
 nsing.com.sg

- 1 -

User guide

N32A455 Series general cryptographic

algorithm library user guide

Introduction

The user guide mainly introduces the encryption module interface of N32A455 series

MCU. The hardware encryption algorithm can be easily realized by using the encryption

module of NSING.

Terms and abbreviations

 nsing.com.sg

- 2 -

Abbreviations Terms

AES Advance Encryption Standard

DES Data Encryption standard

TDES Triple Data Encryption standard

RNG Random Number Generator

SHA Secure Hashing Algorithm are required for digital signature applications

Contents

CONTENTS .. - 2 -

 nsing.com.sg

- 3 -

1. INTRODUCTION .. - 7 -

1.1. SUPPORTED ALGORITHMS .. - 7 -

1.2. BASIC DATA TYPE .. - 7 -

2. DES/TDES ALGORITHM API DESCRIPTION ... - 9 -

2.1. ALGORITHM LIBRARY USAGE METHOD .. - 9 -

2.2. DATA TYPE DEFINITION .. - 9 -

2.3. API DESCRIPTION ... - 10 -

2.3.1. DES/TDES algorithm initialization ... - 11 -

2.3.2. DES/TDES algorithm encryption and decryption ... - 11 -

2.3.3. DES/TDES close .. - 12 -

2.3.4. Get DES/TDES library version information ... - 12 -

3. AES ALGORITHM API DESCRIPTION ... - 14 -

3.1. ALGORITHM LIBRARY USAGE METHOD .. - 14 -

3.2. DATA TYPE DEFINITION .. - 14 -

3.3. API DESCRIPTION ... - 15 -

3.3.1. AES algorithm initialization ... - 16 -

3.3.2. AES algorithm encryption and decryption ... - 16 -

3.3.3. AES operation ended ... - 16 -

3.3.4 Get AES library version information .. - 17 -

4. HASH API DESCRIPTION .. - 18 -

4.1. ALGORITHM LIBRARY USAGE METHOD .. - 18 -

4.2. DATA TYPE DEFINITION .. - 18 -

4.3. API DESCRIPTION ... - 20 -

4.3.1. HASH algorithm initialization .. - 20 -

4.3.2. HASH start operation ... - 21 -

4.3.3. HASH distributed processing data ... - 21 -

4.3.4. Get the result after HASH operation .. - 22 -

 nsing.com.sg

- 4 -

4.3.5. HASH operation ended .. - 23 -

4.3.6. Get HASH library version information ... - 23 -

5. SM7 API DESCRIPTION .. - 25 -

5.1. ALGORITHM LIBRARY USAGE METHOD .. - 25 -

5.2 DATA TYPE DEFINITION .. - 25 -

5.3 API DESCRIPTION.. - 26 -

5.3.1 SM7 algorithm initialization .. - 26 -

5.3.2 SM7 algorithm encryption and decryption .. - 27 -

5.3.3 SM7 operation ended .. - 27 -

5.3.4 Get SM7 library version information ... - 27 -

6 SM4 API DESCRIPTION .. - 29 -

6.1 ALGORITHM LIBRARY USAGE METHOD ... - 29 -

6.2 DATA TYPE DEFINITION .. - 29 -

6.3 API DESCRIPTION.. - 30 -

6.3.1 SM4 algorithm initialization .. - 30 -

6.3.2 SM4 algorithm encryption and decryption .. - 31 -

6.3.3 SM4 operation ended .. - 32 -

6.3.4 Get SM4 library version information ... - 32 -

7 RNG API DESCRIPTION .. - 33 -

7.1 ALGORITHM LIBRARY USAGE METHOD ... - 33 -

7.2 DATA TYPE DEFINITION .. - 33 -

7.3 API DESCRIPTION.. - 33 -

7.3.1 Pseudorand generating function ... - 34 -

7.3.2 Truerand generating function ... - 34 -

7.3.3 Get RNG library version information ... - 34 -

8 SM1 API DESCRIPTION .. - 36 -

 nsing.com.sg

- 5 -

8.1 ALGORITHM LIBRARY USAGE METHOD ... - 36 -

8.2 DATA TYPE DEFINITION .. - 36 -

8.3 API DESCRIPTION.. - 37 -

8.3.1 SM1 algorithm initialization .. - 37 -

8.3.2 SM1 algorithm encryption and decryption .. - 38 -

8.3.3 SM1 operation ended .. - 39 -

8.3.4 Get SM1 library version information ... - 39 -

9 SM2 API DESCRIPTION .. - 41 -

9.1. ALGORITHM LIBRARY USAGE METHOD .. - 41 -

9.2. DATA TYPE DEFINITION .. - 41 -

9.3. API DESCRIPTION ... - 43 -

9.3.1. Judge whether the point is on the curve .. - 44 -

9.3.2. Key pair generation ... - 44 -

9.3.3. Private key generation public key .. - 45 -

9.3.4. Signature generation ... - 45 -

9.3.5. Signature verification .. - 46 -

9.3.6. Key negotiation (exchange) ... - 46 -

9.3.7. User ID hash calculation function .. - 47 -

9.3.8. Message hash value .. - 48 -

9.3.9. Encryption .. - 48 -

9.3.10. Deciphering ... - 49 -

9.3.11. Get SM2 library version information... - 50 -

I. APPENDIX I DES ALGORITHM LIBRARY FUNCTION DEMO ... - 51 -

II. APPENDIX II TDES ALGORITHM LIBRARY FUNCTION DEMO .. - 57 -

III. APPENDIX III AES ALGORITHM LIBRARY FUNCTION DEMO ... - 65 -

IV. APPENDIX IV HASH ALGORITHM LIBRARY FUNCTION DEMO .. - 84 -

V. APPENDIX V SM7 ALGORITHM LIBRARY FUNCTION DEMO ... - 90 -

 nsing.com.sg

- 6 -

VI. APPENDIX VI SM4 ALGORITHM LIBRARY FUNCTION DEMO .. - 96 -

VII. APPENDIX VII RNG ALGORITHM LIBRARY FUNCTION DEMO... - 103 -

VIII. APPENDIX VIII SM1 ALGORITHM LIBRARY FUNCTION DEMO .. - 106 -

IX. APPENDIX IX SM2 ALGORITHM LIBRARY FUNCTION DEMO .. - 112 -

10 VERSION HISTORY ... - 120 -

11 NOTICE ... - 121 -

 nsing.com.sg

- 7 -

1. Introduction

This document is applicable to N32A455 that have downloaded relevant algorithms. It mainly

describes the algorithm interfaces and usage methods of these chips.

For uint32_ t data type parameter, if uint8_ t is used to coerce uint32_ t, you need to ensure uint8_ t

addresses are word-aligned.

1.1. Supported algorithms

The algorithm provided by N32A455 is as follows：

 DES: Encryption/Decryption

 TDES: Encryption/Decryption

 AES: Encryption/Decryption (AES-128/192/256)

 SM4: Encryption/Decryption

 SM1: Encryption/Decryption

 SM7: Encryption/Decryption

 HASH: Get summary，support (SHA-1/SHA-224/SHA-256/MD5/SM3)

 RNG: Generation of random number

1.2. Basic data type

typedef unsigned char bool;

typedef unsigned char uint8_t;

typedef signed char s8;

typedef unsigned short u16;

typedef signed short s16;

typedef unsigned int uint32_t;

typedef signed int s32;

typedef unsigned long long u64;

 nsing.com.sg

- 8 -

typedef signed long long s64;

 nsing.com.sg

- 9 -

2. DES/TDES algorithm API description

2.1. Algorithm library usage method

Algorithm library usage method as follows：

1. Copy the n32a455_des.h、Type.h、n32a455_algo_common.h、n32a455_algo_common.lib、

n32a455_des.lib in the folder to the project;

2. Call the function according to the function description in Section 2.3. See the demo provided in

Appendix I and Appendix II for the demo

2.2. Data type definition

#define DES_ECB (0x11111111)

#define DES_CBC (0x22222222)

#define DES_ENC (0x33333333)

#define DES_DEC (0x44444444)

#define DES_KEY (0x55555555)

#define TDES_2KEY (0x66666666)

#define TDES_3KEY (0x77777777)

enum DES

{

 DES_Crypto_OK = 0x0, //DES/TDES opreation success

 DES_Init_OK = 0x0, //DES/TDES Init opreation success

 DES_Crypto_ModeError = 0x5a5a5a5a, //Working mode error(Neither ECB nor CBC)

 DES_Crypto_EnOrDeError, //En&De error(Neither encryption nor decryption)

 DES_Crypto_ParaNull, // the part of input(output/iv) Null

 DES_Crypto_LengthError, //the length of input message must be 2 times and cannot be zero

 DES_Crypto_KeyError, //keyMode error(Neither DES_KEY nor TDES_2KEY nor TDES_3KEY)

 DES_Crypto_UnInitError, //DES/TDES uninitialized

 nsing.com.sg

- 10 -

};

typedef struct

{

 uint32_t *in; // the part of input to be encrypted or decrypted

 uint32_t *iv; // the part of initial vector

 uint32_t *out; // the part of out

 uint32_t *key; // the part of key

 uint32_t inWordLen; // the length(by word) of plaintext or cipher

 uint32_t En_De; // 0x33333333- encrypt, 0x44444444 - decrypt

 uint32_t Mode; // 0x11111111 - ECB, 0x22222222 - CBC

 uint32_t keyMode; //TDES key mode: 0x55555555-key,0x66666666-2key, 0x77777777-3key

}DES_PARM;

2.3. API description

The DES algorithm library contains the following list of functions：

Table 2-1 DES/TDES algorithm library functions

Functions Descriptions

uint32_t DES_Init(DES_PARM *parm);
DES/TDES algorithm

initialization function

uint32_t DES_Crypto(DES_PARM *parm)

DES/TDES algorithm

encryption and

decryption

void DES_Close(void)
DES/TDES algorithm

ended

void DES_Version(uint8_t *type, uint8_t *customer, uint8_t date[3],

uint8_t *version)

Get DES algorithm

library version

information

 nsing.com.sg

- 11 -

2.3.1. DES/TDES algorithm initialization

DES_Init DES/TDES algorithm initialization

Function prototype uint32_t DES_Init(DES_PARM *parm)

Parameter Description parm input，Pointer to DES_PARM structure

Return value DES_Init_OK：Initialization succeeded Other: initialization error

Note

1. If it is in ECB mode, parameter iv can be directly replaced with NULL.

2.3.2. DES/TDES algorithm encryption and decryption

DES_Crypto DES/TDES algorithm initialization，encription and decription

Function prototype uint32_t DES_Crypto(DES_PARM *parm)

Parameter Description parm input，Pointer to DES_PARM structure

Return value DES_Crypto_OK：Correct operation Other: operation error

Note

Before calling this function, if it has not been initialized or switched to

another algorithm, call DES first_ Init function;

1. If it is in ECB mode, parameter iv1 can be directly replaced with

NULL

2. When a large amount of data is encrypted in CBC as a whole but in

multiple blocks, attention should be paid to：

Call this function to encrypt the X data (X>1)， The initial vector IV

(IV=iv1) used must be updated to the last packet (8 bytes) of the

ciphertext obtained by calling this function to encrypt the X-1 block of

data.

 nsing.com.sg

- 12 -

3. When a large amount of data is decrypted by CBC as a whole but in

multiple blocks, it should be noted that:

 Call this function to decrypt the X data (X>1), Initial vector IV used

(IV=iv1) Be sure to update to the last packet (8 bytes) of the X-1 block

of data.

4. Please refer to Appendix I and Appendix II for the calling method.

2.3.3. DES/TDES close

DES_Close Close DES/TDES algorithm clock and system clock

Function prototype void DES_Close(void)

Parameter Description

Return value

2.3.4. Get DES/TDES library version information

DES_Version Get DES/TDES library version information

Function prototype void DES_Version(uint8_t *type, uint8_t *customer, uint8_t date[3],

uint8_t *version)

Parameter Description type Commercial or fast version

 customer Standard or customized version

 date Year，Month，Day

 version //version x.x

Return value

Note

*type = 0x05; // Business and Express

 *customer = 0x00; // Standard version

 nsing.com.sg

- 13 -

 date[0] = 18; //Year()

 date[1] = 12; //Month()

 date[2] = 28; //Day ()

 *version = 0x10; // Version 1.0

 nsing.com.sg

- 14 -

3. AES algorithm API description

3.1. Algorithm library usage method

Algorithm library usage method as follows：

1. Copy the n32a455_des.h、Type.h、n32a455_algo_common.h、n32a455_algo_common.lib、

n32a455_aes.lib in the folder to the project;

2. Call the function according to the function description in Section 3.3. See the demo provided in

Appendix III for the demo

3.2. Data type definition

 #define AES_ECB (0x11111111)

#define AES_CBC (0x22222222)

#define AES_CTR (0x33333333)

#define AES_ENC (0x44444444)

#define AES_DEC (0x55555555)

enum

{

 AES_Crypto_OK = 0x0, //AES opreation success

 AES_Init_OK = 0x0, //AES Init opreation success

 AES_Crypto_ModeError = 0x5a5a5a5a, //Working mode error(Neither ECB nor CBC nor CTR)

 AES_Crypto_EnOrDeError, //En&De error(Neither encryption nor decryption)

 AES_Crypto_ParaNull, // the part of input(output/iv) Null

 AES_Crypto_LengthError, // if Working mode is ECB or CBC,the length of input message must be

// 4 times and cannot be zero;if Working mode is CTR,the length of

//input message cannot be zero; othets: return

//AES_Crypto_LengthError

 nsing.com.sg

- 15 -

 AES_Crypto_KeyLengthError, //the keyWordLen must be 4 or 6 or 8; othets:return

AES_Crypto_KeyLengthError

 AES_Crypto_UnInitError, //AES uninitialized

};

typedef struct

{

 uint32_t *in; // the part of input to be encrypted or decrypted

 uint32_t *iv; // the part of initial vector

 uint32_t *out; // the part of out

 uint32_t *key; // the part of key

 uint32_t keyWordLen; // the length(by word) of key

 uint32_t inWordLen; // the length(by word) of plaintext or cipher

 uint32_t En_De; // 0x44444444- encrypt, 0x55555555 - decrypt

 uint32_t Mode; // 0x11111111 - ECB, 0x22222222 - CBC, 0x33333333 - CTR

}AES_PARM;

3.3. API description

The AES algorithm library contains the following functions:

Table 3-1 AES algorithm library functions

Functions Descriptions

uint32_t AES_Init(AES_PARM *parm)
AES algorithm

initialization function

uint32_t AES_Crypto(AES_PARM *parm)

AES algorithm

encryption and

decryption

void AES_Close(void) AES algorithm close

 nsing.com.sg

- 16 -

void AES_Version(uint8_t *type, uint8_t *customer, uint8_t date[3],

uint8_t *version)

Get AES algorithm

library version

information

3.3.1. AES algorithm initialization

AES_Init AES algorithm initialization

Function prototype uint32_t AES_Init(AES_PARM *parm)

Parameter Description parm Input，Point to AES _PARM structure

Return value AES_Init_OK：Correct operation Other：Arithmetic error

Note

1. Please refer to Appendix III for calling method.

3.3.2. AES algorithm encryption and decryption

AES_Crypto AES algorithm encryption and decryption

Function prototype uint32_t AES_Crypto(AES_PARM *parm)

Parameter Description parm Input，Point to AES _PARM structure

Return value AES_Crypto_OK：Correct operation Other：Arithmetic error

Note

1. Before calling this function, if it has not been initialized or switched to

other algorithms, call AES first_ Init function

3.3.3. AES operation ended

AES_Close Turn off AES algorithm clock and system clock

Function prototype void AES_Close(void)

Parameter Description

 nsing.com.sg

- 17 -

Return value

3.3.4 Get AES library version information

AES_Version Get AES library version information

Function prototype void AES_Version(uint8_t *type, uint8_t *customer, uint8_t date[3],

uint8_t *version)

Parameter Description type Commercial or fast version

 customer Standard or customized version

 date Year，Month，Day

 version version x.x

Return value

Note

*type = 0x05; // Business and Express

 *customer = 0x00; // Standard Version

 date[0] = 18; //Year()

 date[1] = 12; //Month()

 date[2] = 28; //Day ()

 *version = 0x10;// Version V1.0

 nsing.com.sg

- 18 -

4. HASH API description

Including SHA1/SHA224/SHA256/MD5/SM3 algorithm library.

4.1. Algorithm library usage method

Data input and output are in byte big-end order .Algorithm library usage method as follows：

1. Copy the n32a455_hash.h、Type.h、n32a455_algo_common.h、n32a455_algo_common.lib、

n32a455_hash.lib in the folder to the project.

2. Call the function according to the function description in Section 4.3. See the demo provided in

Appendix IV for the demo.

4.2. Data type definition

 enum

{

 HASH_SEQUENCE_TRUE = 0x0105A5A5,//save IV

 HASH_SEQUENCE_FALSE = 0x010A5A5A, //not save IV

 HASH_Init_OK = 0,//hash init success

 HASH_Start_OK = 0,//hash update success

 HASH_Update_OK = 0,//hash update success

 HASH_Complete_OK = 0,//hash complete success

 HASH_Close_OK = 0,//hash close success

 HASH_ByteLenPlus_OK = 0,//byte length plus success

 HASH_PadMsg_OK = 0,//message padding success

 HASH_ProcMsgBuf_OK = 0, //message processing success

 SHA1_Hash_OK = 0,//sha1 operation success

 SM3_Hash_OK = 0,//sm3 operation success

 SHA224_Hash_OK = 0,//sha224 operation success

 nsing.com.sg

- 19 -

 SHA256_Hash_OK = 0,//sha256 operation success

 MD5_Hash_OK = 0,//MD5 operation success

 HASH_Init_ERROR = 0x01044400,//hash init error

 HASH_Start_ERROR, //hash start error

 HASH_Update_ERROR, //hash update error

 HASH_ByteLenPlus_ERROR,//hash byte plus error

};

typedef struct _HASH_CTX_ HASH_CTX;

typedef struct

{

 const uint16_t HashAlgID;//choice hash algorithm

 const uint32_t * const K, KLen;//K and word length of K

 const uint32_t * const IV, IVLen;//IV and word length of IV

 const uint32_t HASH_SACCR, HASH_HASHCTRL;//relate registers

 const uint32_t BlockByteLen, BlockWordLen; //byte length of block, word length of block

 const uint32_t DigestByteLen, DigestWordLen; //byte length of digest,word length of digest

 const uint32_t Cycle; //interation times

 uint32_t (* const ByteLenPlus)(uint32_t *, uint32_t); //function pointer

 uint32_t (* const PadMsg)(HASH_CTX *); //function pointer

}HASH_ALG;

typedef struct _HASH_CTX_

{

 const HASH_ALG *hashAlg;//pointer to HASH_ALG

 uint32_t sequence; // TRUE if the IV should be saved

 uint32_t IV[16];

 uint32_t msgByteLen[4];

 nsing.com.sg

- 20 -

 uint8_t msgBuf[128+4];

 uint32_t msgIdx;

}HASH_CTX;

4.3. API description

The HASH algorithm library contains the following functions:

Table 4-1 HASH algorithm library functions

Functions Descriptions

uint32_t HASH_Init(HASH_CTX *ctx)
HASH algorithm

initialization function

uint32_t HASH_Start(HASH_CTX *ctx)
HASH step hash start

operator

uint32_t HASH_Update(HASH_CTX *ctx, uint8_t *in, uint32_t byteLen)
HASH step hash

processing function

uint32_t HASH_Complete(HASH_CTX *ctx, uint8_t *out)
HASH step hash

completion function

uint32_t HASH_Close(void) HASH algorithm close

void HASH_Version(uint8_t *type, uint8_t *customer, uint8_t date[3], uint8_t

*version)

Get HASH algorithm

library version

information

4.3.1. HASH algorithm initialization

HASH_Init HASH algorithm initialization

Function prototype uint32_t HASH_Init(HASH_CTX *ctx)

Parameter Description ctx Input，Point to HASH_CTX structure

Return value HASH_Init_OK：Correct operation Other：Arithmetic error

Note

 nsing.com.sg

- 21 -

1. Ctx must point to the RAM area, and the content pointed to cannot be

changed (intermediate state and temporary content storage of hash

calculation), the same below

2. When calculating the hash value of a message step by step, this function

must be called first

4.3.2. HASH start operation

HASH_Start HASH start operation

Function prototype uint32_t HASH_Start(HASH_CTX *ctx)

Parameter Description ctx Input，Point to HASH_CTX structure

Return value HASH_Start_OK：Correct operation Other：Arithmetic error

Note

1. If interrupt is required during HASH operation，Set ctx ->sequence to

HASH_SEQUENCE_TRUE，HASH needs to be called again after the

interruption_ Init function，Then call HASH_ Update function；

Otherwise, set ctx ->sequence to false.

2. Please refer to Appendix IV for calling method.

4.3.3. HASH distributed processing data

HASH_Update HASH distributed processing data

Function prototype uint32_t HASH_Update(HASH_CTX *ctx, uint8_t *in, uint32_t byteLen)

Parameter Description ctx Input，Point to HASH_CTX structure

 in Input，Refers to the information to be pieced together

 byteLen Input，Refers to the byte length of hash information

Return value HASH_Update_OK：Correct operation Other values: operation error

Note

 nsing.com.sg

- 22 -

1. Before calling this function, if it has not been initialized or has

switched to other algorithms, call HASH first_ Init and HASH_ If

the Start function has not been initialized or switched to other

algorithms before calling this function, call HASH first_ Init and

HASH_ Start function;

1.1. The initialization function HASH must be called before calling this

function_ Init and HASH_ Start

1.2. Ctx must point to the RAM area, and the content pointed to cannot

be changed (intermediate state and temporary content storage for

hash calculation).

1.3. The in content can point to the RAM or Flash area. In can be NULL,

and the calculation result is a summary value of NULL

1.4. ByteLen can be 0 or NULL, and the calculation result is a summary

value of NULL

1.5. After initialization, a whole message can be divided into multiple

pieces at will. For each piece of message, this function can be called

in turn, and finally HASH can be called_ Complete function to get

the hash result of the whole message.

1.6. If cascade application is required, ctx ->sequence=HASH_

SEQUENCE_ TRUE, copy external IV to ctx ->IV, And add the

updated data length len to ctx ->hashAlg ->ByteLenPlus (ctx

->msgByteLen, len) to ctx ->msgByteLen, Then call HASH_

Update function to cascade successfully.

1.7. Please refer to Appendix IV for calling method

4.3.4. Get the result after HASH operation

HASH_Complete Get the result after HASH operation

Function prototype uint32_t HASH_Complete(HASH_CTX *ctx, uint8_t *out)

 nsing.com.sg

- 23 -

Parameter Description ctx Input，Point to HASH_CTX structure

 out Output，Point to HASH result

Return value HASH_Complete_OK：Correct operation Other values: operation error

Note

1. Before calling this function, if it has not been initialized or has

switched to other algorithms, call HASH_ Init and HASH_ Start

function first.

1.1. Call this function to get the final result after entering the message

1.2. Ctx must point to the RAM area, and the content pointed to cannot be

changed (intermediate state and temporary content storage for hash

calculation).

1.3. Please refer to Appendix IV for calling method

4.3.5. HASH operation ended

HASH_Close HASH operation ended

Function prototype uint32_t HASH_Close(void)

Parameter Description

Return value HASH_Close_OK：Correct operation Other values: operation error

Note

4.3.6. Get HASH library version information

HASH_Version Get HASH library version information

Function prototype void HASH_Version(uint8_t *type, uint8_t *customer, uint8_t date[3],

uint8_t *version)

Parameter Description type Commercial or fast version

 customer Standard or customized version

 nsing.com.sg

- 24 -

 date Year，Month，Day

 version version x.x

Return value

Note

*type = 0x05; // Business and Express

 *customer = 0x00; // Standard version

 date[0] = 18; //Year()

 date[1] = 12; //Month()

 date[2] = 28; //Day ()

 *version = 0x10; // Version V1.0

 nsing.com.sg

- 25 -

5. SM7 API description

5.1. Algorithm library usage method

Algorithm library usage method as follows：

1. Copy the n32a455_sm7.h 、 Type.h 、 n32a455_algo_common.h 、 n32a455_algo_common.lib 、

n32a455_sm7.lib in the folder to the project;

2. Call the function according to the function description in Section 5.3. See the demo provided in

Appendix V for the demo.

5.2 Data type definition

#define SM7_ECB (0x11111111)

#define SM7_CBC (0x22222222)

#define SM7_ENC (0x44444444)

#define SM7_DEC (0x55555555)

enum

{

 SM7_Crypto_OK = 0x0, //SM7 opreation success

 SM7_Init_OK = 0x0, //SM7 opreation success

 SM7_Crypto_ModeError = 0x5a5a5a5a, //Working mode error(Neither ECB nor CBC)

 SM7_Crypto_EnOrDeError, //En&De error(Neither encryption nor decryption)

 SM7_Crypto_ParaNull, // the part of input(output/iv) Null

 SM7_Crypto_LengthError, //the length of input message must be 2 times and cannot be zero

 SM7_UnInitError, //SM7 uninitialized

};

typedef struct

{

 nsing.com.sg

- 26 -

 uint32_t *in; // the part of input

 uint32_t *iv; // the part of initial vector

 uint32_t *out; // the part of output

 uint32_t *key; // the part of key

 uint32_t inWordLen; // the length(by word) of plaintext or cipher

 uint32_t En_De; // 0x44444444- encrypt, 0x55555555 - decrypt

 uint32_t Mode; // 0x11111111 - ECB, 0x22222222 - CBC

}SM7_PARM;

5.3 API description

The SM7 algorithm library contains the following functions:

Table 5-1 SM7 algorithm library functions

Functions Descriptions

uint32_t SM7_Init(SM7_PARM *parm)
SM7 algorithm initialization

function

uint32_t SM7_Crypto(SM7_PARM *parm);
SM7 algorithm encryption and

decryption

uint32_t SM7_Close (void) SM7 algorithm close

void SM7_Version(uint8_t *type, uint8_t *customer, uint8_t

date[3], uint8_t *version)

Get SM7 algorithm library

version information

5.3.1 SM7 algorithm initialization

SM7_Init SM7 algorithm initialization

Function prototype uint32_t SM7_Init(SM7_PARM *parm)

Parameter Description parm Input，Point to SM7_PARM structure

Return value SM7_Init_OK：Correct operation Other：Initialization failure. See

enumeration type definition for details

 nsing.com.sg

- 27 -

Note

1. SM7 initialization function, which must be executed before SM7 operation

5.3.2 SM7 algorithm encryption and decryption

SM7_Crypto SM7 algorithm encryption and decryption

Function prototype uint32_t SM7_Crypto(SM7_PARM *parm)

Parameter Description parm Input，Point to SM7_PARM Structure

Return value SM7_Crypto_OK：Correct operation Other：Calculation error, see

enumeration type definition for details

Note

1. Before calling this function, if it has not been initialized or switched to

another algorithm, Call SM7 first_ Init function;

Demo See Appendix V SM7 algorithm library function call routine

5.3.3 SM7 operation ended

SM7_Close Turn off the SM7 algorithm system clock and algorithm clock

Function prototype uint32_t SM7_Close (void)

Parameter Description

Return value

Note

5.3.4 Get SM7 library version information

SM7_Close Get SM7 library version information

 nsing.com.sg

- 28 -

Function prototype void SM7_Version(uint8_t *type, uint8_t *customer, uint8_t date[3],

uint8_t *version)

Parameter Description

 type Commercial or fast version

 customer Standard or customized version

 date Year，Month，Day

 version version x.x

Return value

Note *type = 0x05; // Business and Express

 *customer = 0x00; // Standard version

 date[0] = 18; //Year

 date[1] = 12; //Month

 date[2] = 28; //Day

 *version = 0x10; // version 1.0

 nsing.com.sg

- 29 -

6 SM4 API description

6.1 Algorithm library usage method

Algorithm library usage method as follows：

1. Copy the n32a455_sm4.h、Type.h、n32a455_algo_common.h、n32a455_algo_common.lib、

n32a455_sm4.lib in the folder to the project;

2. Call the function according to the function description in Section 6.3. See the demo provided in

Appendix VI for the routine

6.2 Data type definition

#define SM4_ECB (0x11111111)

#define SM4_CBC (0x22222222)

#define SM4_ENC (0x33333333)

#define SM4_DEC (0x44444444)

enum{

 SM4_Crypto_OK=0, //SM4 opreation success

 SM4_Init_OK=0, //SM4 Init opreation success

 SM4_ADRNULL =0x27A90E35, //the address is NULL

 SM4_ModeErr, //working mode error(Neither ECB nor CBC)

 SM4_EnDeErr, // En&De error(Neither encryption nor decryption)

 SM4_LengthErr,//the word length of input error(the word length is 0 or is not as times as 4)

 SM4_UnInitError, //SM4 uninitialized

};

typedef struct{

 uint32_t *in; // the first part of input to be encrypted or decrypted

 uint32_t *iv; // the first part of initial vector

 nsing.com.sg

- 30 -

 uint32_t *out; // the first part of out

 uint32_t *key; // the first part of key

 uint32_t inWordLen; //the word length of input or output

 uint32_t EnDeMode; //encrypt/decrypt

 uint32_t workingMode; // ECB/CBC

}SM4_PARM;

6.3 API description

The SM4 algorithm library contains the following functions:

Table 6-1 SM4 algorithm library functions

Functions Descriptions

uint32_t SM4_Init(SM4_PARM *parm)
SM4 algorithm

initialization function

uint32_t SM4_Crypto(SM4_PARM *parm)

SM4 algorithm

encryption and

decryption

void SM4_Close(void) SM4 algorithm close

void SM4_Version(uint8_t *type, uint8_t *customer, uint8_t date[3],

uint8_t *version)

Get SM4 algorithm

library version

information

6.3.1 SM4 algorithm initialization

SM4_Init SM4 algorithm initialization

Function prototype uint32_t SM4_Init(SM4_PARM *parm)

Parameter Description parm Input，point to SM4_PARM structure

Return value SM4_Init_OK：Correct operation Other values: calculation error, see

 nsing.com.sg

- 31 -

 enumeration type value definition for details

Note

6.3.2 SM4 algorithm encryption and decryption

SM4_Crypto SM4 algorithm encryption and decryption

Function prototype uint32_t SM4_Crypto(SM4_PARM *parm)

Parameter Description parm Input，Point to SM4_PARM structure

Return value SM4_Crypto_OK：Correct operation Other values:：Calculation error,

see enumeration type value definition for details

Note

1. Before calling this function, if it has not been initialized or switched to

another algorithm, call SM4_ Init function first

1.1. Structure SM4_PARM refers to the definition of SM4_PARM in

Section 6.2.

1.2. If it is in ECB mode, the parameter iv1 can be directly replaced with

NULL.

1.3. When a large amount of data is encrypted in CBC as a whole but in

multiple blocks, attention should be paid to：

The Xth block of data (X>1) calls this function for encryption, using

the initial vector IV (IV=iv1) Be sure to update the last group of

ciphertext obtained by calling this function to encrypt the X-1 block of

data(16 bytes).

1.4. When a large amount of data is decrypted by CBC as a whole but in

multiple blocks, it should be noted that:

The X data block (X>1) calls this function to decrypt, using the initial

vector IV (IV=iv1) Be sure to update to the last packet (16 bytes) of

the X-1 block of data.

 nsing.com.sg

- 32 -

6.3.3 SM4 operation ended

SM4_Close Turn off the SM4 algorithm clock and system clock

Function prototype void SM4_Close(void)

Parameter Description

Return value

Note

6.3.4 Get SM4 library version information

SM4_Version Get SM4 library version information

Function prototype void SM4_Version(uint8_t *type, uint8_t *customer, uint8_t date[3],

uint8_t *version)

Parameter Description type Commercial or fast version

 customer Standard or customized version

 date Year，Month，Day

 version version x.x

Return value

Note

*type = 0x05; // Business and Express

 *customer = 0x00; // Standard version

 date[0] = 18; //Year()

 date[1] = 12; //Month()

 date[2] = 28; //Day ()

 *version = 0x10; // Version V1.0

 nsing.com.sg

- 33 -

7 RNG API description

7.1 Algorithm library usage method

Algorithm library usage method as follows：

1、Copy the n32a455_rng.h、Type.h、n32a455_algo_common.h、n32a455_algo_common.lib、

n32a455_rng.lib in the folder to the project.

2、Call the function according to the function description in Section 7.3.

7.2 Data type definition

enum{

RNG_OK = 0x5a5a5a5a,

 LENError = 0x311ECF50, //RNG generation of key length error

ADDRNULL = 0x7A9DB86C, // This address is empty

};

7.3 API description

The RNG algorithm library contains the following functions:

Table 7-1 RNG algorithm library functions

Functions Descriptions

uint32_t GetPseudoRand_U32(uint32_t *rand, uint32_t

wordLen,uint32_t seed[2])

Pseudo-random numbers

generate functions by word

uint32_t GetTrueRand_U32(uint32_t *rand, uint32_t wordLen)
Word generating function of

true random number

void RNG_Version(uint8_t *type, uint8_t *customer, uint8_t date[3],

uint8_t *version)

Get RNG algorithm library

version information

 nsing.com.sg

- 34 -

7.3.1 Pseudorand generating function

GetPseudoRand_U32 Pseudo-random numbers generate functions by word

Function prototype uint32_t GetPseudoRand_U32(uint32_t *rand, uint32_t

wordLen,uint32_t seed[2])

Parameter Description rand pointer，Point to the generated random number

wordlen: Pseudorandom number word length to be obtained

seed[2] Input，Pseudorandom seed variable arra

Return value RNG_OK: Correct operation Other values: Error generating

pseudo-random number

description Generate pseudo-random numbers by word

Note

1. The user can input the seed array. If the user input seed is NULL,

the seed will be automatically generated internally.

7.3.2 Truerand generating function

 GetTrueRand_U32 Pseudo-random numbers generate functions by word

Function prototype uint32_t GetTrueRand_U32(uint32_t *rand,uint32_t wordLen)

Parameter Description rand: pointer，Point to a memory address of the generated random

number

wordLen: Word length to obtain true random number

Return value RNG_OK: Correct operation Other values: Error generating

true random number. See enumeration type value definition for

details

Note

7.3.3 Get RNG library version information

RNG_Version Get RNG library version information

 nsing.com.sg

- 35 -

Function prototype void RNG_Version(uint8_t *type, uint8_t *customer, uint8_t date[3],

uint8_t *version)

Parameter Description type Commercial or fast version

 customer Standard or customized version

 date Year，Month，Day

 version version x.x

Return value

Note *type = 0x05; // Business and Express

 *customer = 0x00; // Standard version

 date[0] = 18; //Year()

 date[1] = 12; //Month()

 date[2] = 28; //Day ()

 *version = 0x10; // Version V1.0

 nsing.com.sg

- 36 -

8 SM1 API description

8.1 Algorithm library usage method

Algorithm library usage method as follows：

1. Copy the n32a455_sm1.h、Type.h、n32a455_algo_common.h、n32a455_algo_common.lib、

n32a455_sm1.lib in the folder to the project;

2. 按 8.3 节函数说明调用函数，例程见附录八提供的 demo

8.2 Data type definition

#define SM1_ECB (0x11111111)

#define SM1_CBC (0x22222222)

#define SM1_ENC (0x44444444)

#define SM1_DEC (0x55555555)

enum{

SM1_Crypto_OK = 0x0, //SM1 opreation success

SM1_Init_OK = 0x0, //SM1 opreation success

SM1_Crypto_ModeError = 0x5a5a5a5a, //Working mode error(Neither ECB nor CBC)

SM1_Crypto_EnOrDeError, //En&De error(Neither encryption nor decryption)

SM1_Crypto_ParaNull, // the part of input(output/iv) Null

SM1_Crypto_LengthError, //the length of input message must be 4 times and cannot be zero

SM1_UnInitError, //SM1 uninitialized

};

typedef struct{

uint32_t *in; // the part of input

 uint32_t *iv; // the part of initial vector

 nsing.com.sg

- 37 -

 uint32_t *out; // the part of output

 uint32_t *key; // the part of key

 uint32_t inWordLen; // the length(by word) of plaintext or cipher

 uint32_t En_De; // 0x44444444- encrypt, 0x55555555 - decrypt

 uint32_t Mode; // 0x11111111 - ECB, 0x22222222 - CBC

}SM1_PARM;

8.3 API description

The SM1 algorithm library contains the following functions:

Table 8-1 SM1 algorithm library functions

Functions Descriptions

uint32_t SM1_Init(SM1_PARM *parm)
SM1 algorithm

initialization function

uint32_t SM1_Crypto(SM1_PARM *parm)

SM1 algorithm

encryption and

decryption

void SM1_Close(void) SM1 algorithm close

void SM1_Version(uint8_t *type, uint8_t *customer, uint8_t date[3],

uint8_t *version)

Get SM1 algorithm

library version

information

8.3.1 SM1 algorithm initialization

SM1_Init SM1 algorithm initialization

Function prototype uint32_t SM1_Init(SM1_PARM *parm)

 nsing.com.sg

- 38 -

Parameter Description parm Input， Pointer to SM1_PARM structure

Return value SM1_Init_OK: Correct operation Other values: Calculation error, see

enumeration type value definition for details

Note

8.3.2 SM1 algorithm encryption and decryption

SM1_Crypto SM1 algorithm initialization ，algorithm encryption and decryption

Function prototype uint32_t SM1_Crypto(SM1_PARM *parm)

Parameter Description parm Input，Pointer to SM1_PARM structure

Return value SM1_Crypto_OK: Correct operation Other values: Calculation error,

see enumeration type value definition for details

Note

1. Before calling this function, if it has not been initialized or

switched to another algorithm, call SM1 first_ Init function;

1.1. Structure SM1_PARM refers to the definition of SM1_PARM in

Section 8.2.

1.2. If it is in ECB mode, the parameter iv1 can be directly replaced

with NULL.

1.3. When a large amount of data is encrypted in CBC as a whole but

in multiple blocks, attention should be paid to：

The Xth block of data (X>1) calls this function for encryption,

using the initial vector IV (IV=iv1) Be sure to update the last

group of ciphertext obtained by calling this function to encrypt

the X-1 block of data(16 bytes).

1.4. When a large amount of data is decrypted by CBC as a whole

but in multiple blocks, it should be noted that:

 nsing.com.sg

- 39 -

The X data block (X>1) calls this function to decrypt, using the

initial vector IV (IV=iv1) Be sure to update to the last packet (16

bytes) of the X-1 block of data.

8.3.3 SM1 operation ended

SM1_Close Turn off the SM1 algorithm clock and system clock

Function prototype void SM1_Close(void)

Parameter Description

Return value

Note

8.3.4 Get SM1 library version information

SM1_Version Get SM1 library version information

Function prototype void SM1_Version(uint8_t *type, uint8_t *customer, uint8_t date[3],

uint8_t *version)

Parameter Description type Commercial or fast version

 customer Standard or customized version

 date Year，Month，Day

 version // version x.x

Return value

Note

*type = 0x05; // Business and Express

 *customer = 0x00; // Standard version

 date[0] = 18; //Year()

 date[1] = 12; //Month()

 date[2] = 28; //Day ()

 *version = 0x10; // Version V1.0

 nsing.com.sg

- 40 -

 nsing.com.sg

- 41 -

9 SM2 API description

9.1. Algorithm library usage method

Algorithm library usage method as follows：

1. Copy the n32a455_sm2.h、Type.h、n32a455_algo_common.h、n32a455_algo_common.lib、

n32a455_sm2.lib、 n32a455_rng.lib in the folder to the project;

2. Call the function according to the function description in Section 9.3. See the demo provided in

Appendix 9 for the demo.

9.2. Data type definition

enum

{

 SM2_SUCCESS = 0,

 SM2_DIV_OK = 0,

 SM2_HCAL_OK = 0,

 SM2_INIT_OK = 0,

 SM2_MUL_OK = 0,

 SM2_MODMUL_OK = 0,

 SM2_Reverse_OK = 0,

 SM2_SUB_OK = 0,

 SM2_ADD_OK = 0,

 SM2_Cpy_OK=0, //copy success

 SM2_XOR_OK=0, //XOR success

 SM2_SetZero_OK = 0,

 SM2_isCurve_Ok = 0,

 SM2_isCurve_Not = 0x05,

 SM2_PointAdd_Ok =0,

 nsing.com.sg

- 42 -

 SM2_PointDouble_Ok = 0,

 SM2_PointMul_Ok = 0,

 SM2_Sign_Ok = 0,

 SM2_Verif_Ok = 0,

 SM2_En_Ok = 0,

 SM2_De_Ok = 0,

 SM2_Exchange_Ok = 0,

 SM2_FAIL = 0x01,

 SM2_YES = 0x02,

 SM2_NOT = 0x03,

 ZERO_VALUE_ERROR = 0x04

};

enum{

 SM2_IsZero_NOT = 0, //Big number is not zero

 SM2_Cmp_EQUAL = 0, //Two big number are equal

 SM2_IsOne_NOT = 0, //big number is one

 SM2_IsOne_YES = 1, //big number is not one

 SM2_IsZero_YES = 1, //Big number is zero

 SM2_Cmp_LESS = -1, //The former big number is less than the latter

 SM2_Cmp_GREATER = 1,//The former big number is greater than the latter

 SM2_Reverse_ERROR = 0x7A9E0863, //reverse fail due to src and dst are same

 SM2_ERROR = 3,

 POINT_MUL_ERROR = 4,

 PRIKEY_ERROR = 5,

 LENGTH_TOO_LONG = 6,

 PUBKEY_ERROR = 7,

 FAIL = 8,

 nsing.com.sg

- 43 -

 SM2_AddrErr,

 SM2_LengthErr,

 SM2_ROLE_ERR

};

9.3. API description

The SM2 algorithm library contains the following functions:

Table 9-1 SM2 algorithm library functions

Functions Descriptions

uint32_t SM2_PointIsOnCrv(uint8_t pubKey[65])
Judge whether the point is on

the curve

uint32_t SM2_GetKey(uint8_t priKey[32], uint8_t pubKey[65]) Generate SM2 key pair function

uint32_t SM2_GetPubKey(uint8_t priKey[32], uint8_t pubKey[65]) Get public key from private key

uint32_t SM2_Sign(uint8_t E[32], uint8_t priKey[32], uint8_t r[32],

uint8_t s[32])
Signature function

uint32_t SM2_Verify(uint8_t E[32], uint8_t pubKey[65], uint8_t

r[32], uint8_t s[32])

Signature Validation function

uint32_t SM2_ExchangeKey (uint8_t role, uint8_t *IDA, uint32_t

IDAByteLen, uint8_t *IDB, uint32_t IDBByteLen, uint8_t dA[32],

uint8_t PA[65], uint8_t PB[65], uint8_t rA[32], uint8_t RA[65],

uint8_t RB[65], uint32_t kByteLen, uint8_t *KA, uint8_t S1[32],

uint8_t SA[32])

Key exchange

uint32_t SM2_getZ(uint8_t *ID, uint32_t IDByteLen, uint8_t

pubKey[65], uint8_t Z[32])

Identity hash value calculation

function

uint32_t SM2_GetE(uint8_t *M, uint32_t MByteLen, uint8_t Z[32],

uint8_t E[32])

HUSH value of the message

uint32_t SM2_Encrypt(uint8_t *M, uint32_t MByteLen, uint8_t SM2 algorithm encryption

 nsing.com.sg

- 44 -

pubKey[65], uint8_t *C, uint32_t *CByteLen)

uint32_t SM2_Decrypt(uint8_t *C, uint32_t CByteLen, uint8_t

priKey[32], uint8_t *M, uint32 *MByteLen)
SM2 algorithm decryption

void SM2_Version(uint8_t *type, uint8_t *customer, uint8_t date[3],

uint8_t *version)

Get SM2 algorithm library

version information

9.3.1. Judge whether the point is on the curve

SM2_PointIsOnCrv Judge whether the point is on the curve

Function prototype uint32_t SM2_PointIsOnCrv(uint8_t pubKey[65])

Parameter Description

Return value SM2_isCurve_Ok: The point is on the curve; Other values: the point is not

on the curve. See enumeration type definition for details

Note

9.3.2. Key pair generation

SM2_GetKey Generate SM2 key pair

Function prototype uint32_t SM2_GetKey(uint8_t priKey[32], uint8_t pubKey[65])

Parameter Description priKey Output，The private key is output at the large end, that is, the

high bit is in the front and the low bit is in the back

 pubKey Output，Public key, big end output, first byte is 0x04, and then

horizontal and vertical coordinates

Return value SM2_SUCCESS: Correct calculation; Other values: calculation error,

see enumeration type definition for details

Note

1. The private key is a large number. It must be in [1, n-2]. n is the SM2

curve parameter.

 nsing.com.sg

- 45 -

9.3.3. Private key generation public key

SM2_GetPubKey Get public key from private key

Function prototype uint32_t SM2_GetPubKey(uint8_t priKey[32], uint8_t pubKey[65])

Parameter Description priKey Input，The private key is input at the large end, that is, the

high key is in the front and the low key is in the bac

 pubKey Output，Public key, big end output, first byte is 0x04, and then

horizontal and vertical coordinates

Return value SM2_ SUCCESS: Correct calculation; Other values: calculation error,

see enumeration type definition for details

Note

1. The private key is a large number. It must be in [1, n-2]. n is the SM2 curve

parameter.

9.3.4. Signature generation

SM2_Sign Signature function

Function prototype uint32_t SM2_Sign(uint8_t E[32], uint8_t priKey[32], uint8_t r[32],

uint8_t s[32])

Parameter Description E Input，HASH value of the message to be signed

 priKey Input，Private key of signer

 r Output，Signature results

s Output，Signature results

Return value SM2_Sign_Ok: Correct calculation; Other values: calculation error,

see enumeration type definition for details

Note

1. E or prikey storage media can be RAM or FLASH.

 nsing.com.sg

- 46 -

2. If E or prikey is stored in RAM, the signature results r and s can reuse this

space, but the space must be sufficient.

3. The prikey must be in [1, n-1].

9.3.5. Signature verification

SM2_Verify Signature Validation

Function prototype uint32_t SM2_Verify(uint8_t E[32], uint8_t pubKey[65], uint8_t

r[32],uint8_t s[32])

Parameter Description E Input，HASH value of the message to be signed

 pubKey Input，Public key of signer

r Input，Signature results

s Input，Signature results

Return value SM2_Verif_Ok: Correct operation; Other values: calculation error, see

enumeration type definition for details.

Note

1. E or pubKey storage media can be RAM or FLASH

9.3.6. Key negotiation (exchange)

SM2_ExchangeKey Key negotiation (exchange)

Function prototype uint32_t SM2_ExchangeKey (uint8_t role, uint8_t *IDA, uint32_t

IDAByteLen, uint8_t *IDB, uint32_t IDBByteLen, uint8_t dA[32],

uint8_t PA[65], uint8_t PB[65], uint8_t rA[32], uint8_t RA[65],

uint8_t RB[65], uint32_t kByteLen, uint8_t *KA, uint8_t S1[32],

uint8_t SA[32])

Parameter Description role Input，role，1 - initiator, 0 - receiver

IDA Input，Initiator ID

 nsing.com.sg

- 47 -

 IDAByteLen Input，Number of bytes of IDB

IDB Input，Recipient ID

 IDBByteLen Input，Number of bytes of IDB

 dA[32] Input，Own private key

 PA[65] Input，Own public key

 PB[65] Input，Counterparty public key

 rA[32] Input，Own temporary private key

 RA[65] Input，Own temporary public key

 RB[65] Input，Temporary public key of the other party

 kByteLen Input，Negotiate key byte length

 KA [kByteLen] Output，Negotiate key

 S1 [32] Output，Own S1 value

 SA [32] Output，Own SA value

Return value SM2_SUCCESS: Correct operation; Other values: calculation

error, see enumeration type definition for details.

Note

1. If the calculated S1=SB, S2=SA, the key exchange is successful, and the

negotiated key is KA

2. dA, PB, rA, RA, RB, ZA, ZB storage media can be RAM or FLASH

3. The output parameters KA, S1 and SA cannot use the same buffer as the input

parameters dA, PB, rA, RA, RB, ZA and ZB.

9.3.7. User ID hash calculation function

SM2_getZ User ID hash calculation function

Function prototype uint32_t SM2_getZ(uint8_t *ID, uint32_t IDByteLen, uint8_t pubKey[65],

uint8_t Z[32])

Parameter Description ID Input，ID of user A

 IDByteLen Input，Number of bytes of user A's ID

 nsing.com.sg

- 48 -

 pubKey Input，User A's public key, 65 bytes

 Z[32] Output，The hash value of user A, 32 bytes

Return value SM2_SUCCESS: Calculation succeeded，Other values: calculation error,

see enumeration type definition for details.

Note

9.3.8. Message hash value

SM2_ GetE Hash value calculation function of message

Function prototype uint32_t SM2_GetE(uint8_t *M, uint32_t MByteLen, uint8_t Z[32],

uint8_t E[32])

Parameter Description M Input，Message to be signed for verification

MByteLen Input，The number of bytes of the message to be signed for

verification

Z Input，ID hash value of signer

 E Output，Input the hash value of M and Z, 32 bytes

Return value SM2_SUCCESS: Calculation succeeded， Other values: calculation error,

see enumeration type definition for details.

Note

9.3.9. Encryption

SM2_Encrypt SM2 encryption function

Function prototype uint32_t SM2_Encrypt(uint8_t *M, uint32_t MByteLen, uint8_t

pubKey[65], uint8_t *C, uint32_t *CByteLen)

Parameter Description M Input, plaintext

 MByteLen Input,Byte length of plaintext,0< MByteLen < (232-97)

 pubKey Input，Public key

 nsing.com.sg

- 49 -

 C Output，ciphertext

CByteLen Output,Byte length of ciphertext,should be(MByteLen +97)

Return value SM2_En_Ok: Calculation succeeded; Other values: calculation error,

see enumeration type definition for details.

Note

1. M or pubkey storage media can be RAM or FLASH.

2. M and C cannot be the same buffer; Pubkey and C cannot be the same buffer.

3. According to the new national security specification, the ciphertext order is

revised from C1 | | C2 | | C3 to C1 | | C3 | | C2.

9.3.10. Deciphering

SM2_Decrypt SM2 deciphering function

Function prototype uint32_t SM2_Decrypt(uint8_t *C, uint32_t CByteLen, uint8_t

priKey[32], uint8_t *M, uint32 *MByteLen)

Parameter Description C Input，plaintext

 CByteLen Input，Byte length of plaintext，97 < CByteLen < 232

 priKey Input, Private key

 M Output, ciphertext

MByteLen Output, Byte length of ciphertext, should

be(CByteLen -97)

Return value SM2_De_Ok: Calculation succeeded；Other values: calculation error,

see enumeration type definition for details.

Note

1. C or prikey storage media can be RAM or FLASH.

2. M and C cannot be the same buffer.

3. If the prikey is stored in RAM, M can reuse this space, but it needs to ensure

enough space.

 nsing.com.sg

- 50 -

4. According to the new national security specification, the ciphertext order is

revised from C1 | | C2 | | C3 to C1 | | C3 | | C2.

9.3.11. Get SM2 library version information

SM2_Version Get SM2 library version information

Function prototype void SM2_Version(uint8_t *type, uint8_t *customer, uint8_t date[3],

uint8_t *version)

Parameter Description type Commercial or fast version

 customer Standard or customized version

 date Year，Month，Day

 version // version x.x

Return value

Note *type = 0x05; // Business and Express

 *customer = 0x00; // Standard version

 date[0] = 18; //Year()

 date[1] = 12; //Month()

 date[2] = 28; //Day ()

 *version = 0x10; // Version V1.0

 nsing.com.sg

- 51 -

i. Appendix I DES algorithm library function demo

uint32_t DES_test()

{

 uint32_t i,flag1,flag2,flag3,flag4;

 uint32_t ret;

 DES_PARM DES_Parm={0};

 /* If the test case needs to be modified,When the true value of the parameter is

“0x0102030405060708” Because u32 data is stored in small end order,When initializing and

assigning the above parameters，Please enter “0x04030201,0x08070605”. If there is no special

instruction，This demo parameter is set in this way */

 uint32_t in1 [16]={

 0x5FE2D4C0,0xAEAE3F30,0x692930A8,0x1DA69A51,0xDD34B34B,0xAF8D237A,0x2114F489，

 0xE461FF17,0x47C795FD,0x8FF62B49,0x62E9BD63,0x1AF52817,0xECB9DFD4,0xE04421C9,

 0x87B4B22E,0x9FF98759

 nsing.com.sg

- 52 -

 };

 uint32_t key1 [2]={0x946AB06B,0x2276E632};

 uint32_t iv1 [2]={0x482A8C66,0xC324FC78};

 uint32_t out[16];

 uint32_t

DES_ECB_EN[16]={0x2FD8D31F,0xC3E2E705,0x4B6D1C4C,0x31EB4154,0xDA273EEC,

 0x8EED57DA,0x26FDE038,0x15B0D57D,0xBCE7464F,0x78D7997A,

 0x4F9917D7,0xAE9C1DA9,0x749FEAEE,0xDFE6A911,0x34D556D5,

 0xA32FA0A2};

 /*DES_ECB_EN=0x1FD3D82F05E7E2C34C1C6D4B5441EB31EC3E27DADA57ED8E38E0FD267

DD5B0154F46E7BC7A99D778D717994FA91D9CAEEEEA9F7411A9E6DFD556D534A2A02FA3*/

 uint32_t

DES_ECB_DE[16]={0xBD77D94A,0xCF5698BB,0xF113743F,0x0FCFC898,0x7DD21DA8,

 0x3908A674,0x65303E6C,0x56CB0E02,0xF0B14651,0x3BBB36AB,

 0x8C129CC3,0xC42D5DD0,0x74549F20,0x5A7E5029,0xE5334FE2,

 0xD5ED9CA8};

 /*DES_ECB_DE=0x4AD977BDBB9856CF3F7413F198C8CF0FA81DD27D74A608396C3E306502

0ECB565146B1F0AB36BB3BC39C128CD05D2DC4209F547429507E5AE24F33E5A89CEDD5*/

 uint32_t DES_CBC_EN[16]={0x236813B0,0x14D3A0CA,0xDB57CA2F,0x073FADB0,0x83577985,

 0x7DEBA1CB,0xD5410854,0x2C0E74D8,0x8B8019BB,0xBAB789EF,

 0xF93DEC2E,0xD1BFE8F4,0xE061C81D,0x2F620219,0x662759FF,

 0x77CABBF6};

 /*DES_CBC_EN=0xB0136823CAA0D3142FCA57DBB0AD3F0785795783CBA1EB7D540841D5D8

740E2CBB19808BEF89B7BA2EEC3DF9F4E8BFD11DC861E01902622FFF592766F6BBCA77*/

uint32_t DES_CBC_DE[16]={0xF55D552C,0x0C7264C3,0xAEF1A0FF,0xA161F7A8,0x14FB2D00,

 0x24AE3C25,0xB8048D27,0xF9462D78,0xD1A5B2D8,0xDFDAC9BC,

 0xCBD5093E,0x4BDB7699,0x16BD2243,0x408B783E,0x098A9036,

 0x35A9BD61};

 nsing.com.sg

- 53 -

 /*DES_CBC_DE=0x2C555DF5C364720CFFA0F1AEA8F761A1002DFB14253CAE24278D04B8782

D46F9D8B2A5D1BCC9DADF3E09D5CB9976DB4B4322BD163E788B4036908A0961BDA935*/

 Cpy_U32(out, in1,16);

 DES_Parm.in = out;

 DES_Parm.key = key1;

 DES_Parm.out = out;

 DES_Parm.inWordLen = 16;

 DES_Parm.keyMode = DES_KEY;

 DES_Parm.Mode = DES_ECB;

 DES_Parm.En_De = DES_ENC;

 ret = DES_Init(&DES_Parm);

 ret = DES_Crypto(&DES_Parm);

 DES_Close();

 if (ret!= DES_Crypto_OK)

 {

 flag1=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(DES_ECB_EN,16, out,16))

 {

 flag1=0x5A5A5A5A;

 }

 else

 {

 flag1=0;

 }

 }

 nsing.com.sg

- 54 -

 Cpy_U32(out, in1,16);

 DES_Parm.En_De = DES_DEC;

 ret = DES_Init(&DES_Parm);

 ret=(DES_Crypto(&DES_Parm));

 DES_Close();

 if (ret!= DES_Crypto_OK)

 {

 flag2=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(DES_ECB_DE,16, out,16))

 {

 flag2=0x5A5A5A5A;

 }

 else

 {

 flag2=0;

 }

 }

 Cpy_U32(out, in1,16);

 DES_Parm.iv = iv1;

 DES_Parm.Mode = DES_CBC;

 DES_Parm.En_De = DES_ENC;

 ret = DES_Init(&DES_Parm);

 ret=(DES_Crypto(&DES_Parm));

 DES_Close();

 if (ret!= DES_Crypto_OK)

 nsing.com.sg

- 55 -

 {

 flag3=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(DES_CBC_EN,16, out,16))

 {

 flag3=0x5A5A5A5A;

 }

 else

 {

 flag3=0;

 }

 }

 Cpy_U32(out, in1,16);

 DES_Parm.iv = iv1;

 DES_Parm.En_De = DES_DEC;

 ret = DES_Init(&DES_Parm);

 ret=(DES_Crypto(&DES_Parm));

 DES_Close();

 if (ret!= DES_Crypto_OK)

 {

 flag4=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(DES_CBC_DE,16, out,16))

 {

 nsing.com.sg

- 56 -

 flag4=0x5A5A5A5A;

 }

 else

 {

 flag4=0;

 }

 }

 if (flag1|flag2|flag3|flag4)

 {

 return 0x5A5A5A5A;

 }

 else

 {

 return 0;

 }

}

 nsing.com.sg

- 57 -

ii. Appendix II TDES algorithm library function demo

uint32_t TDES_2Key_test()

{

 uint32_t i,flag1,flag2,flag3,flag4;

 uint32_t ret;

 DES_PARM TDES_Parm={0};

 /* If the test case needs to be modified，When the true value of the parameter is

“0x0102030405060708”,Because u32 data is stored in small end order, When initializing and

assigning the above parameters，Please enter “0x04030201,0x08070605”. If there is no special

instruction，This demo parameter is set in this way */

 uint32_t in1[16]={

 0x3C7EB08D,0xAFD2FDE9,0x22245D10,0x148AE53D,0xC70F11D1,0x0813FEDF,

 0xED8A71D7,0xA66B2FAA,0x137DAC5A,0x9A7850D6,0xFDE9C4AB,0xC1C6856E,

 0x05CDB663,0xF7D812E4,0x86341DEB,0xBA52B237

 };

 uint32_t key1[4]={0x81F08C18,0x5C6BE38C,0x4D6A6563,0xFF220031};

 uint32_t iv1[2]={0xB5CC3A62,0xC96EF050};

 uint32_t out[16];

 uint32_t

TDES_ECB_EN[16]={0x42976179,0x3A15FDA5,0x278639E4,0x3F4D2DDD,0x987EAF74,

 0x17376CD5,0x9BE1CAB1,0x5501A0BA,0xD18D511B,0x11054F45,

 0x7EAC1828,0x375B9DAD,0x3823A312,0x8EE802FF,0xF2F00328,

 0x3F81CF19};

 nsing.com.sg

- 58 -

 /*TDES_ECB_EN=0x79619742A5FD153AE4398627DD2D4D3F74AF7E98D56C3717B1CAE19B

BAA001551B518DD1454F05112818AC7EAD9D5B3712A32338FF02E88E2803F0F219CF813F*/

 uint32_t

TDES_ECB_DE[16]={0x58AD407C,0x76B43ED7,0x23B44DDA,0x22EC376C,0x50311263,

 0xECC57D42,0x2FA5ADAA,0xE7A099A0,0x287DBD9B,0x3951FD62,

 0x530A3728,0x9AAFA2D3,0x0C41708F,0x5BFE1BCC,0x3B21EE97,

 0xE29E749A};

 /*TDES_ECB_DE=0x7C40AD58D73EB476DA4DB4236C37EC2263123150427DC5ECAAADA52F

A099A0E79BBD7D2862FD513928370A53D3A2AF9A8F70410CCC1BFE5B97EE213B9A749EE2*/

 uint32_t TDES_CBC_EN[16]={0x3723A485,0x3E2EEB10,0x9E5434C4,0x2692C8FD,0x978D5743,

 0x10CBCFD7,0x873A396C,0xD9CF6AEB,0x5C8953FC,0xD62F3744,

 0xDE2D0B60,0x1DA22B35,0x00793D6F,0x543CD424,0x833BE660,

 0x05703F52};

 /*TDES_CBC_EN=0x85A4233710EB2E3EC434549EFDC8922643578D97D7CFCB106C393A87EB

6ACFD9FC53895C44372FD6600B2DDE352BA21D6F3D790024D43C5460E63B83523F7005*/

 uint32_t

TDES_CBC_DE[16]={0xED617A1E,0xBFDACE87,0x1FCAFD57,0x8D3ECA85,0x72154F73,

 0xF84F987F,0xE8AABC7B,0xEFB3677F,0xC5F7CC4C,0x9F3AD2C8,

 0x40779B72,0x00D7F205,0xF1A8B424,0x9A389EA2,0x3EEC58F4,

 0x1546667E};

 /*TDES_CBC_DE=0x1E7A61ED87CEDABF57FDCA1F85CA3E8D734F15727F984FF87BBCAAE8

7F67B3EF4CCCF7C5C8D23A9F729B774005F2D70024B4A8F1A29E389AF458EC3E7E664615*/

 TDES_Parm.in = in1;

 TDES_Parm.key = key1;

 TDES_Parm.out = out;

 TDES_Parm.inWordLen = 16;

 TDES_Parm.keyMode = TDES_2KEY;

 TDES_Parm.Mode = DES_ECB;

 nsing.com.sg

- 59 -

 TDES_Parm.En_De = DES_ENC;

 ret = DES_Init(&TDES_Parm);

 ret=(DES_Crypto(&TDES_Parm));

 DES_Close();

 if (ret!= DES_Crypto_OK)

 {

 flag1=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(TDES_ECB_EN,16, out,16))

 {

 flag1=0x5A5A5A5A;

 }

 else

 {

 flag1=0;

 }

 }

 TDES_Parm.En_De = DES_DEC;

 ret = DES_Init(&TDES_Parm);

 ret=(DES_Crypto(&TDES_Parm));

 DES_Close();

 if (ret!= DES_Crypto_OK)

 {

 flag2=0x5A5A5A5A;

 }

 nsing.com.sg

- 60 -

 else

 {

 if(Cmp_U32(TDES_ECB_DE,16, out,16))

 {

 flag2=0x5A5A5A5A;

 }

 else

 {

 flag2=0;

 }

 }

 TDES_Parm.iv = iv1;

 TDES_Parm.Mode = DES_CBC;

 TDES_Parm.En_De = DES_ENC;

 ret = DES_Init(&TDES_Parm);

 ret=(DES_Crypto(&TDES_Parm));

 DES_Close();

 if (ret!= DES_Crypto_OK)

 {

 flag3=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(TDES_CBC_EN,16, out,16))

 {

 flag3=0x5A5A5A5A;

 }

 else

 nsing.com.sg

- 61 -

 {

 flag3=0;

 }

 }

 TDES_Parm.iv = iv1;

 TDES_Parm.En_De = DES_DEC;

 ret = DES_Init(&TDES_Parm);

 ret=(DES_Crypto(&TDES_Parm));

 DES_Close();

 if (ret!= DES_Crypto_OK)

 {

 flag4=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(TDES_CBC_DE,16, out,16))

 {

 flag4=0x5A5A5A5A;

 }

 else

 {

 flag4=0;

 }

 }

 if (flag1|flag2|flag3|flag4)

 {

 return 0x5A5A5A5A;

 }

 nsing.com.sg

- 62 -

 else

 {

 return 0;

 }

}

uint32_t TDES_3Key_test()

{

 uint32_t i,flag1,flag2,flag3,flag4,ret=0;

 DES_PARM TDES_Parm={0};

 uint32_t in1[16]= {

 0x3C7EB08D,0xAFD2FDE9,0x22245D10,0x148AE53D,0xC70F11D1,0x0813FEDF,0xED8A71D

7,0xA66B2FAA,0x137DAC5A,0x9A7850D6,0xFDE9C4AB,0xC1C6856E,0x05CDB663,0xF7D812

E4,0x86341DEB,0xBA52B237

 };

 uint32_t key1[6]={0x675BE5D2,0x1641A6AD,0x14531A6B,0xEBFA006E,0x90DFD0CD,

0x2D029B93};

 uint32_t iv1[2]={0xB5CC3A62,0xC96EF050};

uint32_t out[16];

uint32_t TDES_ECB_EN[16]={0x5D6C633C,0x8EDFC4C7,0x3D02A02C,0x97431789,

0x83EF4C36,0xFF591C67,0xE869DB08,0xAB82D05B,0x11771439,0xDC6F79BB,0x5B46D128,0x

F52114F5,0x2C758CB4,0x1A4D1A6A,0x0DC3FBCA,0x82222BB2};

uint32_t TDES_ECB_DE[16]={0x6780A75A,0x62EC1AC8,0xD0341FF5,0x2260C44E,

0xF2720589,0xB0EBBBE0,0xBFE0991D,0x1EA78C1C,0xBAB53D00,0xE3FA25D6,0x9430DEF,0x

C465511C,0xEE9D2DFB,0x9796AADC,0x4FFFEF58,0x172D00A2};

uint32_tTDES_CBC_EN[16]={0x048BD8AD,0xF98F2C51,0x5F6FD563,0xA26A1038,

0x8017FC81,0xBBD5AF4C,0x0A7AEEFF,0xB7D428A1,0x316E31F7,0xD8F283E1,0xDDD4395,0x

8076C2D0,0x0434D1E9,0xD1A94D4D,0xFF3E3B5E,0x77C93116};

 nsing.com.sg

- 63 -

uint32_tTDES_CBC_DE[16]={0xD24C9D38,0xAB82EA98,0xEC4AAF78,0x8DB239A7,

0xD0565899,0xA4615EDD,0x78EF88CC,0x16B472C3,0x573F4CD7,0x45910A7C,0x874D72AE,0x

5E1D01CA,0x1374E950,0x56502FB2,0x4A32593B,0xE0F51246};

 TDES_Parm.in = in1;

 TDES_Parm.key = key1;

 TDES_Parm.out = out;

 TDES_Parm.inWordLen = 16;

 TDES_Parm.keyMode = TDES_3KEY;

 TDES_Parm.Mode = DES_ECB;

 TDES_Parm.En_De = DES_ENC;

 ret = DES_Init(&TDES_Parm);

 DES_Crypto(&TDES_Parm);

 DES_Close();

 if(Cmp_U32(TDES_ECB_EN,16, out,16))

 {

 flag1=0x5A5A5A5A;

 }

 else

 {

 flag1=0;

 }

 TDES_Parm.En_De = DES_DEC;

 ret = DES_Init(&TDES_Parm);

 DES_Crypto(&TDES_Parm);

 DES_Close();

 if(Cmp_U32(TDES_ECB_DE,16, out,16))

 {

 flag2=0x5A5A5A5A;

 nsing.com.sg

- 64 -

 }

 else

 {

 flag2=0;

 }

 TDES_Parm.iv = iv1;

 TDES_Parm.Mode = DES_CBC;

 TDES_Parm.En_De = DES_ENC;

 ret = DES_Init(&TDES_Parm);

 DES_Crypto(&TDES_Parm);

 DES_Close();

 if(Cmp_U32(TDES_CBC_EN,16, out,16))

 {

 flag3=0x5A5A5A5A;

 }

 else

 {

 flag3=0;

 }

 TDES_Parm.iv = iv1;

 TDES_Parm.En_De = DES_DEC;

 ret = DES_Init(&TDES_Parm);

 DES_Crypto(&TDES_Parm);

 DES_Close();

 if(Cmp_U32(TDES_CBC_DE,16, out,16))

 {

 flag4=0x5A5A5A5A;

 }

 nsing.com.sg

- 65 -

 else

 {

 flag4=0;

 }

 if (flag1|flag2|flag3|flag4)

 {

 return 0x5A5A5A5A;

 }

 else

 {

 return 0;

 }

}

iii. Appendix III AES algorithm library function demo

uint32_t AES_128_test()

{

 uint32_t flag1,flag2,flag3,flag4,flag5,flag6;

 nsing.com.sg

- 66 -

 uint32_t ret;

 AES_PARM AES_Parm={0};

 /* If the test case needs to be modified，When the true value of the parameter is

“0x0102030405060708”,Because u32 data is stored in small end order, When initializing and

assigning the above parameters，Please enter “0x04030201,0x08070605”. If there is no special

instruction，This demo parameter is set in this way */

 uint32_t in[32]={0x4A8770A5,0x73C2DA98,0xF52D52D1,0x5F884A46,0x8DCF72D5,

0x2A0F207D,0x7479F5CE,0x3FB5BE9E,0x3D7998FE,0x7C59586D,0x30E1294B,0xB3E17790,

0xCA080CBD,0x2AB47913,0x3B09B803,0x1B410FE7,0xE64237EF,0x3576BE5E,

0xE4D7AAF6,0x19495FB0,0x812DC3B1,0xDD339F7A,0xBE6F495F,0x8CB0803A,

0xCD0D9760,0xA4C0D6D4,0x98381DBB,0x9769CA10,0x3B67DD99,0x4C335A1A,

0x85D4EFC8,0x9BAAD700};

 /*in=0xA570874A98DAC273D1522DF5464A885FD572CF8D7D200F2ACEF579749EBEB53FFE98

793D6D58597C4B29E1309077E1B3BD0C08CA1379B42A03B8093BE70F411BEF3742E65EBE763

5F6AAD7E4B05F4919B1C32D817A9F33DD5F496FBE3A80B08C60970DCDD4D6C0A4BB1D389

810CA699799DD673B1A5A334CC8EFD48500D7AA9B*/

uint32_t key[4]={0x7FDDA35D,0x7D5C725B,0x1960F327,0x4FD9DDA2};

 /*key=0x5DA3DD7F5B725C7D27F36019A2DDD94F*/

 uint32_t iv[4]={0x7B00FE39,0xD3E06638,0xD52BC983,0x38E98017};

 /*iv=0x39FE007B3866E0D383C92BD51780E938*/

 uint32_t out[32];

 uint32_t AES_ECB_EN[32]={0xB24E5438,0x0145A303,0xC450A27F,0x2ADEEE70,0x906F314E,

 0xB24229AD,0x1312360E,0x949C8B22,0xE2C1BC02,0x1960239E,

 0xCAD2D5E5,0x8DC57DE2,0x13429CE1,0xE8FC0876,0xCA4581DB,

 0x08019050,0x4B2942F8,0xD6073C62,0x113FB648,0x1967CC27,

 0x250B9989,0x861180E0,0x1A450E0C,0x81D727AF,0xB679608E,

 0x53D31669,0x1D071E99,0x42CEB6DB,0x44094205,0xD0331668,

 0x2704B798,0x6E347E9C};

 nsing.com.sg

- 67 -

 /*AES_ECB_EN=0x38544EB203A345017FA250C470EEDE2A4E316F90AD2942B20E361213228B

9C9402BCC1E29E236019E5D5D2CAE27DC58DE19C42137608FCE8DB8145CA50900108F84229

4B623C07D648B63F1127CC671989990B25E08011860C0E451AAF27D7818E6079B66916D35399

1E071DDBB6CE4205420944681633D098B704279C7E346E*/

 uint32_t AES_ECB_DE[32]={0x818D1AFD,0xEC4B4F8E,0x69D9F9FF,0x5567B549,

0x42DD5C4B,0x3BCA1DD3,0xF318E616,0x89297FEC,0x2A3E0A06,0xFDA90D61,

0x93DCAE5D,0xCF1AFEAE,0x3CF5A889,0x4CFFEFE3,0xB2C42607,

0x37D43F8A,0x9C1CD1D8,0x2FE878E8,0x22D941C3,0x239B9D2D,

0xD9FEB719,0xA4F9E01C,0xC9C39FE8,0x336B01FA,0xFD12E415,

0x2B6A0006,0x4A35AFBC,0xA7942FAB,0x09DF0A3A,0x9545521B,

0x7E009336,0x030A5DA5};

 /*AES_ECB_DE=0xFD1A8D818E4F4BECFFF9D96949B567554B5CDD42D31DCA3B16E618F3E

C7F2989060A3E2A610DA9FD5DAEDC93AEFE1ACF89A8F53CE3EFFF4C0726C4B28A3FD437D

8D11C9CE878E82FC341D9222D9D9B2319B7FED91CE0F9A4E89FC3C9FA016B3315E412FD06

006A2BBCAF354AAB2F94A73A0ADF091B5245953693007EA55D0A03*/

 uint32_tAES_CBC_EN[32]={0x8A83E006,0xAC3AB610,0x0CD2C4CB,0x21F22AA9,

0x61963E3C,0x992FDE54,0x7E408523,0x749261FF,0xE159802D,0xBC807E3C,

 0x1C16AF67,0xE7574629,0x73573225,0xEE88600D,0x324FE0BB,

 0x7426A48C,0x8EA9E470,0x4DB1BE0F,0x9DC49C2E,0xAD41A05B,

 0x9E7C9143,0x15F55BF2,0xF4E7195D,0x2D9E1E46,0xB78E9809,

 0xF8F831D0,0x12F1890A,0x0CABFF9C,0x49E6FCE6,0x6156CDA5,

 0xFFE38EF7,0x4962AF1D};

 /*AES_CBC_EN=0x06E0838A10B63AACCBC4D20CA92AF2213C3E966154DE2F992385407EFF

6192742D8059E13C7E80BC67AF161C294657E7253257730D6088EEBBE04F328CA4267470E4A

98E0FBEB14D2E9CC49D5BA041AD43917C9EF25BF5155D19E7F4461E9E2D09988EB7D031F

8F80A89F1129CFFAB0CE6FCE649A5CD5661F78EE3FF1DAF6249*/

 uint32_t AES_CBC_DE[32]={0xFA8DE4C4,0x3FAB29B6,0xBCF2307C,0x6D8E355E,

0x085A2CEE,0x4808C74B,0x0635B4C7,0xD6A135AA,0xA7F178D3,0xD7A62D1C,

 nsing.com.sg

- 68 -

 0xE7A55B93,0xF0AF4030,0x018C3077,0x30A6B78E,0x82250F4C,

 0x8435481A,0x5614DD65,0x055C01FB,0x19D0F9C0,0x38DA92CA,

 0x3FBC80F6,0x918F5E42,0x2D14351E,0x2A225E4A,0x7C3F27A4,

 0xF6599F7C,0xF45AE6E3,0x2B24AF91,0xC4D29D5A,0x318584CF,

 0xE6388E8D,0x946397B5};

 uint32_t AES_CTR_EN[32]={0xF14C3DA0,0xA74E1089,0x81480939,0x5C8D4E8D,

0x655E20AB,0x6D797028,0x1E355F48,0x58184929,0x52B1495A,0xC15EB91D,0xFBD499AB,

 0xF59B39FE,0x96DAE1C3,0x6ECC9CDA,0xDA1FB535,0xAA1C74B2,0xA3F19C5E,

 0x9944E1A6,0xDAA05E9A,0xB96278E3,0x1E4915FC,0xB77FBBD2,0x92BA80B9,

 0xCA97857E,0x509D0365,0x78A6FD99,0xB56F5B3C,0xFBEFF5B2,0xF9E928C6,

 0xBC28AE3A,0xD8B82D7A,0xA99BF98D};

 uint32_tAES_CTR_DE[32]={0x4A8770A5,0x73C2DA98,0xF52D52D1,0x5F884A46,

0x8DCF72D5,0x2A0F207D,0x7479F5CE,0x3FB5BE9E,0x3D7998FE,0x7C59586D,0x30E1294B,0x

B3E17790,0xCA080CBD,0x2AB47913,0x3B09B803,0x1B410FE7,0xE64237EF,0x3576BE5E,

 0xE4D7AAF6,0x19495FB0,0x812DC3B1,0xDD339F7A,0xBE6F495F,0x8CB0803A,

 0xCD0D9760,0xA4C0D6D4,0x98381DBB,0x9769CA10,0x3B67DD99,0x4C335A1A,

 0x85D4EFC8,0x9BAAD700};

 /*AES_CBC_DE=0xC4E48DFAB629AB3F7C30F2BC5E358E6DEE2C5A084BC70848C7B43506AA

35A1D6D378F1A71C2DA6D7935BA5E73040AFF077308C018EB7A6304C0F25821A48358465DD1

456FB015C05C0F9D019CA92DA38F680BC3F425E8F911E35142D4A5E222AA4273F7C7C9F59F

6E3E65AF491AF242B5A9DD2C4CF8485318D8E38E6B5976394*/

 Cpy_U32(out, in,32);

 AES_Parm.in = out;

 AES_Parm.key = key;

 AES_Parm.iv = iv;

 AES_Parm.out = out;

 AES_Parm.keyWordLen = 4;

 AES_Parm.inWordLen = 32;

 nsing.com.sg

- 69 -

 AES_Parm.Mode = AES_ECB;

 AES_Parm.En_De = AES_ENC;

 ret =AES_Init(&AES_Parm);

 ret = AES_Crypto(&AES_Parm);

 AES_Close();

 if(ret!= AES_Crypto_OK)

 {

 flag1=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(AES_ECB_EN, 32, out, 32))

 {

 flag1=0x5A5A5A5A;

 }

 else

 {

 flag1=0;

 }

 }

 Cpy_U32(out, in,32);

 AES_Parm.En_De = AES_DEC;

 ret =AES_Init(&AES_Parm);

 ret = AES_Crypto(&AES_Parm);

 AES_Close();

 if(ret!= AES_Crypto_OK)

 {

 flag2=0x5A5A5A5A;

 nsing.com.sg

- 70 -

 }

 else

 {

 if(Cmp_U32(AES_ECB_DE, 32, out, 32))

 {

 flag2=0x5A5A5A5A;

 }

 else

 {

 flag2=0;

 }

 }

 //CBC

 Cpy_U32(out, in,32);

 AES_Parm.Mode = AES_CBC;

 AES_Parm.En_De = AES_ENC;

 ret =AES_Init(&AES_Parm);

 ret = AES_Crypto(&AES_Parm);

 AES_Close();

 if(ret!= AES_Crypto_OK)

 {

 flag3=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(AES_CBC_EN, 32, out, 32))

 {

 flag3=0x5A5A5A5A;

 nsing.com.sg

- 71 -

 }

 else

 {

 flag3=0;

 }

 }

 Cpy_U32(out, in,32);

 AES_Parm.En_De = AES_DEC;

 ret =AES_Init(&AES_Parm);

 ret = AES_Crypto(&AES_Parm);

 AES_Close();

 if(ret!= AES_Crypto_OK)

 {

 flag4=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(AES_CBC_DE, 32, out, 32))

 {

 flag4=0x5A5A5A5A;

 }

 else

 {

 flag4=0;

 }

 }

 //CTR

 Cpy_U32(out, in,32);

 nsing.com.sg

- 72 -

 AES_Parm.Mode = AES_CTR;

 AES_Parm.En_De = AES_ENC;

 ret =AES_Init(&AES_Parm);

 ret = AES_Crypto(&AES_Parm);

 AES_Close();

 if(ret!= AES_Crypto_OK)

 {

 flag5=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(AES_CTR_EN, 32, out, 32))

 {

 flag5=0x5A5A5A5A;

 }

 else

 {

 flag5=0;

 }

 }

 Cpy_U32(out, AES_CTR_EN,32);

 AES_Parm.En_De = AES_DEC;

 ret =AES_Init(&AES_Parm);

 ret = AES_Crypto(&AES_Parm);

 AES_Close();

 if(ret!= AES_Crypto_OK)

 {

 flag6=0x5A5A5A5A;

 nsing.com.sg

- 73 -

 }

 else

 {

 if(Cmp_U32(AES_CTR_DE, 32, out, 32))

 {

 flag6=0x5A5A5A5A;

 }

 else

 {

 flag6=0;

 }

 }

 if (flag1|flag2|flag3|flag4|flag5|flag6)

 {

 return 0x5A5A5A5A;

 }

 else

 {

 return 0;

 }

}

uint32_t AES_192_test()

{

 uint32_t flag1,flag2,flag3,flag4,flag5,flag6,ret=0;

 AES_PARM AES_Parm={0};

 nsing.com.sg

- 74 -

 uint32_t in[32]={0x5A42C72C,0x09F16329,0xE9BD742B,0xB403E0FF,0xBA43D804,

0xDE77B9E1,0xE1A33077,0xE3AEA215,0x2670CBEB,0x160CA5C2,0x86808BEA,

0x3D7A9E73,0xB16E68A0,0x12E5BF98,0x8A18EC5F,0xC4BD0D05,0xAB21B81D,0x7477E171,0x

DE6FFEF4,0xB80B68F8,0xA4AF05A1,0x1C77249A,0xB2CCA806,0x9C3A69BA,0x6F7CD7A9,0x2

BD9E19F,0x78B41533,0x2F5E08F7,0x1C2EF8F1,0x03D4B04F,0xE0EAAC56,0x73CC7E9C};

uint32_tkey[6]={0xA1148977,0xCFA42A1F,0x9D983F36,0x521C1313,0xDAD2CB6F,

0xC6254819};

uint32_t iv[4]={0xFCAA7077,0x44DB6BB5,0xDC74178D,0xA91A44D6};

 uint32_t out[32];

uint32_t AES_ECB_EN[32]={0x9FCB396D,0xF9A6B55C,0x4CCE7669,0x917CAF2F,

0x71F8907D,0xC6893936,0x5ABA1DFB,0xA933FF81,0xBD33847F,0x0F1B2F6C,0x1B4AACA7,

0xE555E2EE,0x0CBD4683,0x76ECD138,0x7BFE81E8,0xE05FE788,0xAF688124,0xED29ACF2,

0xCE424458,0x8E304A1C,0xE5A21E6C,0x3C7D433A,0x32DC028D,0x697F9624,0xB451070E,0x

F82A4488,0x33D99F4C,0x7FBBCC3E,0x8BB01E57,0x0C1EE01B,0x6D96FF7F,0xDEC84BD8};

 uint32_t AES_ECB_DE[32]={0x41F29D18,0x13C52105,0xB24DBDDD,0x46B6BAB9,

0x95F63F1A,0x28B24F73,0xAA774293,0xA086E548,0xD446667D,0xF8D67CCE,

0x7AC5BD02,0xE43EE791,0x25B857B4,0x30A3D7FB,0x8DB4C416,0xAE6B0B0C,

0x0F7E89E1,0xBA900B96,0x516EC69B,0xBED1D082,0x3590FD32,0x878C5EE5,0x91B71430,0x

6A005A7F,0x0627EF04,0x28D96A77,0xF8DCDCFC,0x790D0304,0x02149E37,0xDC8E518D,0x8

0D75D77,0x80670408};

 uint32_t AES_CBC_EN[32]={0xE5682F2E,0x07A087E9,0x37D60ED6,0x41262C81,

0xD69A23B5,0x1800A3FD,0xAC50301D,0xB12F3C5E,0x568A1F62,0xC1057524,0x7E7D09BC,

0x26F42541,0x5C2FB09B,0x12C68EFC,0xE03B2AF8,0x6E2C9934,0xD805445F,

0x3876A6E4,0xCA85688F,0xD1116501,0x2DE18902,0xCBFDE9B2,0x57911796,

0x0719A673,0x3915B680,0x3B760C23,0x23F715DE,0x6D3425B9,0x9C339EF5,0x6C91D7B0,

0x050E91DA,0x286AB477};

 uint32_t AES_CBC_DE[32]={0xBD58ED6F,0x571E4AB0,0x6E39AA50,0xEFACFE6F,

0xCFB4F836,0x21432C5A,0x43CA36B8,0x148505B7,0x6E05BE79,0x26A1C52F,0x9B668D75,0x

 nsing.com.sg

- 75 -

07904584,0x03C89C5F,0x26AF7239,0x0B344FFC,0x9311957F,0xBE10E141,0xA875B40E,

0xDB762AC4,0x7A6CDD87,0x9EB1452F,0xF3FBBF94,0x4FD8EAC4,0xD20B3287,0xA288EAA5

,0x34AE4EED,0x4A1074FA,0xE5376ABE,0x6D68499E,0xF757B012,0xF8634844,0xAF390CFF};

uint32_t AES_CTR_EN[32]={0xF4EB3E15,0xCEC90E4B,0x1708E770,0x6A1297BB,

0x045A69FD,0x7FC870A7,0x56BE6A22,0x5A912CEA,0xC22E6811,0x37177967,0x68D08A6A,0x

CECA04AE,0x30EA7217,0x16992F79,0xF0DD4DAD,0x4710126B,0xCC06BD7F,

0x03093EE5,0x596D2B9B,0xD9844F7C,0x130D4E24,0xD6C87ABF,0xE1745614,0xEF260225,

0x0F90C354,0x7557E159,0x4CBC3789,0xDB0552F8,0x28F27315,0x046363A6,0xAF1F0089,

0x29AC2CC1};

 uint32_t AES_CTR_DE[32]={0x5A42C72C,0x09F16329,0xE9BD742B,0xB403E0FF,

0xBA43D804,0xDE77B9E1,0xE1A33077,0xE3AEA215,0x2670CBEB,0x160CA5C2,0x86808BEA,

0x3D7A9E73,0xB16E68A0,0x12E5BF98,0x8A18EC5F,0xC4BD0D05,0xAB21B81D,

0x7477E171,0xDE6FFEF4,0xB80B68F8,0xA4AF05A1,0x1C77249A,0xB2CCA806,

0x9C3A69BA,0x6F7CD7A9,0x2BD9E19F,0x78B41533,0x2F5E08F7,0x1C2EF8F1,

0x03D4B04F,0xE0EAAC56,0x73CC7E9C};

 AES_Parm.in = in;

 AES_Parm.key = key;

 AES_Parm.iv = iv;

 AES_Parm.out = out;

 AES_Parm.keyWordLen = 6;

 AES_Parm.inWordLen = 32;

 AES_Parm.Mode = AES_ECB;

 AES_Parm.En_De = AES_ENC;

 ret =AES_Init(&AES_Parm);

 ret =AES_Crypto(&AES_Parm);

 AES_Close();

 if(Cmp_U32(AES_ECB_EN, 32, out, 32))

 nsing.com.sg

- 76 -

 {

 flag1=0x5A5A5A5A;

 }

 else

 {

 flag1=0;

 }

 AES_Parm.En_De = AES_DEC;

 ret =AES_Init(&AES_Parm);

 ret =AES_Crypto(&AES_Parm);

 AES_Close();

 if(Cmp_U32(AES_ECB_DE, 32, out, 32))

 {

 flag2=0x5A5A5A5A;

 }

 else

 {

 flag2=0;

 }

 //cbc

 AES_Parm.Mode = AES_CBC;

 AES_Parm.En_De = AES_ENC;

 ret =AES_Init(&AES_Parm);

 ret =AES_Crypto(&AES_Parm);

 AES_Close();

 if(Cmp_U32(AES_CBC_EN, 32, out, 32))

 {

 flag3=0x5A5A5A5A;

 nsing.com.sg

- 77 -

 }

 else

 {

 flag3=0;

 }

 AES_Parm.En_De = AES_DEC;

 ret =AES_Init(&AES_Parm);

 ret =AES_Crypto(&AES_Parm);

 AES_Close();

 if(Cmp_U32(AES_CBC_DE, 32, out, 32))

 {

 flag4=0x5A5A5A5A;

 }

 else

 {

 flag4=0;

 }

 //ctr

 AES_Parm.Mode = AES_CTR;

 AES_Parm.En_De = AES_ENC;

 ret =AES_Init(&AES_Parm);

 ret =AES_Crypto(&AES_Parm);

 AES_Close();

 if(Cmp_U32(AES_CTR_EN, 32, out, 32))

 {

 flag5=0x5A5A5A5A;

 }

 else

 nsing.com.sg

- 78 -

 {

 flag5=0;

 }

 AES_Parm.in = AES_CTR_EN;

 AES_Parm.En_De = AES_DEC;

 ret =AES_Init(&AES_Parm);

 ret =AES_Crypto(&AES_Parm);

 AES_Close();

 if(Cmp_U32(AES_CTR_DE, 32, out, 32))

 {

 flag6=0x5A5A5A5A;

 }

 else

 {

 flag6=0;

 }

 if (flag1|flag2|flag3|flag4|flag5|flag6)

 {

 return 0x5A5A5A5A;

 }

 else

 {

 return 0;

 }

}

uint32_t AES_256_test()

{

 uint32_t flag1,flag2,flag3,flag4,flag5,flag6,ret=0;

 nsing.com.sg

- 79 -

 AES_PARM AES_Parm={0};

 uint32_t in[32]={0x86DF711D,0xB9C4122D,0x13368B2D,0x53A5CF4F,0xBDFFAA2C,

0xB4D4B3C0,0x8BB97CB6,0x99EA0BE6,0x8B338E1D,0xFE104A1C,0x4E13D5E3,

0xA886852F,0x67522841,0x9D1FF5E1,0xEFBDC3A3,0xA7C27969,

 0x0475C629,0xD4EB12F0,0x4570B427,0xF9296516,0x58F7F4A6,0x2A9D3C6B,0x652654E1,

0x438105F6,0x986F81C9,0x639F51B2,0xA3169082,0x6CD5570C,0x39B678E4,0x84986F66,0x94

BB95FA,0x976D9797};

 uint32_tkey[8]={0xB2591B82,0xD25676DB,0x2546F076,0xC8D01753,0xB4A620E7,

0x4AADD91D,0x2E5EDF9B,0x596C1146};

 uint32_t iv[4]={0xF0E72786,0xD272F169,0x0ECED17B,0x29D34319};

 uint32_t out[32];

 uint32_t AES_ECB_EN[32]={0x5766DACC,0x50DBB1F9,0x58720E73,0x2182AA3E,

0x7D5A6D4D,0xA07EF43D,0x5A533E1E,0x34816CF3,0xBA23F9CD,0x99A7BD14,0x6789D933,0x

D14B2F0D,0xAF53E19E,0xB88DA31F,0xEFBE0472,0x03F077B1,0x4489E477,0x97161707,

0x6C24CB62,0x0FF361DC,0x60BBD2CF,0xEB7AB0C1,0xFA3421E5,0x2F5DB80E,

0x2D61A7CD,0x22988E98,0x51B195AF,0x22C8A4C0,0x7F8E90C3,0x6690789A,0x48AF0FAF,

0xAC16F7A6};

uint32_t AES_ECB_DE[32]={0x0ADBDA93,0x93C512ED,0x6A99A60B,0x0A1841B5,

0x135E685D,0xB9ADC987,0x6262573F,0x9090A7D3,0x2B7DDAA3,0x7370FB9D,0xE7E739C6,

0xCA013CA6,0x3509E08F,0x74A21641,0x3D2C9527,0xF8DF90F0,0xED8209E9,0x9DD57975,0x0

A506603,0x7C2EFD3B,0x0937237E,0x2828BAAF,0x245E9D40,0xF3BB882A,

0x66E82B24,0xF3E778E7,0x386802D1,0xD74C7057,0xEF8525C8,0x1EB7AA48,0x362EACDD,

0x8AA0F286};

 uint32_tAES_CBC_EN[32]={0x39AD6F3A,0xF8E3E1DD,0x2209A14B,0x241642CC,

0x83FA4820,0xD82816B3,0xEF66B17A,0xB5B49FCC,0xA7540FD7,0xCC11801C,0xC6126D93,

0x8E6C259A,0x626135EB,0x3FEA411B,0x45FF91A3,0x1B91B51A,0x9169DD4C,0x2F42A1E6,

0x4299E687,0xEB9FBAA4,0x3B667902,0xDCB4117A,0x45B78A05,0x5FECBFA7,

 nsing.com.sg

- 80 -

 0x54C54A81,0xBDF538B1,0xF2D5804D,0x568910A8,0x41655B32,0xD47D533B,0x5A82D212,

0x63C07B46};

 uint32_t AES_CBC_DE[32]={0xFA3CFD15,0x41B7E384,0x64577770,0x23CB02AC,

0x95811940,0x0069DBAA,0x7154DC12,0xC335689C,0x9682708F,0xC7A4485D,0x6C5E4570,

0x53EB3740,0xBE3A6E92,0x8AB25C5D,0x733F40C4,0x505915DF,0x8AD021A8,0x00CA8C94,0x

E5EDA5A0,0xDBEC8452,0x0D42E557,0xFCC3A85F,0x612E2967,0x0A92ED3C,

0x3E1FDF82,0xD97A448C,0x5D4E5630,0x94CD75A1,0x77EAA401,0x7D28FBFA,0x95383C5F,0x

E675A58A};

 uint32_t AES_CTR_EN[32]={0x85F1DD33,0xAE808F2F,0x26A40960,0xB2020DF8,

0xB6C2006E,0xA22A35F6,0x33BB584A,0xBFEA7F68,0x73E54E78,0xF3EB0368,0x80816676,

0x6109DE39,0xE0001920,0x8D2B18B8,0x0E46A012,0xE43F1DD1,0x3CA4BC36,0xD5101452,

0x83020170,0x4B752F62,0x3D27A004,0x3C18B5DB,0x99DA9032,0xEA59B340,0x79BBD087,

0x2EF8CB3D,0xDC32D3CA,0x30F577EA,0x56774C66,0xC33DA1F8,0x0288B1D6, 0x091C9666};

 uint32_t AES_CTR_DE[32]={0x86DF711D,0xB9C4122D,0x13368B2D,0x53A5CF4F,

0xBDFFAA2C,0xB4D4B3C0,0x8BB97CB6,0x99EA0BE6,0x8B338E1D,0xFE104A1C,

0x4E13D5E3,0xA886852F,0x67522841,0x9D1FF5E1,0xEFBDC3A3,0xA7C27969,

 0x0475C629,0xD4EB12F0,0x4570B427,0xF9296516,0x58F7F4A6,0x2A9D3C6B,0x652654E1,

0x438105F6,0x986F81C9,0x639F51B2,0xA3169082,0x6CD5570C,0x39B678E4,0x84986F66,

0x94BB95FA,0x976D9797};

 AES_Parm.in = in;

 AES_Parm.key = key;

 AES_Parm.iv = iv;

 AES_Parm.out = out;

 AES_Parm.keyWordLen = 8;

 AES_Parm.inWordLen = 32;

 AES_Parm.Mode = AES_ECB;

 AES_Parm.En_De = AES_ENC;

 nsing.com.sg

- 81 -

 ret =AES_Init(&AES_Parm);

 ret =AES_Crypto(&AES_Parm);

 AES_Close();

 if(Cmp_U32(AES_ECB_EN, 32, out, 32))

 {

 flag1=0x5A5A5A5A;

 }

 else

 {

 flag1=0;

 }

 AES_Parm.En_De = AES_DEC;

 ret =AES_Init(&AES_Parm);

 ret =AES_Crypto(&AES_Parm);

 AES_Close();

 if(Cmp_U32(AES_ECB_DE, 32, out, 32))

 {

 flag2=0x5A5A5A5A;

 }

 else

 {

 flag2=0;

 }

 //CBC

 AES_Parm.Mode = AES_CBC;

 AES_Parm.En_De = AES_ENC;

 ret =AES_Init(&AES_Parm);

 ret =AES_Crypto(&AES_Parm);

 nsing.com.sg

- 82 -

 AES_Close();

 if(Cmp_U32(AES_CBC_EN, 32, out, 32))

 {

 flag3=0x5A5A5A5A;

 }

 else

 {

 flag3=0;

 }

 AES_Parm.En_De = AES_DEC;

 ret =AES_Init(&AES_Parm);

 ret =AES_Crypto(&AES_Parm);

 AES_Close();

 if(Cmp_U32(AES_CBC_DE, 32, out, 32))

 {

 flag4=0x5A5A5A5A;

 }

 else

 {

 flag4=0;

 }

//CTR

 AES_Parm.Mode = AES_CTR;

 AES_Parm.En_De = AES_ENC;

 ret =AES_Init(&AES_Parm);

 ret =AES_Crypto(&AES_Parm);

 AES_Close();

 if(Cmp_U32(AES_CTR_EN, 32, out, 32))

 nsing.com.sg

- 83 -

 {

 flag5=0x5A5A5A5A;

 }

 else

 {

 flag5=0;

 }

 AES_Parm.in = AES_CTR_EN;

 AES_Parm.En_De = AES_DEC;

 ret =AES_Init(&AES_Parm);

 ret =AES_Crypto(&AES_Parm);

 AES_Close();

 if(Cmp_U32(AES_CTR_DE, 32, out, 32))

 {

 flag6=0x5A5A5A5A;

 }

 else

 {

 flag6=0;

 }

 if (flag1|flag2|flag3|flag4|flag5|flag6)

 {

 return 0x5A5A5A5A;

 }

 else

 {

 return 0;

 }

 nsing.com.sg

- 84 -

}

iv. Appendix IV HASH algorithm library function

demo

uint32_t MD5_fixed_steps_test(void)

{

 uint8_t out[16];

 char in[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";

 uint8_t MD5_fixout[16]=

 {

 0xd1,0x74,0xab,0x98,0xd2,0x77,0xd9,0xf5,0xa5,0x61,0x1c,0x2c,0x9f,0x41,0x9d,0x9f

 };

 HASH_CTX ctx[1];

 ctx->hashAlg = HASH_ALG_MD5;

 ctx->sequence = HASH_SEQUENCE_TRUE;

 HASH_Init(ctx);

 HASH_Start(ctx);

 HASH_Update(ctx, (uint8_t*)in, 28);

 HASH_Update(ctx, ((uint8_t*)in)+ 28, 28);

 HASH_Update(ctx, ((uint8_t*)in)+ 56, 6);

 HASH_Complete(ctx, out);

HASH_Close();

 if(memcmp(out,MD5_fixout,16))

 {

 nsing.com.sg

- 85 -

 //printf("MD5-FIX-Test fail\r\n");

 return 0x5a5a5a5a;

 }

 else

 {

 //printf("MD5-FIX-Test success\r\n");

 return 0;

 }

 //return 0;

}

// SM3 Fixed step test case

uint32_t SM3_test(void)

{

uint8_t out[32];

 //SM3 Fixed step hash

// Step by step message

 uint8_t SM3_fixin[48*3]=

 {

 0x02,0x89,0x00,0xD4,0x66,0x14,0xF9,0xA2,0x9E,0xC9,

 0xBC,0x05,0x5B,0xBE,0x10,0x33,0x0F,0x41,0x1B,0xDF,

 0x9A,0x20,0x44,0x2C,0xB1,0x51,0xBD,0xCA,0x8D,0xDB,

 0xAD,0x86,0x46,0x48,0xA3,0xC6,0x34,0x27,0xEB,0x8B,

 0x05,0x57,0x40,0x90,0x52,0xE9,0x92,0xA3,0x79,0xBB,

 0x2D,0x3D,0x48,0xEC,0xC2,0x9A,0x91,0xBE,0x47,0xD0,

 0x7C,0x6E,0x6B,0x4E,0xEF,0x68,0x46,0x03,0x72,0x44,

 0xD5,0xCA,0x96,0x17,0xE3,0xFB,0x92,0x3E,0x41,0x27,

 0x55,0x16,0x77,0x9F,0x93,0x1A,0x60,0x78,0x83,0x13,

 0xDF,0x76,0x09,0xC0,0xC1,0xBF,0x6F,0x0F,0xEB,0x11,

 nsing.com.sg

- 86 -

 0x6D,0x6A,0x0B,0x8C,0x0A,0x43,0x38,0xE6,0x05,0x8E,

 0xCD,0x84,0xE7,0xA3,0x9B,0x9D,0x6B,0x75,0x91,0xEB,

 0xA5,0x28,0xCF,0xEF,0x4F,0xED,0x61,0x35,0x43,0x2D,

 0x33,0xE2,0x25,0x99,0x14,0xB1,0x05,0xA8,0xFF,0x04,

 0x9C,0xC2,0x29,0x05

 };

// Correct message summary

 uint8_t SM3_fixout[32]=

 {

 0xC7,0x8B,0xF5,0x97,0x52,0xCD,0xFE,0x9F,0x70,0x21,

 0x4F,0x5D,0x88,0x92,0x2E,0x60,0x35,0x22,0x3B,0x66,

 0x94,0xFD,0x08,0x96,0x5E,0x26,0x44,0xF9,0x72,0xFE,

 0xE2,0xB2

 };

 uint8_t i,byteLen=48;

 HASH_CTX ctx[1];

// Set to SM3 operation

// ctx->hashAlg Different HASH operations can be selected，

//for example HASH_ALG_SHA1、

//HASH_ALG_SHA224、

//HASH_ALG_SHA256、

//HASH_ALG_SM3

 ctx->hashAlg = HASH_ALG_SM3;

 ctx->sequence = HASH_SEQUENCE_TRUE;

 HASH_Init(ctx);

 HASH_Start(ctx);

 for(i=0;i<3;i++)

 {

 nsing.com.sg

- 87 -

 HASH_Update(ctx,SM3_fixin+i*byteLen,byteLen);

 }

 HASH_Complete(ctx, out);

 HASH_Close();

 if (memcmp(out,SM3_fixout,32))

 {

// Step by step SM3 test failed

 printf("SM3-FIX-Test fail\r\n");

 return HASH_ATTACK;

 }

 else

 {

 // Step by step SM3 test succeeded

 printf("SM3-FIX-Test success\r\n");

 }

 return SM3_Hash_OK;

}

// This function routine performs single-step hash operation on hash sha1/224/256 respectively

uint32_t HASH_test(void)

{

 uint32_t TEST_BUF[200];

uint8_t in[48]={

0x1C,0xBB,0x9F,0x4A,0x43,0x6A,0xAD,0x81,0xFE,0x4F,0x52,0x4A,0x0A,0x76,

0x22,0xC8,0x4F,0x90,0x18,0x30,0xA4,0xD2,0x8C,0x6A,0xC3,0x40,0xA0,0xBD,0x0A,0x6A,0x37,0x18

,0x8D,0x19, 0x9D,0xE5,0xCB,0x84,0xA3,0xFC,0x39,0xDE,0x8C,0xD6,0xFC,0x2F,0xC8,0x88

 };

uint8_t in2[10] = {0x1C,0x61,0xAD,0x6C,0x05,0xF3,0x98,0xA4,0x4C,0xFD};

uint8_t out[64];

 nsing.com.sg

- 88 -

uint8_t sha1_out[20]=

{

 0x0E,0xEC,0x49,0xC5,0x36,0xBB,0xD7,0x87,0xD2,0xE2,0x0C,0x97,0xC4,0xF8,0x65,0x7C,

0xCC,0x74,0x8D,0x1E

 };

 uint8_t sha224_out[28]=

{

0xC1,0x44,0x4F,0xD0,0xB8,0xA9,0xA3,0xD9,0xE8,0x04,0xA0,0xD1,0x9E,0x38,0xF3,0x5E,0x8

5,0xB4,0x0F,0x10,0x5A,0x1C,0x48,0xC4,0xF2,0x40,0x10,0x48

 };

 uint8_t sha256_out[32]=

{

0xE2,0xE4,0x2C,0x8A,0x01,0x1A,0xE7,0x98,0x67,0x74,0x93,0xAF,0x9D,0x65,0x99,0xB3,

0xA1,0x68,0x8B,0x5A,0xF1,0x32,0x3D,0x5B,0xFF,0xFB,0x12,0x30,0x94,0xE4,0x81,0xDD

 };

 uint8_t SM3_out[32]=

{

0xBD,0x77,0x63,0x33,0x0A,0x71,0x19,0x5C,0x5D,0x26,0xE7,0x99,0x7B,0x41,0x22,0xB0,

0xBC,0xB0,0xBE,0x52,0x3E,0xDA,0x0F,0xBE,0xE6,0xA4,0x33,0x96,0xB8,0x83,0x76, 0xD4

 };

 uint32_t ret=0x5123;

#if 1

 HASH_CTX *ctx;

 ctx = (HASH_CTX*)(TEST_BUF);

 ctx->hashAlg = HASH_ALG_SHA1;

 ctx->sequence = HASH_SEQUENCE_FALSE;

 HASH_Init(ctx);

 HASH_Start(ctx);

 nsing.com.sg

- 89 -

 HASH_Update(ctx, in, 48);

 ret=HASH_Complete(ctx, out);

 HASH_Close();

 if (memcmp(out,sha1_out,20))

 {

 return 0x5a5a5a5a;

 }

 else

 {

 printf("SHA1-Test success\r\n");

 }

 ctx->hashAlg = HASH_ALG_SHA224;

 ctx->sequence = HASH_SEQUENCE_FALSE;

 HASH_Init(ctx);

 HASH_Start(ctx);

 HASH_Update(ctx, in, 48);

 //HASH_Update(ctx, in2, 10);

 ret=HASH_Complete(ctx, out);

 HASH_Close();

 if (memcmp(out,sha224_out,28))

 {

 return 0x5a5a5a5a;

 }

 else

 {

 printf("SHA224-Test success\r\n");

 }

 ctx->hashAlg = HASH_ALG_SHA256;

 nsing.com.sg

- 90 -

 ctx->sequence = HASH_SEQUENCE_FALSE;

 HASH_Init(ctx);

 HASH_Start(ctx);

 HASH_Update(ctx, in, 48);

 ret=HASH_Complete(ctx, out);

 HASH_Close();

 if(memcmp(out,sha256_out,32))

 {

 return 0x5a5a5a5a;

 }

 else

 {

 printf("SHA256-Test success\r\n");

 }

#endif

 return 0;

}

v. Appendix V SM7 algorithm library function demo

uint32_t SM7_test(void)

{

 uint32_t flag1,flag2,flag3,flag4;

 nsing.com.sg

- 91 -

 uint32_t ret;

 SM7_PARM SM7_Parm={0};

/* If the test case needs to be modified,When the true value of the parameter is

“0x0102030405060708” Because u32 data is stored in small end order,When initializing and

assigning the above parameters，Please enter “0x04030201,0x08070605”. If there is no special

instruction，This demo parameter is set in this way */

 uint32_t in1[32]={

 0x4B551C70,0xD54DA600,0xBAA2CA7F,0x0ABA6CD8,0x97BC9D7D,0xAD650748,

 0x0590F143,0x7288FD0F,0x9EDF1005,0xB7D4A607,0x8ED480C9,0x34FD4C59,

 0x97C9286E,0xD0A23857,0x1ABE2026,0x6163578A,0xF5FBAFB4,0x72DB71B7,

 0x21217431,0xF8BE4ECA,0xB73D1018,0xACD37812,0x3FF19EE7,0x4C9575BE,

 0xF1FB289E,0x33694113,0x8EC5BB10,0x3B1DFF5F,0xA9D6A5A5,0xB98D90C8,

 0x91AB4E89,0x804343FD

 };

 uint32_t key1[4]={0x84853E30,0xB3D3154D,0x9A887F49,0xDC65910A};

 uint32_t iv1[2]={0x2FA6B65A,0x1D0EC205};

 uint32_t out[32];

 uint32_t SM7_ECB_EN[32]=

 {

 0xFDC0A8D5,0x92728D71,0x5A804C88,0x430AB48D,0x9D20E77A,0x74ADB168,

0xD4848355,0x92C8EE23,0x5B0C32C4,0x3D612420,0x8B42878A,0x6D3B380E,

0x21CD8165,0x66013D3D,0xD7BD0FB4,0xA6666999,0x30588D82,0xB105C519,

0xEF0A9B40,0xDBC36099,0x0AF7F6AF,0x51FFE183,0xC7A983D3,0xB766EA14,

 0xFBEA1269,0x6AAF5BFA,0xD23E3184,0x05AA9FB6,0xD3270BB1,0x1B146200,

0xD5A3E2FC,0x1348DE04

 };

 uint32_t SM7_ECB_DE[32]=

 {

 nsing.com.sg

- 92 -

0x42FE0F12,0x13C56F4B,0x924BB950,0x8BB82615,0xB3F69779,0x91A42F3E,

0x8165114F,0xCE65AE5F,0x397E1BE4,0xD987776C,0x4B4FC3A0,0x2ADFD517,0x34A36717

,0x94D408B5,0xFF72D19C,0xBAAC265E,0x19DD3CD9,0xB50E3835,0x76307CBE,0x9125D4

79,0x3A900FF2,0xD97B7140,0x24783470,0xDE5D0187,0xA192A61E,0x0D56C887,0x82FB9C

72,0x714D123B,0xF7C4876E,0xEF1D331A,0x387E2635,0x5A7343CA

 };

 uint32_t SM7_CBC_EN[32]=

 {

0x969843B8,0x1E7267D5,0x40640F93,0xC04D7107,0xE94FC3DA,0x3B47318F,

0xEA6FE714,0xC4046E8C,0xDF311550,0xF4A404FD,0xFF591CCE,0xDDDA6AAA,

0xC9AE0C6C,0x4CF1AE42,0x90F03ED4,0xC061F7D2,0xF10DA467,0xEB896034,

0x53A0FBC9,0x9A1059D2,0x7FAE69C6,0xB664E266,0xF101AE3E,0x003864EE,

0xEC4A469B,0x85840724,0xF3D7D05D,0x8B1B7B50,0xC6B4E78D,0xE4F104E5,

0xB405AB34,0xD799B659

 };

 uint32_t SM7_CBC_DE[32]=

 {

0x6D58B948,0x0ECBAD4E,0xD91EA520,0x5EF58015,0x09545D06,0x9B1E43E6,

0x16D98C32,0x6300A917,0x3CEEEAA7,0xAB0F8A63,0xD590D3A5,0x9D0B7310,

0xBA77E7DE,0xA02944EC,0x68BBF9F2,0x6A0E1E09,0x03631CFF,0xD46D6FBF,

0x83CBD30A,0xE3FEA5CE,0x1BB17BC3,0x21C53F8A,0x93452468,0x728E7995,

 0x9E6338F9,0x41C3BD39,0x7300B4EC,0x42245328,0x79013C7E,0xD400CC45,

0x91A88390,0xE3FED302

 };

 Cpy_U32(out, in1,32);

 SM7_Parm.in = out;

 SM7_Parm.key = key1;

 SM7_Parm.out = out;

 nsing.com.sg

- 93 -

 SM7_Parm.Mode = SM7_ECB;

 SM7_Parm.inWordLen = 32;

 SM7_Parm.En_De = SM7_ENC;

 ret=SM7_Init(&SM7_Parm);

 ret=(SM7_Crypto(&SM7_Parm));

 SM7_Close();

 if (ret!=SM7_Crypto_OK)

 {

 flag1=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(SM7_ECB_EN, 32, out, 32))

 {

 flag1=0x5A5A5A5A;

 }

 else

 {

 flag1=0;

 }

 }

 Cpy_U32(out, in1,32);

 SM7_Parm.En_De = SM7_DEC;

 ret=SM7_Init(&SM7_Parm);

 ret=(SM7_Crypto(&SM7_Parm));

 SM7_Close();

 if (ret!=SM7_Crypto_OK)

 {

 nsing.com.sg

- 94 -

 flag2=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(SM7_ECB_DE, 32, out, 32))

 {

 flag2=0x5A5A5A5A;

 }

 else

 {

 flag2=0;

 }

 }

 Cpy_U32(out, in1,32);

 SM7_Parm.iv = iv1;

 SM7_Parm.Mode = SM7_CBC;

 SM7_Parm.En_De = SM7_ENC;

 ret=SM7_Init(&SM7_Parm);

 ret=(SM7_Crypto(&SM7_Parm));

 SM7_Close();

 if (ret!=SM7_Crypto_OK)

 {

 flag3=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(SM7_CBC_EN, 32, out, 32))

 {

 nsing.com.sg

- 95 -

 flag3=0x5A5A5A5A;

 }

 else

 {

 flag3=0;

 }

 }

 Cpy_U32(out, in1,32);

 SM7_Parm.iv = iv1;

 SM7_Parm.En_De = SM7_DEC;

 ret=SM7_Init(&SM7_Parm);

 ret=(SM7_Crypto(&SM7_Parm));

 SM7_Close();

 if (ret!=SM7_Crypto_OK)

 {

 flag4=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(SM7_CBC_DE, 32, out, 32))

 {

 flag4=0x5A5A5A5A;

 }

 else

 {

 flag4=0;

 }

 }

 nsing.com.sg

- 96 -

 if (flag1|flag2|flag3|flag4)

 {

 return 0x5A5A5A5A;

 }

 else

 {

 return 0;

 }

}

vi. Appendix VI SM4 algorithm library function demo

uint32_t SM4_test(void)

{

 uint32_t flag1,flag2,flag3,flag4;

 uint32_t ret;

 SM4_PARM SM4_Parm={0};

/* If the test case needs to be modified,When the true value of the parameter is

“0x0102030405060708” Because u32 data is stored in small end order,When initializing and

assigning the above parameters，Please enter “0x04030201,0x08070605”. If there is no special

instruction，This demo parameter is set in this way */

 uint32_t in1[32]={

 nsing.com.sg

- 97 -

 0x4B551C70,0xD54DA600,0xBAA2CA7F,0x0ABA6CD8,0x97BC9D7D,0xAD650748,

 0x0590F143,0x7288FD0F,0x9EDF1005,0xB7D4A607,0x8ED480C9,0x34FD4C59,

 0x97C9286E,0xD0A23857,0x1ABE2026,0x6163578A,0xF5FBAFB4,0x72DB71B7,

 0x21217431,0xF8BE4ECA,0xB73D1018,0xACD37812,0x3FF19EE7,0x4C9575BE,

 0xF1FB289E,0x33694113,0x8EC5BB10,0x3B1DFF5F,0xA9D6A5A5,0xB98D90C8,

 0x91AB4E89,0x804343FD

 };

 uint32_t key1[4]={0x84853E30,0xB3D3154D,0x9A887F49,0xDC65910A};

 uint32_t iv1[4]={0x2FA6B65A,0x1D0EC205,0xB90B8620,0x42E74F58};

 uint32_t out[32];

uint32_t SM4_ECB_EN[32]=

{

0xD61A389C,0xE136A0AD,0xBD626B7E,0x4277F173,0xAF3E5E82,

 0x876D84DF,0x7A065B7B,0x1CBBFFA8,0xC57C31DC,0x5BD86AFC,

 0x0825EAEF,0x600162A4,0x3E4787AC,0x58B32579,0x3A9135BF,

 0xB806A17C,0x9854F4C4,0x065CD28F,0x68FDF21F,0x9CA62C4C,

 0x5B2FA76E,0xEC693A2B,0xF028ADF6,0xFAA2ED18,0x6395B4B1,

 0x7A9B0069,0x9D55E04C,0xA5CDC23F,0x7FC56C92,0x89F199A1,

 0xF228D9E1,0xD705050A

};

/*SM4_ECB_EN=0x9C381AD6ADA036E17E6B62BD73F17742825E3EAFDF846D877B5B067AA8F

FBB1CDC317CC5FC6AD85BEFEA2508A4620160AC87473E7925B358BF35913A7CA106B8C4F454

988FD25C061FF2FD684C2CA69C6EA72F5B2B3A69ECF6AD28F018EDA2FAB1B4956369009B7A

4CE0559D3FC2CDA5926CC57FA199F189E1D928F20A0505D7*/

uint32_t SM4_ECB_DE[32]={

0x3107DFA0,0xC1EE3D0A,0x9025F9D5,0x90ACC081,0x7A72F90A,

 nsing.com.sg

- 98 -

 0x6481F1CE,0x76DF5450,0xCD262ACF,0xCE8E3C3B,0x208B7390,

 0xC9F8F526,0x1A73FFCC,0x0AB6E26F,0xA02B544A,0x760CD602,

 0x6D250CA4,0x2477FF67,0x44CBC39E,0x84ECF5CC,0x7DF30644,

 0x8746D41C,0xCB42B9EC,0xE975598C,0x28756C41,0x64C3C870,

 0x9EA8CBB3,0xBA2FA98E,0x1B10BA7B,0x1C50E8A0,0x1EE697FD,

 0xA4E2DDD5,0xBB29D912};

 /*SM4_ECB_DE=0xA0DF07310A3DEEC1D5F9259081C0AC900AF9727ACEF181645054DF76CF

2A26CD3B3C8ECE90738B2026F5F8C9CCFF731A6FE2B60A4A542BA002D60C76A40C256D67F

F77249EC3CB44CCF5EC844406F37D1CD44687ECB942CB8C5975E9416C752870C8C364B3CB

A89E8EA92FBA7BBA101BA0E8501CFD97E61ED5DDE2A412D929BB*/

uint32_t SM4_CBC_EN[32]={

0x304E1C3C,0x10DA649D,0x5EBCB5BE,0x2964AD84,0x18599756,

 0x2106AAD2,0x84364B24,0x57A9E62D,0xD160B03B,0x58293A74,

 0xEE57389F,0x398E69C2,0x63FD0959,0x5B4584FD,0x4DA6E8BE,

 0x578E4501,0x74B0159B,0x570E8604,0x38E2DB49,0xE028387E,

 0xCDDE4984,0x6B717E9F,0xE516D698,0x6520025E,0xC8D187A7,

 0x6E08373F,0xC3472666,0x654A0D41,0x7F363B95,0xAD8EB5D2,

 0x01F0F12A,0x8169D65A};

 /*SM4_CBC_EN=0x3C1C4E309D64DA10BEB5BC5E84AD642956975918D2AA0621244B36842DE

6A9573BB060D1743A29589F3857EEC2698E395909FD63FD84455BBEE8A64D01458E579B15B0

7404860E5749DBE2387E3828E08449DECD9F7E716B98D616E55E022065A787D1C83F37086E66

2647C3410D4A65953B367FD2B58EAD2AF1F0015AD66981*/

 uint32_t SM4_CBC_DE[32]=

{

0x1EA169FA,0xDCE0FF0F,0x292E7FF5,0xD24B8FD9,

0x3127E57A,0xB1CC57CE,0xCC7D9E2F,0xC79C4617,0x5932A146,0x8DEE74D8,

 0xCC680465,0x68FB02C3,0x9469F26A,0x17FFF24D,0xF8D856CB,

 nsing.com.sg

- 99 -

 0x59D840FD,0xB3BED709,0x9469FBC9,0x9E52D5EA,0x1C9051CE,

 0x72BD7BA8,0xB999C85B,0xC8542DBD,0xD0CB228B,0xD3FED868,

 0x327BB3A1,0x85DE3769,0x5785CFC5,0xEDABC03E,0x2D8FD6EE,

 0x2A2766C5,0x8034264D

};

 /*SM4_CBC_DE=0xFA69A11E0FFFE0DCF57F2E29D98F4BD27AE52731CE57CCB12F9E7DCC1

7469CC746A13259D874EE8D650468CCC302FB686AF269944DF2FF17CB56D8F8FD40D85909D

7BEB3C9FB6994EAD5529ECE51901CA87BBD725BC899B9BD2D54C88B22CBD068D8FED3A1B

37B326937DE85C5CF85573EC0ABEDEED68F2DC566272A4D263480*/

 Cpy_U32(out, in1,32);

 SM4_Parm.in = out;

 SM4_Parm.key = key1;

 SM4_Parm.out = out;

 SM4_Parm.inWordLen = 32;

 SM4_Parm.workingMode = SM4_ECB;

 SM4_Parm.EnDeMode = SM4_ENC;

ret=SM4_Init(&SM4_Parm);

 ret=(SM4_Crypto(&SM4_Parm));

 SM4_Close();

if(ret!=SM4_Crypto_OK)

 {

 flag1=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(SM4_ECB_EN,32, out,32))

 {

 flag1=0x5A5A5A5A;

 nsing.com.sg

- 100 -

 }

 else

 {

 flag1=0;

 }

 }

 Cpy_U32(out, in1,32);

 SM4_Parm.EnDeMode = SM4_DEC;

ret=SM4_Init(&SM4_Parm);

 ret=(SM4_Crypto(&SM4_Parm));

 SM4_Close();

 if(ret!=SM4_Crypto_OK)

 {

 flag2=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(SM4_ECB_DE,32, out,32))

 {

 flag2=0x5A5A5A5A;

 }

 else

 {

 flag2=0;

 }

 }

 Cpy_U32(out, in1,32);

 SM4_Parm.iv = iv1;

 nsing.com.sg

- 101 -

 SM4_Parm.workingMode = SM4_CBC;

 SM4_Parm.EnDeMode = SM4_ENC;

ret=SM4_Init(&SM4_Parm);

 ret=(SM4_Crypto(&SM4_Parm));

 SM4_Close();

 if(ret!=SM4_Crypto_OK)

 {

 flag3=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(SM4_CBC_EN,32, out,32))

 {

 flag3=0x5A5A5A5A;

 }

 else

 {

 flag3=0;

 }

 }

Cpy_U32(out, in1,32);

 SM4_Parm.iv= iv1;

 SM4_Parm.EnDeMode = SM4_DEC;

 ret=SM4_Init(&SM4_Parm);

 ret=(SM4_Crypto(&SM4_Parm));

 SM4_Close();

 if(ret!=SM4_Crypto_OK)

 {

 nsing.com.sg

- 102 -

 flag4=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(SM4_CBC_DE,32, out,32))

 {

 flag4=0x5A5A5A5A;

 }

 else

 {

 flag4=0;

 }

 }

 if (flag1|flag2|flag3|flag4)

 {

 return 0x5A5A5A5A;

 }

 else

 {

 return 0;

 }

}

 nsing.com.sg

- 103 -

vii. Appendix VII RNG algorithm library function

demo

#define POKER_RAND_BYTE 40 //320bit

uint32_t TrueRand_Poker_Test(void)

{

 u16 count[16] = {0};

 uint32_t sum = 0;

 uint8_t rand[POKER_RAND_BYTE];

 uint8_t i, j, k, tmp;

 GetTrueRand_U32((uint32_t*)rand, POKER_RAND_BYTE>>2);

 //GetTrueRand_U8(rand, POKER_RAND_BYTE);

 //GetPseudoRand_U32((uint32_t*)rand,POKER_RAND_BYTE>>2);

 for(j = 0; j < POKER_RAND_BYTE; j++)

 {

 for(k = 0; k < 2; k++)

 {

 (k == 1) ? tmp = (rand[j] >> 4) : (tmp = (rand[j] & 0x0F));

 for(i = 0; i < 16; i++)

 {

 if(tmp==i) count[i]++;

 nsing.com.sg

- 104 -

 }

 }

 }

 for(i = 0; i < 16; i++)

 {

 sum += ((uint32_t)count[i]) * count[i];

 }

 if(405 < sum && sum < 687)

 return 0;

 else

 return 1;

}

uint32_t PseudoRand_Poker_Test(void)

{

 u16 count[16] = {0};

 uint32_t sum = 0;

 uint8_t rand[POKER_RAND_BYTE];

 uint8_t i, j, k, tmp;

 //GetTrueRand_U32((uint32_t*)rand, POKER_RAND_BYTE>>2);

 //GetTrueRand_U8(rand, POKER_RAND_BYTE);

 GetPseudoRand_U32((uint32_t*)rand,POKER_RAND_BYTE>>2,NULL);

 for(j = 0; j < POKER_RAND_BYTE; j++)

 {

 for(k = 0; k < 2; k++)

 {

 (k == 1) ? tmp = (rand[j] >> 4) : (tmp = (rand[j] & 0x0F));

 nsing.com.sg

- 105 -

 for(i = 0; i < 16; i++)

 {

 if(tmp==i) count[i]++;

 }

 }

 }

 for(i = 0; i < 16; i++)

 {

 sum += ((uint32_t)count[i]) * count[i];

 }

 if(405 < sum && sum < 687)

 return 0;

 else

 return 1;

}

 nsing.com.sg

- 106 -

viii. Appendix VIII SM1 algorithm library function

demo

uint32_t SM1_test(void)

{

 uint32_t flag1,flag2,flag3,flag4;

 uint32_t ret;

 SM1_PARM SM1_Parm={0};

/* If the test case needs to be modified,When the true value of the parameter is

“0x0102030405060708” Because u32 data is stored in small end order,When initializing and

assigning the above parameters，Please enter “0x04030201,0x08070605”. If there is no special

instruction，This demo parameter is set in this way */

uint32_t in1[32]={

 0x4B551C70,0xD54DA600,0xBAA2CA7F,0x0ABA6CD8,0x97BC9D7D,0xAD650748,

 0x0590F143,0x7288FD0F,0x9EDF1005,0xB7D4A607,0x8ED480C9,0x34FD4C59,

 0x97C9286E,0xD0A23857,0x1ABE2026,0x6163578A,0xF5FBAFB4,0x72DB71B7,

 0x21217431,0xF8BE4ECA,0xB73D1018,0xACD37812,0x3FF19EE7,0x4C9575BE,

 0xF1FB289E,0x33694113,0x8EC5BB10,0x3B1DFF5F,0xA9D6A5A5,0xB98D90C8,

 0x91AB4E89,0x804343FD

};

 uint32_t key1[4]={0x84853E30,0xB3D3154D,0x9A887F49,0xDC65910A};

 uint32_t iv1[4]={0x2FA6B65A,0x1D0EC205,0xB90B8620,0x42E74F58};

 uint32_t out[32];

 uint32_tSM1_ECB_EN[32]={

0x3E244A82,0x5E5BFFB7,0x6C09BB78,0x1D528A72,0xD71DD7D3,

 0xB2C63572,0xCAB798B7,0xE98B7E7E,0x31B74EA0,0x2B0F7AFF,

 0xD2B67660,0xF2F95230,0x1ABB0C33,0x453DD692,0xC18728A9,

 nsing.com.sg

- 107 -

 0xB0A8C5A8,0x216F18A1,0x8956499A,0x6D1A2E36,0x0A90F9DE,

 0x977AC571,0x44126188,0x889801FA,0x264B1879,0x14B71EC3,

 0x62249397,0xF99B8C04,0x1154D5D8,0x1B16B017,0x4477C020,

 0xB1D85955,0xB006BCB7};

/*SM1_ECB_EN=0x824A243EB7FF5B5E78BB096C728A521DD3D71DD77235C6B2B798B7CA7

E7E8BE9A04EB731FF7A0F2B6076B6D23052F9F2330CBB1A92D63D45A92887C1A8C5A8B0A1

186F219A495689362E1A6DDEF9900A71C57A9788611244FA01988879184B26C31EB714979324

62048C9BF9D8D5541117B0161B20C077445559D8B1B7BC06B0*/

uint32_tSM1_ECB_DE[32]={

0xA357F33D,0xEB1489B1,0x71D862D4,0x4B512067,

0xFFC1DE29,0xE4BA99AA,0x269DC310,0xA9FFFD6C,0x114C4507,0x7CE06089,

 0x693512EF,0x9574B52F,0xBB222811,0xA84EEC57,0xEF6E3FDC,

 0x11F5714C,0x6EB451F4,0xD818C7B6,0x2C003C47,0x281183A1,

 0x20E2D39F,0x4F868F49,0x28223D38,0xDB20BBC0,0x486B8235,

 0x5DE53208,0x9BEE9D24,0x2787CF79,0xAC6CA11D,0xA4BBBDC2,

 0x961D4845,0x239BC8E1};

 /*SM1_ECB_DE=0x3DF357A3B18914EBD462D8716720514B29DEC1FFAA99BAE410C39D266

CFDFFA907454C118960E07CEF1235692FB57495112822BB57EC4EA8DC3F6EEF4C71F511F4

51B46EB6C718D8473C002CA18311289FD3E220498F864F383D2228C0BB20DB35826B480832E

55D249DEE9B79CF87271DA16CACC2BDBBA445481D96E1C89B23*/

 uint32_t SM1_CBC_EN[32]={

0x56583277,0x048D4BFE,0xD505B83B,0x69D8F23F,0x1FC9D047,

 0x09522EC1,0xC77CFE03,0x59CB89D2,0x01E97431,0xF981C0FB,

 0x887184D0,0x33716293,0x2886538C,0xC0961363,0x9DCBF1FA,

 nsing.com.sg

- 108 -

 0x9BCBF5AF,0x9E9519C9,0x102FD1E9,0x8B54747D,0x283C5E40,

 0xBFA30847,0xB0752EC2,0xD21F7B3C,0x4559D420,0xBC7CD8E9,

 0xB6CC72ED,0x4E8F1B1B,0x4FACCAF2,0x3F14A032,0x70A79877,

 0xE6C1F6DA,0xEFE11EEC};

 /*SM1_CBC_EN=0x77325856FE4B8D043BB805D53FF2D86947D0C91FC12E520903FE7CC7D289

CB593174E901FBC081F9D0847188936271338C538628631396C0FAF1CB9DAFF5CB9BC919959E

E9D12F107D74548B405E3C284708A3BFC22E75B03C7B1FD220D45945E9D87CBCED72CCB61B

1B8F4EF2CAAC4F32A0143F7798A770DAF6C1E6EC1EE1EF*/

uint32_t SM1_CBC_DE[32]={0x8CF14567,0xF61A4BB4,0xC8D3E4F4,0x09B66F3F,

0xB494C259,0x31F73FAA,0x9C3F096F,0xA34591B4,0x86F0D87A,0xD18567C1,

 0x6CA5E3AC,0xE7FC4820,0x25FD3814,0x1F9A4A50,0x61BABF15,

 0x25083D15,0xF97D799A,0x08BAFFE1,0x36BE1C61,0x4972D42B,

 0xD5197C2B,0x3D5DFEFE,0x09034909,0x239EF50A,0xFF56922D,

 0xF1364A1A,0xA41F03C3,0x6B12BAC7,0x5D978983,0x97D2FCD1,

 0x18D8F355,0x188637BE};

 /*SM1_CBC_DE=0x6745F18CB44B1AF6F4E4D3C83F6FB60959C294B4AA3FF7316F093F9CB4

914A37AD8F086C16785D1ACE3A56C2048FCE71438FD25504A9A1F15BFBA61153D08259A797

DF9E1FFBA08611CBE362BD472492B7C19D5FEFE5D3D094903090AF59E232D9256FF1A4A36

F1C3031FA4C7BA126B8389975DD1FCD29755F3D818BE378618*/

 Cpy_U32(out, in1,32);

 SM1_Parm.in = out;

 SM1_Parm.key = key1;

 SM1_Parm.out = out;

 SM1_Parm.Mode = SM1_ECB;

 SM1_Parm.inWordLen = 32;

 SM1_Parm.En_De = SM1_ENC;

 nsing.com.sg

- 109 -

 ret=SM1_Init(&SM1_Parm);

 ret=(SM1_Crypto(&SM1_Parm));

 SM1_Close();

if (ret!=SM1_Crypto_OK)

 {

 flag1=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(SM1_ECB_EN, 32, out, 32))

 {

 flag1=0x5A5A5A5A;

 }

 else

 {

 flag1=0;

 }

 }

Cpy_U32(out, in1,32);

 SM1_Parm.En_De = SM1_DEC;

 ret=SM1_Init(&SM1_Parm);

 ret=(SM1_Crypto(&SM1_Parm));

 SM1_Close(); if (ret!=SM1_Crypto_OK)

 {

 flag2=0x5A5A5A5A;

 }

 else

 {

 nsing.com.sg

- 110 -

 if(Cmp_U32(SM1_ECB_DE, 32, out, 32))

 {

 flag2=0x5A5A5A5A;

 }

 else

 {

 flag2=0;

 }

 }

Cpy_U32(out, in1,32);

 SM1_Parm.iv = iv1;

 SM1_Parm.Mode = SM1_CBC;

 SM1_Parm.En_De = SM1_ENC;

 ret=SM1_Init(&SM1_Parm);

 ret=(SM1_Crypto(&SM1_Parm));

 SM1_Close();

 if (ret!=SM1_Crypto_OK)

 {

 flag3=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(SM1_CBC_EN, 32, out, 32))

 {

 flag3=0x5A5A5A5A;

 }

 else

 {

 nsing.com.sg

- 111 -

 flag3=0;

 }

 }

Cpy_U32(out, in1,32);

 SM1_Parm.iv = iv1;

 SM1_Parm.En_De = SM1_DEC;

 ret=SM1_Init(&SM1_Parm);

 ret=(SM1_Crypto(&SM1_Parm));

 SM1_Close();

 if (ret!=SM1_Crypto_OK)

 {

 flag4=0x5A5A5A5A;

 }

 else

 {

 if(Cmp_U32(SM1_CBC_DE, 32, out, 32))

 {

 flag4=0x5A5A5A5A;

 }

 else

 {

 flag4=0;

 }

 }

 if (flag1|flag2|flag3|flag4)

 {

 return 0x5A5A5A5A;

 }

 nsing.com.sg

- 112 -

 else

 {

 return 0;

 }

}

ix. Appendix IX SM2 algorithm library function demo

void SM2_test(void)

{

 uint8_t ID[20] = {0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88,

 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF, 0x00, 0x11, 0x22, 0x33, 0x44};

 uint8_t msg[40] =

 {

 0x0D,0x3D,0x6B,0x96,0x88,0x33,0x3F,0xF1,0x93,0xF0,0xF6,

 nsing.com.sg

- 113 -

 0xDE,0x6E,0xC0,0x0D,0x3D,0x6B,0x96,0x88,0x33,0x3F,0xF1,

 0x93,0xF0,0xF6

 };

 //uint8_t priKey[32] = {0};

 uint8_t priKey[32] = {

 0x44,0x13,0xFB,0xED,0xFE,0x4D,0x61,0x09,

 0x9A,0x33,0x4C,0xAA,0xB9,0x80,0x64,0x7B,

 0x63,0xD9,0x75,0xAB,0xC5,0x9D,0x83,0xDA,

 0xC8,0x88,0x7E,0xB0,0x08,0xCB,0x49,0xE1

 };

 uint8_t pubKey[65] = {

 0x04,0x75,0xF7,0xFF,0x18,0x74,0x40,0x69,0x6D,

 0x5B,0x7C,0x62,0x34,0x40,0xFA,0x02,0x99,

 0x18,0x67,0x2C,0xFD,0x48,0x9E,0xFE,0x9D,

 0x5D,0xF5,0xA3,0xB4,0x89,0x5B,0xEB,0x38,

 0xD2,0x9A,0x3F,0x9F,0xCF,0x63,0xC1,0xF1,

 0xEB,0x64,0x9A,0xCB,0x25,0x9F,0x93,0x83,

 0x0E,0x88,0x6A,0x4E,0xEE,0xDD,0x83,0x06,

 0xCE,0x5D,0xFF,0x6F,0xEF,0x19,0xBF,0xEE};

 uint8_t r[32] =

 {0x85, 0xB1, 0x14, 0xC7, 0x6F, 0x02, 0xB3, 0xFA, 0xE0,

 0x69, 0x23, 0xE6, 0xDE, 0xF4, 0x4D, 0xC3, 0x2F, 0x3A,

 0x43, 0xD2, 0xF9, 0xB7, 0xB6, 0x99, 0xBB, 0xDE, 0x7B, 0x25, 0x10,

 0xAC, 0x46, 0x7B},

 s[32] = {

0x06, 0x06, 0xE1, 0xF9, 0x10, 0xA3, 0x3D, 0x27, 0x6B,

 0x48, 0x62, 0xAD, 0x44, 0xA3, 0xCA, 0xEA, 0xB5, 0x6A, 0x4F, 0x67,

0x2B, 0xF2, 0xA0, 0x41, 0x3B, 0x13, 0xB1, 0x96, 0x7D, 0x08, 0x9A, 0x8D};

 nsing.com.sg

- 114 -

 uint8_t Z[32];

uint8_t E[32];

 uint32_t ret;

uint8_t pubKey1[65]={0};

 uint8_t C[140] = {0};

 uint32_t CByteLen = 0,MByteLen = 0;

 uint8_t M[40] = {0};

uint32_t flag1;

 uint32_t kByteLen=33;

 uint8_t KA1[33],S11[32],SA1[32],KA2[33],S12[32],SA2[32];

 uint8_t role1=1, role0=0;

 uint8_t IDA[16]={0xBB,0xD2,0xB0,0xAB,0xFB,0xF2,0xCF,0x5D,0x6C,0x78,0x55,0xFA,0xA9,

 0x64,0xBB,0x7A};

 /*IDA=0xBBD2B0ABFBF2CF5D6C7855FAA964BB7A*/

 uint8_t IDB[16]={0xAA,0xF0,0x0F,0x68,0x73,0xD2,0x55,0x60,0x72,0x8E,0x36,

0xBA,0x2C,0x1A,0x1C,0x28};

 /*IDB=0xAAF00F6873D25560728E36BA2C1A1C28*/

 u16 IDAByteLen=16,IDBByteLen=16;

uint8_tdA[32]={0x5A,0x86,0x38,0xA7,0x92,0x09,0x8E,0x99,0xE7,0x65,0x30,0x41,

0x7E,0xA7,0xE5,0x68,0x74,0xF8,0xBC,0x21,0x5A,0xE6,0x89,0x9E,0x4F,0xE7,0x05,

0x05,0xD6,0x3C,0x37,0xAC};

 /*dA=0x5A8638A792098E99E76530417EA7E56874F8BC215AE6899E4FE70505D63C37AC*/

 uint8_t PA[65]={0x04,0x75,0x0F,0xF5,0x33,0x8E,0xD8,0xF6,0xCD,0x8D,

0x8E,0x5B,0xF8,0x6D,0x07,0xB2,0xFF,0xFD,0xEE,0x0A,0xEC,0xDF,0x76,0xB2,0xE7,

0xE0,0xE3,0x67,0x82,0x5C,0xFD,0x0F,0x5F,0x12,0xC2,0xFF,0x52,0x23,0xED,0x06,

0xCC,0x18,0x0E,0x94,0x19,0x81,0xD2,0xC2,0xBC,0x58,0xA5,0x9A,0xA7,0xD0,0xC9,

0x0C,0xA3,0x88,0xD2,0xDD,0x3E,0x54,0x78,0xDF,0x3C};

 nsing.com.sg

- 115 -

/*PA=(0x750FF5338ED8F6CD8D8E5BF86D07B2FFFDEE0AECDF76B2E7E0E367825CFD0F5

F,0x12C2FF5223ED06CC180E941981D2C2BC58A59AA7D0C90CA388D2DD3E5478DF3C)*/

 uint8_tdB[32]={0x4F,0x8E,0x22,0xFE,0x49,0xE5,0x71,0xAD,0x94,0x37,0xBC,

0x8C,0x95,0x20,0x71,0x0E,0xB4,0x49,0x7C,0xD0,0xFA,0x37,0x2D,0x05,0xA4,0xDF,

0x0D,0x33,0x96,0xDB,0x34,0xC4};

 /*dB=0x4F8E22FE49E571AD9437BC8C9520710EB4497CD0FA372D05A4DF0D3396DB34C4*/

 uint8_t PB[65]={0x04,0xBA,0x15,0x5C,0x6C,0x6F,0x65,0x73,0x27,0xA2,0x47,0xA7,

0x18,0xEE,0xE5,0x70,0x58,0x19,0xB6,0x61,0xD4,0x67,0x64,0xE9,0x8E,0xBD,0x48,

0xE1,0x08,0xD1,0x4A,0x07,0xBB,0x1F,0xC3,0x8D,0xD3,0x2A,0x7C,0x64,0xA7,

0x17,0x30,0xF8,0x42,0x91,0x11,0x44,0x96,0x6F,0xDA,0xC8,0xBA,0x6F,0xDB,

0x47,0x3E,0x64,0x19,0x4F,0x73,0x55,0x47,0x87,0xE1};

 /*PB=(0xBA155C6C6F657327A247A718EEE5705819B661D46764E98EBD48E108D14A07BB,

 0x1FC38DD32A7C64A71730F842911144966FDAC8BA6FDB473E64194F73554787E1)*/

 uint8_t rA[32]={0x1C,0x34,0xFB,0x8A,0xDB,0x04,0x38,0xF2,0x75,0xAD,0x59,0x22,

0xFF,0x39,0xD4,0xFB,0xC4,0xAD,0x6A,0x1C,0xC0,0x66,0xDB,0x04,0x9F,0x07,

0x58,0xDA,0x38,0xDA,0x32,0x22};

 /*rA=0x1C34FB8ADB0438F275AD5922FF39D4FBC4AD6A1CC066DB049F0758DA38DA3222*/

 uint8_t RA[65]={0x04,0x7D,0xEE,0xEC,0x05,0xE7,0xB4,0x9B,0x0E,0xCF,0x1D,0x6A,

0xFA,0xE5,0x07,0x7B,0xF0,0xF3,0x3A,0x21,0x12,0xCB,0x8D,0x66,0x4C,0x88,0x90,0x26,0x51,

 0x20,0x74,0x95,0x83,0xEE,0x5A,0x68,0x91,0x82,0x1E,0xC8,0x29,0x2B,0x8D,0x41,

 0xE1,0x7D,0x49,0x61,0x3E,0xEA,0xF4,0x1C,0x36,0xD0,0xCE,0x42,0x57,0xD1,

 0xD6,0x76,0xC5,0x36,0x97,0x83,0xF9};

 /*RA=(0x7DEEEC05E7B49B0ECF1D6AFAE5077BF0F33A2112CB8D664C8890265120749583,

0xEE5A6891821EC8292B8D41E17D49613EEAF41C36D0CE4257D1D676C5369783F9)*/

 uint8_trB[32]={0xD2,0x17,0xC2,0x13,0x1A,0xE7,0xDD,0xC0,0xBC,0x9E,0x9E,0x7C,

0x9C,0x33,0xBA,0xDB,0x5E,0x45,0xA6,0xD5,0x61,0x70,0x79,0x46,0x37,0xED,0xA8,

0x40,0xF2,0x37,0xDF,0x74};

 /*rB=0xD217C2131AE7DDC0BC9E9E7C9C33BADB5E45A6D56170794637EDA840F237DF74*/

 nsing.com.sg

- 116 -

 uint8_tRB[65]={0x04,0xB1,0xF0,0xFC,0x13,0x30,0x30,0x3A,0x95,0x32,0x7D,0x49,

0x61,0xAB,0x56,0x22,0xD8,0x56,0x6C,0x02,0xE7,0x0F,0x2B,0x13,0x4B,0x0D,0xA1,0xFC,

0x37,0x91,0x00,0x9A,0x18,0xC2,0xEC,0x89,0x7E,0x4F,0x59,0xAC,0x38,0xDA,0xA3,0xEE,

0x0A,0x68,0x69,0x1A,0x60,0x27,0xC4,0xD2,0x65,0xCA,0x30,0x14,0x5E,0xE8,0x94,0xF4,

0xDA,0x74,0x2A,0xAE,0xA4};

 SM2_getPubKey(priKey,pubKey1);

 SM2_getKey(priKey, pubKey);

 ret=SM2_PointIsOnCrv(pubKey);

 if(ret != SM2_isCurve_Ok)

 {

 printf("\r\nSM2_PointIsOnCrv is failed");

 }

 else

 {

 printf("\r\nSM2_PointIsOnCrv is Sucessed");

 }

 SM2_getZ(ID, 16,pubKey,Z);

 SM2_GetE(msg, 25, Z,E);

 ret = SM2_sign(E, priKey, r, s);

 if(ret != SM2_Sign_Ok)

 {

 printf("\r\nSM2_sign is failed");

 }

 else

 {

 printf("\r\nSM2_sign is Sucessed");

 }

 ret = SM2_verify(E, pubKey, r, s);

 nsing.com.sg

- 117 -

 if(ret != SM2_Verif_Ok)

 {

 printf("\r\nSM2_verify is failed");

 }

 else

 {

 printf("\r\nSM2_verify is Sucessed");

 }

 ret = SM2_encrypt(msg, 40, pubKey, C, &CByteLen);

 if(ret !=SM2_En_Ok)

 {

 printf("\r\nSM2_encrypt is Failed!");

 }

 else

 {

 printf("\r\nSM2_encrypt is Sucessed!");

 }

 ret = SM2_decrypt(C, CByteLen, priKey, M, &MByteLen);

 if(ret ==SM2_En_Ok &&

 (Cmp_U8(msg,40,M,40) ==Cmp_EQUAL))

 {

 printf("\r\nSM2_decrypt is Sucessed!");

 }

 else

 {

 printf("\r\nSM2_decrypt is Failed!");

 }

 nsing.com.sg

- 118 -

 SM2_ExchangeKey(role1, IDA, IDAByteLen,IDB, IDBByteLen, dA, PA, PB, rA, RA, RB, kByteLen,

KA1, S11, SA1);

 ret=SM2_ExchangeKey(role0, IDB, IDBByteLen, IDA, IDAByteLen, dB, PB, PA, rB, RB, RA,

kByteLen, KA2, S12, SA2);

 if(ret != SM2_SUCCESS)

 {

 printf("\r\nSM2 key exchange fail\n");

 //return 0x5a5a5a5a;

 }

 else

 {

 flag1=0;

 if ((memcmp(KA1,KA2,33)))

 {

 flag1=1;

 }

 if ((memcmp(S11,SA2,32)))

 {

 flag1=1;

 }

 if ((memcmp(S12,SA1,32)))

 {

 flag1=1;

 }

 }

 if (!flag1)

 {

 printf("\r\nSM2 key exchange success\n");

 nsing.com.sg

- 119 -

 }

 else

 {

 printf("\r\nSM2 key exchange fail\n");

 //return 0x5a5a5a5a;

 }

}

 nsing.com.sg

- 120 -

10 Version history

Version Date Note

V1.0 2023.03.14 Create documents

 。

 nsing.com.sg

- 121 -

11 Notice

This document is the exclusive property of NSING TECHNOLOGIES PTE. LTD. (Hereinafter referred

to as NSING). This document, and the product of NSING described herein (Hereinafter referred to as the

Product) are owned by NSING under the laws and treaties of Republic of Singapore and other applicable

jurisdictions worldwide. The intellectual properties of the product belong to NSING Technologies Inc.

and NSING Technologies Inc. does not grant any third party any license under its patents, copyrights,

trademarks, or other intellectual property rights. Names and brands of third party may be mentioned or

referred thereto (if any) for identification purposes only. NSING reserves the right to make changes,

corrections. enhancements, modifications, and improvements to this document at any time without notice.

Please contact NSING and obtain the latest version of this document before placing orders. Although

NSING has attempted to provide accurate and reliable information, NSING assumes no responsibility for

the accuracy and reliability of this document. It is the responsibility of the user of this document to

properly design, program, and test the functionality and safety of any application made of this information

and any resulting product. In no event shall NSING be liable for any direct, indirect, incidental, special,

exemplary, or consequential damages arising in any way out of the use of this document or the Product.

NSING Products are neither intended nor warranted for usage in systems or equipment, any malfunction

or failure of which may cause loss of human life, bodily injury or severe property damage. Such

applications are deemed, Insecure Usage’. Insecure usage includes, but is not limited to: equipment for

surgical implementation, atomic energy control instruments, airplane or spaceship instruments, all types

of safety devices, and other applications intended to supporter sustain life. All Insecure Usage shall be

made at user's risk. User shall indemnify NSING and hold NSING harmless from and against all claims,

costs, damages, and other liabilities, arising from or related to any customer's Insecure Usage Any express

or implied warranty with regard to this document or the Product, including, but not limited to. The

warranties of merchantability, fitness for a particular purpose and non-infringement are disclaimed to the

fullest extent permitted by law. Unless otherwise explicitly permitted by NSING, anyone may not use,

duplicate, modify, transcribe or otherwise distribute this document for any purposes, in whole or in part.

 nsing.com.sg

- 122 -

Any express or implied warranty with regard to this document or the Product, including, but not limited

to, the warranties of merchantability, fitness for a particular purpose and non-infringement are disclaimed

to the fullest extent permitted by law.

Unless otherwise explicitly permitted by NSING, anyone may not use, duplicate, modify, transcribe or

otherwise distribute this document for any purposes, in whole or in part.

	Contents
	1. Introduction
	1.1. Supported algorithms
	1.2. Basic data type

	2. DES/TDES algorithm API description
	2.1. Algorithm library usage method
	2.2. Data type definition
	2.3. API description
	2.3.1. DES/TDES algorithm initialization
	2.3.2. DES/TDES algorithm encryption and decryption
	2.3.3. DES/TDES close
	2.3.4. Get DES/TDES library version information

	3. AES algorithm API description
	3.1. Algorithm library usage method
	3.2. Data type definition
	3.3. API description
	3.3.1. AES algorithm initialization
	3.3.2. AES algorithm encryption and decryption
	3.3.3. AES operation ended
	3.3.4 Get AES library version information

	4. HASH API description
	4.1. Algorithm library usage method
	4.2. Data type definition
	4.3. API description
	4.3.1. HASH algorithm initialization
	4.3.2. HASH start operation
	4.3.3. HASH distributed processing data
	4.3.4. Get the result after HASH operation
	4.3.5. HASH operation ended
	4.3.6. Get HASH library version information

	5. SM7 API description
	5.1. Algorithm library usage method
	5.2 Data type definition
	5.3 API description
	3
	4
	5
	5.1
	5.2
	5.3
	5.3.1 SM7 algorithm initialization
	5.3.2 SM7 algorithm encryption and decryption
	5.3.3 SM7 operation ended
	5.3.4 Get SM7 library version information

	6 SM4 API description
	2.
	6.1 Algorithm library usage method
	6.2 Data type definition
	6.3 API description
	6.3.1 SM4 algorithm initialization
	6.3.2 SM4 algorithm encryption and decryption
	6.3.3 SM4 operation ended
	6.3.4 Get SM4 library version information

	7 RNG API description
	7.1 Algorithm library usage method
	7.2 Data type definition
	7.3 API description
	7.3.1 Pseudorand generating function
	7.3.2 Truerand generating function
	7.3.3 Get RNG library version information

	8 SM1 API description
	8.1 Algorithm library usage method
	8.2 Data type definition
	8.3 API description
	8.3.1 SM1 algorithm initialization
	8.3.2 SM1 algorithm encryption and decryption
	8.3.3 SM1 operation ended
	8.3.4 Get SM1 library version information

	9 SM2 API description
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	9.1. Algorithm library usage method
	6.
	7.
	8.
	9.
	9.1.
	9.2. Data type definition
	9.3. API description
	9.3.1. Judge whether the point is on the curve
	9.3.2. Key pair generation
	9.3.3. Private key generation public key
	9.3.4. Signature generation
	9.3.5. Signature verification
	9.3.6. Key negotiation (exchange)
	9.3.7. User ID hash calculation function
	9.3.8. Message hash value
	9.3.9. Encryption
	9.3.10. Deciphering
	9.3.11. Get SM2 library version information

	i. Appendix I DES algorithm library function demo
	ii. Appendix II TDES algorithm library function demo
	iii. Appendix III AES algorithm library function demo
	iv. Appendix IV HASH algorithm library function demo
	v. Appendix V SM7 algorithm library function demo
	vi. Appendix VI SM4 algorithm library function demo
	vii. Appendix VII RNG algorithm library function demo
	viii. Appendix VIII SM1 algorithm library function demo
	ix. Appendix IX SM2 algorithm library function demo
	10 Version history
	11 Notice

