

N32WB452 系列勘误手册 V1.1.0

目录

1	勘误列表	1
2	电源控制 (PWR)	3
	2.1 STOP2 模式唤醒	3
3	复位和时钟控制(RCC)	4
	3.1 系统定时器(S YSTICK)	4
4	GPIO 和 AFIO	5
	4.1 SPI1 从模式,USART2 同步模式	5
	4.2 SPI1 主模式,USART2 同步模式	5
	4.3 SPI2 从模式,USART3 同步模式	5
	4.4 SPI2 主模式,USART3 同步模式	5
5	模拟/数字转换(ADC)	6
	5.1 ADC 数据左对齐	6
	5.2 ADC 模拟看门狗	6
	5.3 ADC 注入通道触发规则通道转换	6
	5.4 从 ADC 转换受主 ADC 转换影响启动	7
	5.5 相邻 ADC 数据寄存器受影响	7
6	串行外设接口(SPI)	8
	6.1 SPI 接口	8
	6.1.1 SPI 波特率设置	8
	6.1.2 从模式 CRC 校验	8
	6.2 I2S 接口	9
	6.2.1 PCM 长帧模式	9
7	I2C 接口	10
	7.1 当前字节传输前必须被管理的软件事件	10
	7.2 单次读取单或双字节时的注意事项	10
	7.3 与其他外设同时使用 DMA	11
8	通用同步异步接收器(USART)	12
	8.1 校验错误标志	
	8.2 RTS 硬件流控	12

9	调试接口(DBG)	. 13
	9.1 DEBUG 寄存器	. 13
10	定时器(TIM)	. 14
	10.1 定时器重复捕获检测	. 14
11	实时时钟(RTC)	. 15
	11.1 RTC 预分频	. 15
	11.2 RTC 校准	. 15
	11.3 RTC 计时	. 15
	11.4 RTC 唤醒	. 15
12	芯片丝印及版本说明	. 16
13	版本历史	. 17
14	声明	. 18

1 勘误列表

表 1-1 勘误概述

	勘误链接		芯片版本
剑 庆姓 女			В版
章节 2: 电源控制 (PWR)	章节 2.1: Stop2 模式唤醒		•
章节 3: 复位和时钟控制(RCC)	章节 3.1: 系统定时器(Systick)		•
	章节 4.1: SPII 从模式,USART2 同步模式		•
章节 4:GPIO 和 AFIO	章节 4.2: SPI1 主模式,USART2 同步模式		•
	章节 4.3: SPI2 从模式,USART3 同步模式		•
	章节 4.4: SPI2 主模式,USART3 同步模式		•
	章节 5.1: ADC 数据左对齐		•
	章节 5.2: ADC 模拟看门狗		•
章节 5:模拟/数字转换(ADC)	章节 5.3: ADC 注入通道触发规则通道转换		•
	章节 5.4: 从 ADC 转换受主 ADC 转换影响启动		•
	章节 5.5: 相邻 ADC 数据寄存器受影响		•
	章节 6.1: SPI 接口	章节 6.1.1: SPI 波特率设置	•
章节 6: 串行外设接口(SPI)		章节 6.1.2: 从模式 CRC 校验	•
	章节 6.2: I2S 接口	章节 6.2.1: PCM 长帧模式	•
	章节 7.1: 当前字节传输前必须被管理的软件事件		•
5节7: I2C接口	章节 7.2: 单次读取单或双字节时的注意事项		•
	章节 7.3: 与其他外设同时使用 DMA		•
章节 8: 通用同步异步接收器(USART)	章节 8.1: 校验错误标	志	•
早 P O: 四川四少井少按収命(USAKI)	章节 8.2: RTS 硬件流控		•

章节 9: 调试接口(DBG)	章节 9.1: Debug 寄存器	•
章节 10: 定时器 (TIM)	章节 10.1: 定时器重复捕获检测	•
** 11 Septemble (DTC)	章节 11.1: RTC 预分频	•
	章节 11.2: RTC 校准	•
章节 11: 实时时钟(RTC)	章节 11.3: RTC 计时	•
	章节 11.4: RTC 唤醒	•

2 电源控制 (PWR)

2.1 Stop2 模式唤醒

描述

MCU 处于 Stop2 模式,如在被唤醒的同时发生 NRST 复位,NRST 不能复位 MCU,唤醒优先,MCU 将先响应唤醒。

解决方法

避免在唤醒的同时 NRST 复位 MCU,或者在需要 NRST 复位的场景下,连续两次 NRST 复位 MCU。

3 复位和时钟控制(RCC)

3.1 系统定时器(Systick)

描述

设置 SysTick 控制寄存器的 CLKSOURCE 控制位,当设置 External reference clock (STCLK)作为时钟源时,不能唤醒 MCU。而当设置 Use core clock 作为时钟源可以正常工作。

解决方法

设置 Use core clock 作为时钟源。

4 GPIO 和 AFIO

4.1 SPI1 从模式, USART2 同步模式

描述

已经开启 SPI1 和 USART2 时钟, 引脚 PA4 设置成复用输出。SPI1 工作在从模式,并且是 NSS 软件模式(SSMEN=1, SSEL=0),工作在同步模式的 USART2 时钟无法发出。

解决方法

无

4.2 SPI1 主模式, USART2 同步模式

描述

已经开启 SPI1 和 USART2 时钟,引脚 PA4 设置成复用输出。SPI1 工作在主模式,并且是 NSS 软件模式(SSMEN=1, SSEL=0),工作在同步模式的 USART2 时钟无法发出。

解决方法

在 SPI1 主模式下使能 SSOEN 位。

4.3 SPI2 从模式,USART3 同步模式

描述

已经开启 SPI2 和 USART3 时钟,引脚 PB12 设置成复用输出。SPI2 工作在从模式,并且是 NSS 软件模式(SSMEN=1, SSEL=0),工作在同步模式的 USART3 时钟无法发出。

解决方法

无

4.4 SPI2 主模式,USART3 同步模式

描述

已经开启 SP2 和 USART3 时钟,引脚 PB12 设置成复用输出。SPI2 工作在主模式、并且是 NSS 软件模式(SSMEN=1, SSEL=0),工作在同步模式的 USART3 时钟无法发出

解决方法

在 SPI2 主模式下使能 SSOEN 位。

5 模拟/数字转换(ADC)

5.1 ADC 数据左对齐

描述

ADC 单次转换模式,非 12bit 精度且左对齐情况下,软件触发转换规则通道,ADC_DAT 寄存器中,无效位的最高位为 1。

解决方法

仅保留有效数据位或使用右对齐模式。

5.2 ADC 模拟看门狗

描述

ADC 独立工作模式且单次转换且非 12bit 精度时,开启模拟看门狗功能,软件触发转换规则通道/注入通道,模拟看门狗高门限值有效位设置与 ADC 数据寄存器值相等,无效位全 0 时,可能会误触发模拟看门狗。

解决方法

此情况下,模拟看门狗高门限值无效位的最高位置1则不触发。

5.3 ADC 注入通道触发规则通道转换

描述

ADC 连续转换,规则通道外部触发不使能,只软件触发注入通道转换时,规则通道可能会被启动转换,导致 ADC_DAT 中有数据产生,ADC_STS 规则通道转换相应的状态位会置起。

解决方法

忽略规则通道产生的标志位和数据。

5.4 从 ADC 转换受主 ADC 转换影响启动

描述:

ADC 工作在双 ADC 模式且同步注入模式下,只软件触发主 ADC 的规则通道转换,从 ADC 的规则通道也会转换,且从 ADC_DAT 中低 16 位会合并到主 ADC_DAT 的高 16 位解决方法:

无

5.5 相邻 ADC 数据寄存器受影响

描述:

独立工作模式,软件触发 ADC4/2 规则通道转换,ADC4/2DAT 寄存器低 16 位的内容会合并到 ADC3/1 的 DAT 寄存器高 16 位。

解决方法:

无

6串行外设接口(SPI)

6.1 SPI 接口

6.1.1 SPI 波特率设置

描述

SPI 主模式下, 当设置波特率控制位(BR[2:0])为 fPLCK/2 时, CRC 校验会出错。

解决方法

此情况下,避免设置波特率控制位(BR[2:0])为 fPLCK/2。

6.1.2 从模式 CRC 校验

描述

SPI 工作在从模式并且已经使能了 CRC 校验,即使 NSS 引脚为高电平,只要 SPI 接收到时钟信号,仍然会进行 CRC 计算

解决方法

在使用 CRC 校验前, 先将 CRC 数据寄存器清空,以便主从设备 CRC 校验保持同步清空步骤如下:

- 1. SPI 使能位复位(置 0)
- 2. CRC 校验位复位(置 0)
- 3. CRC 校验位置位(置1)
- 4. SPI 使能位置位(置1)

6.2 I2S 接口

6.2.1 PCM 长帧模式

描述

当 I2S 工作在主模式, PCM 长帧模式, 数据格式为 16bit 扩展到 32bit 或 32bit 时, WS 信号是每 16bit 一个周期而不是 32bit。

解决方法

当 I2S 是主模式且必须使用长帧模式时,应当使用 16bit 数据模式。

7 I2C 接口

7.1 当前字节传输前必须被管理的软件事件

描述

在 EV7、EV7_1、EV6_1、EV6、EV2、EV8 和 EV3 事件发生时,必须在当前字节传输 之前对事件进行处理,否则可能会出现多读一个字节、读取到重复数据或丢失数据的问 题。

如果在停止信号生成之前,软件没有读取第 N-1 个数据,则移位寄存器中的第 N 个数据会被损坏(向左移动一位)。

解决方法

- 1. 使用 I2C 传输大于一个字节时,尽量使用 DMA 方式
- 2. 使用 I2C 中断时,将中断优先级调至应用程序的最高优先级
- 3. 当读取数据到达第 N-1 个字节时:
- a) 检测 BSF 为 1
- b) 配置 SCL 为 GPIO 开漏输出,并设为 0
- c) 设置 STOPGEN 为 1
- d) 读取第 N-1 个字节
- e) 配置 SCL 为 I2C 复用功能开漏输出模式
- f) 读取最后一个字节

7.2 单次读取单或双字节时的注意事项

描述

在主机读模式,读取的字节长度为单字节和双字节时,可能会出现读取数据错误。

解决方法

- 1. 单字节读取时:
- a) 收到 ADDRF 之后
- b) 设置 ACKEN 位为 0
- c) 清除 ADDRF 位(通过先读 STS1 再读 STS2 清除)
- d) 设置 STOPGEN 为 1
- e) 读取一字节数据。

- 2. 双字节读取时:
- a) 收到 ADDRF 之后
- b) 设置 ACKPOS 位为 1
- c) 清除 ADDRF 位(通过先读 STS1 再读 STS2 清除)
- d) 设置 ACKEN 位为 0
- e) 检测 BSF 位为 1
- f) 设置 STOPGEN 为 1
- g) 连续读取 2 个字节数据

7.3 与其他外设同时使用 DMA

描述

I2C 在使用 DMA 通信期间,如果有别的外设也在使用同一个 DMA 控制器,会导致 I2C 通信异常

解决方法

- 1. 使用不同的 DMA 控制器。
- 2. I2C 在使用 DMA 通信期间,关闭其他外设 DMA。

8 通用同步异步接收器(USART)

8.1 校验错误标志

描述

在接收一个字节数据期间,接收到停止位之前,检测到校验错误,校验错误标志位被置起,在此期间,校验错误标志位不能通过软件方式(读状态寄存器,再读数据寄存器)清除。若使能了校验错误中断,会多次进入校验错误中断处理函数。

解决方法

在读数据缓冲区标志位被置起,接收到数据后,再进行清校验错误标志位操作。

若使能了校验错误中断,为避免多次进入中断处理函数,在第一次进入校验错误中断时,关闭校验错误中断,接收到数据后,再重新打开校验错误中断。

8.2 RTS 硬件流控

描述

使能 RTS 硬件流控,USART 接收一帧数据,当接收到第一个字节数据时,RTS 信号会自动拉高,如果这一个字节数据未及时从数据寄存器中读出,在接收到下一个字节数据后,RTS 信号会重新拉低, USART 重新等待接收下一帧数据。

解决方法

在接收到下一个新数据前,及时将数据从数据寄存器中读出。

9 调试接口(DBG)

9.1 Debug 寄存器

描述

DBGMCU_IDCODE 调试寄存器只能在调试模式下被访问(用户程序不能访问),在用户模式下读取返回的值为0xFF。

解决方法

避免在用户应用程序中使用 IDCODE。

10 定时器 (TIM)

10.1 定时器重复捕获检测

描述

当产生输入捕获时,如果在读取 TIMx_CCDATx (捕获/比较寄存器 x)期间(读取操作会自动清除捕获标志位)又产生了新的输入捕获, CCxOCF(捕获/比较 x 重复捕获标记)可能仍然会被置位。

解决方法

无

11 实时时钟(RTC)

11.1 RTC 预分频

描述

RTC 异步预分频系数和同步预分频系数不能设置为 0, 否则容易导致 RTC 预分配失败。

解决方法

避免 RTC 预分频寄存器 TRC_PRE 的 DIVA[6:0](异步预分频段)和 DIVS[14:0](同步预分 频段)设置为 0。

11.2 RTC 校准

描述

进行 RTC 自动校准时(RTC_CALIB 寄存器 CP 位置 1 时),如果异步预分频系数 (DIVA)不是 128/64/32/16/8,则 RTC 自动校准不会成功。

解决方法

如果需要 RTC 自动校准,异步预分频(DIVA)系数应选择 128/64/32/16/8。

11.3 RTC 计时

描述

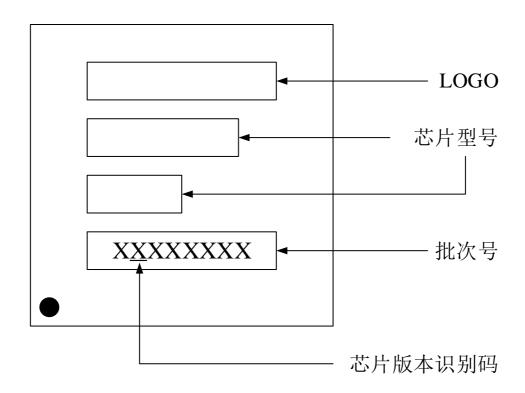
RTC 在工作时,如果发生 NRST 复位,复位期间会导致 RTC 暂停计时。

解决方法

无

11.4 RTC 唤醒

描述


RTC 模块周期性唤醒不能唤醒 Standby 模式。

解决方法

使用 RTC 闹钟唤醒 Standby 模式。

12 芯片丝印及版本说明

13版本历史

日期	版本	修改
2021.09.17	V1.0	初始版本
2022.09.02	V1.1.0	1. 新增 RTC 唤醒勘误项

14 声明

国民技术股份有限公司(下称"国民技术")对此文档拥有专属产权。依据中华人民共和国的法律、条约以及世界其他法域相适用的管辖,此文档及其中描述的国民技术产品(下称"产品")为公司所有。

国民技术在此并未授予专利权、著作权、商标权或其他任何知识产权许可。所提到或引用的第三方名称或品牌(如有)仅用作区别之目的。

国民技术保留随时变更、订正、增强、修改和改良此文档的权利,恕不另行通知。请使用人在下单购买前联系国民技术获取此文档的最新版本。

国民技术竭力提供准确可信的资讯,但即便如此,并不推定国民技术对此文档准确性和可靠性承担责任。

使用此文档信息以及生成产品时,使用者应当进行合理的设计、编程并测试其功能性和安全性,国民技术不对任何因使用此文档或本产品而产生的任何直接、间接、意外、特殊、惩罚性或衍生性损害结果承担责任。

国民技术对于产品在系统或设备中的应用效果没有任何故意或保证,如有任何应用在其发生操作不当或故障情况下,有可能致使人员伤亡、人身伤害或严重财产损失,则此类应用被视为"不安全使用"。

不安全使用包括但不限于:外科手术设备、原子能控制仪器、飞机或宇宙飞船仪器、所有类型的安全装置以及其他旨在支持或维持生命的应用。

所有不安全使用的风险应由使用人承担,同时使用人应使国民技术免于因为这类不安全使用 而导致被诉、支付费用、发生损害或承担责任时的赔偿。

对于此文档和产品的任何明示、默示之保证,包括但不限于适销性、特定用途适用性和不侵权的保证责任,国民技术可在法律允许范围内进行免责。

未经明确许可,任何人不得以任何理由对此文档的全部或部分进行使用、复制、修改、抄录和传播。