	SEIKO	12.5	0.8	65	
40	SSP-T7-F 32.768kHz 20PPM 7pF	MC-146		7	0.8	65	
41	FR07S4-32.768-N07LLDT		HCI(杭晶)	7	0.8	65	
42	FR07S4-32.768-NTLLLDT			12.5	0.8	65	
43	TSXM32768K4KGDCZT3T		TAE(雅晶鑫)	12.5	0.8	65	
44	7MC32768F12UC		SJK(晶科鑫)	12.5	1.2	70	
45	6LC32768F12UC		SJK(晶科鑫)	12.5	1.2	50	
46	6LC32768F06UC		SJK(田代金)	6	1.2	50	
47	MC-306 32.768kHz 6PF 20PPM/ Q13MC3062000600	MC-306	EPSON	6	0.9	50	
48	X803832768KID4GI		YXC (扬兴科技)	6		70	
49	FR08S4-32.768-N06LLDT		HCI(杭晶)	6	0.9	50	
50	CD01K032768FEPBAEAE			8	1.4	40	
51	CD01K032768ACNBAEAE		TKD(泰晶)	12.5	1.4	40	
52	Y26003271C2040DYJY	DT26	JGHC(晶光华)	12.5		40	
53	X206032768KGB2SC		YXC (扬兴科技)	12.5		40	
54	WTL2T45292LZ		WTL(维拓)	12.5	1.5	40	20.70
55	146-32.768-12.5-20-20/A	MG 146	LIMING(利明)	12.5			-20~70
56	7L032768NW2	MC-146	HD(海德频率)	12.5	0.8	65	
57	X308032768KGB2SC		YXC (扬兴科技)	12.5		40	
58	CD02K032768AEPBAEAE	DT38	TKD(泰晶)	12.5	1.8	30	
59	38-32.768-12.5-10/A		LIMING(利明)	12.5			
60	S3132768092070			9	1	65	
61	SMD31327681252090	3215	JGHC(晶光华)	12.5	1	65	
62	S3132768072070	7		7	1	65	
63	DT-26-32.768K 6pF 20PPM	DTTC	NDC.	6	1.1	40	-10~60
64	DT-26 32.768KHz		KDS	12.5	1.1	40	
65	DT-38 32.768KHz	DTTO	KDS	12.5	1.3	30	
66	Y308327681252075	DT38	JGHC(晶光华)	12.5	1.1	40	

注:

- 1. 以上晶体兼容性测试的芯片供电电压 VDD=3.3V。
- 2. 推荐客户采用以上兼容列表的晶体,客户需要通过生产批量测试确认晶体是否可用。
- 3. 如果使用的晶体型号不在兼容列表里面,请联系国民技术。

2. 历史版本

版本	日期	备注
V1.0	2022-05-19	创建文档
V1.1.0 2022-10-31		推荐的 LSE 配置参数值改为 0x1D7

3. 声明

国民技术股份有限公司(下称"国民技术")对此文档拥有专属产权。依据中华人民共和国的法律、条约以及世界其他法域相适用的管辖,此文档及其中描述的国民技术产品(下称"产品")为公司所有。

国民技术在此并未授予专利权、著作权、商标权或其他任何知识产权许可。所提到或引用的第三方名称或品牌(如有)仅用作区别之目的。

国民技术保留随时变更、订正、增强、修改和改良此文档的权利,恕不另行通知。请使用人在下单购买前联系国民技术获取此文档的最新版本。

国民技术竭力提供准确可信的资讯,但即便如此,并不推定国民技术对此文档准确性和可靠性承担责任。

使用此文档信息以及生成产品时,使用者应当进行合理的设计、编程并测试其功能性和安全性,国民技术不对任何因使用此文档或本产品而产生的任何直接、间接、意外、特殊、惩罚性或衍生性损害结果承担责任。

国民技术对于产品在系统或设备中的应用效果没有任何故意或保证,如有任何应用在其发生操作不当或故障情况下,有可能致使人员伤亡、人身伤害或严重财产损失,则此类应用被视为"不安全使用"。

不安全使用包括但不限于: 外科手术设备、原子能控制仪器、飞机或宇宙飞船仪器、所有 类型的安全装置以及其他旨在支持或维持生命的应用。

所有不安全使用的风险应由使用人承担,同时使用人应使国民技术免于因为这类不安全使 用而导致被诉、支付费用、发生损害或承担责任时的赔偿。

对于此文档和产品的任何明示、默示之保证,包括但不限于适销性、特定用途适用性和不 侵权的保证责任,国民技术可在法律允许范围内进行免责。

未经明确许可,任何人不得以任何理由对此文档的全部或部分进行使用、复制、修改、抄录和传播。