

N32G4FR series

32-bit ARM® Cortex®-M4F microcontroller

User manual V3.1.0

Contents

1 ABBREVIATIONS IN THE TEXT	1
1.1 LIST OF ABBREVIATIONS FOR REGISTERS	
1.2 AVAILABLE PERIPHERALS	1
2 MEMORY AND BUS ARCHITECTURE	2
2.1 System architecture	2
2.1.1 Bus architecture	2
2.1.2 Bus address mapping	3
2.1.3 Boot management	5
2.2 MEMORY SYSTEM	6
2.2.1 FLASH specification	6
2.2.2 iCache	18
2.2.3 SRAM	19
2.2.4 R-SRAM (Retention SRAM)	20
2.2.5 FLASH register description	21
3 POWER CONTROL (PWR)	30
3.1 GENERAL DESCRIPTION	30
3.1.1 Power supply	30
3.1.2 Power supply supervisor	
3.2 POWER MODES	34
3.2.1 SLEEP mode	38
3.2.2 STOP0 mode	39
3.2.3 STOP2 mode	40
3.2.4 STANDBY mode	40
3.2.5 VBAT mode	41
3.3 LOW-POWER AUTO-WAKEUP (AWU) MODE	42
3.4 PWR registers	42
3.4.1 PWR register overview	42
3.4.2 Power control register (PWR_CTRL)	43
3.4.3 Power control status register(PWR_CTRLSTS)	44
3.4.4 Power control register 2 (PWR_CTRL2)	45
3.4.5 Power control register 3 (PWR_CTRL3)	46
4 BACKUP REGISTERS (BKP)	47
4.1 Introduction	47
4.2 Main features	47
4.3 FUNCTION DESCRIPTION	47
4.4 BKP registers	48
4.4.1 BKP register overview	48
4.4.2 Backup Data Register x (BKP_DATx) (x = 1 42)	50

4.4.3 Backup Control Register (BKP_CTRL)	50
4.4.4 Backup Control/Status Register (BKP_CTRLSTS)	51
5 RESET AND CLOCK CONTROL (RCC)	53
5.1 Reset Control Unit	53
5.1.1 Power reset	53
5.1.2 System reset	53
5.1.3 Backup domain reset	54
5.2 CLOCK CONTROL UNIT	55
5.2.1 Clock Tree Diagram	56
5.2.2 HSE clock	56
5.2.3 HSI clock	57
5.2.4 PLL clock	58
5.2.5 LSE clock	58
5.2.6 LSI clock	58
5.2.7 System clock (SYSCLK) selection	59
5.2.8 Clock security system (CLKSS)	59
5.2.9 RTC clock	60
5.2.10 Watchdog clock	60
5.2.11 Clock output(MCO)	60
5.3 RCC Registers	60
5.3.1 RCC register overview	61
5.3.2 Clock Control Register (RCC_CTRL)	62
5.3.3 Clock Configuration Register (RCC_CFG)	
5.3.4 Clock Interrupt Register (RCC_CLKINT)	67
5.3.5 APB2 Peripheral Reset Register (RCC_APB2PRST)	69
5.3.6 APB1 Peripheral Reset Register (RCC_APB1PRST)	71
5.3.7 AHB Peripheral Clock Enable Register (RCC_AHBPCLKEN)	
5.3.8 APB2 Peripheral Clock Enable Register (RCC_APB2PCLKEN)	74
5.3.9 APB1 Peripheral Clock Enable Register (RCC_APB1PCLKEN)	76
5.3.10 Backup Domain Control Register (RCC_BDCTRL)	79
5.3.11 Clock Control/Status Register (RCC_CTRLSTS)	
5.3.12 AHB Peripheral Reset Register (RCC_AHBPRST)	82
5.3.13 Clock Configuration Register 2 (RCC_CFG2)	83
5.3.14 Clock Configuration Register 3 (RCC_CFG3)	85
6 GPIO AND AFIO	87
6.1 SUMMARY	87
6.2 I/O FUNCTION DESCRIPTION	88
6.2.1 I/O mode configuration	
6.2.2 Status after reset	93
6.2.3 Individual bit setting and bit clearing	94
6.2.4 External interrupt/wake-up line	
6.2.5 Alternate function	94

6.2.6 IO configuration of peripherals	104
6.2.7 GPIO locking mechanism	107
6.3 GPIO REGISTERS	107
6.3.1 GPIO register overview	107
6.3.2 GPIO port low configuration register (GPIOx_PL_CFG)	108
6.3.3 GPIO port high configuration register (GPIOx_PH_CFG)	109
6.3.4 GPIO port input data register (GPIOx_PID)	110
6.3.5 GPIO port output data register (GPIOx_POD)	110
6.3.6 GPIO port bit setting/clearing register (GPIOx_PBSC)	111
6.3.7 GPIO port bit clear register (GPIOx_PBC)	
6.3.8 GPIO port lock configuration register (GPIOx_PLOCK_CFG)	
6.3.9 GPIO driver capability configuration register (GPIOx_DS_CFG)	113
6.3.10 GPIO flip rate configuration register (GPIOx_SR_CFG)	113
6.4 AFIO registers	114
6.4.1 AFIO register overview	
6.4.2 AFIO event control register (AFIO_ECTRL)	
6.4.3 AFIO alternate remap configuration register (AFIO_RMP_CFG)	
6.4.4 AFIO external interrupt configuration register 1(AFIO_EXTI_CFG1)	119
6.4.5 AFIO external interrupt configuration register 2(AFIO_EXTI_CFG2)	119
6.4.6 AFIO external interrupt configuration register 3(AFIO_EXTI_CFG3)	
6.4.7 AFIO external interrupt configuration register 4(AFIO_EXTI_CFG4)	121
6.4.8 AFIO alternate remapping configuration register 3(AFIO_RMP_CFG3)	121
6.4.9 AFIO alternate remap configuration register 4 (AFIO_ RMP_CFG4)	124
6.4.10 AFIO alternate remapping configuration register 5(AFIO_RMP_CFG5)	125
7 INTERRUPTS AND EVENTS	128
7.1 NESTED VECTORED INTERRUPT CONTROLLER	128
7.1.1 SysTick calibration value register	128
7.1.2 Interrupt and exception vectors	128
7.2 EXTERNAL INTERRUPT/EVENT CONTROLLER (EXTI)	131
7.2.1 Introduction	131
7.2.2 Main features	131
7.2.3 Functional description	132
7.2.4 EXTI line mapping	134
7.3 EXTI REGISTERS	135
7.3.1 EXTI register overview	135
7.3.2 EXTI interrupt mask register (EXTI_IMASK)	135
7.3.3 EXTI event mask register (EXTI_EMASK)	136
7.3.4 Rising trigger selection register (EXTI_RT_CFG)	136
7.3.5 Falling trigger selection register (EXTI_FT_CFG)	137
7.3.6 EXTI software interrupt event register (EXTI_SWIE)	137
7.3.7 EXTI pending register (EXTI_PEND)	138
7.3.8 EXTI timestamp trigger source selection register (EXTI_TS_SEL)	139

8 DMA CONTROLLER	140
8.1 Introduction	140
8.2 Main features	140
8.3 Block diagram	141
8.4 FUNCTION DESCRIPTION	141
8.4.1 DMA operation	141
8.4.2 Channel priority and arbitration	142
8.4.3 DMA channels and number of transfers	142
8.4.4 Programmable data bit width	142
8.4.5 Peripheral/Memory address incrementation	144
8.4.6 Channel configuration procedure	144
8.4.7 Flow control	145
8.4.8 Circular mode	145
8.4.9 Error management	146
8.4.10 Interrupt	146
8.4.11 DMA request mapping	146
8.5 DMA registers	150
8.5.1 DMA register overview	150
8.5.2 DMA interrupt status register (DMA_INTSTS)	
8.5.3 DMA interrupt flag clear register (DMA_INTCLR)	
8.5.4 DMA channel x configuration register (DMA_CHCFGx)	153
8.5.5 DMA channel x transfer number register (DMA_TXNUMx)	
8.5.6 DMA channel x peripheral address register (DMA_PADDRx)	155
8.5.7 DMA channel x memory address register (DMA_MADDRx)	
8.5.8 DMA1 channel x channel request select register (DMA1_CHSELx)	156
8.5.9 DMA2 channel x channel request select register (DMA2_CHSELx)	158
8.5.10 DMA channel MAP enable register (DMA_CHMAPEN)	159
9 ANALOG TO DIGITAL CONVERSION (ADC)	161
9.1 Introduction.	161
9.2 Main features.	161
9.3 Function Description	162
9.3.1 ADC clock	164
9.3.2 ADC switch control	165
9.3.3 Channel selection	165
9.3.4 Internal channel	167
9.3.5 Single conversion mode	167
9.3.6 Continuous conversion mode	167
9.3.7 Timing diagram	167
9.3.8 Analog watchdog	168
9.3.9 Scanning mode	169
9.3.10 Injection channel management	169
9.3.11 Discontinuous mode	170

9.4 Calibration	171
9.5 Data aligned	171
9.6 Programmable channel sampling time	172
9.7 Externally triggered conversion	172
9.8 DMA requests	173
9.9 ADC Mode	174
9.9.1 Independent mode	
9.9.2 Synchronous regular mode	
9.9.3 Synchronous injection mode	
9.9.4 Fast alternate mode	
9.9.5 Slow alternate mode	178
9.9.6 Rotation trigger Mode	179
9.9.7 Mixed synchronous regular mode + synchronous injection mode	
9.9.8 Mixed synchronous regular mode + rotation trigger mode	180
9.9.9 Mixed synchronous injection mode + alternate mode	
9.10 Temperature sensor	182
9.10.1 Temperature sensor using flow	
9.11 ADC INTERRUPT	183
9.12 ADC registers	184
9.12.1 ADC register overview	
9.12.2 ADC status register (ADC_STS)	
9.12.3 ADC control register 1 (ADC_CTRL1)	
9.12.4 ADC control register 2 (ADC_CTRL2)	189
9.12.5 ADC sampling time register 1 (ADC_SAMPT1)	191
9.12.6 ADC sampling time register 2 (ADC_ SAMPT2)	191
9.12.7 ADC injected channel data offset register x (ADC_JOFFSETx) (x=14)	192
9.12.8 ADC watchdog high threshold register (ADC_WDGHIGH)	192
9.12.9 ADC watchdog low threshold register (ADC_WDGLOW)	193
9.12.10 ADC regular sequence register 1 (ADC_RSEQ1)	193
9.12.11 ADC regular sequence register 2 (ADC_RSEQ2)	194
9.12.12 ADC regular sequence register 3 (ADC_RSEQ3)	194
9.12.13 ADC Injection sequence register (ADC_JSEQ)	195
9.12.14 ADC injection data register x (ADC_JDATx) (x= 14)	195
9.12.15 ADC regulars data register (ADC_DAT)	196
9.12.16 ADC differential mode selection register (ADC_DIFSEL)	196
9.12.17 ADC calibration factor (ADC_CALFACT)	197
9.12.18 ADC control register 3 (ADC_CTRL3)	197
9.12.19 ADC sampling time register 3 (ADC_SAMPT3)	199
0 DIGITAL TO ANALOG CONVERSION (DAC)	200
10.1 DAC IS INTRODUCED	200
10.2 Main features	200
10.3 DAC FUNCTION DESCRIPTION AND OPERATION DESCRIPTION	202
10.3.1 DAC enable	202

V

10.3.2 DAC output buffer	202
10.3.3 DAC data format	202
10.3.4 DAC trigger	204
10.3.5 DAC conversion	205
10.3.6 DAC output voltage	205
10.3.7 DMA requests	206
10.3.8 The noise	206
10.3.9 Triangular wave generation	207
10.4 DAC DUAL-CHANNEL CONVERSION	208
10.4.1 Independent trigger without waveform generator	208
10.4.2 Independent triggers producing the same noise	208
10.4.3 Independent triggers that generate different noises	209
10.4.4 Independent triggers that generate the same triangle wave	209
10.4.5 Independent trigger to generate different triangle waves	210
10.4.6 Simultaneous software startup	210
10.4.7 Synchronous trigger without waveform generator	211
10.4.8 Synchronous triggers that generate the same noise	211
10.4.9 Synchronous triggers that generate different noises	211
10.4.10 Synchronous trigger to generate the same triangle wave	212
10.4.11 Synchronous trigger to generate different triangle waves	212
10.5 DAC REGISTER	213
10.5.1 DAC registers overview	
10.5.2 DAC control register (DAC_CTRL)	
10.5.3 DAC software trigger register (DAC_SOTTR)	
10.5.4 12 bit right aligned data hold register for DAC1 (DAC_DR12CH1)	
10.5.5 12 bit left aligned data hold register for DAC1 (DAC_DL12CH1)	
10.5.6 8-bit right-aligned data hold register for DAC1 (DAC_DR8CH1)	
10.5.7 12 bit right aligned data hold register for DAC2 (DAC_DR12CH2)	
10.5.8 12 bit left aligned data hold register for DAC2 (DAC_DL12CH2)	218
10.5.9 8-bit right-aligned data hold register for DAC2 (DAC_DR8CH2)	
10.5.10 12 bit right aligned data hold register for dual DAC (DAC_DR12DCH)	
10.5.11 12 bit left aligned data hold register for dual DAC (DAC_DL12DCH)	
10.5.12 8 bit right aligned data hold register for dual DAC (DAC_DR8DCH)	
10.5.13 DAC1 data output register (DAC_DATO1)	
10.5.14 DAC2 data output register (DAC_DATO2)	
11 ADVANCED-CONTROL TIMERS (TIM1 AND TIM8)	222
11.1 TIM1 AND TIM8 INTRODUCTION	
11.2 Main Features of TIM1 and TIM8	
11.3 TIM1 AND TIM8 FUNCTION DESCRIPTION	
11.3.1 Time-base unit	
11.3.2 Counter mode	
11.3.3 Repetition counter	
11.3.4 Clock selection	232

VI

11.3.5 Capture/compare channels	235
11.3.6 Input capture mode	238
11.3.7 PWM input mode	239
11.3.8 Forced output mode	240
11.3.9 Output compare mode	241
11.3.10 PWM mode	242
11.3.11 One-pulse mode	245
11.3.12 Clearing the OCxREF signal on an external event	246
11.3.13 Complementary outputs with dead-time insertion	247
11.3.14 Break function	249
11.3.15 Debug mode	250
11.3.16 TIMx and external trigger synchronization	251
11.3.17 Timer synchronization	254
11.3.18 6-step PWM generation	254
11.3.19 Encoder interface mode	255
11.3.20 Interfacing with Hall sensor	257
11.4 TIMx register description(x=1, 8)	259
11.4.1 Register Overview	259
11.4.2 Control register 1 (TIMx_CTRL1)	260
11.4.3 Control register 2 (TIMx_CTRL2)	263
11.4.4 Slave mode control register (TIMx_SMCTRL)	264
11.4.5 DMA/Interrupt enable registers (TIMx_DINTEN)	267
11.4.6 Status registers (TIMx_STS)	268
11.4.7 Event generation registers (TIMx_EVTGEN)	270
11.4.8 Capture/compare mode register 1 (TIMx_CCMOD1)	271
11.4.9 Capture/compare mode register 2 (TIMx_CCMOD2)	274
11.4.10 Capture/compare enable registers (TIMx_CCEN)	276
11.4.11 Counters (TIMx_CNT)	279
11.4.12 Prescaler (TIMx_PSC)	279
11.4.13 Auto-reload register (TIMx_AR)	279
11.4.14 Repeat count registers (TIMx_REPCNT)	279
11.4.15 Capture/compare register 1 (TIMx_CCDAT1)	280
11.4.16 Capture/compare register 2 (TIMx_CCDAT2)	280
11.4.17 Capture/compare register 3 (TIMx_CCDAT3)	281
11.4.18 Capture/compare register 4 (TIMx_CCDAT4)	281
11.4.19 Break and Dead-time registers (TIMx_BKDT)	282
11.4.20 DMA Control register (TIMx_DCTRL)	284
11.4.21 DMA transfer buffer register (TIMx_DADDR)	284
11.4.22 Capture/compare mode registers 3(TIMx_CCMOD3)	285
11.4.23 Capture/compare register 5 (TIMx_CCDAT5)	286
11.4.24 Capture/compare register 6 (TIMx_CCDAT6)	286
12 GENERAL-PURPOSE TIMERS (TIM2, TIM3, TIM4 AND TIM5)	287
12.1 GENERAL-PURPOSE TIMERS INTRODUCTION	287

12.2 Main features of General-purpose timers	287
12.3 GENERAL-PURPOSE TIMERS DESCRIPTION	288
12.3.1 Time-base unit	288
12.3.2 Counter mode	289
12.3.3 Clock selection	294
12.3.4 Capture/compare channels	298
12.3.5 Input capture mode	301
12.3.6 PWM input mode	302
12.3.7 Forced output mode	303
12.3.8 Output compare mode	303
12.3.9 PWM mode	305
12.3.10 One-pulse mode	308
12.3.11 Clearing the OCxREF signal on an external event	309
12.3.12 Debug mode	310
12.3.13 TIMx and external trigger synchronization	310
12.3.14 Timer synchronization	310
12.3.15 Encoder interface mode	315
12.3.16 Interfacing with Hall sensor	317
12.4 TIMX REGISTER DESCRIPTION(X=2, 3, 4 AND 5)	317
12.4.1 Register Overview	317
12.4.2 Control register 1 (TIMx_CTRL1)	319
12.4.3 Control register 2 (TIMx_CTRL2)	321
12.4.4 Slave mode control register (TIMx_SMCTRL)	322
12.4.5 DMA/Interrupt enable registers (TIMx_DINTEN)	325
12.4.6 Status registers (TIMx_STS)	326
12.4.7 Event generation registers (TIMx_EVTGEN)	327
12.4.8 Capture/compare mode register 1 (TIMx_CCMOD1)	328
12.4.9 Capture/compare mode register 2 (TIMx_CCMOD2)	331
12.4.10 Capture/compare enable registers (TIMx_CCEN)	333
12.4.11 Counters (TIMx_CNT)	334
12.4.12 Prescaler (TIMx_PSC)	334
12.4.13 Auto-reload register (TIMx_AR)	335
12.4.14 Capture/compare register 1 (TIMx_CCDAT1)	335
12.4.15 Capture/compare register 2 (TIMx_CCDAT2)	336
12.4.16 Capture/compare register 3 (TIMx_CCDAT3)	336
12.4.17 Capture/compare register 4 (TIMx_CCDAT4)	337
12.4.18 DMA Control register (TIMx_DCTRL)	337
12.4.19 DMA transfer buffer register (TIMx_DADDR)	338
13 BASIC TIMERS (TIM6 AND TIM7)	340
13.1 BASIC TIMERS INTRODUCTION.	340
13.2 Main features of Basic timers	
13.3 BASIC TIMERS DESCRIPTION	340
13.3.1 Time-base unit	340

VIII

13.3.2 Counter mode	341
13.3.3 Clock selection	345
13.3.4 Debug mode	345
13.4 TIMx register description(x = 6 and 7)	345
13.4.1 Register overview	346
13.4.2 Control Register 1 (TIMx_CTRL1)	346
13.4.3 Control Register 2 (TIMx_CTRL2)	347
13.4.4 DMA/Interrupt Enable Registers (TIMx_DINTEN)	
13.4.5 Status Registers (TIMx_STS)	
13.4.6 Event Generation registers (TIMx_EVTGEN)	
13.4.7 Counters (TIMx_CNT)	
13.4.8 Prescaler (TIMx_PSC)	
13.4.9 Automatic reload register (TIMx_AR)	350
14 REAL-TIME CLOCK (RTC)	351
14.1 DESCRIPTION	351
14.1.1 Specification	352
14.2 RTC FUNCTION DESCRIPTION	353
14.2.1 RTC block diagram	353
14.2.2 GPIOs of RTC	354
14.2.3 RTC register write protection	
14.2.4 RTC clock and prescaler	354
14.2.5 RTC calendar	
14.2.6 Calendar initialization and configuration	
14.2.7 Calendar reading	355
14.2.8 Calibration clock output	356
14.2.9 Programmable alarms	
14.2.10 Alarm configuration	357
14.2.11 Alarm output	357
14.2.12 Periodic automatic wakeup	
14.2.13 Wakeup timer configuration	358
14.2.14 Timestamp function	358
14.2.15 Daylight saving time configuration	
14.2.16 RTC sub-second register shift	358
14.2.17 RTC digital clock precision calibration	359
14.2.18 RTC low power mode	360
14.3 RTC REGISTERS	360
14.3.1 RTC Register overview	360
14.3.2 RTC Calendar Time Register (RTC_TSH)	362
14.3.3 RTC Calendar Date Register (RTC_DATE)	362
14.3.4 RTC Control Register (RTC_CTRL)	363
14.3.5 RTC Initial Status Register (RTC_INITSTS)	
14.3.6 RTC Prescaler Register (RTC_PRE)	367
14.3.7 RTC Wakeup Timer Register (RTC_WKUPT)	367

IX

14.3.8 RTC Alarm A Register (RTC_ALARMA)	368
14.3.9 RTC Alarm B Register (RTC_ ALARMB)	369
14.3.10 RTC Write Protection register (RTC_WRP)	370
14.3.11 RTC Sub-second Register (RTC_SUBS)	370
14.3.12 RTC Shift Control Register (RTC_ SCTRL)	371
14.3.13 RTC Timestamp Time Register (RTC_TST)	371
14.3.14 RTC Timestamp Date Register (RTC_TSD)	372
14.3.15 RTC Timestamp Sub-second Register (RTC_TSSS)	373
14.3.16 RTC Calibration Register (RTC_CALIB)	373
14.3.17 RTC Alarm A sub-second register (RTC_ ALRMASS)	374
14.3.18 RTC Alarm B sub-second register (RTC_ ALRMBSS)	375
14.3.19 RTC Option Register (RTC_ OPT)	375
15 CRC CALCULATION UNIT	377
15.1 Introduction	
15.2 Main features	
15.2.1 CRC32	
15.2.2 CRC16	
15.3 Function description	378
15.3.1 CRC32	
15.3.2 CRC16	
15.4 CRC registers	
15.4.1 CRC register overview	
15.4.2 CRC32 data register (CRC_CRC32DAT)	
15.4.3 CRC32 independent data register (CRC_CRC32IDAT)	
15.4.4 CRC32 control register (CRC_CRC32CTRL)	
15.4.5 CRC16 control register (CRC_CRC16CTRL)	
15.4.6 CRC16 input data register (CRC_CRC16DAT)	
15.4.7 CRC cyclic redundancy check code register (CRC_CRC16D)	
15.4.8 LRC result register (CRC_LRC)	382
16 INDEPENDENT WATCHDOG (IWDG)	383
16.1 Introduction	383
16.2 Main features	383
16.3 FUNCTIONAL DESCRIPTION	384
16.3.1 Register access protection	384
16.3.2 Debug mode	385
16.4 User interface	385
16.4.1 Operate flow	385
16.4.2 IWDG configuration flow	386
16.5 IWDG registers	387
16.5.1 IWDG register overview	387
16.5.2 IWDG key register (IWDG_KEY)	387
16.5.3 IWDG pre-scaler register (IWDG_PREDIV)	387

X

16.5.4 IWDG reload register (IWDG_RELV)	388
16.5.5 IWDG status register (IWDG_STS)	389
17 WINDOW WATCHDOG (WWDG)	390
17.1 Introduction	390
17.2 Main features	390
17.3 Function description	390
17.4 TIMING FOR REFRESH WATCHDOG AND INTERRUPT GENERATION	391
17.5 DEBUG MODE	392
17.6 User interface	392
17.6.1 WWDG configuration flow	392
17.7 WWDG registers	393
17.7.1 WWDG register overview	393
17.7.2 WWDG control register (WWDG_CTRL)	393
17.7.3 WWDG config register (WWDG_CFG)	393
17.7.4 WWDG status register (WWDG_STS)	394
18 SDIO INTERFACE(SDIO)	395
18.1 Main features of SDIO	395
18,2 SDIO BUS TOPOLOGY	396
18.3 SDIO FUNCTION DESCRIPTION	398
18.3.1 SDIO adapter	398
18.3.2 SDIO AHB Interface	
18.4 CARD FUNCTION DESCRIPTION	410
18.4.1 Confirmation of working voltage range	410
18.4.2 Card reset	410
18.4.3 Card identification mode	411
18.4.4 Card identification process	411
18.4.5 Write data block	412
18.4.6 Read data block	413
18.4.7 Data Streaming Operation (Only for Multimedia Card)	413
18.4.8 Erase	415
18.4.9 Wide bus selection and de-selection	415
18.4.10 Protection management	415
18.4.11 Card status register	419
18.4.12 SD I/O mode	426
18.5 COMMANDS AND RESPONSES	427
18.5.1 Application related commands and general commands	427
18.5.2 Commands of Multimedia Card/SD Card module	428
18.5.3 Command type	430
18.5.4 Command format	431
18.5.5 Response format	432
18.6 Hardware flow control	435
18.7 SDIO REGISTER	435

18.7.1 SDIO register overview	435
18.7.2 SDIO power control register (SDIO_PWRCTRL)	436
18.7.3 SDIO clock control register (SDIO_CLKCTRL)	437
18.7.4 SDIO command argument register (SDIO_CMDARG)	438
18.7.5 SDIO command register (SDIO_CMDCTRL)	438
18.7.6 SDIO command response register(SDIO_CMDRESP)	439
18.7.7 SDIO response 14 register (SDIO_RESPONSEx)	440
18.7.8 SDIO data timer register (SDIO_DTIMER)	440
18.7.9 SDIO data length register (SDIO_DATLEN)	441
18.7.10 SDIO data control register (SDIO_DATCTRL)	441
18.7.11 SDIO data counter register (SDIO_DATCOUNT)	443
18.7.12 SDIO status register (SDIO_STS)	443
18.7.13 SDIO interrupt clear register (SDIO_INTCLR)	445
18.7.14 SDIO interrupt enable register (SDIO_INTEN)	446
18.7.15 SDIO FIFO counter register (SDIO_FIFOCOUNT)	449
18.7.16 SDIO data FIFO register (SDIO_DATFIFO)	449
19 UNIVERSAL SERIAL BUS FULL-SPEED DEVICE INTERFACE (USB_FS_DEVICE)	450
19.1 Introduction	450
19.2 Main features	450
19.3 CLOCK CONFIGURATION	451
19.4 FUNCTIONAL DESCRIPTION	451
19.4.1 Access Packet Buffer Memory	451
19.4.2 Buffer description table	452
19.4.3 Double-buffered endpoints	453
19.4.4 USB transfer	456
19.4.5 USB events and interrupts	461
19.4.6 Endpoint initialization	463
19.5 USB registers	463
19.5.1 USB register overview	464
19.5.2 USB endpoint n register (USB_EPn), n=[07]	465
19.5.3 USB control register (USB_CTRL)	467
19.5.4 USB interrupt status register (USB_STS)	469
19.5.5 USB frame number register (USB_FN)	472
19.5.6 USB device address register (USB_ADDR)	472
19.5.7 USB packet buffer description table address register (USB_BUFTAB)	473
19.6 Buffer description table	
19.6.1 Send buffer address register n (USB_ADDRn_TX)	
19.6.2 Send data byte number register n (USB_CNTn_TX)	474
19.6.3 Receive buffer address register n (USB_ADDRn_RX)	
19.6.4 Receive data byte number register n (USB_CNTn_RX)	475
20 CONTROLLER AREA NETWORK (CAN)	477
20.1 Introduction to CAN	477

20.2 Main features of CAN	477
20.3 CAN OVERALL INTRODUCTION	478
20.3.1 CAN module	478
20.3.2 CAN working mode	478
20.3.3 Send mailbox	480
20.3.4 Receiving filter	480
20.3.5 Receive FIFO	480
20.3.6 CAN Test mode	482
20.3.7 CAN Debugging mode	484
20.4 CAN FUNCTION DESCRIPTION	484
20.4.1 Send processing	484
20.4.2 Time triggered communication mode	485
20.4.3 Non-automatic retransmission mode	485
20.4.4 Receiving management	486
20.4.5 Identifier filtering	488
20.4.6 Message storage	491
20.4.7 Bit time characteristic	492
20.5 CAN INTERRUPT	495
20.5.1 Error management	496
20.5.2 Bus-Off recovery	496
20.6 CAN CONFIGURATION FLOW	496
20.7 CAN REGISTER FILE	498
20.7.1 Register Description	498
20.7.2 CAN register address overview	499
20.7.3 CAN control and status register	503
20.7.4 CAN mailbox register	514
20.7.5 CAN filter register	519
21 SERIAL PERIPHERAL INTERFACE/INTER-IC SOUND (SPI/ I ² S)	523
21.1 SPI/ I ² S INTRODUCTION	523
21.2 SPI and I ² S main features	523
21.2.1 SPI features	523
21.2.2 I ² S features	523
21.3 SPI function description	524
21.3.1 General description	524
21.3.2 SPI work mode	527
21.3.3 Status flag	533
21.3.4 Disabling the SPI	534
21.3.5 SPI communication using DMA	535
21.3.6 CRC calculation	536
21.3.7 Error flag	537
21.3.8 SPI interrupt	538
21.4 I ² S function description	539
21.4.1 Supported audio protocols	540

XIII

21.4.2 Clock generator	546
21.4.3 I ² S Transmission and reception sequence	548
21.4.4 Status flag	550
21.4.5 Error flag	551
21.4.6 I ² S interrupt	551
21.4.7 DMA function	551
21.5 SPI and I ² S register description	552
21.5.1 SPI register overview	552
21.5.2 SPI control register 1 (SPI_CTRL1) (not used in I2S mode)	552
21.5.3 SPI control register 2 (SPI_CTRL2)	555
21.5.4 SPI status register (SPI_STS)	555
21.5.5 SPI data register (SPI_DAT)	557
21.5.6 SPI CRC polynomial register (SPI_CRCPOLY) (not used in I ² S mode)	557
21.5.7 SPI RX CRC register (SPI_CRCRDAT) (not used in I ² S mode)	557
21.5.8 SPI TX CRC register (SPI_CRCTDAT)	558
21.5.9 SPI_ I ² S configuration register(SPI_I2SCFG)	558
21.5.10 SPI_I ² S prescaler register (SPI_I2SPREDIV)	560
22 I ² C INTERFACE	561
22.1 Introduction	561
22.2 Main features	561
22.3 FUNCTION DESCRIPTION	561
22.3.1 SDA and SCL line control	561
22.3.2 Software communication process	562
22.3.3 Error conditions description	572
22.3.4 DMA application	573
22.3.5 Packet error check	
22.3.6 SMBus	
22.4 Debug mode	577
22.5 Interrupt request	577
22.6 I2C registers	578
22.6.1 I2C register overview	578
22.6.2 I2C Control register 1 (I2C_CTRL1)	579
22.6.3 I2C Control register 2 (I2C_CTRL2)	581
22.6.4 I2C Own address register 1 (I2C_OADDR1)	582
22.6.5 I2C Own address register 2 (I2C_OADDR2)	583
22.6.6 I2C Data register (I2C_DAT)	583
22.6.7 I2C Status register 1 (I2C_STS1)	583
22.6.8 I2C Status register 2 (I2C_STS2)	587
22.6.9 I2C Clock control register (I2C_CLKCTRL)	588
22.6.10 I2C Rise time register (I2C_TMRISE)	589
23 UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)	590
23.1 Introduction	590

XIV

23.2 Main features	590
23.3 FUNCTIONAL BLOCK DIAGRAM	591
23.4 FUNCTION DESCRIPTION	591
23.4.1 USART frame format	592
23.4.2 Transmitter	593
23.4.3 Receiver	595
23.4.4 Generation of fractional baud rate	598
23.4.5 Receiver's tolerance clock deviation	600
23.4.6 Parity control	600
23.4.7 DMA application	601
23.4.8 Hardware flow control	603
23.4.9 Multiprocessor communication	605
23.4.10 Synchronous mode	607
23.4.11 Single-wire half-duplex mode	609
23.4.12 IrDA SIR ENDEC mode	610
23.4.13 LIN mode	611
23.4.14 Smartcard mode (ISO7816)	614
23.5 INTERRUPT REQUEST	616
23.6 Mode support	617
23.7 USART REGISTERS	617
23.7.1 USART register overview	617
23.7.2 USART Status register (USART_STS)	618
23.7.3 USART Data register (USART_DAT)	620
23.7.4 USART Baud rate register (USART_BRCF)	621
23.7.5 USART control register 1 register (USART_CTRL1)	621
23.7.6 USART control register 2 register (USART_CTRL2)	
23.7.7 USART control register 3 register (USART_CTRL3)	624
23.7.8 USART guard time and prescaler register (USART_GTP)	626
24 QUAD SERIAL PERIPHERAL INTERFACE (QSPI)	628
24.1 Introduction	628
24.2 QSPI Main features	628
24.3 FUNCTION DESCRIPTION	629
24.4 QSPI COMMAND SEQUENCE	629
24.5 OPERATING PROCEDURES	630
24.5.1 QSPI indirect mode	630
24.5.2 QSPI Indirect send operation	631
24.5.3 QSPI indirect receive operation	633
24.6 QSPI register	635
24.6.1 QSPI register overview	635
24.6.2 QSPI Control 0 Register (QSPI_CTRL0)	637
24.6.3 QSPI Control 1 Register (QSPI_CTRL1)	639
24.6.4 QSPI Enable Register (QSPI_EN)	639
24.6.5 QSPI Microwire Control Register (QSPI_MW_CTRL)	640

XV

25

24.6.6 QSPI Slave Enable Register (QSPI_SLAVE_EN)	640
24.6.7 QSPI Baud Rate Select Register (QSPI_BAUD)	641
24.6.8 QSPI Transmit FIFO Threshold Level Register (QSPI_TXFT)	641
24.6.9 QSPI Receive FIFO Threshold Level Register (QSPI_RXFT)	642
24.6.10 QSPI Transmit FIFO Level Register (QSPI_TXFN)	642
24.6.11 QSPI Receive FIFO Level Register (QSPI_RXFN)	643
24.6.12 QSPI Status Register (QSPI_STS)	643
24.6.13 QSPI Interrupt Mask Register (QSPI_IMASK)	644
24.6.14 QSPI Interrupt Status Register (QSPI_ISTS)	645
24.6.15 QSPI Raw Interrupt Status Register (QSPI_RISTS)	646
24.6.16 QSPI Transmit FIFO Overflow Interrupt Clear Register (QSPI_TXFOI_CLR)	647
24.6.17 QSPI Receive FIFO Overflow Interrupt Clear Register (QSPI_RXFOI_CLR)	647
24.6.18 QSPI Receive FIFO Underflow Interrupt Clear Register (QSPI_RXFUI_CLR)	647
24.6.19 QSPI Multi-Master Interrupt Clear Register (QSPI_MMCI_CLR)	648
24.6.20 QSPI Interrupt Clear Register (QSPI_ICLR)	648
24.6.21 QSPI DMA Control Register (QSPI_DMA_CTRL)	649
24.6.22 QSPI DMA Transmit Data Level Register (QSPI_DMATDL_CTRL)	649
24.6.23 QSPI DMA Receive Data Level Register (QSPI_DMARDL_CTRL)	649
24.6.24 QSPI Data Register (QSPI_DATx)	650
24.6.25 QSPI RX Sample Delay Register (QSPI_RS_DELAY)	650
24.6.26 QSPI Enhanced SPI Mode Control 0 Register (QSPI_ENH_CTRL0)	651
24.6.27 QSPI DDR Transmit Drive Edge Register (QSPI_DDR_TXDE)	652
24.6.28 QSPI XIP Mode bits Register (QSPI_XIP_MODE)	652
24.6.29 QSPI XIP INCR transfer opcode Register (QSPI_XIP_INCR_TOC)	653
24.6.30 QSPI XIP WRAP transfer opcode Register (QSPI_XIP_WRAP_TOC)	653
24.6.31 QSPI XIP Control Register (QSPI_XIP_CTRL)	654
24.6.32 QSPI XIP Slave Enable Register (QSPI_XIP_SLAVE_EN)	655
24.6.33 QSPI XIP Receive FIFO Overflow Interrupt Clear Register (QSPI_XIP_RXFOI_CLR)	656
24.6.34 QSPI XIP time out for continuous transfers register (QSPI_XIP_TOUT)	656
DVP INTERFACE	658
25.1 Introduction	
25.2 Hardware Interface	
25.2.1 Pin Multiplexing	
25.2.2 Interface Timing	
25.3 Operating Instructions	
25.3.1 General operation process	
25.3.2 DMA application	660
25.3.3 Image size	
25.3.4 Image area	
25.3.5 Data scaling	660
25.3.6 Soft reset	
25.3.7 Interrupts	
25.3.8 Read FIFO data	661

25.3.9 Notes	661
25.4 DVP register	662
25.4.1 DVP register overview	662
25.4.2 DVP Control Register(DVP_CTRL)	662
25.4.3 DVP Status Register (DVP_STS)	664
25.4.4 DVP Interrupt And Status Register (DVP_INTSTS)	665
25.4.5 DVP Interrupt Enable Register (DVP_INTEN)	666
25.4.6 DVP Interrupt Trigger Status Register (DVP_MINTSTS)	667
25.4.7 DVP Figure Start Register (DVP_WST)	668
25.4.8 DVP Figure Size Register (DVP_WSIZE)	669
25.4.9 DVP FIFO Register (DVP_FIFO)	669
26 DEBUG SUPPORT (DBG)	671
26.1 Overview	671
26.2 JTAG/SWD FUNCTION	672
26.2.1 Switch JTAG/SWD interface	672
26.2.2 Pin allocation	672
26.3 MCU DEBUGGING FUNCTION	673
26.3.1 Low power mode support	673
26.3.2 Peripheral debugging support	673
26.4 DBG registers	674
26.4.1 DBG register overview	674
26.4.2 ID register (DBG_ID)	674
26.4.3 Debug control register (DBG_CTRL)	675
27 UNIQUE DEVICE SERIAL NUMBER (UID)	678
27.1 Introduction	678
27.2 UID REGISTER	678
27.3 UCID REGISTER	678
28 VERSION HISTORY	679
29 NOTICE	680

XVII

List of Table

Table 2-1 List of boot mode	6
Table 2-2 Flash bus address list	7
Table 2-3 Option byte list	11
Table 2-4 Read protection configuration list	12
Table 2-5 Flash read-write-erase (1) permission control table	14
Table 2-6 SRAM Capacity Configuration Table	20
Table 2-7 FLASH register overview	21
Table 3-1 Power modes	34
Table 3-2 Blocks running state ⁽¹⁾	36
Table 3-3 PWR register overview	42
Table 4-1 BKP Register overview	48
Table 5-1 RCC register overview	61
Table 6-1 I/O mode and configuration relationship	88
Table 6-2 I/O characteristics of different IO configurations	89
Table 6-3 Debug port image	97
Table 6-4 ADC1 external trigger injection conversion alternate function remapping	98
Table 6-5 ADC1 external trigger regular conversion alternate function remapping	98
Table 6-6 ADC2 external trigger injection conversion alternate function remapping	98
Table 6-7 ADC2 external trigger regular conversion alternate function remapping	98
Table 6-8 TIM5 alternate function remapping	98
Table 6-9 TIM4 alternate function remapping	98
Table 6-10 TIM3 alternate Function remapping	99
Table 6-11 TIM2 alternate function remapping	99
Table 6-12 TIM1 alternate function remapping	99
Table 6-13 TIM8 alternate function remapping	99
Table 6-14 CAN1 alternate function remapping	100
Table 6-15 CAN2 alternate function remapping	100
Table 6-16 DVP alternate function remapping	100
Table 6-17 USART1 alternate function remapping	101
Table 6-18 USART2 alternate function remapping	101
Table 6-19 USART3 alternate function remapping	101
Table 6-20 UART4 alternate function remapping	101
Table 6-21 UART5 alternate function remapping	102
Table 6-22 UART6 alternate function remapping	102
Table 6-23 UART7 alternate function remapping	102
Table 6-24 I2C1 pin remapping	102
Table 6-25 I2C2 pin remapping	102
Table 6-26 I2C3 pin remapping	103
Table 6-27 I2C4 pin remapping	103
Table6-28 SPI1 pin remapping	103
Table 6-29 SPI2/I2S2 pin remapping	103

XVIII

Table 6-30 SPI3/I2S3 pin remapping	103
Table 6-31 SDIO pin remapping	104
Table 6-32 QSPI pin remapping	104
Table 6-33 ADC/DAC	104
Table 6-34 TIM1/TIM8	104
Table 6-35 TIM2/3/4/5	105
Table 6-36 bxCAN	105
Table 6-37 DVP	105
Table 6-38 USART	105
Table 6-39 I2C	105
Table 6-40 SPI	106
Table 6-41 I2S	106
Table 6-42 SDIO	106
Table 6-43 QSPI	106
Table 6-44 USB	107
Table 6-45 other	107
Table 6-46 GPIO registers overview	108
Table 6-47 AFIO register overview	114
Table 7-1 Vector table	128
Table 7-2 EXTI register overview	135
Table 8-1 Programmable data width and endian operation (when PINC = MINC = 1)	143
Table 8-2 Flow control table	145
Table 8-3 DMA interrupt request	146
Table 8-4 DMA1 request mapping table for each channel	147
Table 8-5 DMA2 request mapping table for each channel	149
Table 8-6 DMA register overview	150
Table 9-1 ADC pins	163
Table 9-2 Analog watchdog channel selection	168
Table 9-3 Right-align data	172
Table 9-4 Left-aligne data	172
Table 9-5 External trigger for regular channels of ADC1 and ADC2	173
Table 9-6 External trigger for injection channel of ADC1 and ADC2	173
Table 9-7 ADC interrupt	184
Table 9-8 ADC register overview	184
Table 10-1 DAC pins	201
Table 10-2 DAC external trigger	204
Table 10-3 DAC registers overvie	213
Table 11-1 Counting direction versus encoder signals	256
Table 11-2 Register map and reset value	259
Table 11-3 TIMx internal trigger connection	266
Table 11-4 Output control bits of complementary OCx and OCxN channels with break function	278
Table 12-1 Counting direction versus encoder signals	315
Table 12-2 Register map and reset value	317

XIX

Table 12-3 TIMx internal trigger connection	324
Table 12-4 Output control bits of standard OCx channel	334
Table 13-1 Register overview	346
Table 14-1 RTC feature support	352
Table 14-2 RTC register overview	360
Table 15-1 CRC register overview	379
Table 16-1 IWDG counting maximum and minimum reset time	386
Table 16-2 IWDG register overview	387
Table 17-1 Maximum and minimum counting time of WWDG	392
Table 17-2 WWDG register overview	393
Table 18-1 MMC/SD/SD I/O Card bus pin definition	400
Table 18-2 Command Channel Status Flags	404
Table 18-3 Data Token Format	407
Table 18-4 Transmit FIFO Status Flags	408
Table 18-5 Receive FIFO Status Flags	408
Table 18-6 Lock/Unlock Data Structure	416
Table 18-7 Card Status	419
Table 18-8 SD Status	422
Table 18-9 Speed Type Codes	424
Table 18-10 Mobility Performance Codes	424
Table 18-11 AU_SIZE Codes	424
Table 18-12 Maximum AU Size	425
Table 18-13 ERASE_SIZE Codes	425
Table 18-14 Erase Timeout Code	425
Table 18-15 Erase Offset Codes	426
Table 18-16 Write commands for block-based transfers	428
Table 18-17 Block-based write-protect commands	429
Table 18-18 Erase command	429
Table 18-19 I/O mode command	429
Table 18-20 Lock command	430
Table 18-21 Application related commands	430
Table 18-22 Command format	431
Table 18-23 Short response format	431
Table 18-24 Long response format	432
Table 18-25 R1 response	432
Table 18-26 R2 response	432
Table 18-27 R3 response	433
Table 18-28 R4 response	433
Table 18-29 R4b response	433
Table 18-30 R5 response	434
Table 18-31 R6 response	434
Table 18-32 SDIO register overview	435
Table 18-33 Response Type and SDIO_RESPONSEx Register	440

Table 19-1 DATTOG and SW_BUF definitions	454
Table 19-2 How to use double buffering	454
Table 19-3 How to use isochronous double buffering	461
Table 19-4 Resume event detection	462
Table 19-5 USB register overview	464
Table 19-6 Receive status code	467
Table 19-7 Send status code	467
Table 19-8 Endpoint packet receive buffer size definition	475
Table 20-1 Examples of filter numbers	490
Table 20-2 Send mailbox register list	492
Table 20-3 Receive mailbox register list	492
Table 20-4 CAN register overview	499
Table 21-1 SPI interrupt request	538
Table 21-2 Use the standard 8MHz HSE clock to get accurate audio frequency	548
Table 21-3 I ² S interrupt request	551
Table 21-4 SPI register overview	552
Table 22-1 Comparison between SMBus and I2C	575
Table 22-2 I ² C interrupt request	577
Table 22-3 I2C register overview	578
Table 23-1 Stop bit configuration	593
Table 23-2 Data sampling for noise detection	598
Table 23-3 Error calculation when setting baud rate	599
Table 23-4 when DIV_Decimal = 0. Tolerance of USART receiver	600
Table 23-5 when DIV_Decimal != 0. Tolerance of USART receiver	600
Table 23-6 Frame format	600
Table 23-7 USART interrupt request	616
Table 23-8 USART mode setting (1)	617
Table 23-9 USART register overview	617
Table 24-1 QSPI register overview	635
Table 25-1 DVP Pin Multiplexing	658
Table 25-2 DVP register overview	662
Table 26-1 Debug port pin	673
Table 26-2 DBG register overview	674

XXI

List of Figure

Figure 2-1 Bus architecture	2
Figure 2-2 Bus address map	4
Figure 3-1 Power supply block diagram	32
Figure 3-2 Waveforms of power-on reset and power-down reset	33
Figure 3-3 PVD threshold waveform	34
Figure 5-1 System reset generation	54
Figure 5-2 Clock Tree	56
Figure 5-3 HSE/LSE clock source	57
Figure 6-1 Basic structure of I/O port	88
Figure 6-2 Input float/pull-up/pull-down configuration	90
Figure 6-3 Output mode configuration	91
Figure 6-4 Alternate function configuration	92
Figure 6-5 High impedance analog mode configuration	93
Figure 7-1 External interrupt/event controller block diagram	132
Figure 7-2 External interrupt GPIO mapping	134
Figure 8-1 DMA block diagram	141
Figure 8-2 DMA1 request mapping	147
Figure 8-3 DMA2 request mapping	149
Figure 9-1 Block diagram of a single ADC	163
Figure 9-2 ADC clock	164
Figure 9-3 ADC1 and ADC2 channel pin connections	166
Figure 9-4 Timing diagram	168
Figure 9-5 Injection conversion delay	170
Figure 9-6 Calibration sequence diagram	171
Figure 9-7 Dual ADC Block Diagram	175
Figure 9-8 Schematic diagram of synchronous regular mode conversion of 16 channels	176
Figure 9-9 Schematic diagram of synchronous injection mode conversion of 4 channels	177
Figure 9-10 Schematic diagram of fast alternate mode conversion for continuous conversion of 1 channel	178
Figure 9-11 Schematic diagram of slow alternate mode conversion for 1 channel	179
Figure 9-12 Rotation triggering: injecting channel groups	179
Figure 9-13 Rotation trigger: inject channel group in discontinuous mode	180
Figure 9-14 Combination of rotation mode and synchronous regular mode	181
Figure 9-15 Injection trigger occurs during injection transition	181
Figure 9-16 Alternate single-channel conversions are interrupted by injection sequences CH3 and CH4	182
Figure 9-17 Temperature sensor and VREFINT diagram of the channel	183
Figure 10-1 Block diagram of a DAC channel	201
Figure 10-2 Data format when DAC independent output	203
Figure 10-3 Data format for DAC sync output	204
Figure 10-4 Time diagram of transitions with trigger disabled	205
Figure 10-5 LFSR algorithm for DAC	206
Figure 10-6 DAC conversion with LFSR waveform generation (enable software trigger)	207

XXII

Figure	10-7 Triangle wave generation of DAC	207
Figure	10-8 DAC conversion with trigonometry generation (enable software trigger)	208
Figure	11-1 Block diagram of TIM1 and TIM8	223
Figure	11-2 Counter timing diagram with prescaler division change from 1 to 4	224
Figure	11-3 Timing diagram of up-counting. The internal clock divider factor = 2/N	225
Figure	11-4 Timing diagram of the up-counting, update event when ARPEN=0/1	226
Figure	11-5 Timing diagram of the down-counting, internal clock divided factor = 2/N	227
Figure	11-6 Timing diagram of the Center-aligned, internal clock divided factor =2/N	228
Figure	11-7 A center-aligned sequence diagram that includes counter overflows and underflows (ARPEN=1)	229
Figure	11-8 Repeat count sequence diagram in down-counting mode	230
Figure	11-9 Repeat count sequence diagram in up-counting mode	231
Figure	11-10 Repeat count sequence diagram in center-aligned mode	231
Figure	11-11 Control circuit in normal mode, internal clock divided by 1	232
Figure	11-12 TI2 external clock connection example	233
Figure	11-13 Control circuit in external clock mode 1	234
Figure	11-14 External trigger input block diagram	234
Figure	11-15 Control circuit in external clock mode 2	235
Figure	11-16 Capture/compare channel (example: channel 1 input stage)	236
Figure	11-17 Capture/compare channel 1 main circuit	237
Figure	11-18 Output part of channelx (x= 1,2,3, take channel 1 as example)	238
Figure	11-19 Output part of channelx (x= 4)	238
Figure	11-20 PWM input mode timing	240
Figure	11-21 Output compare mode, toggle on OC1	242
Figure	11-22 Center-aligned PWM waveform (AR=8)	243
Figure	11-23 Edge-aligned PWM waveform (APR=8)	244
Figure	11-24 Clearing the OCxREF of TIMx	247
Figure	11-25 Complementary output with dead-time insertion	248
Figure	11-26 Output behavior in response to a break	250
Figure	11-27 Control circuit in reset mode	251
Figure	11-28 Control circuit in Trigger mode	252
Figure	11-29 Control circuit in Gated mode	253
Figure	11-30 Control circuit in Trigger Mode + External Clock Mode2	254
Figure	11-31 6-step PWM generation, COM example (OSSR=1)	255
Figure	11-32 Example of counter operation in encoder interface mode	256
Figure	11-33 Encoder interface mode example with IC1FP1 polarity inverted	257
Figure	11-34 Example of Hall sensor interface	258
Figure	12-1 Block diagram of TIMx (x=2, 3,4 and 5)	288
Figure	12-2 Counter timing diagram with prescaler division change from 1 to 4	289
Figure	12-3 Timing diagram of up-counting. The internal clock divider factor = 2/N	290
Figure	12-4 Timing diagram of the up-counting, update event when ARPEN=0/1	291
Figure	12-5 Timing diagram of the down-counting, internal clock divided factor = 2/N	292
Figure	12-6 Timing diagram of the Center-aligned, internal clock divided factor =2/N	293
Figure	12-7 A center-aligned sequence diagram that includes counter overflows and underflows (ARPEN=1)	294

XXIII

Figure 12-8 Control circuit in normal mode, internal clock divided by 1	295
Figure 12-9 TI2 external clock connection example	296
Figure 12-10 Control circuit in external clock mode 1	297
Figure 12-11 External trigger input block diagram	297
Figure 12-12 Control circuit in external clock mode 2	298
Figure 12-13 Capture/compare channel (example: channel 1 input stage)	299
Figure 12-14 Capture/compare channel 1 main circuit	300
Figure 12-15 Output part of channels $(x = 1,2,3,4;take channel 4 as an example)$	301
Figure 12-16 PWM input mode timing	303
Figure 12-17 Output compare mode, toggle on OC1	305
Figure 12-18 Center-aligned PWM waveform (AR=8)	306
Figure 12-19 Edge-aligned PWM waveform (APR=8)	307
Figure 12-20 Example of One-pulse mode	308
Figure 12-21 Control circuit in reset mode	310
Figure 12-22 Block diagram of timer interconnection	311
Figure 12-23 TIM2 gated by OC1REF of TIM1	312
Figure 12-24 TIM2 gated by enable signal of TIM1	313
Figure 12-25 Trigger TIM2 with an update of TIM1	314
Figure 12-26 Triggers timers 1 and 2 using the TI1 input of TIM1	315
Figure 12-27 Example of counter operation in encoder interface mode	316
Figure 12-28 Encoder interface mode example with IC1FP1 polarity inverted	317
Figure 13-1 Block diagram of TIMx (x = 6 and 7)	340
Figure 13-2 Counter timing diagram with prescaler division change from 1 to 4	341
Figure 13-3 Timing diagram of up-counting. The internal clock divider factor = 2/N	343
Figure 13-4 Timing diagram of the up-counting, update event when ARPEN=0/1	344
Figure 13-5 Control circuit in normal mode, internal clock divided by 1	345
Figure 14-1 RTC Block Diagram	353
Figure 15-1 CRC calculation unit block diagram	378
Figure 16-1 Functional block diagram of the independent watchdog module	384
Figure 17-1 Watchdog block diagram	390
Figure 17-2 Refresh window and interrupt timing of WWDG	391
Figure 18-1 SDIO "No Response" and "No Data" operations	397
Figure 18-2 SDIO (multi) data block read operation	397
Figure 18-3 SDIO (multiple) data block write operation	397
Figure 18-4 SDIO continuous read operation	397
Figure 18-5 SDIO continuous write operation	398
Figure 18-6 SDIO block diagram	398
Figure 18-7 SDIO adapter	399
Figure 18-8 Control unit	401
Figure 18-9 SDIO adapter command unit	402
Figure 18-10 Command Path State Machine (CPSM)	402
Figure 18-11 SDIO command transmission	404
Figure 18-12 Data Channel	405

XXIV

Figure 18-13 Data Path State Machine (DPSM)	406
Figure 19-1 USB device block diagram	450
Figure 19-2 The user applications and the USB modules access Packet Buffer Memory	452
Figure 19-3 The relationship between the buffer description table and the endpoint packet buffer	453
Figure 19-4 Double buffered bulk endpoint example	456
Figure 19-5 Control transfer	460
Figure 20-1 Topology of CAN network	478
Figure 20-2 CAN working mode	480
Figure 20-3 Dual CAN block diagram	481
Figure 20-4 loopback mode	482
Figure 20-5 silent mode	483
Figure 20-6 loopback silent mode	483
Figure 20-7 Send mailbox status	486
Figure 20-8 Receive FIFO status	487
Figure 20-9 Filter bit width setting-register organization.	489
Figure 20-10 Examples of filter mechanisms	491
Figure 20-11 Bit sequence	493
Figure 20-12 Various CAN frames	494
Figure 20-13 Event flag and interrupt generation	495
Figure 20-14 CAN error state diagram	496
Figure 21-1 SPI block diagram.	524
Figure 21-2 Selective management of hardware/software	525
Figure 21-3 Master and slave applications	526
Figure 21-4 Data clock timing diagram	527
Figure 21-5 Schematic diagram of the change of TE/RNE/BUSY when the host is continuously transmitti	ng in full
duplex mode	528
Figure 21-6 Schematic diagram of TE/BUSY change when the host transmits continuously in one-way on	ly mode 5
29	
Figure 21-7 Schematic diagram of RNE change when continuous transmission occurs in receive-only model.	de (BIDIR
MODE = 0 and $RONLY = 1)$	530
Figure 21-8 Schematic diagram of the change of TE/RNE/BUSY when the slave is continuously transmitt	ing in full
duplex mode	530
Figure 21-9 Schematic diagram of TE/BUSY change during continuous transmission in slave unidirectional	al transmit
-only mode	531
Figure 21-10 Schematic diagram of TE/BUSY change when BIDIRMODE $= 0$ and RONLY $= 0$ are transfer	mitted dis
continuously.	533
Figure 21-11 Transmission using DMA	536
Figure 21-12 Reception using DMA	536
Figure 21-13 I ² S block diagram	539
Figure 21-14 I ² S Philips protocol waveform (16/32-bit full precision, CLKPOL = 0)	541
Figure 21-15 I ² S Philips protocol standard waveform (24-bit frame, CLKPOL = 0)	541
Figure 21-16 I^2S Philips protocol standard waveform (16-bit extended to 32-bit packet frame, CLKPOL =	0)542
Figure 21-17 The MSB is aligned with 16-bit or 32-bit full precision, CLKPOL = 0.	543

XXV

Figure 21-18 MSB aligns 24-bit data, CLKPOL = 0	543
Figure 21-19 MSB-aligned 16-bit data is extended to 32-bit packet frame, CLKPOL = 0	543
Figure 21-20 LSB alignment 16-bit or 32-bit full precision, CLKPOL = 0	544
Figure 21-21 LSB aligns 24-bit data, CLKPOL = 0	544
Figure 21-22 LSB aligned 16-bit data is extended to 32-bit packet frame, CLKPOL = 0	545
Figure 21-23 PCM standard waveform (16 bits)	546
Figure 21-24 PCM standard waveform (16-bit extended to 32-bit packet frame)	546
Figure 21-25 I ² S clock generator structure	547
Figure 21-26 Audio sampling frequency definition	547
Figure 22-1 I ² C functional block diagram	563
Figure 22-2 I2C bus protocol	563
Figure 22-3 Slave transmitter transfer sequence diagram	566
Figure 22-4 Slave receiver transfer sequence diagram	567
Figure 22-5 Master transmitter transfer sequence diagram	569
Figure 22-6 Master receiver transfer sequence diagram	571
Figure 23-1 USART block diagram	591
Figure 23-2 word length = 8 setting	592
Figure 23-3 word length = 9 setting	593
Figure 23-4 configuration stop bit	594
Figure 23-5 TXC/TXDE changes during transmission	595
Figure 23-6 Start bit detection	596
Figure 23-7 Transmission using DMA	602
Figure 23-8 Reception using DMA	603
Figure 23-9 hardware flow control between two USART	603
Figure 23-10 RTS flow control	604
Figure 23-11 CTS flow controls	605
Figure 23-12 Mute mode using idle line detection	606
Figure 23-13 Mute mode detected using address mark	607
Figure 23-14 USART synchronous transmission example	608
Figure 23-15 USART data clock timing example (WL=0)	608
Figure 23-16 USART data clock timing example (WL=1)	609
Figure 23-17 RX data sampling / holding time	609
Figure 23-18 IrDASIRENDEC-Block diagram	611
Figure 23-19 IrDA data Modulation (3/16)-normal mode	611
Figure 23-20 Break detection in LIN mode (11-bit break length-the LINBDL bit is set)	613
Figure 23-21 Break detection and framing error detection in LIN mode	614
Figure 23-22 ISO7816-3 Asynchronous Protocol	615
Figure 23-23 Use 1.5 stop bits to detect parity errors	616
Figure 24-1 QSPI block diagram	629
Figure 24-2 QSPI command sequence	630
Figure 25-1 DVP Interface Timing	659
Figure 26-1 N32G4FR level and Cortex TM -M4F level debugging block diagram	671

XXVI

1 Abbreviations in the text

1.1 List of abbreviations for registers

The following abbreviations are used in register descriptions:

read/write(rw)	Software can read and write these bits.	
read-only(r)	Software can only read these bits.	
write-only(w)	Software can only write this bit, and reading this bit will return the reset	
	value.	
read/clear(rc_w1)	Software can read this bit or clear it by writing' 1', and writing' 0' has no	
	effect on this bit.	
read/clear(rc_w0)	Software can read this bit or clear it by writing 0', and writing 1' has no	
	effect on this bit.	
read/clear by read(rc_r)	Software can read this bit. Reading this bit will automatically clear it to 0'.	
	Writing' 0' has no effect on this bit.	
read/set(rs)	Software can read or set this bit. Writing' 0' has no effect on this bit.	
read-only write trigger(rt_w)	Software can read this bit and write' 0' or' 1' to trigger an event, but it has no	
	effect on this bit value.	
toggle(t)	Software can only flip this bit by writing' 1', and writing' 0' has no effect on	
	this bit.	
Reserved(Res.)	Reserved bit, must be kept at reset value.	

1.2 Available peripherals

For all models of N32G4FR microcontroller series, the existence and number of a peripheral, please refer to the data sheet of the corresponding model.

2 Memory and bus architecture

2.1 System architecture

2.1.1 Bus architecture

TPIU SW/JTAG ICode EEC iCache Core SBus Fmax:144MHz Max:144MHz SRAM NVIC FPU DSP R-SRAM **Bus Matrix** SAC DMA DMA2 QSPI AHB SDIO ADC1 RCC CRC EXTI PWR TIM2 DVP BKP TIM3 GPIOB USART1 Max:72MHz TIM4 RTC SPI1 GPIOC IWDG TIM5 I2C3 USART2 Max:36MHz GPIOE I2C4 TIM6 TIM1 UART6 TIM7 UART4 UART7 UART5 DAC1 APB1 USB2.0FS WWDG CAN1 CAN2 I2C1 I2C2 SPI3/I2S3 SPI2/I2S2

Figure 2-1 Bus architecture

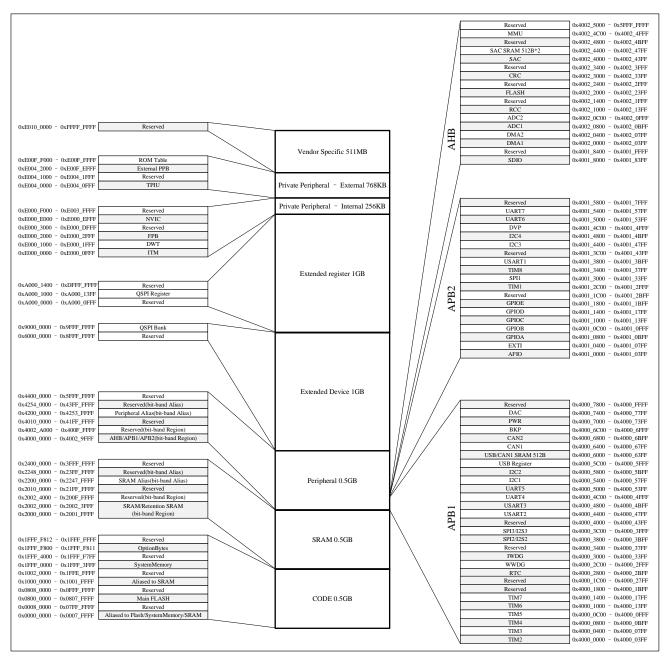
- ICode bus: Connect the ICode bus of CortexTM-M4FP core with the flash instruction interface. Instruction prefetching is completed on this bus.
- The DCode bus connects the DCode bus of CortexTM-M4FP core with the data interface of flash memory

2

(constant loading and debugging access).

- SBus bus connects the SBus bus (peripheral bus) of CortexTM-M4FP core to the bus matrix, which coordinates the access between the core and DMA.
- SAC/CRC has designed matrix interconnection, which supports DMA transmission by software triggering.
- The system consists of two AHB2APB Bridges, i.e. AHB2APB1 and AHB2APB2. Among them, APB1 contains 24 low-speed APB peripherals, and the maximum speed of PCLK1 is 36MHz; APB2 contains 16 high-speed APB peripherals, and the maximum speed of PCLK2 is equal to 72MHz.

2.1.2 Bus address mapping


The address mapping includes all AHB and APB peripherals: AHB peripherals, APB1 peripherals, APB2 peripherals, Flash, SRAM, System Memory, etc. And the address space of SRAM is located in the bit-band Region of SRAM, and atomic accesses can be made through the bit-band Alias to performed read-modify-write operations on the target bits of the bit-band region. The address spaces of all APB and AHB peripherals are located in the bit-band Region of the peripherals. Atomic accesses can be made through the bit-band Alias to performed read-modify-write operations on the target bits of the bit-band region. The specific mapping is as follows:

3

Nanshan District, Shenzhen, 518057, P.R.China

Figure 2-2 Bus address map

2.1.2.1 Bit banding

CortexTM-M4FP memory image includes two bit-band areas. These two bit-band areas map each word in the alias memory area to a bit in the bit-band memory area. When writing a word in the alias area, it is equivalent to performing a read-modify-write operation on the target bits of the bit segment area.

Both the peripheral registers and SRAM are mapped into a bit-band area, which allows a single bit-band area write and read operation to be performed.

The following mapping formula shows how each byte in the alias area corresponds to the corresponding bit in the bit band area:

4

bitband byte addr = bitband base + (byte offset $\times 32$) + (bit number $\times 4$)

In which:

bitband_byte_addr is the address of the byte in the alias memory area, which is mapped to a certain target bit;

bitband_base is the starting address of alias area;

byte_offset is the serial number of the byte containing the target bit in the bit-band;

bit_number is the position of the target bit (0-7).

For example:

The following example shows how to map bit 4 in bytes with SRAM address 0x20000400 in alias area:

 $0x22008010 = 0x22000000 + (0x400 \times 32) + (4 \times 4)$.

Writing to address 0x22008010 has the same effect as reading-modify-writing to bit 4 of address 0x20000400 bytes in SRAM.

Reading 0x22008010 address returns the value of bit 4 (0x01 or 0x00) of address 0x20000400 bytes in SRAM. Please refer to "CortexTM-M4 Technical Reference Manual" for more information about bit-banding.

2.1.3 Boot management

2.1.3.1 Boot address

When the system starts, the boot mode after reset can be selected through BOOT1 and BOOT0 pins. After system reset or exit from standby mode, the value of BOOT pin will be re-latched. After a startup delay, the CPU gets the address at the top of the stack from address $0x0000_0000$ and executes the code from the reset vector address indicated by address $0x0000_0004$.Because of the CortexTM_M4 always gets the stack top pointer and reset vector from addresses $0x0000_0000$ and $0x0000_0004$, so boot is only suitable for starting from the CODE area, and address remapping is designed for boot space. There are three boot modes to choose from:

- Boot from Flash, the primary Flash memory:
 - ◆ Main flash memory is mapped to the boot space (0x0000_0000);
 - ◆ Main flash memory is accessible in two address areas, 0x0000_0000 or 0x0800_0000 (ICode/DCode/DMA1/DMA2);
- Boot from System Memory:
 - ◆ System memory is mapped to boot space (0x0000_0000);
 - ◆ System memory can be accessed in two address areas, 0x0000_0000 or 0x1FFF_0000 (ICode/DCode/DMA1/DMA2);
- Boot from the built-in SRAM:
 - ◆ The built-in SRAM is mapped to boot space (0x0000_0000);
 - ◆ The built-in SRAM is accessible in two address areas, 0x0000_0000 or 0x2000_0000 (ICode/DCode/SBus/DMA1/DMA2);

2.1.3.2 Boot configuration

In addition, SRAM can also be accessed through virtual address segment 0x1000_0000, which makes the CPU jump

to SRAM to run programs through ICode/DCode after starting from Main Flash or System Memory (note that programs are not started from SRAM and do not belong to startup mode). In addition to the BOOT pin configuration boot program, there are two ways to run the program in SRAM:

- Jump directly to the physical address segment 0x2000_0000 of SRAM to run the program. At this time, the program will be run through SBus.
- Jump to the virtual address segment 0x1000_0000 of SRAM, and internally remap to the physical address segment 0x2000_0000 to run the program. At this time, the program will run efficiently through ICode/DCode.

Boot mode select Specifies the start address for accessing memory space in boot mode **Boot mode** pin BOOT1 BOOT0 Main Flash **SRAM** System Memory 0x0000_0000 0x1000_0000 X 0 Main Flash start 0x1FFF_0000 0x0800 0000 0x2000 0000 0x1000_0000 System Memory 0x0000_0000 0 1 0x08000000 0x1FFF_0000 0x2000 0000 start $0x0000_0000$ 1 1 SRAM start 0x08000000 0x1FFF_0000 0x1000_0000 0x2000_0000

Table 2-1 List of boot mode

2.1.3.3 Embedded boot loader

Embedded boot loader program is stored in the system memory System Memory and is used to reprogram the flash memory through the USART1 or USB-FS interface (full-speed USB device, DFU protocol). The USB-FS interface can only be run when the external clock (HSE) of 4MHz, 6MHz, 8MHz, 12MHz, 16MHz, 18MHz, 24MHz and 32MHz is used. In addition to the above-mentioned 8-frequency external clock (HSE), the USART1 interface can also rely on the internal 8MHz oscillator (HSI) to run. Consult the bootloader manual for further details.

2.2 Memory system

The program memory, data memory, registers and I/O ports are organized in the same 4GB linear address space. Data bytes are stored in the memory in littke endian format. The lowest address byte in a word is regarded as the least significant byte of the word, while the highest address byte is the most significant byte. The specifications of program memory and data memory are as follows.

2.2.1 FLASH specification

Flash consists of a main storage area and an information area, which are described separately below: (Capacity values in the following description do not include ECC)

- The maximum main memory area is 512KB, also known as main flash memory, which contains 256 Page for storing and running user programs and storing data.
- The information area is 20KB, including 10 Page, and consists of system storage area (16KB), system configuration area (2KB) and option byte area (2KB).

6

- The System Memory area is 16KB, which contains 8 Page, also known as System Memory, and is used to store and run the BOOT program.
- The system configuration area is 2KB, including 1 Page.
- The Option Byte area is 2KB, containing 1 Page, also known as Option Byte, and the effective space is 18B, BOOT programs and user programs can be read, written or erased.

2.2.1.1 Flash memory module organization

Bus address space is allocated to the main storage area and the information area.

Table 2-2 Flash bus address list

Memory area	Page name	Address range	Size
Main memory area	Page 0	0x0800_0000 - 0x0800_07FF	2KB
	Page 1	0x0800_0800 - 0x0800_0FFF	2KB
	Page 2	0x0800_1000 - 0x0800_17FF	2KB
	÷	i i	÷
	Page 255	0x0807_F800 - 0x0807_FFFF	2KB
Information area	System memory area	0x1FFF_0000 - 0x1FFF_3FFF	16KB
	System configuration area	0x1FFF_F000 - 0x1FFF_F7FF	2KB
	Option byte area	0x1FFF_F800 - 0x1FFF_F811	18B
Memory area	FLASH_AC	0x4002_2000 - 0x4002_2003	4B
	FLASH_KEY	0x4002_2004 - 0x4002_2007	4B
	FLASH_OPTKEY	0x4002_2008 - 0x4002_200B	4B
	FLASH_STS	0x4002_200C - 0x4002_200F	4B
	FLASH_CTRL	0x4002_2010 - 0x4002_2013	4B
	FLASH_ADD	0x4002_2014 - 0x4002_2017	4B
interface	Reserved	0x4002_2018 - 0x4002_201B	4B
register	FLASH_OB	0x4002_201C - 0x4002_201F	4B
	FLASH_WRP	0x4002_2020 - 0x4002_2023	4B
	FLASH_ECC	0x4002_2024 - 0x4002_2027	4B
	Reserved	0x4002_2028 - 0x4002_202B	4B
	FLASH_RDN	0x4002_202C - 0x4002_202F	4B
	FLASH_CAHR	0x4002_2030 - 0x4002_2033	4B

Flash memory is organized into 32-bit wide memory units, which can store codes and data constants.

Information is divided into three parts:

- The system memory area is used for storing a boot program for boot loader mode of the system memory. The boot program uses USART1 and USB (DFU) serial interface to program the flash memory.
- System configuration area, which contains basic information of the chip.
- Option byte area, writing to main memory and information block is managed by embedded flash programming/erasing controller.

Nanshan District, Shenzhen, 518057, P.R.China

There are two ways to protect flash memory from illegal access (read, write and erase):

- Page write protection (WRP)
- Read protection (RDP)

When the flash memory write operation is executed, any read operation to the flash memory will lock the bus, and the read operation can only be carried out correctly after the write operation is completed. That is, when writing or erasing, cannot have any read access to the code or data.

The internal RC oscillator (HSI) must be turned on when the flash memory is programmed (written or erased).

Note: In the low power consumption mode, all flash memory operations are suspended.

2.2.1.2 Read and write operation

The Flash operation only supports 32-bit operation, and the Flash should be erased before the write operation, and the minimum block size for erasing is one Page 2KB. Write operation is divided into programming and erasing phases.

When reading Flash, the number of waiting cycles for reading can be configured by the register. When using, it needs to be calculated in combination with the clock frequency of AHB interface. For example, when HCLK<=32MHz, the minimum number of waiting periods is 0; When 32MHz<HCLK<=64MHz, the minimum number of waiting periods is 1; When 64MHz<HCLK<=96MHz, the minimum number of waiting periods is 2; When 96MHz<HCLK<=128MHz, the minimum number of waiting periods is 3;When 128MHz<HCLK<=144MHz, the minimum number of waiting periods is 4.

Note: Enable prefetch buffer whether number of wait periods is not zero can improve overall efficiency.

2.2.1.3 Unlock Flash

After reset, the Flash module is protected and cannot be written into the FLASH_CTRL register to prevent accidental operation of Flash due to electrical interference and other reasons. By writing a specific sequence of key values into the FLASH_KEY register, you can open the operation authority of the FLASH_CTRL register. The specific sequence is: Firstly, writing KEY1 = 0x45670123 in the FLASH_KEY register. Secondly, write KEY2 = 0xCDEF89AB in the FLASH_KEY register.

If there is an error in sequence or key value, a bus error will be returned and the FLASH_CTRL register will be locked until the next reset. The software can check whether the Flash has been unlocked by looking at the FLASH_CTRL.LOCK bit. If normal lock setting is needed, it can be realized by setting the FLASH_CTRL.LOCK bit to 1 by software. After that, you can unlock the Flash by writing the correct key value series in FLASH_KEY.

2.2.1.4 Erase and program

2.2.1.4.1 Erase of main memory area

The main memory area can be erased page by page or whole.

Page Erase

Page Erase process:

- Check the FLASH_STS.BUSY bit to confirm that there are no other flash operations in progress;
- Set the FLASH_CTRL.PER bit to' 1';
- Select the page to be erased with the FLASH_ADD register;

Nanshan District, Shenzhen, 518057, P.R.China

- Set the FLASH_CTRL.START bit to' 1';
- Wait for the FLASH_ STS.BUSY bit to change to '0';
- Read out the erased page and verify it.

Mass Erase

Mass Erase process:

- Check the FLASH_STS.BUSY bit to confirm that there are no other flash operations in progress;
- Set the FLASH_CTRL.MER bit to' 1';
- Set the FLASH_CTRL.START bit to' 1';
- Wait for the FLASH_ STS.BUSY bit to change to '0';
- Read out all pages and verify.

2.2.1.4.2 Main memory area programming

The main memory area can be programmed with 32 bits at a time. When the FLASH_CTRL.PG bit is' 1', writing a word in a flash address will start programming once; Writing any half word of data will result in a bus error. During the programming process (the FLASH_STS.BUSY bit is' 1'), any operation of reading or writing the flash memory will cause the CPU to pause until the end of the flash programming.

Main memory programming process:

- Check the FLASH_STS.BUSY bit to confirm that there are no other flash operations in progress;
- Set the FLASH_CTRL.PG bit to '1';
- Write the word to be programmed at the specified address;
- Wait for the FLASH_ STS.BUSY bit to change to '0';
- Read the written address and verify the data.

Note: When the FLASH_STS.BUSY bit is '1', you cannot write to any register.

2.2.1.4.3 Option byte erase and programming

The option byte area is programmed differently from the main storage area. The number of option bytes is only 9 bytes (4 bytes for write protection, 2 bytes for read protection, 1 byte for configuration and 2 bytes for storing user data). After unlocking the Flash, you must write KEY1 and KEY2 respectively (see2.2.1.3) to the FLASH_OPTKEY register, and then set the FLASH_CTRL.OPTWE bit to' 1'. At this time, the option byte area can be programmed: set the FLASH_CTRL.OPTPG bit to' 1' and then write the word to the specified address.

When programming the word in the option byte area, use the low byte in the half-word and automatically calculate the high byte (the high byte is the complement of the low byte), and start the programming operation, which will ensure that the option byte and its complement are always correct.

9

Option byte erase process:

- Check the FLASH_STS.BUSY bit to confirm that there are no other flash operations in progress;
- Unlock the FLASH_CTRL.OPTWE bit;

- Set the FLASH_CTRL.OPTER bit to '1';
- Set the FLASH_CTRL.START bit to '1';
- Wait for the FLASH_ STS.BUSY bit to change to '0';
- Read the erased option byte and verify it.

Option byte area programming process:

- Check the FLASH_ STS.BUSY bit to confirm that there are no other flash operations in progress;
- Unlock the FLASH_CTRL.OPTWE bit;
- Set the FLASH_CTRL.OPTPG bit to '1';
- Writing the word to be programmed to the specified address;
- Wait for the FLASH STS.BUSY bit to change to '0';
- Read the written address and verify the data.

2.2.1.5 ECC function

The Flash module supports the ECC function to realize 1-bit error detection and 1-bit error correction. ECC encoding and decoding (error correction, error detection) are automatically performed by hardware. If an error is detected, the error bit is set and an interrupt is generated.

2.2.1.6 Instruction prefetching

The instruction prefetch function of Flash module supports the prefetch Buffer of 16B. Through instruction prefetching, the instruction execution efficiency of CPU can be improved. The instruction prefetch function can be configured to be enabled or disabled through the register, and it is enabled by default.

2.2.1.7 Option byte

Option byte block is mainly used to configure read-write protection, boot mode configuration, software/hardware watchdog configuration and reset options when the system is in standby/stop0/stop2 mode, and bus address space is allocated for read-write access. They consist of byte with 9 options: 4 byte for write protection, 2 bytes for read protection, 1 byte for configuration option, 2 bytes defined by user, These 9 bytes need to be written through the bus. The option byte block also contains the complement codes corresponding to these 9 option bytes. These complement codes need to be automatically calculated by hardware when the option bytes are written in the bus, and written into Flash together, and used for verification when the option bytes are read.

By default, the option byte block is always readable and write-protected. To write (program/erase) the option byte block, first unlock the Flash, then unlock the option byte: write the correct key-value sequence (KEY1 = 0x45670123, KEY2 = 0xCDEF89AB) in the FLASH OPTKEY, and then write the option byte block will be allowed. If the sequence is wrong or the key value is wrong, a bus error will be returned and the option byte will be locked until the next reset. If it is necessary to set the lock normally, it can be realized by writing 0 to the FLASH_CTRL.OPTWE bit by software, and then the option byte can be unlocked by writing the correct key-value series in the FLASH_OPTKEY.

After each system reset, the option byte data is read out from the option byte block of Flash and stored in the option byte register (FLASH_OB/FLASH_WRP) with read-only property. At the same time, the option byte complement

data read out together will be used to verify whether the option byte data is correct. If it does not match, an option byte error flag (FLASH_OB.OBERR) will be generated. When an option byte error occurs, the corresponding option byte is forced to 0xFF. When the option byte and its complement are both 0xFF (the state after erasing), the above verification steps are skipped and verification is not required.

Table 2-3 Option byte list

Address	[31:24] Corresponding complement code	[23:16] Option byte	[15:8] Corresponding complement code	[7:0] Option byte
0x1FFF_F800	nUSER	USER	nRDP1	RDP1
0x1FFF_F804	nData1	Data1	nData0	Data0
0x1FFF_F808	nWRP1	WRP1	nWRP0	WRP0
0x1FFF_F80C	nWRP3	WRP3	nWRP2	WRP2
0x1FFF_F810	-	-	nRDP2	RDP2

- Read protection L1 level option byte: RDP1
 - ◆ Protect the code stored in the flash memory;
 - ♦ When the correct value is written, it will be forbidden to read the flash memory;
 - ◆ The result of whether RDP1 is turned on or not can be inquired through FLASH_OB[1];
- User configuration options: USER
 - ◆ USER[7:3]: Reserved
 - ◆ USER[2]: nRST_STDBY configuration options, read through FLASH_OB [4]
 - 0: Reset when entering standby mode
 - 1: No reset occurs when entering standby mode
 - ◆ USER[1]: nRST_STOP, read through FLASH_OB[3]
 - 0: Reset occurs when entering stop0/stop2 mode
 - 1: No reset occurs when entering stop0/stop2 mode
 - ◆ USER[0]: WDG_SW configuration options, read through FLASH_OB [2]
 - 0: Hardware watchdog
 - 1: Software watchdog
- 2 bytes of user data: Datax
 - ◆ Data1 (stored in FLASH_OB[25:18]);
 - ◆ Data0 (stored in FLASH_OB [17:10]);
- Write protection option byte: WRP0 ~ 3, which can be written through the register FLASH _WRP [31:0] query

11

◆ WRP0: write protection of pages 0-15, bit [0] corresponds to Page0 / 1,., bit [7] corresponds to page14 / 15;

- ◆ WRP 1: write protection on pages 16-31, bit [0] corresponds to Page16 / 17,., bit [7] corresponds to Page30 / 31;
- ◆ WRP 2: write protection on pages 32-47 bit [0] corresponds to Page32 / 33,., bit [7] corresponds to Page46 / 47;
- ◆ WRP 3: write protection on pages 48-255, bit [0] corresponds to Page48 /49., bit [6] corresponds to Page60 /61, bit [7] corresponds to Page62-255;
- Read protection L2 level option byte: RDP2
 - ♦ Add protection function on the basis of L1, see 2.2.1.9 detailed description of read protection;
 - ♦ Whether RDP2 is turned on or not can be determined by FLASH_OB [31] query;

2.2.1.8 Write protect

Write protection can be configured for all pages in the flash main storage area (maximum 512KB) to prevent accidental write operations caused by program runaway or electrical interference. The basic unit of write protection is: for Page0 ~ 61, every 2 pages is a basic protection unit, for Page62~255, together as a protection unit. Write protection can be configured by setting WRP0 ~ 3 in the option byte block; After each configuration, A system reset is required for the configured value to be reloaded to take effect. If an attempt is made to program or erase a protected page, a protection error flag will be returned in the FLASH_STS.

The system memory block (16KB) in the system information area stores the boot program and cannot be changed.

The system configuration block (2KB) in the system information area stores the basic information of the chip and cannot be changed.

The option byte block (2KB) in the system information area stores the user-configurable option byte information. The write protection of the option byte block is achieved by writing 0 to the FLASH_CTRL.OPTWE bit by software, and after that, you can write the correct key value series in FLASH_OPTKEY to release the write protection of the option byte.

2.2.1.9 Read protection

The user code in flash can be protected from illegal reading by setting read protection. Read protection is mainly aimed at protecting the access operation of main memory area and option byte block after chip sealing operation. Read protection is set by configuring RDP bytes in the option byte block. Three different read protection levels can be configured, as shown in the following Table

Read protection status	RDP1	nRDP1	nRDP2	RDP2					
L1 level	0xFF	0xFF	$RDP2! = 0xCC \mid$	nRDP2! = 0x33					
Unprotected	0xA5	0x5A	RDP2! = 0xCC	nRDP2! = 0x33					
L2 level	0xXX	0xXX	0x33	0xCC					
L1 level	Not the above three configurations								

Table 2-4 Read protection configuration list

■ L0 level:

◆ In unprotected state, corresponding (RDP1 == 0xA5 & nRDP1 == 0x5A) && (RDP2!= 0xCC | nRDP2!= 0x33);

12

- ◆ The main memory area and option byte block can be read arbitrarily;
- ◆ The write protection property of each page can be configured for programming and erasing;

■ L1 level:

- ♦ The corresponding ~ (((RDP1 == 0xA5 & nRDP1 == 0x5A) && (RDP2!= 0xCC | nRDP2!= 0x33)) | (RDP2 == <math>0xCC & nRDP2 == 0x33));
- Only the read operation of the main storage area from the user code is allowed, that is, when the program is started from the main flash memory in non debugging mode, the read operation of the main storage area is allowed;
- ◆ Pages 0~1 are automatically write-protected;
- Other pages can be programmed by the code executed in the main flash memory (realizing IAP or data storage and other functions);
- ◆ All pages are not allowed to write or erase in debug mode or after booting from internal SRAM (except for mass erase);
- ◆ All functions of loading code into the built-in SRAM through JTAG/SWD and then execute it are still valid, or they can be started from the built-in SRAM through JTAG/SWD, which can be used to remove read protection;
- ♦ When the read-protected option byte is rewritten to the unprotected L0 level, all the main storage areas will be automatically erased, and the process is as follows: (Erasing the option byte block will not result in automatic whole erasing operation, because the result of erasing is 0xFF, which is equivalent to still being in the protection state of L1 level)
 - Write the correct key value sequence to unlock the option byte area in FLASH_OPTKEY;
 - The bus initiates a command to erase the entire option byte area (Page erase);
 - Bus write 0xA5 to read protection option byte;
 - Automatically erase all main storage areas internally;
 - Automatically write 0xA5 to read protection option byte internally;
 - When the system is reset (such as software reset, etc.), the option byte block (including the new RDP value 0xA5) will be reloaded into the system, and the read protection will be released;
- ◆ The following access operations to the flash memory will be prohibited:
 - Access main flash memory from built-in SRAM start execution code (including using DMA);
 - Access the main flash memory by JTAG, SWV (serial line observer), SWD (serial line debugging) and boundary scanning;
- L2 level: Except that SRAM boot disabled, debug mode disabled, option byte write/page erase disabled and the protection level cannot be modified (irreversible), other features are the same as L1 level. The L2 level is realized by configuring another option byte, RDP2. No matter what the value of RDP1 is, as long as it satisfies (RDP2==0xCC & nRDP2==0x33), it is L2 level.

Table 2-5 Flash read-write-erase $^{(1)}$ permission control table

	Boot mode		Ma	ain Flash			
protect level	Perform user Access area	JTAG/ SWD	SRAM	Changing a Protection Level			
	Before 4KB of flash main memory area	Read-Write- Erase	Read-Write- Erase	Read-Write-Erase	Read-Write- Erase		
	After 4KB of flash main memory area	Read-Write- Erase	Read-Write- Erase	Read-Write-Erase	Read-Write- Erase		
L0	Flash main memory area mass erase	Allow	Allow	Allow	Allow	Change to L1 or L2 is	
level	Flash option byte area	Read-Write- Erase	Read-Write- Erase	Read-Write-Erase	Read-Write- Erase	allowed	
	Flash system memory area	prohibit prohibit		Read-Write-Erase	prohibit		
	SRAM (All)	Read and write	Read and write	Read and write	Read and write		
	Before 4KB of flash main memory area	Prohibit	Read-only	Read-only	Read-only		
	After 4KB of flash main memory area	Prohibit	Read-Write- Erase	Read-Write-Erase	Read-Write- Erase		
L1	Flash main memory area mass erase	Allow	Allow	Allow	Allow	L0 or L2 is allowed. When changed to L0,	
level	Flash option byte area	Read-Write- Erase	Read-Write- Erase	Read-Write-Erase	Read-Write- Erase	the main memory area is automatically erased.	
	Flash system memory area	Prohibit	Prohibit	Read-write-erase	Prohibit		
	SRAM (All)	Read and write	Read and write	Read and write	Read and write		
L2	Before 4KB of flash	JTAG/SWD	Read-only	Read-only	Read-only	No modification is	

level	main memory area	interface is				allowed.
	After 4KB of flash main memory area	disabled.	Read-write- erase	Read-write-erase	Read-write- erase	
	Flash main memory area mass erase		Allow	Allow	Allow	
	Flash option byte area		Read-only	Read-only	Read-only	
	Flash system memory area		Prohibit	Read-write-erase	Prohibit	
	SRAM (All)		Read and write	Read and write	Read and write	

	Boot mode			SRAM		
protect level	Perform user Access to areas	JTAG/SWD	Changing a Protection Level			
	Before 4KB of flash main memory area	Read-write- erase	Read-write- erase	Read-write-erase	Read-write- erase	
	After 4KB of flash main memory area	Read-write- erase	Read-write- erase	Read-write-erase	Read-write- erase	
L0	Flash main memory area mass erase	Allow	Allow	Allow	Allow	Change to L1 or L2 is
level	Flash option byte area	Read-write- Read-write erase erase		Read-write-erase	Read-write- erase	allowed
	Flash system memory area	Prohibit	Prohibit	Read-write-erase	Prohibit	
	SRAM (All)	Read and Read and write write		Read and write	Read and write	
L1 level	Before 4KB of flash main memory area	Prohibit	Read-only	Read-only	Prohibit	L0 or L2 is allowed. When changed to L0,

	After 4KB of flash main memory area	Prohibit	Read-write- erase	Read-write-erase	Prohibit	the main memory area is automatically erased.
	Flash main memory	Allow	Allow	Allow	Allow	
	Flash option byte area	Read-write- erase	Read-write- erase	Read-write-erase	Read-write- erase	
	Flash system memory area	Prohibit	Prohibit	Prohibit	Prohibit	
	SRAM (All)	Read and write	Read and write	Read and write	Read and write	
	Before 4KB of flash main memory area					
	After 4KB of flash main memory area					
L2	Flash main memory area mass erase	1.2	manto oti on lovel	connect hoot from SD	AM.	No modification is allowed.
level	Flash option byte area	L2	protection level,	cannot boot from SRA	AIVI	JTAG/SWD is banned.
	Flash system memory area					
	SRAM (All)					
	Boot mode		Syste	m Memory		
protect level	Perform user Access to areas	JTAG/SWD	JTAG/SWD Main Flash System Memory SRAM			Changing a Protection Level
L0 level	Before 4KB of flash main memory area	Read-write- erase	Change to L1 or L2 is allowed			

	After 4KB of flash main memory area	Read-write- erase	Read-write- erase	Read-write-erase	Read-write- erase	
	Flash main memory area mass erase	Allow	Allow	Allow	Allow	
	Flash option byte area	Read-write- erase	Read-write- erase	Read-write-erase	Read-write- erase	
	Flash system memory area	Prohibit	Prohibit	Read-write-erase	Prohibit	
	SRAM (All)	Read and write	Read and write	Read and write	Read and write	
	Before 4KB of flash main memory area	Prohibit	Read-only	Read-only	Read-only	
	After 4KB of flash main memory area	Prohibit	Read-write- erase	Read-write-erase	Read-write- erase	
L1	Flash main memory area mass erase	Allow	Allow	Allow	Allow	L0 or L2 is allowed. When changed to L0,
level	Flash option byte area	Read-write- erase	Read-write- erase	Read-write-erase	Read-write- erase	the main memory area is automatically erased.
	Flash system memory area	Prohibit	Prohibit	Read-write-erase	Prohibit	
	SRAM (All)	Read and write	Read and write	Read and write	Read and write	
	Before 4KB of flash main memory area		Read-only	Read-only	Read-only	
L2	After 4KB of flash main memory area	JTAG/SWD interface is	Read-write- erase	Read-write-erase	Read-write- erase	No modification
level	Flash main memory area mass erase	disabled.	Allow	Allow	Allow	allowed
	Flash option byte area		Read-only	Read-only	Read-only	

Flash system memory area	Prohibit	Read-write-erase	Prohibit	
SRAM (All)	Read and write	Read and write	Read and write	

Note: 1. Erase here refers to flash page erase.

2.2.2 iCache

In order to achieve higher system performance, an instruction buffer needs to be added between the high-speed CPU and the low-speed Flash to improve the instruction execution efficiency. Because of the existence of the instruction buffer, the CPU will be able to work at a higher frequency. When the instruction requested by the CPU is in the instruction buffer, the CPU can obtain the instruction without delay and realize zero waiting for execution. When the current instruction sequence, instruction prefetch sequence and instruction buffer all miss, Flash will be re-read and the Cache will be backfilled and updated. Accordingly, it is equivalent to storing only the jump header of the program in the Cache.

The main features of the instruction buffer are as follows:

- 8KB iCache。
- Support connection mode: 4WAY.

2.2.2.1 Software interface

- Enable
 - ◆ Provide configuration for software to enable/disable iCache. There is no limit to the switching conditions (see the FLASH_AC.ICAHEN bit).
- Reset
 - ◆ Provide software to clear the iCache interface, which must be initiated when iCache is closed. Reset and switching cannot be switched at the same time. First, turn off FLASH_AC.ICAHEN, then write 1 to FLASH_AC.ICAHRST, and then turn on FLASH_AC.ICAHEN.
- Lock
 - ◆ Cache locking mechanism is supported, and the software configuration puts the program into its designated way. When all the ways are locked, the new data will not be written into the cache. After the software resets the cache, the lock state is automatically cleared.
- Additional remarks
 - ◆ Selection of Cache replacement algorithm is not supported.
 - ♦ When using icache, there is no WB/WT selection when the CPU writes operation.

2.2.2.2 Register description

FLASH_AC.ICAHEN and FLASH_AC.ICAHRST are the iCache enable switch and iCache data clear switch respectively.

FLASH_CAHR.LOCKSTRT and FLASH_CAHR.LOCKSTOP are the start latch and stop latch of iCache corresponding mode lock, respectively. After iCache is reset, the FLASH CAHR register automatically returns to the reset value. See for detailed usage method of 2.2.2.3.3 ICache locking.

2.2.2.3 Operating process

2.2.2.3.1 iCache enable and disable

Users can turn on and switch off iCache at any time. If the user program needs to jump between the main memory area and other memory areas, the iCache must be closed and the data of the iCache must be cleared, otherwise, the instruction acquisition error will occur.

2.2.2.3.2 iCache data refresh

The iCache is designed as instruction cache. When the instruction is updated by application software or the instruction jumps between the main memory area and other memory areas, the software must set the FLASH_AC.ICAHRST bit to 1 to clear the data in the instruction cache.

Note: FLASH AC.ICAHRST bit is a write-only bit, and it returns to 0 when read.

2.2.2.3.3 iCache locking

The software controls the FLASH CAHR register to lock some repeatedly used codes in iCache to improve the efficiency of code execution. iCache module has four latch channels, and the size of each channel is 1/4 of the whole cache. When using a single channel, you must ensure that the amount of code to latch is less than the size of each channel. Otherwise need to use more channels to latch the code. The latch function can be used according to the following control flow:

- Set FLASH_CAHR.LOCKSTRT[0] to 1;
- Execute function 1 that needs to be locked in channel 0 (the code amount of function 1 should be less than the size of a single channel);
- Set FLASH_CAHR.LOCKSTOP[0] to 1 after the function 1 is executed; 3.
- 4. Then set FLASH CAHR.LOCKSTRT[1] to 1;
- Execute function 2 that needs to be locked in channel 1 (the code amount of function 2 should be less than the size of a single channel);
- After the function 2 is executed, set FLASH_CAHR.LOCKSTOP[1] to 1;

Attention: 1. when the channel is latched, the register operation must follow a fixed process -First set FLASH_CAHR.LOCKSTRT then set FLASH_CAHR.LOCKSTOP;

2. The order of channel latch must be 0~3, otherwise it will reduce the execution efficiency.

2.2.3 **SRAM**

SRAM is mainly used for code operation to store variables and data or stacks during program execution. The maximum capacity is 128KB.

SRAM supports read-write access of byte, half-word and word.

SRAM supports code running (supports access of SBus, ICode and DCode), and can run programs at full speed in 19

SRAM. The maximum address range of SRAM is 0x2000 0000~0x2001 FFFF.

SRAM data cannot be retained in Stop2, Standby and VBAT modes; data in other working modes (Run/Sleep/Stop0) can be retained normally.

The main features are as follows:

- The maximum capacity is 128KB in total.
- Support byte/half-word/word reading and writing
- I/D/S/DMA1/MDA2 can be accessed.
- I/D BUS can run programs at full speed from Remap to SRAM.

2.2.4 R-SRAM (Retention SRAM)

R-SRAM is also mainly used for code operation, storing variables and data or stacks during program execution, with a total capacity of 16KB. The bus address of R-SRAM and SRAM are connected continuously. In application, SRAM and R-SRAM can be treated as a piece of SRAM. In the maximum case, the physical address of R-SRAM No.0 corresponds to the bus start address of 0x2002 0000, and the corresponding bus address range is 0x2002 0000~0x2002 3FFF. R-SRAM supports read and write access of bytes, half words and words, and supports access to SBus, DMA1, DMA2.

Because the bus address of R-SRAM is continuously connected to SRAM, and for different product models, the capacity of SRAM available for effective use is different, so for different product models, the bus start address of R-SRAM are different.

R-SRAM supports Retention, which can retain data in VBAT and Standby modes (can be configured to retain or not retain); other working modes (RUN/SLEEP/STOP0/STOP2) data can be retained by default; PWR is required to control and manage its Retention.

Table 2-6 SRAM Capacity Configuration Table

SRAM capacity	R-SRAM capacity	SRAM bus address range	R-SRAM bus address range
64KB	16KB	0x2000 0000~0x2000 FFFF	0x2001 0000~0x2001 3FFF
128KB	16KB	0x2000 0000~0x2001 FFFF	0x2002 0000~0x2002 3FFF

The main features of R-SRAM are as follows:

- The total capacity is 16KB(Supports parity check and needs to be initialized before use)
- Byte/halfword/word read and write
- SBus/DMA1/DMA2 can be accessed
- The bus start address is continuously connected to the main memory SRAM
- The bus start address changes with the main memory SRAM capacity
- Retention is possible, data still needs to be retained in stop2 and standby modes (can be configured not to retain)

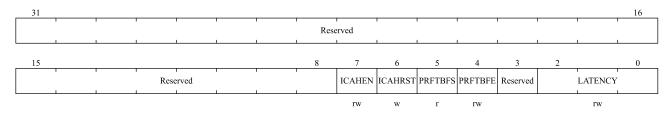
2.2.5 FLASH register description

These peripheral registers must be operated as words (32 bits).

2.2.5.1 FLASH register overview

Table 2-7 FLASH register overview

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	Ξ	10	6	∞	7	9	5	4	3	2	1	0
000h	FLASH_AC												Res	erved												ICAHEN	ICAHRST	PRFTBFS	PRFTBFE	Reserved		LATENCY	
	Reset Value																									0	0	1	1	R	0	0	0
0041	FLASH_KEY																FK	ŒΥ															
004h	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
008h	FLASH_OPTKEY																OPT	KEY															
OOON	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00Ch	FLASH_STS												Res	erved												ECCERR	EVERR	EOP	WRPERR	PVERR	PGERR	RDKEYERR	BUSY
	Reset Value																									0	0	0	0	0	0	0	0
010h	FLASH_CTRL										Reserved									ECCERRITE	EOPITE	FERRITE	ERRITE	OPTWE	SMPSEL	LOCK	START	OPTER	OPTPG	Reserved	MER	PER	PG
ŀ	Reset Value																			0	0	0	0	0	0	1	0	0	0		0	0	0
01.41	FLASH_ADD																FA	DD															
014h	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
018h			Reserved																														
01Ch	FLASH_OB	RDPRT2			Reserved						Ž	Data1								Data0						Not Used			nRST_STDBY	nRST_STOP	WDG_SW	RDPRT1	OBERR
	Reset Value	0						1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0201	FLASH_WRP																W	RPT															
020h	Reset Value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
024h	FLASH_ECC										Reserved												ECCHW	1	1		Keserved		1	W 1505	ECCE.		
	Reset Value										<u>~</u>									0	0	0	0	0	0	ŕ	<u>×</u>	0	0	0	0	0	0
028h			Reserved																														
02Ch	FLASH_RDN		Reserved Reserved Reserved																														
	Reset Value								0	0	0	0	0	0	0	0	0								0	0	0	0	0	0	0	0	0
030h	FLASH_CAH													Reserved													1013400	LOCKSTOP			TOCKETET		
	Reset Value													ĸ												0	0	0	0	0	0	0	0

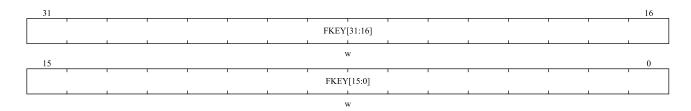

2.2.5.2 FLASH control and status register

See for abbreviations in register descriptions 1.1 section.

2.2.5.2.1 The FLASH access control register (FLASH_AC)

Address offset: 0x00

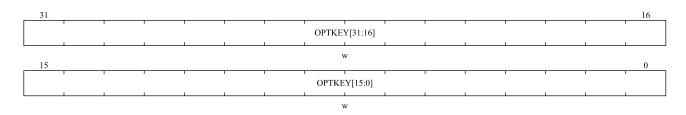
Reset value: 0x0000 0030


Bit field	Name	Description
31:8	Reserved	Reserved, the reset value must be maintained.
7	ICAHEN	iCache enable
		0: turn off iCache;
		1: enable iCache.
6	ICAHRST	iCache reset
		0: writing '0' is invalid;
		1: write '1' to reset.
5	PRFTBFS	Prefetch buffer status
		This bit indicates the status of the prefetch buffer
		0: The prefetch buffer is closed;
		1: The prefetch buffer is open.
4	PRFTBFE	Prefetch buffer enable
		0: Close the prefetch buffer;
		1: Enable prefetch buffer.
3	Reserved	Reserved, the reset value must be maintained.
2:0	LATENCY	time delay
		These bits represent the ratio of SYSCLK (system clock) period to flash memory
		access time.
		000: zero period delay, when 0 < SYSCLK <=32MHz
		001: one cycle delay, when 32MHz < SYSCLK <=64MHz
		010: two cycle delay, when 64MHz < SYSCLK <=96MHz
		011: three cycle delay, when 96MHz < SYSCLK <= 128MHz
		011: three cycle delay, when 128MHz < SYSCLK <= 144MHz
		Other values: reserved

2.2.5.2.2 The FLASH key register (FLASH_KEY)

Address offset: 0x04

Reset value: 0xXXXX XXXX

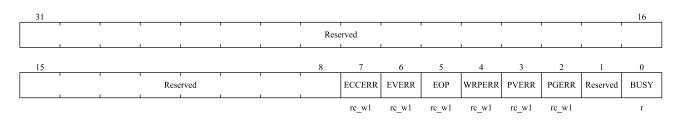


Bit field	Name	Description
31:0	FKEY	Used to unlock the FLASH_CTRL.LOCK bit.

2.2.5.2.3 The FLASH OPTKEY register (FLASH_OPTKEY)

Address offset: 0x08

Reset value: 0xXXXX XXXX



Bit field	Name	Description
31:0	OPTKEY	Used to unlock the FLASH_CTRL.OPTWE bit.

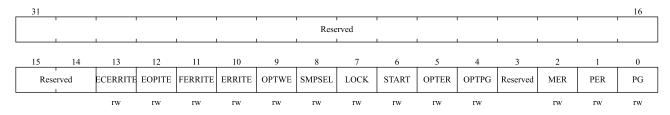
2.2.5.2.4 The FLASH status register (FLASH_STS)

Address offset: 0x0C

Reset value: 0x0000 0000

Bit field	Name	Description		
31:8	Reserved	Reserved, the reset value must be maintained.		
7	ECCERR	ECC error		
		Read FLASH error, hardware set this bit to '1', write '1' to clear this state.		
6	EVERR	Erase check error		
		When the page is erased and the check reports an error, the hardware sets this bit		
		to '1', and writing '1' can clear this state.		

23



Bit field	Name	Description
5	EOP	End of operation
		When the flash operation (programming/erasing) is completed, the hardware sets
		this bit to '1', and writing '1' can clear this bit status.
		Note: Every successful programming or erasing will set the EOP state.
4	WRPERR	Write protection error
		When trying to program a write-protected flash address, the hardware sets this bit
		to '1', and writing '1' can clear this bit.
3	PVERR	programming verification error
		When an error is reported during verification after programming, the hardware
		sets this bit to '1', and writing '1' can clear this state.
2	PGERR	Programming error
		When trying to program an address whose content is not '0xFFFF_FFFF', the
		hardware sets this bit to '1', and writing '1' can clear this state.
		Note: Before programming, the FLASH_CTRL.START bit must be cleared.
1	Reserved	Reserved, the reset value must be maintained.
0	BUSY	Busy
		This bit indicates that a flash operation is in progress. At the beginning of flash
		operation, this bit is set to '1'; This bit is cleared to '0' when the operation ends or
		an error occurs.

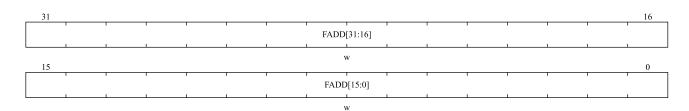
2.2.5.2.5 The FLASH control register (FLASH_CTRL)

Address offset: 0x10

Reset value: 0x0000 0080

Bit field	Name	Description				
31:14	Reserved	Reserved, the reset value must be maintained.				
13	ECERRITE	ECC error interrupt				
		This bit allows an interrupt to be generated when the FLASH_STS.ECCERR bit				
		goes to '1'.				
		0: Interrupt generation is prohibited;				
		1: Enable interrupt generation.				
12	EOPITE	Allow operation completion interrupt.				
		This bit allows an interrupt to be generated when the FLASH_STS.EOP bit				
		becomes '1'.				
		0: interrupt generation is prohibited;				
		1: interrupt generation is allowed.				

Bit field	Name	Description
11	FERRITE	Erase/Program Verify Error Interrupt
		This bit allows an interrupt to be generated when the
		FLASH_STS.EVERR/PVERR bit goes to '1'.
		0: Interrupt generation is prohibited;
		1: Enable interrupt generation.
10	ERRITE	Error status interrupt allowed
		This bit allows an interrupt to be generated when a Flash error occurs (when
		FLASH_STS.PGERR/ FLASH_STS.WRPERR is set to '1').
		0: interrupt generation is prohibited;
		1: interrupt generation is allowed.
9	OPTWE	Allow write option byte
		When this bit is '1', the option byte is allowed to be programmed. When the
		correct key sequence is written in the FLASH_OPTKEY register, this bit is set to
		T'.
		Software can clear this bit.
8	SMPSEL	Flash programming mode options
		0: SMP1 mode. Before programming, you need to read the content of the address
		where the programming is located, and check whether it has been erased. If it has
		not been erased, the programming operation will not be performed, and the
		FLASH_STS.PGERR warning bit will be set;
		1: SMP2 mode. Before programming, it will not judge whether the content of the
		address where the programming is located has been erased, and the Flash will
		directly start programming. If the programming address has been written with
		data before, only the same data can be written when programming the address in
		SMP2 mode, otherwise the data cannot be guaranteed to be written correctly.
7	LOCK	Lock
		You can only write '1'. When this bit is '1', Flash and FLASH_CTRL are locked.
		After detecting the correct unlocking sequence, hardware clears this bit to '0'.
		After an unsuccessful unlocking operation, this bit cannot be changed until the
		next system reset.
6	START	Start
		When this bit is '1', an erase operation will be triggered. This bit can only be set to
		'1' by software and cleared to '0' when FLASH_STS.BUSY becomes '1'.
5	OPTER	Erase option bytes.
		0: Disable option bytes erase mode;
		1: Enable option bytes erase mode.
4	OPTPG	Program option bytes.
		0: Disable option bytes program mode;
		1: Enable option bytes program mode.
		—
3	Reserved	Reserved, the reset value must be maintained
3 2	Reserved MER	Reserved, the reset value must be maintained. Mass erase.


Bit field	Name	Description
		1: enable mass erase mode.
1	PER	Page erase.
		0: disable page erase mode;
		1: enable page erase mode
0	PG	Program.
		0: disable program mode;
		1: enable program mode.

Note: Please refer to section 2.2.1.4 for programming and erasing.

2.2.5.2.6 The FLASH address register (FLASH_ADD)

Address offset: 0x14

Reset value: 0x0000 0000

 Bit field
 Name
 Description

 31:0
 FADD
 Flash address

 Select the address to be programmed when programming, and select the page to be erased when page erasing.

 Note: When the FLASH_STS.BUSY bit is '1', this register cannot be written.

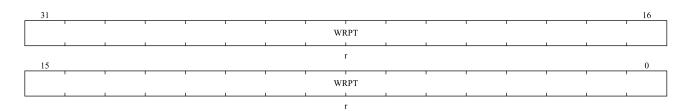
2.2.5.2.7 Option byte register (FLASH_OB)

Address offset: 0x1C

Reset value: 0x03FF FFFC

31	30			 26	25							18	17	16
RDPRT2			Reserved			1		Da	ita1				Da	ita0
r 15				10	9				r 5	4	3	2	1	r 0
		Da	ta0			1	Not_Used	1	1	nRST_ STDBY	nRST_ STOP	WDG_SW	RDPRT1	OBERR
			r				r			r	r	r	r	r

Bit field	Name	Description		
31	RDPRT2	Read protection L2 level protection		
		0: Read protection L2 level is not enabled;		
		1: Read protection L2 level is enabled.		
		Note: This bit is read-only.		
30:26	Reserved	Reserved, the reset value must be maintained.		
25:18	Data1[7:0]	Data1		

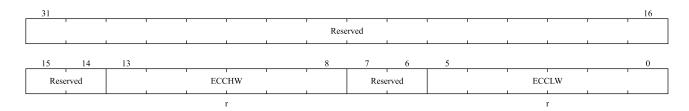


Bit field	Name	Description
		Note: This bit is read-only.
17:10	Data0[7:0]	Data0
		Note: This bit is read-only.
9:5	Reserved	Not used, the hardware remains at 1.
4	nRST_STDBY	Enter Standby mode reset configuration.
		0: Reset immediately after entering Standby mode;
		1: No reset occurs after entering Standby mode.
		Note: This bit is read-only.
3	nRST_STOP	Enter STOP0/STOP2 mode reset configuration.
		0: Reset occurs immediately after entering STOP0/STOP2 mode;
		1: No reset occurs after entering the STOP0/STOP2 mode.
		Note: This bit is read-only.
2	WDG_SW	Set watchdog
		0: hardware watchdog;
		1: Software watchdog.
		Note: This bit is read-only.
1	RDPRT1	Read protection L1 level protection
		0: Read protection L1 level is not enabled;
		1: read protection L1 level is enabled.
		Note: This bit is read-only.
0	OBERR	Option byte error
		When this bit is '1', it means that the option byte does not match its complement.
		Note: This bit is read-only.

2.2.5.2.8 Write protection register (FLASH_WRP)

Address offset: 0x20

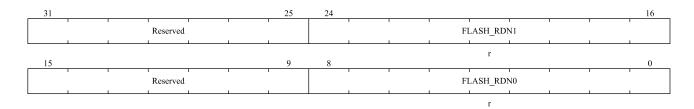
Reset value: 0xFFFF FFFF


Bit field	Name	Description
31:0	WRPT	Write protect
		This register contains the write protection option byte loaded by option byte area.
		0: write protection takes effect;
		1: Write protection is invalid.
		Note: These bits are read-only.

2.2.5.2.9 ECC register (FLASH_ECC)

Address offset: 0x24

Reset value: 0x0000 0000



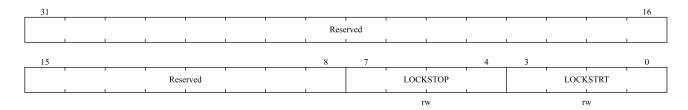
Bit field	Name	Description
31:14	Reserved	Reserved, the reset value must be maintained.
13:8	ECCHW	After writing a word to a 32-bit Flash address, the corresponding higher 6-bit ECC value.
7:6	Reserved	Reserved, the reset value must be maintained.
5:0	ECCLW	After writing a word to a 32-bit Flash address, the corresponding lower 6-bit ECC value.

2.2.5.2.10 RDN register (FLASH_RDN)

Address offset: 0x2C

Reset value: 0x0000 0000

Bit field	Name	Description
31:25	Reserved	Reserved, the reset value must be maintained.
24:16	FLASH_RDN1	The address of Flash redundant block page 1
15:9	Reserved	Reserved, the reset value must be maintained.
8:0	FLASH_RDN0	The address of Flash redundant block page 0


28

2.2.5.2.11 CAHR register (FLASH_CAHR)

Address offset: 0x30

Reset value: 0x0000 0000

Bit field	Name	Description
31:8	Reserved	Reserved, the reset value must be maintained.
7:4	LOCKSTOP[3:0]	iCache lock stop (see for detailed operation instructions 2.2.2.3.3 iCache locking_
		Chapter).
		0: disable
		1: enable
3:0	LOCKSTRT[3:0]	iCache lock start.
		0: disable
		1: enable

3 Power control (PWR)

3.1 General description

PWR is power management unit to control status of different modules in different power modes. Its major function is to control MCU to enter different power modes and wakeup when events or interrupts happen. MCU supports RUN, SLEEP, STOP0, STOP2, STANDBY and VBAT mode.

3.1.1 Power supply

- MCU working voltage (VDD) is 1.8V~3.6V. It mainly has 3 analog/digital power supply regions (VDD, VBAT, VDDA). For details, please refer to Figure 3-1 power supply block diagram. In order to illustrate the functions of different power domains, some power domains will be introduced below, and the digital parts of power domains will be introduced in later chapters of this document.
 - V_{DD} domain: The voltage input range is 1.8V~3.6V, mainly for MR,CPU,AHB,APB,SRAM,FLASH and most digital peripheral interfaces power supply.
 - VBAT domain: The input voltage range is 1.8V~3.6V, which supplies power for BKR and some special IO
 (PC13, PC14, PC15) ports. When VDD is powered down, the switch switches the power supply system
 VDD to VBAT.
 - VDDA domain: voltage input range is 1.8V~3.6V, mainly used for clock and reset system, most analog peripherals powered.
- ♦ BKR and MR are internal voltage regulators that can provide power for the digital module power supply system. VDD and VBAT are generally powered directly from the outside, VBAT is powered by the battery to keep the contents of the backup area, and VDD is powered by other external power supply systems. In addition, if no battery is required, then VBAT must be connected directly to VDD.

• MR

MR is the internal main power controller, mainly used in RUN mode, SLEEP mode and STOP0 mode. MR has two modes, normal mode and low power mode, the low power mode is used for STOP0 to further reduce power consumption.

When the MR enters a low power mode, the CPU goes into a deep sleep state. In this case, the PWR_CTRL.PDS bit should be set to 0 and the PWR_CTRL.LPS bit should be set to 1. When the MR enters the normal mode, the PWR_CTRL.PDS bit needs to be set to 0, and the PWR_CTRL.LPS bit is also 0.

BKR

BKR is an internal backup domain power controller, used in STOP2, STANDBY and VBAT modes. In STOP2 mode, the CPU state is maintained and additionally supplies power to the digital backup area, GPIO and EXTI. When the CPU enters deep sleep, the PWR_CTRL2.STOP2S bit should be set to 1 at this time.

The main modules of the digital backup area include PWR, IO (PA0_WAKUP, PC13_TAMPER, PC14, PC15), R-SRAM, RTC, BKR and RCC_BDCTRL registers. When the SW3 switch is on, the CPU goes

into a deep sleep state. When SW1 switches the power supply system to VBAT, it indicates that VDD has been powered down at this time.

- ♦ When reset, SW1 will switch the power supply system to the VDD power supply area. In STOP2, STANDBY and VBAT modes, the internal voltage regulator BKR will power the digital backup area.
 - During the VDD rising phase or when PDR is detected, the switch between VBAT and VDD remains connected to the VBAT area.
 - During startup, if VDD is settling quickly and VDD > VBAT + 0.6V, current can be injected to VBAT through the internal diode connection. If the power supply connected to VBAT or the battery does not support this injection of current. It is strongly recommended to add a low voltage diode between this supply and the VBAT pin.

If there is no external battery in the application. It is recommended to connect the VBAT pin to VDD with a 100nF ceramic capacitor. In RUN, SLEEP, STOP0 mode, the backup area is powered by VDD (SW1 is connected to VDD), the following functions are available:

- PC14 and PC15 can be used for common IO ports or LSE pins
- PC13 can be used for common IO port, TAMPER pin, RTC check clock, RTC alarm and periodic wake-up output

Notice:

Due to the fact that the current flowing through SW1 and SW2 is limited to a maximum of 3mA. Therefore, the IO output modes of PA0_WAKUP, PC13 to PC15 are limited. When a 30PF capacitor is attached, the maximum output speed is 2MHz. In addition, these IOs cannot be driven by current, for example, they cannot drive LEDs. The current of SW2 will be maintained at 3mA or lower, because GPIO and EXTI work together to consume current.

When VBAT supplies power to the backup area, the following functions can be used at this time:

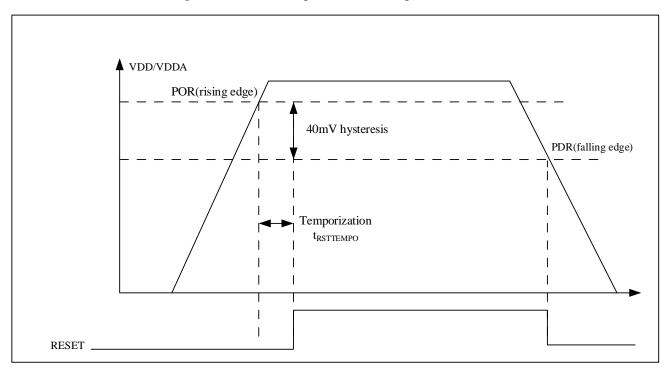
- PC14 and PC15 can only be used for LSE pins.
- PC13 is used for TAMPER pin, RTC alarm or periodic wake-up output

VDDA domain (VSSA)VREF-Analog Peripherals (1.8V~VDDA)VREF+ HSE,RC8M PLL (VDD)VDDA (VSS)VSSA POR PDR PVD VDD domain Flash **GPIOs** vss 🕅 **CPU SRAM** MR VDD 🔀 Digital Peripherals **VBAT** domain **BK** Register **BKR** RCC_BDCTRL register VBAT 🕅 **GPIO** RTC SW1 (PC13,PC14,PC15) R-SRAM **IWDG** LSE PWR LSI SW3 SW2

Figure 3-1 Power supply block diagram

3.1.2 Power supply supervisor

3.1.2.1 Power on reset (POR) and power down reset (PDR)


Power-on reset (POR) and power down reset (PDR) circuits are integrated inside the chip. Can work with a minimum voltage of 1.8V. No external reset circuit is required. When VDD or VDDA is lower than the specified threshold $(V_{POR/PDR})$, the chip will remain in reset state.

For more information on switching power supply reset thresholds, see the Electrical Characteristics section of the

relevant data sheet.

Figure 3-2 Waveforms of power-on reset and power-down reset

3.1.2.2 Programmable voltage detector (PVD)

The PVD can be used to monitor the VDD/VDDA power supply by comparing with the thresholds set by the PWR_CTRL.PRS[2:0] bits of the power supply control register.

The PWR_CTRLSTS.PVDO flag is used to indicate if VDD/VDDA is above/below the PVD voltage threshold. This event is internally connected to the interrupt line 16 of the external interrupt, which will generate an interrupt if enabled in the external interrupt register. Depending on the rising/falling edge trigger settings of the external interrupt line 16, a PVD interrupt will occur when VDD/VDDA falls below the PVD threshold or VDD/VDDA rises above the PVD threshold. For example, this feature can be used to perform emergency shutdown tasks.

Notice: MCU PVD threshold needs to be configured with the PWR_CTRL3.EXMODE bit. For details, please refer to the registers PWR_CTRL.MSB and PWR_CTRL.PRS[2:0], their combination can form a 4-bit PVD threshold configuration.

VDD/VDDA

PVD threshold

PVD threshold

Nomv

Nysteresis

Figure 3-3 PVD threshold waveform

3.1.2.3 Brown_out reset (BOR)

BOR is a power-down reset controller built into the device, when the VDD voltage is lower than 1.62V (typ), the device will remain in reset state.

3.2 Power modes

PVD output -

Overall MCU has 6 power modes: RUN, SLEEP, STOP0, STOP2, STANDBY and VBAT. Different mode has different performance and power consumption. A summary of MCU power modes is shown below.

Mode Condition Enter Exit CPU boot Power on, system reset, low Enter sleep, STOP0, STOP2, RUN standby and VBAT modes Peripheral configuration power wake-up 1) SCB_SCR.SLEEPDEEP = wake: 0, 1) If entered via WFI or set SCB_SCR.SLEEPONEXIT = $SCB_SCR.SLEEPONEXIT = 1,$ 0, CPU goes to sleep mode and the kernel any NVIC interrupt can exit WFI/WFE stops. With all peripherals configured, the SLEEP 2) If entered via WFE or set 2) SCB_SCR.SLEEPDEEP = voltage regulator is still running. Any SCB_SCR.SEVONPEND=1, any 0, SCB_SCR.SLEEPONEXIT interrupt and event can wake up the CPU peripheral interrupt can exit; = 1.SCB_SCR.SEVONPEND=0, the No interrupt waiting, CPU external interrupt line exits returns from ISR STOP0^[1] CPU deep sleep mode: WFI / WFE: wake:

Table 3-1 Power modes

Mode	Condition	Enter	Exit
	Peripheral clocks, all digital blocks and	1) SCB_SCR.SLEEPDEEP =	1) If entered by WFI, any from
	voltage regulators are still running.	1, PWR_CTRL.PDS=0,	external interrupt/event line
	HSE/HSI/PLL is turned off.	2) PWR_CTRL.LPS=0/1,	(NVIC enabled), it can be external
	LSE/LSI, RTC or other peripherals can be	Select the main voltage	interrupt or internal peripheral
	configured to wake up.	regulator operating mode	2) If entered by WFE,
	All SRAM data retention, all IO ports,		SCB_SCR.SEVONPEND=0, any
	IWDG and RTC can be used to wake up the		event line from external
	CPU.		3) If entered by WFE,
	After waking up, HSI is turned on, and the		SCB_SCR.SEVONPEND=1, any
	code starts from where it hangs.		interrupt from external or internal
			peripheral
	CPU deep sleep mode:		wake:
	CPU registers are maintained, and all core		1) If entered by WFI, any from
	digital logic areas are powered off.		external interrupt/event line
	The main voltage regulator (MR) is turned		(NVIC enabled), it can be external
	off and the HSE/HSI/PLL is turned off.	WFI/WFE:	interrupt or internal peripheral
GEODO[2]	LSE/LSI configurable,	1) SCB_SCR.SLEEPDEEP =	2) If entered by WFE,
STOP2 ^[2]	GPIO is maintained, and peripheral IO	1	SCB_SCR.SEVONPEND=0, any
	multiplexing is not maintained. 16KB R-	2) PWR_CTRL2.STOP2S =1	event line from external
	SRAM data retention, other SRAM and		3) If entered by WFE,
	register data are lost.		SCB_SCR.SEVONPEND=1, any
	84B BK register retention.		interrupt from external or internal
	GPIOs and EXTI are enabled.		peripheral
	The main voltage regulator is turned off and		
	the HSE/HSI/PLL is turned off.		
	LSE/LSI is configurable.		
	16KB bytes of R-SRAM retention,		
	configured through	XXIII (XXIIII	
	PWR_CTRL2.SR2STBRET. Other SRAM	WFI/WFE:	MAZIAD : 1 DEC 1
CTANDDY	and register data are lost.	1) SCB_SCR.SLEEPDEEP =	WKUP rising edge, RTC alarm
STANDBY	Except for the following		rising edge, NRST reset, IWDG
	NRST/PA0_WKUP/PC13-TAMPER/PC14-	interrupt/event	reset
	OSC32_IN/PC15-OSC32_OUT, other IOs	2) PWR_CTRL.PDS=1	
	are high impedance.		
	The 84-byte BK register data retention,		
	IWDG, RTC/PA0WKUP/NRST/TAMPER		
	can wake up the CPU.		
	CPU off, all peripherals off, main voltage		
	regulator off, LSE/LSI configurable,		
VBAT	HSE/HSI/PLL off. Except for NRST/PC13-	VDD disable	VDD enable
	TAMPER/PC14-OSC32_IN/PC15-		
	OSC32_OUT, most IO ports are in high		

Mode	Condition	Enter	Exit
	impedance state.		

Note:

- 1. STOP0 mode, after wake-up, the code can continue running from the stop position.
- 2. In STOP2 mode, after waking up, the heap and global variables in the R-SRAM area can resume and continue from the stopped position, and the peripherals need to be re-initialized at this time.

The running enable conditions of different modules in different power consumption modes are shown in the following table:

Table 3-2 Blocks running state⁽¹⁾

			Sto	op 0	Sto	ор 2	Sta	Standby	
Peripheral	Run	Sleep	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	VBAT
MR	Y	Y	(3)	-	OFF	-	OFF	-	OFF
BKR	Y	Y	Y	-	Y	-	Y	-	Y
POR	Y	Y	Y	-	Y	-	Y	Y	
PDR	Y	Y	Y	-	Y	-	Y	Y	-
PVD	О	0	О	О	О	О	-	-	-
BKPOR/PDR	Y	Y	Y	-	Y	-	Y	-	Y
CPU	Y	HCLK (O)	HCLK (O)	-	-	-	OFF	-	OFF
Flash	О	0	(4)	-	OFF	-	OFF	-	OFF
SRAM	Y	Y	Y	-	OFF	-	OFF	-	OFF
R-SRAM	Y	0	Y	-	О	-	О	-	О
Backup Registers	Y	Y	Y	-	Y	-	Y	-	Y
DMA	О	0	-	-	-	-	-	-	-
HSI	О	0	OFF	-	OFF	-	OFF	-	OFF
HSE	О	О	OFF	-	OFF	-	OFF	-	OFF

			Ste	ор 0	Ste	op 2	Sta	andby	
Peripheral	Run	Sleep	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	VBAT
LSI	О	0	О	-	0	-	О	-	О
LSE	О	0	О	-	0	-	О	-	О
CSS	О	0	-	-	-	-	-	-	-
RTC / Auto wakeup	0	О	О	О	О	0	0	О	О
Number of RTC Tamper pins	1	1	1	0	1	О	1	0	1
USART1/2/3	О	О	-	-	-	-	-	-	-
UART4/5/6/7	О	О	-	-	-	-	-	-	-
I2C1/2/3/4	О	О	-	-	-	-	-	-	-
SPI1/2/3	О	О	-	-	-	-	-	-	-
CAN1/2	О	О	-	-	-	-	-	-	-
USB	О	О	-	-	-	-	-	-	-
QSPI	О	О	-	-	-	-	-	-	-
SDMMC	О	О	-	-	-	-	-	-	-
ADC	О	О	-	-	-	-	-	-	-
DAC	О	0	-	-	-	-	-	-	-
DVP	О	О	-	-	-	-	-	-	-
Tempsensor	О	О	-	-	-	-	-	-	-
TIMx	О	0	-	-	-	-	-	-	-
IWDG	О	0	О	0	О	О	О	0	-

			Sto	op 0	Sto	op 2	Sta	ndby	
Peripheral	Run	Sleep	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	VBAT
WWDG	0	0	-	-	-	-	-	-	-
SysTick	О	О	-	-	-	-	-	-	-
SAC	0	0	-	-	-	-	-	-	-
RNG	0	0	-	-	-	-	-	-	-
CRC	О	0	-	-	-	-	-	-	-
GPIOs	О	0	О	О	О	О	Y	2pins	-

Note:

- 1. Y means Yes (enable), O means Option (optional), means invalid, OFF means close,
- 2. 2pins represent 2 wakeup IOs, PAO_WKUP and NRST
- 3. MR options in normal mode or low power mode
- 4. FLASH is in sleep (Flash itself) mode.

3.2.1 SLEEP mode

The CPU stops and all peripherals including peripherals around the Cortex®-M4F core (such as NVIC, SysTick, etc.) can run and wake up the CPU when an interrupt or event occurs. In SLEEP mode, all I/O pins maintain the same state/function as in RUN mode.

3.2.1.1 Enter SLEEP mode

Enter SLEEP mode by executing WFI (wait for interrupt) or WFE (wait for event) instruction with SCB_SCR.SLEEPDEEP = 0. Depending on the SCB_SCR.SLEEPONEXIT, there are two options for SLEEP mode entry:

- SLEEP-NOW: If SCB_SCR.SLEEPONEXIT = 0, then WFI or WFE instruction is executed immediately, and the system enters sleep mode immediately.
- SLEEP-ON-EXIT: If SCB_SCR.SLEEPONEXIT = 1, the system immediately enters sleep mode when exiting from the lowest priority ISR.

In SLEEP mode, all I/O pins maintain the same state/function as in RUN mode.

3.2.1.2 Exit SLEEP mode

If WFI instruction is used to enter the SLEEP mode, any NVIC interrupts can wake up the device from the SLEEP mode.

If the WFE instruction is used to enter the SLEEP mode, MCU will exit the SLEEP mode immediately when the event occurs. Wake-up events can be generated in the following ways:

- Enable an interrupt in the peripheral control register instead of NVIC, and enable the SCB_SCR.SEVONPEND. When MCU wakes up by WFE, the peripheral interrupt suspend bit and the peripheral NVIC interrupt channel suspend bit (in NVIC interrupt clear suspend register) must be cleared.
- Configure an external or internal EXTI event mode. When the MCU wakes up, it is not necessary to clear the peripheral interrupt suspend bit and the peripheral NVIC interrupt channel suspend bit (in the NVIC interrupt clear suspend register) because the suspend bit corresponding to the event line is not set. This mode provides the shortest wake-up time because there is no time spent on interrupt entry or exit.

3.2.2 STOP0 mode

STOP0 mode is based on Cortex®-M4 deep sleep mode combined with peripheral clock control mechanism. The voltage regulator can be configured in normal or low power mode. In STOP0 mode, most of the clock sources in the core domain are disabled, such as PLL, HSI and HSE. But SRAM, R-SRAM and all register contents are preserved.

In STOP0 mode, all I/O pins maintain the same state as in RUN mode.

3.2.2.1 Enter STOP0 mode

When entering STOP0 mode, the main difference is to set SCB_SCR.SLEEPDEEP=1, PWR_CTRL.PDS=0. Another difference is that MR can run in normal mode or low power mode by configuring register PWR_CTRL.LPS. When PWR_CTRL.LPS = 1, MR runs in low power mode.

When PWR CTRL.LPS = 0, MR operates in normal mode.

In STOP0 mode, all I/O pins maintain the same state and function as in RUN mode.

If a FLASH operation is in progress, the time to enter STOP0 mode will be delayed until the memory access is completed.

If an access to the APB area is in progress, the time to enter STOP0 mode will be delayed until the APB access is complete.

In STOP0 mode, the following characteristics can be selected by programming the individual control bits:

- Independent watchdog (IWDG): The independent watchdog will be activated when its related registers are written by software or operated by hardware. Once activated, it will keep working until a reset message is generated.
- RTC: can be turned on by register RCC_BDCTRL.RTCEN bit
- Internal RC oscillator (LSI RC): can be turned on by register RCC_CTRLSTS.LSIEN bit
- External 32.768kHz crystal oscillator (LSE OSC): can be turned on by register RCC_BDCTRL.LSEEN.

ADC or DAC can also consume power in STOP0 mode, ADC and DAC can be disabled before entering STOP0 mode.

Note: If the application needs to disable the external clock before entering stop mode, it must first disable the RCC_CTRL.HSEEN bit and then switch the system clock to HSI. Otherwise, if the RCC_CTRL.HSEEN bit remains

enabled when entering stop mode and the external clock (external oscillator) is removed, the Clock Safety System (CSS) feature must be enabled to detect any external oscillator failure and avoid entering stop Failed behavior when mode.

3.2.2.2 Exit STOP0 mode

When an interrupt or wake-up event is generated to exit STOP0 mode, the HSI RC oscillator is selected as the system clock.

When the voltage regulator is operating in low power mode, there is an additional startup delay when waking up from STOP0 mode. In STOP0 mode, the internal regulator is in normal mode, which can reduce the startup time, but the corresponding power consumption will increase.

3.2.3 STOP2 mode

STOP2 mode is based on Cortex®-M4F deep sleep mode, all core digital logic areas are powered off. The main voltage regulator (MR) is turned off and the HSE/HSI/PLL is turned off. CPU register retention, LSE/LSI configurable, GPIO retention, peripheral IO multiplexing is not retained. 16K bytes R-SRAM retention, other SRAM and register data are lost. 84 bytes of backup register retention. GPIOs and EXTI enabled.

3.2.3.1 Enter STOP2 mode

To enter STOP2 mode, should be configured: SCB_SCR.SLEEPDEEP = 1, PWR_CTRL2.STOP2S = 1, PWR_CTRL.PDS = 0, PWR_CTRL.LPS = 0.

In STOP2 mode, if FLASH is being operated, the time to enter STOP2 mode will be delayed until the memory access is completed.

If the access to the APB area is in progress, the time to enter the STOP2 mode will be delayed until the APB access is completed.

In STOP2 mode, the following peripherals are available:

- Independent Watchdog (IWDG) optional: Once enabled, it will keep counting until a reset is generated.
- RTC optional: It can be turned on by RCC_BDCTRL.RTCEN.
- Internal RC oscillator (LSI RC) optional: It can be turned on by RCC_CTRLSTS.LSIEN.
- External 32.768kHz crystal oscillator (LSE OSC) optional: It can be turned on by RCC_BDCTRL.LSEEN bit.

Note: If you want to keep data (global variables, stack, etc.) when entering STOP2, you should put it in R-SRAM.

3.2.3.2 Exit STOP2 mode

When the STOP2 mode is exited by generating an interrupt or a wake-up event, the HSI RC oscillator is selected as the system clock, and the code execution will continue from where it stopped.

3.2.4 STANDBY mode

STANDBY mode is a Cortex®-M4 based Deep-Sleep mode. The core domain is completely closed, and the backup region is open to supply power to BKR.

3.2.4.1 Enter STANDBY mode

When entering STANDBY mode. The main difference is to set SCB_SCR.SLEEPDEEP=1, PWR_CTRL.PDS=1.

In STANDBY mode, all I/O pins remain high impedance except NRST, PA0_WKUP, PC13_TAMPER, PC14, PC15.

If an operation is in progress on FLASH, the time to enter STANDBY mode will be delayed until the memory access is complete.

If an access to the APB area is in progress, the time to enter STANDBY mode will be delayed until the APB access is complete.

In STANDBY mode, the following features can be selected by programming individual control bits:

- Independent Watchdog (IWDG) optional: Once enabled, it will keep counting until a reset is generated.
- RTC optional: It can be turned on by RCC_BDCTRL.RTCEN.
- Internal RC oscillator (LSI RC) optional: It can be turned on by RCC_CTRLSTS.LSIEN.
- External 32.768kHz crystal oscillator (LSE OSC) optional: It can be turned on by RCC_BDCTRL.LSEEN bit.
- R-SRAM data retention, which can be turned on by register PWR_CTRL2.SR2STBRET.

3.2.4.2 Exit STANDBY mode

MCU exits STANDBY mode when an external reset (NRST pin), IWDG reset, rising edge of the WKUP pin, or a rising edge of the RTC alarm event occurs. Except for the power status register (PWR_CTRLSTS), all registers are reset after waking up from STANDBY state.

After waking up from STANDBY mode, code execution is the same as reset (detecting BOOT pin, getting reset vector, etc.). The PWR_CTRLSTS.SBF status flag indicates that the MCU exits STANDBY mode.

3.2.5 VBAT mode

In VBAT mode the CPU is turned off, all peripherals are turned off, the main voltage regulator is turned off, the LSE/LSI is configurable, and the HSE/HSI/PLL is turned off. Except for NRST/PC13-TAMPER/PC14-OSC32_IN/PC15-OSC32_OUT, most IO ports are in high impedance state.

In VBAT mode, depending on the configuration before VDD is powered down, the following features are available:

- RTC optional: It can be turned on by RCC_BDCTRL.RTCEN.
- Internal RC oscillator (LSI RC) optional: It can be turned on by RCC_CTRLSTS.LSIEN.
- External 32.768kHz crystal oscillator (LSE OSC) optional: It can be turned on by RCC_BDCTRL.LSEEN bit.
- R-SRAM data retention, which can be turned on by register PWR_CTRL2.SR2STBRET.

3.2.5.1 Enter VBAT mode

When VDD is powered down, it will enter VBAT mode at any time.

3.2.5.2 Exit VBAT mode

When VDD returns to the power-on reset threshold, the MCU exits VBAT mode. After VDD is restored, the core area of the MCU will be completely executed according to the power-on sequence. After waking up from VBAT

mode, code execution is identical to execution after reset. The PWR_CTRLSTS.VBATF status flag indicates that the MCU exits from VBAT mode.

3.3 Low-power auto-wakeup (AWU) mode

In automatic wake-up mode, the RTC can be used to wake up from different low-power modes without relying on external interrupts. The RTC provides a programmable clock reference for timed wake-up from STOP0, STOP2 and STANDBY modes. To do this, two of the three optional RTC clock sources can be selected by software programming RCC_BDCTRL.RTCSEL[1:0] as follows:

■ 32.768kHz external crystal clock (LSE OSC)

This clock source provides an accurate clock reference with very low power consumption.

■ RC internal crystal clock (LSI RC)

This clock source has the advantage of saving the cost of the 32.768 kHz crystal, but the clock accuracy is worse than the LSE.

To wake up from STOP2 mode using the RTC alarm event, you need:

- Configure EXTI 17 rising edge trigger.
- Configure RTC to enable RTC alarm event.

To wake up from STANDBY mode using RTC alarm event, EXTI 17 does not need to be configured.

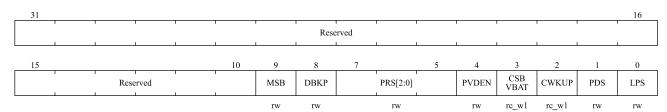
VBAT mode cannot wake up via RTC.

3.4 PWR registers

3.4.1 PWR register overview

Table 3-3 PWR register overview

Offset	Register	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	10	6	∞	7	5	4	3	2	1	0
000h	PWR_CTRL	Reserved		MSB	DBKP	PRS	[2:0]	PVDEN	CSBVBAT	CWKUP	PDS	LPS
	Reset Value			0	0	0 (0	0	0	0	0	0
004h	PWR_CTRLSTS	Reserved			WKUPEN	R	eserved		VBATF	PVDO	SBF	WKUPF
	Reset Value				0				0	0	0	0
008h	PWR_CTRL2	Reserved	IWDGRSTEN	IWDGWPEN		LSITRI	IM[4:0]		TMPWPEN	SR2STBRET	SR2VBRET	STOP2S
	Reset Value		1	1	0	1 1	1 1	0	0	1	0	0
00Ch	PWR_CTRL3	Reserved		_	_				_	_		EXMODE
	Reset Value											0

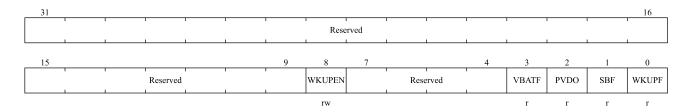

42

3.4.2 Power control register (PWR_CTRL)

Address offset: 0x00

Reset value: 0x0000 0700 (reset by wakeup from STANDBY mode)

Bit field	Name	Description						
31:10	Reserved	Reserved, the reset value	Reserved, the reset value must be maintained.					
9	MSB	4-bit PVD threshold se	ting bits.					
		This bit is operational v	when PWR_CTRL3.EXMODE = 1.					
		Therefore, the PWR_C	TRL3.EXMODE bit needs to be configured first.					
		When the MSB bit is 0	the threshold is as follows:					
		register(4bits)	Voltage					
		0000	2.2v					
		0001	2.3v					
		0010	2.4v					
		0011	2.5v					
		0100	2.6v					
		0101	2.7v					
		0110	2.8v					
		0111	2.9v					
		When the MSB bit is 1, the threshold is as follows:						
		register(4bits)	Voltage					
		1000	1.78v					
		1001	1.88v					
		1010	1.98v					
		1011	2.08v					
		1100	3.28v					
		1101	3.38v					
		1110	3.48v					
		1111	3.58v					
8	DBKP	Cancel the write protect	tion of the backup power domain.					
		In the reset state, the R'	ΓC and backup domain registers should be protected	l to				
			This bit must be set to enable write access to these					
		registers.						
		0: Disable access to RT	C and backup registers					
		1: Enable access to RT						



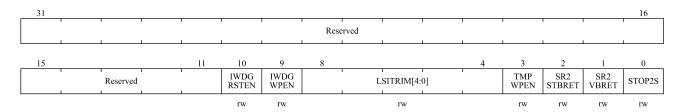
Bit field	Name	Description
		Note: This bit must remain 1 if the RTC clock is HSE/128.
7:5	PRS[2:0]	PVD monitoring voltage selection.
		Combinations of different bits represent different voltage thresholds of the voltage
		detector.
		These bits need to be configured in conjunction with the MSB bit. For specific
		voltage thresholds, see the description of the MSB bit.
		NOTE: See the Electrical Characteristics section in the datasheet for detailed
		descriptions.
4	PVDEN	Power supply voltage monitor (PVD) enabled.
		0: Disable PVD
		1: Enable PVD
3	CSBVBAT	Clear STANDBY/VBAT bit.
		always reads as 0
		0: invalid
		1: Clear PWR_CTRLSTS.SBF and PWR_CTRLSTS.VBATF standby bits (write)
2	CWKUP	Clear wakeup bit.
		always reads as 0
		0: invalid
		1: Clear PWR_CTRLSTS.WKUPF wake-up bit after 2 system clock cycles (write)
1	PDS	Power-down deep-sleep bit.
		Operates in conjunction with the LPS bit
		0: Enters shutdown mode when the CPU enters deep sleep, the state of the voltage
		regulator is controlled by the LPS bit.
		1: Enter standby mode when the CPU enters deep sleep.
0	LPS	Low power consumption in deep sleep.
		When PDS=0, cooperate with the PDS bit
		0: Voltage regulator on in shutdown mode
		1: Voltage regulator in low power mode in shutdown mode

3.4.3 Power control status register(PWR_CTRLSTS)

Address offset: 0x04

Reset value: 0x0000 0000 (not cleared when waking up from standby mode)

Bit field	Name	Description
31:9	Reserved	Reserved, the reset value must be maintained.

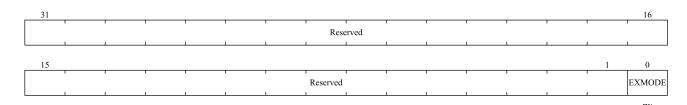


Bit field	Name	Description
8	WKUPEN	Enable WKUP pin bit
		0: The WKUP pin is a general purpose I/O. An event on the WKUP pin cannot wake the
		CPU from standby mode
		1: WKUP pin is used to wake up CPU from standby mode, WKUP pin is forced to input
		pull-down configuration (rising edge on WKUP pin wakes up system from standby
		mode)
		Note: This bit is cleared on system reset.
7:4	Reserved	Reserved, the reset value must be maintained.
3	VBATF	VBAT flag bit.
		This bit is set by hardware and is only cleared by POR or PDR (power-on reset/power-
		down reset) or set by setting the PWR_CTRL.CSBVBAT bit.
		0: The device is not in VBAT mode
		1: The device is already in VBAT mode
2	PVDO	PVD output.
		This bit is only valid when PVD is enabled by the PWR_CTRL.PVDEN bit
		0: VDD/VDDA is higher than the PVD threshold selected by PWR_CTRL.PRS[2:0]
		1: VDD/VDDA is lower than the PVD threshold selected by PWR_CTRL.PRS[2:0]
		Note: PVD is stopped in standby mode. Therefore, after standby mode or after reset,
		this bit is 0 until the PWR_CTRL.PVDEN bit is set.
1	SBF	Standby flag.
		This bit is set by hardware and can only be cleared by POR/PDR (power-on/power-
		down reset) or by setting the PWR_CTRL.CSBVBAT bit.
		0: The system is not in standby mode
		1: The system enters standby mode
0	WKUPF	Wake up flag.
		This bit is set by hardware and can only be cleared by POR/PDR (power-on/power-
		down reset) or by setting the PWR_CTRL.CWKUP bit.
		0: No wakeup event occurred
		1: A wake-up event occurred on the WKUP pin or a RTC alarm event occurred.
		Note: An additional event is detected when the WKUP pin is enabled (by setting the
		WKUPEN bit) when the WKUP pin is already high.

3.4.4 Power control register 2 (PWR_CTRL2)

Address offset: 0x08

Reset value: 0x0000 06E4 (reset by wakeup from STANDBY mode)



Bit field	Name	Description
31:11	Reserved	Reserved, the reset value must be maintained.
10	IWDGRSTEN	Independent watchdog reset enable.
		0: Independent watchdog cannot generate reset to RCC
		1: Independent watchdog can generate reset to RCC
9	IWDGWPEN	Independent watchdog wakeup enable.
		0: Independent watchdog wakeup disable
		1: Independent watchdog wake-up enable
8:4	LSITRIM[4:0]	LSI correction value
3	TMPWPEN	TAMPER wake-up enable.
		0: Disable
		1: Enable
2	SR2STBRET	R-SRAM holds the enable bit in standby mode.
		0: In standby mode, R-SRAM remains disable
		1: In standby mode, R-SRAM remains enable
1	SR2VBRET	R-SRAM holds the enable bit in VBAT mode.
		0: In VBAT mode, R-SRAM remains disabled
		1: In VBAT mode, R-SRAM remains enbale
0	STOP2S	STOP2 mode enable bit.
		0: Not used
		1: Enable STOP2 mode

3.4.5 Power control register 3 (PWR_CTRL3)

Address offset: 0x0C

Reset value: 0x0000 5B70

Bit field	Name	Description
31:1	Reserved	Reserved, the reset value must be maintained.
0	EXMODE	Extended mode control bits.
		0: Normal mode
		1: Extended mode

46

Nanshan District, Shenzhen, 518057, P.R.China

4 Backup registers (BKP)

4.1 Introduction

The backup memory is located in the backup domain, and is maintained by VBAT after the power supply VDD is turned off. BKP has a total of 42 16-bit registers that can be used to store and protect user application data. These 84 bytes are not affected by wake-up from system standby mode or system reset.

In addition, the BKP control register has an tamper detection function.

When the system is reset, all write operations are disabled to protect the backup domain from accidental operations. To enable, first set the RCC_APB1PCLKEN.PWREN and RCC_APB1PCLKEN.BKPEN bits to enable the power supply and the backup interface clock, and then set the PWR_CTRL.DBKP bit to enable the write operation to the backup register.

4.2 Main features

- Only need VBAT power supply to maintain 84-byte data backup register
- The effective level of the tamper source can be configured
- Can realize the control of tamper detection interrupt or event (BKP_CTRLSTS)

4.3 Function description

- Power-down backup
- **■** Tamper detection

An intrusion detection event clears all backup data register contents. The detection function of the TAMPER pin can be enabled by configuring the BKP_CTRL.TP_EN bit. It should be noted that the intrusion detection signal is the logical AND of the level detection signal and the BKP_CTRL.TP_EN bit, so the intrusion detection should be configured before the TAMPER pin is enabled.

When an intrusion event is detected, the BKP_CTRLSTS.TEF bit is set to '1'. If the tamper detection interrupt is enabled (bit '1' in BKP_CTRLSTS.TPINT_EN), an interrupt will be generated.

In order to prevent the software from writing the backup data register when there is still an tamper event on the tamper detection pin, when the tamper event is cleared, the detection function of the tamper detection pin TAMPER should be turned off. After the backup data register operation is completed, set the BKP_CTRL.TP_EN bit to '1'.

The BKP_CTRL.TP_ALEV bit is used to set the active level of the tamper detection event. When BKP_CTRL.TP_ALEV=0 or 1, if the TAMPER pin has been high or low before enabling, an additional tamper event will occur even though there is no rising or falling edge signal on the TAMPER pin. Therefore, the TAMPER pin should be connected to the correct level off-chip.

Nanshan District, Shenzhen, 518057, P.R.China

4.4 BKP registers

4.4.1 BKP register overview

The BKP register is a 16-bit addressable register.

Table 4-1 BKP Register overview

Offset	Register	30 30 30 30 31 31 32 32 32 33 30 31 31 32 32 32 32 32 32 32 32 32 32 32 32 32	15	41	13	12	11	10	6	∞	7	9	S	4	3	2	1	0
000h		Reserved																
	BKP_DAT1									DAT[15:01							
004h	Reset Value	Reserved	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BKP_DAT2		Ů	0	Ü	Ü	Ů	Ü		DAT[Ü	Ů	Ů	Ü	Ů	Ü	0
008h	Reset Value	Reserved	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BKP_DAT3		Ŭ			Ü	Ŭ	Ŭ		DAT[Ů	Ü	Ů	Ü	
00Ch	Reset Value	Reserved	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BKP_DAT4						<u> </u>			DAT[15:0]			<u> </u>		Į.		
010h	Reset Value	Reserved	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BKP_DAT5		1			1				DAT[[15:0]					I		
014h	Reset Value	Reserved	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0101	BKP_DAT6		•			•				DAT[15:0]						•	
018h	Reset Value	Reserved	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01Ch	BKP_DAT7	Decembed								DAT[[15:0]							
orch	Reset Value	Reserved	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
020h	BKP_DAT8	Reserved								DAT[15:0]							
02011	Reset Value	Kesei veu	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
024h	BKP_DAT9	Reserved								DAT[[15:0]							
02 111	Reset Value	itelie ite	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
028h	BKP_DAT10	Reserved								DAT[15:0]							
	Reset Value		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02Ch		Reserved																
030h	BKP_CTRL	Reserved															TP_ALEV	TP_EN
	Reset Value															-	0	0
034h	BKP_CTRLSTS	Reserved							TINTF	TEF						TPINT_EN	CLRTINT	CLRTE
	Reset Value								0	0						0	0	0
038h		Reserved																
03Ch		Reserved																
	BKP_DAT11									DAT[15:0]							
040h	Reset Value	Reserved	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
																	l l	

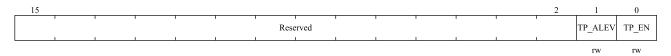
044h	DAT[15:0] DAT[15:0] DAT[15:0]
044h Reset Value	DAT[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0
048h BKP_DAT13 Reserved 0 0 0 0 0 0 0	DAT[15:0] 0 0 0 0 0 0 0 0 0 0 0 0
048h Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
BKP_DAT14 Reserved	
04Ch Reserved	
	DAT[15:0]
Reset Value 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
BKP_DAT15 050h Reserved	DAT[15:0]
Reset Value 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
BKP_DAT16 Reserved	DAT[15:0]
	0 0 0 0 0 0 0 0 0 0 0
DESCRIPTION OF SERVICE	DAT[15:0]
	0 0 0 0 0 0 0 0 0 0 0
05Ch Reserved	DAT[15:0]
	0 0 0 0 0 0 0 0 0 0 0
BKP_DAT19 060h Reserved	DAT[15:0]
	0 0 0 0 0 0 0 0 0 0 0
BKP_DAT20 064h Reserved	DAT[15:0]
	0 0 0 0 0 0 0 0 0 0 0
BKP_DAT21 068h Reserved	DAT[15:0]
	0 0 0 0 0 0 0 0 0 0 0
06Ch Reserved	DAT[15:0]
	0 0 0 0 0 0 0 0 0 0 0
BKP_DAT23 070h Reserved	DAT[15:0]
	0 0 0 0 0 0 0 0 0 0 0
BKP_DAT24 Reserved	DAT[15:0]
Reset Value 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
BKP_DAT25 078h Reserved	DAT[15:0]
Reset Value 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
BKP_DAT26 Reserved	DAT[15:0]
Reset Value 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
080h Reserved	DAT[15:0]
	0 0 0 0 0 0 0 0 0 0 0
084h Reserved	DAT[15:0]
	0 0 0 0 0 0 0 0 0 0 0
088h Reserved	DAT[15:0]
	0 0 0 0 0 0 0 0 0 0 0 0
08Ch Reserved	DAT[15:0]
	0 0 0 0 0 0 0 0 0 0 0
090h Reserved	DAT[15:0]
	0 0 0 0 0 0 0 0 0 0 0
BKP_DAT32 Reserved	DAT[15:0]
	0 0 0 0 0 0 0 0 0 0 0 0
BKP_DAT33 Reserved	DAT[15:0]
	0 0 0 0 0 0 0 0 0 0 0 0
09Ch BKP_DAT34 Reserved	DAT[15:0]

Offset	Register	3.1	30	29	ì	28	27	26	25	24	ć	23	77	21	20	19	18	17	16	15	14	13	12	11	10	6	∞	7	9	5	4	3	2	1	0
	Reset Value																			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.4.01	BKP_DAT35									D.		,															DAT	[15:0]							
0A0h	Reset Value									Rese	erv	/ed								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BKP_DAT36																										DAT	[15:0]							
0A4h	Reset Value									Rese	erv	ed								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BKP_DAT37																										DAT	[15:0]		•				•	
0A8h	Reset Value									Rese	erv	ed								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BKP_DAT38			Reserved															•			•			DAT	[15:0]									
0ACh	Reset Value	-								Rese	erv	ed.								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
op or	BKP_DAT39																							•			DAT	[15:0]							
0B0h	Reset Value	-								Rese	erv	ed.								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BKP_DAT40																				•			•			DAT	[15:0]							
0B4h	Reset Value									Rese	erv	ed								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BKP_DAT41																				•			•			DAT	[15:0]							
0B8h	Reset Value									Rese	erv	red								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
op.ci	BKP_DAT42									D.																	DAT	[15:0]							
0BCh	Reset Value				Reserved Reserved Reserved															0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

4.4.2 Backup Data Register x (BKP_DATx) (x = 1 ... 42)

Address offset: 0x04 to 0x28,0x40 to 0xBC

Reset value: 0x0000 0000



Bit field	Name	Description
15:0	DAT[15:0]	backup data
		These bits can be used to write user data.
		Note: BKP_DATx registers are not reset by system reset, power reset, wake-up from standby
		mode. They can be reset by a backup domain reset or (if the tamper detection pin TAMPER
		function is enabled) by a tamper pin event.

4.4.3 Backup Control Register (BKP_CTRL)

Address offset: 0x30

Reset value: 0x0000 0000

Bit field	Name	Description
15:2	Reserved	Reserved, the reset value must be maintained.

Bit field	Name	Description
1	TP_ALEV	Tamper detection TAMPER pin active level 0: A high level on the tamper detection TAMPER pin clears all data backup registers 1: A low level on the tamper detection TAMPER pin clears all data backup registers
0	TP_EN	Start tamper detection TAMPER pin 0: Tamper detection TAMPER pin is used as a general IO port 1: Enbale the tamper detection pin for tamper detection

Note: It is always safe to set the BKP_CTRL.TP_ALEV and BKP_CTRL.TP_EN bits at the same time. However, clearing both at the same time produces a false tamper event. Therefore, it is recommended to change the state of the BKP_CTRL.TP_ALEV bit only when BKP_CTRL.TP_EN is 0.

4.4.4 Backup Control/Status Register (BKP_CTRLSTS)

Address offset: 0x34

Reset value: 0x0000 0000

Bit field	Name	Description
15:10	Reserved	Reserved, the reset value must be maintained.
9	TINTF	Tamper interrupt flag
		This bit is set by hardware when an tamper event is detected and the TPINT_EN bit is 1. This
		flag is cleared by writing a 1 to the CLRTINT bit (which also clears the interrupt). This bit is
		also cleared if the TPINT_EN bit is cleared.
		0: No tamper interrupt
		1: Generate tamper interrupt
		Note: This bit is only reset after system reset or wake-up from standby mode
8	TEF	Tamper event sign
		This bit is set by hardware when an tamper event is detected. This flag can be cleared by
		writing a 1 to the CLRTE bit
		0: No tamper event
		1: Tamper event detected
		Note: A tamper event resets all BKP_DATx registers. All BKP_DATx registers remain reset as
		long as TEF is 1. When this bit is set to 1, if a write operation is performed to BKP_DATx, the
		written value will not be saved.
7:3	Reserved	Reserved, the reset value must be maintained.
2	TPINT_EN	Allow tamper of TAMPER pin interrupt
		0: Disable tamper detection interrupt
		1: Tamper detection interrupt is enabled (the TP_EN bit of the BKP_CTRL register must also
		be set to 1)
		Note 1: Intrusive interrupts cannot wake up the system core from low power modes.

Bit field	Name	Description
		Note 2: This bit is reset only after system reset or wake-up from standby mode.
1	CLRTINT	Clear Tamper Detection Interrupt
		This bit can only be written, and the read value is 0.
		0: invalid
		1: Clear the tamper detection interrupt and TINTF tamper detection interrupt flags
0	CLRTE	Clear tamper detection events
		This bit can only be written, and the read value is 0.
		0: invalid
		1: Clear the TEF tamper detection event flag (and reset the tamper detector).

5 Reset and clock control (RCC)

5.1 Reset Control Unit

Supports the following three types of reset:

- Power Reset
- System Reset
- Backup domain Reset

5.1.1 Power reset

A Power reset occurs in the following circumstances:

- Power-on reset (POR reset).
- Power-down reset(PDR reset).
- When exiting STANDBY mode.

Power resets will reset all registers except the backup domain (see Figure 3-1).

The reset source in the figure will finally act on the NRST pin and remain low during the reset process. The reset entry vector is fixed at address 0x0000_0004. For more details, see Table 7-1 vector table.

5.1.2 System reset

Except the reset flags in the Control/Status Register (RCC_CTRLSTS) and the registers in the backup domain (see Figure 3-1), a system reset sets all registers to their reset values.

A system reset is generated when one of the following events occurs:

- A low level on the NRST pin (external reset)
- Window watchdog end of count condition (WWDG reset)
- Independent watchdog end of count condition (IWDG reset)
- Software reset (SW reset)
- Low power management reset
- Power reset
- MMU protection reset
- RAM parity error reset
- Backup domain EMC reset
- Retention domain EMC reset
- BOR reset

The source of the reset event can be identified by looking at the reset status flag bits in the RCC_CTRLSTS control

status register.

5.1.2.1 Software reset

A software reset can be generated by setting the SYSRESETREQ bit in CortexTM-M4 Application Interrupt and Reset Control Register. Refer to CortexTM-M4 technical reference manual for further information.

5.1.2.2 Low-power management reset

Low-power management reset can be generated by using the following methods:

- Generate low power management reset when entering STANDBY mode: This reset is enabled by setting the nRST_STDBY bit in the user option byte. At this time, even if the procedure to enter STANDBY mode is performed, the system will be reset instead of entering STANDBY mode.
- Generate low power management reset when entering STOP0/STOP2 mode: This reset is enabled by setting the nRST_STOP bit in the user option byte. At this time, even if the process to enter STOP0/STOP2 mode is performed, the system will be reset instead of entering STOP0/STOP2 mode.

The system reset signal provided to the chip is output on the NRST pin. The pulse generator guarantees a minimum reset pulse duration of 20µs for each reset source (external or internal). For external reset, the reset pulse is generated while the NRST pin is asserted low.

The Figure below shows the system reset generation circuit.

VDD/VDDA NRST PIN System Reset Filter Schmit IWDG reset WWDG reset SW reset Management reset Pulse MMU reset Generator RAM parity error (min 20us) reset Backup domain EMC Retention domain EMC reset BOR reset

Figure 5-1 System reset generation

5.1.3 Backup domain reset

The backup domain has two dedicated resets that only affect the backup domain (see Figure 3-1 Power Supply Block Diagram).

54

The backup domain reset is generated when one of the following events occurs:

- Software reset: The backup domain reset can be generated by setting the RCC_BDCTRL.BDSFTRST bit.
- Under the premise that both VDD and VBAT are powered off, the backup area will be reset only when VDD or VBAT is powered on.

5.2 Clock control unit

Three different clock sources can be used to drive the system clock (SYSCLK):

- HSI oscillator clock;
- HSE oscillator clock:
- PLL clock;

The devices have the following two secondary clock sources:

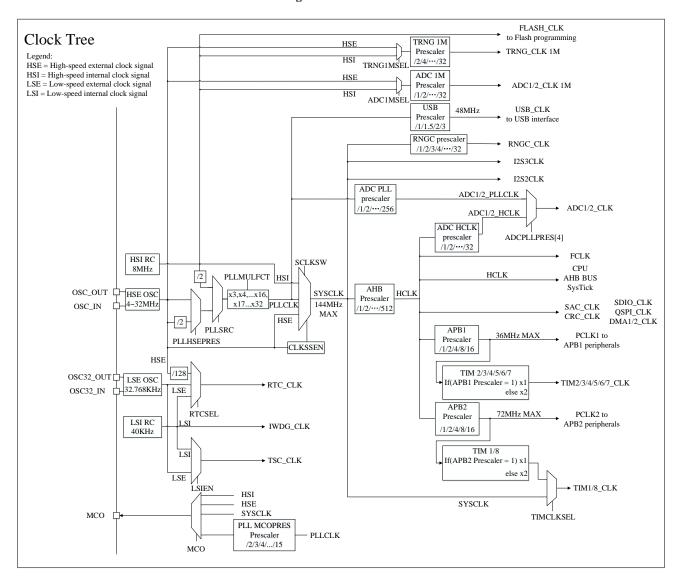
- LSI: 40 kHz low-speed internal RC which drives independent watchdog (IWDG) can be selected by software to drive RTC. RTC is used to automatically wake up the system from STOP0/STOP2/STANDBY mode.
- LSE: 32.768 kHz low-speed external crystal can also be selected by software to drive RTC(RTCCLK).

Each clock source can be turned on or off independently when it is not used to optimize power consumption.

Several prescalers can be used to configure the frequencies of the AHB, the high-speed APB (APB2), and the low-speed APB (APB1) domains. The maximum frequencies of the AHB, APB2, and APB1 domains are 144MHz, 72MHz, and 36MHz respectively. The clock frequency of the SDIO interface is fixed at HCLK/2.

RCC provides the Cortex System Timer (SysTick) external clock with the AHB clock (HCLK) divided by 8. This clock or Cortex clock(HCLK) can be selected to drive the SysTick by programming the SysTick Control and Status Register. The ADC clock is generated by dividing the AHB clock or PLL clock.

The clock frequencies of timers are automatically set by hardware. There are two scenarios:


- If the APB prescaler is 1, the timer clock frequencies are set to the same frequency as that of the APB domain to which the timers are connected.
- Otherwise, they are set to twice the frequency of the APB domain to which the timers are connected.

FCLK is the free-running clock of CortexTM-M4F. For more details, refer to the ARM CortexTM-M4 technical reference manual.

5.2.1 Clock Tree Diagram

Figure 5-2 Clock Tree

- 1. When HSI is used as the input of the PLL clock, the maximum frequency that the system clock can get is 128MHz.
- 2. For more details about the internal and external clock source characteristics, please refer to the "Electrical Characteristics" section in the product datasheet.

56

3. When PLL is selected as system clock source, PLL minimum clock output is 32MHz

5.2.2 HSE clock

The high-speed external clock signal (HSE) can be generated from the following two clock sources:

- HSE external crystal/ceramic resonator
- HSE user external clock

To reduce distortion of the clock output and shorten the start-up Stablize time, the crystal/ceramic resonator and load capacitor must be placed as close as possible to the oscillator pins. The load capacitance value must be adjusted according to the chosen oscillator.

External Clock Crystal/Ceramic Resonators

OSC_OUT

OSC_IN OSC_OUT

(HiZ)

External Clock Source

C1 C2

Figure 5-3 HSE/LSE clock source

5.2.2.1 External clock source (HSE bypass)

In this mode, an external clock source must be provided. Its frequency can be up to 32MHz. Users can select this mode by setting the RCC_CTRL.HSEBP and RCC_CTRL.HSEEN bits. The external clock signal(50% duty cycle square, sine or triangle wave) must be connected to the OSC_IN pin while the OSC_OUT pin must be left floating (Hi-Z). See Figure 5-3.

5,2,2,2 External crystal/ceramic resonator (HSE crystal)

The 4 to 32 MHz external oscillator has the advantage of producing a more accurate master clock for the system. The associated hardware configuration is shown in See Figure 5-3. For more details, please refer to the electrical characteristics section of the datasheet.

The RCC_CTRL.HSERDF bit indicates whether the high-speed external oscillator is stable or not. At startup, the clock is not released until this bit is set by hardware. An interrupt can be generated if enabled in the Clock Interrupt Register (RCC_CLKINT).

HSE clock can be switched on and off by setting the RCC_CTRL.HSEEN bit.

5.2.3 HSI clock

The HSI (High Speed Internal) clock signal is generated by an internal 8MHz RC oscillator and can be used directly as system clock or as PLL input after dividing by 2. The HSI RC oscillator can provide a clock source without any external devices. It also has a shorter startup time than the HSE crystal oscillator. However, its frequency is less accurate even with calibration.

The HSI clock frequency of each chip has been calibrated to 1% (25 °C) before leaving the factory. After the system reset, the factory calibration value is loaded into the RCC_CTRL.HSICAL[7:0] bits.

If the user application is subject to voltage or temperature variations, this may affect the accuracy of the RC oscillator. The HSI frequency can be trimmed by using the RCC_CTRL.HSITRIM[4:0] bits.

The RCC_CTRL.HSIRDF bit flag indicates if the HSI RC oscillator is stable. At startup, the HSI RC output clock is not released until this bit is set by hardware. HSI clock can be switched on and off using the RCC_CTRL.HSIEN bit.

If the HSE crystal oscillator fails, the HSI clock is used as a backup clock source. Refer to Section 5.2.8 Clock Security System.

5.2.4 PLL clock

The internal PLL can be used to multiply the HSI or the HSE clock frequency. Refer to Figure 5-2 Clock Tree, The PLL configuration (selection of PLL input clock (HSI/HSE and divider) and multiplication factor) must be done before enabling PLL. Once the PLL is enabled, these parameters cannot be changed. The PLL can be configured using control bits in RCC_CTRL and RCC_CFG registers.

If the PLL interrupt is enabled in the clock interrupt register, an interrupt request can be generated when the PLL is ready.

If the USB interface needs to be used in the application, the PLL must be set to output 48, 72, 96,144MHz clocks to provide the 48MHz USBCLK clock.

5.2.5 LSE clock

The LSE crystal is a 32.768KHz low speed external crystal or ceramic resonator. It provides a low-power and accurate clock source for the real-time clock or other timing functions.

The LSE clock is enabled and disabled by the RCC_BDCTRL.LSEEN bit.

The RCC_BDCTRL.LSERD bit indicates whether the LSE clock is stable. During the startup phase, the LSE clock signal is not released until this bit is set by hardware. If enabled in the clock interrupt register, an interrupt request can be generated.

5.2.5.1 LSE external clock source(LSE bypass)

In this mode, an external clock source with a frequency of up to 1 MHz can be provided. Users can select this mode by setting the RCC_BDCTRL.LSEBP and RCC_BDCTRL.LSEEN bits. The external clock signal(square, sine or triangle wave) with 50% duty cycle must be connected to the OSC32_IN pin while the OSC32_OUT pin must be left floating (Hi-Z).

5.2.6 LSI clock

The LSI RC can clock the IWDG and AWU in STOP0/STOP2 and STANDBY modes. The LSI clock frequency is about 40kHz. For further information please refer to the Electrical Characteristics section of the data sheet.

The LSI clock can be turned on or off using the RCC_CTRLSTS.LSIEN bit.

The RCC_CTRLSTS.LSIRD bit flag indicates if the LSI clock is stable. At startup, the clock is not released until this bit is set by hardware. An interrupt can be generated if enabled in the Clock Interrupt Register (RCC_CLKINT).

5.2.6.1 LSI calibration

The internal low-speed oscillator LSI can be calibrated to compensate for its frequency offset to obtain an RTC time base with acceptable accuracy, and an independent watchdog (IWDG) timeout (when these peripherals are clocked

www.nationstech.com

Nation 😵

from the LSI).

Calibration can be achieved by measuring the LSI clock frequency using the TIM5's input clock (TIM5_CLK). The measurement is guaranteed by the accuracy of the HSE. The software can obtain the accurate RTC clock base by adjusting the 20 bit prescaler of the RTC, and obtain the accurate independent watchdog (IWDG) timeout time by calculation.

The LSI calibration steps are as follows:

- 1. Turn on TIM5 and set channel 4 to input capture mode;
- 2. Set the AFIO_RMP_CFG.TIM5CH4_RMP bit to 1, and connect the LSI to channel 4 of TIM5 internally;
- 3. Measure LSI clock frequency through TIM5 capture/compare 4 events or interrupts;
- 4. Set the 20 bit prescaler based on the measurement results and the desired RTC time base and independent watchdog timeout.

5.2.7 System clock (SYSCLK) selection

After a system reset, the HSI oscillator is selected as the system clock. It cannot be stopped when the clock source is used directly or indirectly through the PLL as the system clock.

Switching from one clock source to another will only occur when the target clock source is ready (either after a delay to start the stabilization phase or PLL stabilization). When the selected clock source is not ready, the switching of the system clock will not occur until the target clock source is ready.

Status bits in the clock control register (RCC_CTRL) indicate which clock is ready and which clock is currently used as the system clock.

5.2.8 Clock security system (CLKSS)

Clock security system can be activated by software by setting the RCC_CTRL.CLKSSEN bit. Once activated, the clock detector is enabled after the startup delay of the HSE oscillator, and disabled when the HSE clock is turned off.

If the HSE clock fails, the HSE oscillator will be automatically turned off, and a clock failure event will be sent to the break input of the advanced timers (TIM1 and TIM8), and the Clock Security System Interrupt CLKSSIF will be generated, allowing the software to execute rescue operations. The CLKSSIF interrupt is connected to the NMI (Non-Maskable Interrupt) interrupt of the CortexTM-M4.

Once the CSS is activated and the HSE clock fails, the CSS interrupt is generated and the NMI is automatically generated. The NMI will be executed continuously until the CSS interrupt pending bit is cleared. Therefore, it is necessary to clear the CSS interrupt by setting the RCC_CLKINT.CLKSSICLR bit in the NMI handler.

If the HSE oscillator is directly or indirectly used as the system clock (indirectly means: it is used as the PLL input clock, and the PLL clock is used as the system clock), the clock failure will cause a switch of the system clock to the HSI oscillator and the disabling of the external HSE oscillator. If HSE clock (divided or not) is selected as PLL input clock then upon HSE clock failure, the PLL will be turned off.

Nanshan District, Shenzhen, 518057, P.R.China

5.2.9 RTC clock

By programming RCC_BDCTRL.RTCSEL[1:0] bits, the RTCCLK clock source can be either the HSE/128, LSE, or LSI clocks. This selection cannot be changed unless the backup domain is reset.

The LSE clock is in the backup domain, but the HSE and LSI clocks are not. therefore:

- If LSE is selected as RTC clock:
 - ◆ As long as VBAT remains powered, the RTC continues to work even though the VDD power supply is cut off
- If LSI is selected as the automatic wake-up unit (AWU) clock:
 - ◆ If the VDD supply is cut off, the AWU status cannot be guaranteed. For LSI calibration, see Section 5.2.6 LSI Clock.
- If the HSE clock is divided by 128 as the RTC clock:
 - ◆ If the VDD power supply is cut off or the internal voltage regulator is turned off (the power supply in the 1.8V domain is cut off), the RTC state is indeterminate.
 - ◆ The PWR_CTRL.DBKP bit of the power control register (see Section 3.4.2) must be set (to cancel the write protection of the backup power domain) to 1.

5.2.10 Watchdog clock

If the IWDG is started by either hardware option or software access, the LSI oscillator will be forced ON and cannot be disabled. After the LSI oscillator is stabilized, the clock is provided to the IWDG.

5.2.11 Clock output(MCO)

The microcontroller clock output (MCO) capability allows the clock signal to be output onto the external MCO pin.

The corresponding GPIO port register must be configured for the corresponding function. The following 4 clock signals can be selected as the MCO clock:

- SYSCLK
- HSI
- HSE
- PLL clock division

The clock selection is controlled by RCC_CFG.MCO[2:0] bits.

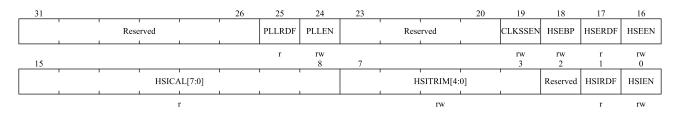
5.3 RCC Registers

The RCC registers are accessible through AHB bus. The register description is as follows.

5.3.1 RCC register overview

Table 5-1 RCC register overview

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	∞	7	9	5	4	3	2	-	0
000h	RCC_CTRL		Resei	rved				PLLRDF	PLLEN		Rese	rved		CLKSSEN	HSEBP	HSERDF	HSEEN			Н	SICA	L[7:(0]				HSIT	ΓRIM	[[4:0]		Reserved	HSIRDF	HSIEN
	Reset Value							0	0				_	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0		1	1
004h	RCC_CFG	MCOPR	ES[3:	:0]		PLLMULFCT[4]	МС	CO[2:	:0]	IO FISCICIONESII	OSBPRES[1:0]		o ciaba i in a i ia	PLLMULFC1[3:0]		PLLHSEPRES	PLLSRC		Keserved		APB2PRES[2:0]			APB1PRES[2:0]		AI	HBPR	ES[3	:0]	10·113±34 1/3	OCENS relava	SCI KSWII-01	Faculty Coverage
	Reset Value	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0
008h	RCC_CLKINT			Rese	rved					CLKSSICLR	-	Reserved	PLLRDICLR	HSERDICLR	HSIRDICLR	LSERDICLR	LSIRDICLR	R	eserve	ed	PLLRDIEN	HSERDIEN	HSIRDIEN	LSERDIEN	LSIRDIEN	CLKSSIF	£	Keserved	PLLRDIF	HSERDIF			LSIRDIF
	Reset Value									0			0	0	0	0	0				0	0	0	0	0	0			0	0	0	0	0
00Ch	RCC_APB2PRST				R	eserve	d						12C4RST	12C3RST	UART7RST	UART6RST	DVPRST	Reserved	USARTIRST	TIM8RST	SPIIRST	TIMIRST			Reserved		IOPERST	IOPDRST	IOPCRST	IOPBRST		Reserved	
	Reset Value			Г	Т	П							0	0	0	0	0		0	0	0	0					0	0	0	0	0		0
010h	RCC_APB1PRST	Reserved		DACRST	PWRRST		CAN2RST	CAN1RST	Reserved	USBRST	12C2RST	12C1RST	UARTSRST	UART4RST	USART3RST	USART2RST	Reserved	SPI3RST	SPI2RST	Doggrand	no locovi	WWDGRST		R	.eserve	ed		TIM7RST	TIM6RST	TIM5RST			TIM2RST
	Reset Value			0	0	0	0	0		0	0	0	0	0	0	0		0	0	1		0		Π			Г	0	0	0	0	0	0
014h	RCC_AHBPCLKEN]	Resei	rved								OSPIEN	R	eserv	ed	ADC2EN	ADCIEN	SACEN	SDIOEN	RNGCEN	2	Keserved	CRCEN	Reserved	FLITFEN	Reserved	SRAMEN	DMA2EN	DMA1EN
-	Reset Value															0		1		0	0	0	0	0			0		1		1	0	0
018h	RCC_APB2PCLKEN				R	eserve	d						I2C4EN	I2C3EN	UART7EN	UART6EN	DVPEN	Reserved	USARTIEN	TIM8EN	SPIIEN	TIMIEN			Reserved		IOPEEN	IOPDEN	IOPCEN	IOPBEN	IOPAMPEN	Reserved	AFIOEN
	Reset Value											ı	0	0	0	0	0		0	0	0	0					0	0	0	0	0		0
01Ch	RCC_APB1PCLKEN	Reserved		DACEN	PWREN	BKPEN	CAN2EN	CAN1EN	Reserved	USBEN	12C2EN	12C1EN	UARTSEN	UART4EN	USART3EN	USART2EN	Reserved	SPI3EN	SPI2EN	Dagmood	TO TO SOLVE	WWDGEN			Reserved			TIM7EN	TIM6EN	TIMSEN	TIM4EN	TIM3EN	TIM2EN
	Reset Value			0	0	0	0	0		0	0	0	0	0	0	0		0	0			0						0	0	0	0	0	0
020h	RCC_BDCTRL						Re	eserve	ed								BDSFTRST	RTCEN		Re	serve	ed			RTCSEL[1:0]		R	eserv	ed		LSEBP	LSERDIF	LSEEN
	Reset Value				1												0	0						0	0						0	0	0
024h	RCC_CTRLSTS	LPWRRSTF	WWDGRSTF	IWDGRSTF	SFTRSTF	PORRSTF	PINRSTF	MMURSTF	RMRSTF	RAMRSTF	Reserved	BKPEMCF	RETEMCF	BORRSTF								R	eserv	ed									LSIEN
	Reset Value	0	0	0	0	1	1	0	0	0		0	0	0																		1	1
028h	RCC_AHBPRST					J	Resei	rved								OSPIRST	R	eserv	ed	O ADC2RST	ADCIRST	OSACRST	Reserved	o RNGCRST				Res	served	I			
	Reset Value			ږ												0				U	0	U	L.	U									
02Ch	RCC_CFG2	Reserved		TIMCLKSEL		RNGC							Rese	erved					DC1N				ADCIMSEL	Reserved			LPR				[3:0]]	
	Reset Value			0	0	0	0	0	0									0	0	1	1	1	0		0	0	0	0	0	0	0	0	0



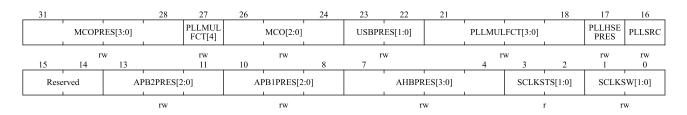
Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	0
030h	RCC_CFG3					Re	eserve	ed							TRNGIMEN	TRNG1MSEL	Reserved	TF	RNG1	MPR	ES[4	:0]		Rese	erved		BORRSTEN		R	Reserv	ed	
	Reset Value														0	0		0	0	1	1	1					1					

5.3.2 Clock Control Register (RCC_CTRL)

Address offset: 0x00

Reset value: 0x0000 0083

Bit Field	Name	Description
31:26	Reserved	Reserved, the reset value must be maintained.
25	PLLRDF	PLL clock ready flag
		Set by hardware once PLL is ready.
		0: PLL is not ready
		1: PLL is ready
24	PLLEN	PLL enable
		Set and cleared by software. When entering the stop0/stop2/standby mode, it is
		cleared by hardware. This bit cannot be cleared when PLL is used as the system
		clock.
		When the HSI/HSE is used as the clock source for the PLL, the PLL will not be
		turned on until the HSI/HSE clock is ready.
		0: Disable PLL
		1: Enable PLL
23:20	Reserved	Reserved, the reset value must be maintained.
19	CLKSSEN	Clock security system enable
		Set and cleared by software.
		0: Disable the clock detector
		1: Enable the clock detector if the HSE oscillator is ready
18	HSEBP	External high-speed clock bypass enable
		Set and cleared by software. This bit can only be written when the HSE oscillator is
		disabled.
		0: Disable the bypass function of HSE oscillator
		1: Enable the bypass function of HSE oscillator
17	HSERDF	External high-speed clock ready flag
		Set by hardware once HSE is ready. This bit takes 6 HSE clock cycles to clear after
		the HSEEN bit is cleared.



Bit Field	Name	Description
		0: HSE is not ready
		1: HSE is ready
16	HSEEN	External high-speed clock enable
		Set and cleared by software. When entering the stop0/stop2 or standby mode, it is
		cleared by hardware. This bit cannot be cleared when HSE is used directly or
		indirectly as the system clock.
		0: Disable HSE oscillator
		1: Enable HSE oscillator
15:8	HSICAL[7:0]	Internal high-speed clock calibration value
		These bits are automatically initialized at startup.
7:3	HSITRIM[4:0]	Internal high-speed clock correction value
		Written by software. The values of these bits will be added to the HSICAL[7:0] bits in
		order to form the final value for calibrating the frequency of the internal HSI RC
		oscillator. The trimming step is around 40 kHz between two consecutive HSICAL
		steps, and the default value is 16, which can adjust the HSI to 8 MHz ±1%.
2	Reserved	Reserved, the reset value must be maintained.
1	HSIRDF	Internal high-speed clock ready flag
		Set by hardware once HSI is stable. After the HSIEN bit is cleared, it takes 6 internal
		8 MHz oscillator clock cycles to go low.
		0: HSI is not ready
		1: HSI is ready
0	HSIEN	Internal high-speed clock enable
		Set and cleared by software. This bit cannot be cleared when HSI is used as the
		system clock. When returning from stop0/stop2 or standby mode or HSE failure
		occurs, set by hardware to enable the HSI oscillator. This bit cannot be reset if the
		HSI is used directly or indirectly as system clock.
		0: Disable HSI oscillator
		1: Enable HSI oscillator

5.3.3 Clock Configuration Register (RCC_CFG)

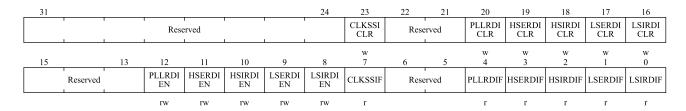
Address offset: 0x04

Reset value: 0x2000 0000

Bit Field	Name	Description
31:28	MCOPRES[3:0]	MCO prescaler

Bit Field	Name	Description
		Set and cleared by software.
		0010: Divide PLL clock by 2 as MCO clock
		0011: Divide PLL clock by 3 as MCO clock
		0100: Divide PLL clock by 4 as MCO clock
		0101: PLL clock divided by 5 as MCO clock
		0110: Divide PLL clock by 6 as MCO clock
		0111: Divide PLL clock by 7 as MCO clock
		1000: Divide PLL clock by 8 as MCO clock
		1001: PLL clock divided by 9 as MCO clock
		1010: Divide PLL clock by 10 as MCO clock
		1011: Divide PLL clock by 11 as MCO clock
		1100: PLL clock divided by 12 as MCO clock
		1101: Divide PLL clock by 13 as MCO clock
		1110: Divide PLL clock by 14 as MCO clock
		1111: Divide PLL clock by 15 as MCO clock
		Other values: not allowed to set
27	PLLMULFCT[4]	This bit is combined with bit[21:18] to form a PLL multiplication factor. Please
		refer to PLLMULFCT[3:0].
26:24	MCO[2:0]	Microcontroller clock output selection
		Set and cleared by software.
		0xx: no clock output
		100: Select system clock (SYSCLK) output
		101: select internal high-speed clock (HSI) output
		110: select external high-speed clock (HSE) output
		111: Select the output after PLL frequency division
		Notice: This clock output may be truncated when starting and switching the MCO
		clock source.
		When the system clock is output to the MCO pin, the output clock frequency should
		not exceed 50MHz (the highest frequency of the I/O port).
23:22	USBPRES[1:0]	USB prescaler.
		Set or cleared by software to generate a 48MHz USB clock. The values of these
		bits must be valid before enabling the USB clock in the RCC_APB1PCLKEN
		register.
		00: Divide the PLL clock by 1.5 as the USB clock
		01: The PLL clock is directly used as the USB clock
		10: Divide the PLL clock by 2 as the USB clock
		11: Divide the PLL clock by 3 as the USB clock
21:18	PLLMULFCT[3:0]	PLL multiplication factor (including bit 27)
		Written by software to define PLL multiplication factor. These bits can only be
		written when the PLL is disabled. The PLL output frequency must not exceed
		144MHz.
		00000: PLL input clock ×2

Bit Field	Name	Description
		00001: PLL input clock ×3
		00010: PLL input clock ×4
		00011: PLL input clock ×5
		00100: PLL input clock ×6
		00101: PLL input clock ×7
		00110: PLL input clock ×8
		00111: PLL input clock ×9
		01000: PLL input clock ×10
		01001: PLL input clock ×11
		01010: PLL input clock ×12
		01011: PLL input clock ×13
		01100: PLL input clock ×14
		01101: PLL input clock ×15
		01110: PLL input clock ×16
		01111: PLL input clock ×16
		10000: PLL input clock ×17
		10001: PLL input clock ×18
		10010: PLL input clock ×19
		10011: PLL input clock ×20
		10100: PLL input clock ×21
		10101: PLL input clock ×22
		10110: PLL input clock ×23
		10111: PLL input clock ×24
		11000: PLL input clock ×25
		11001: PLL input clock ×26
		11010: PLL input clock ×27
		11011: PLL input clock ×28
		11100: PLL input clock ×29
		11101: PLL input clock ×30
		11110: PLL input clock ×31
		11111: PLL input clock ×32
17	PLLHSEPRES	HSE prescaler for PLL input
		Set and cleared by software to divide HSE before PLL entry. This bit can only be
		written when PLL is disabled.
		0: HSE clock not divided
		1: HSE divided by 2
16	PLLSRC	PLL clock source
		Set and cleared by software to select PLL clock source. This bit can only be
		written when PLL is disabled.
		0: HSI clock divided by 2 is used as the PLL input clock
		1: HSE clock selected as PLL input clock
15:14	Reserved	Reserved, the reset value must be maintained.
13.17	TCGCI VCG	Reserved, the reservative must be maintained.


Bit Field	Name	Description
13:11	APB2PRES[2:0]	APB high-speed (APB2) prescaler
		Set and cleared by software to configure the division factor of APB2 clock
		(PCLK2). Make sure that PCLK2 does not exceed 72MHz.
		0xx: HCLK not divided
		100: HCLK divided by 2
		101: HCLK divided by 4
		110: HCLK divided by 8
		111: HCLK divided by 16
10:8	APB1PRES[2:0]	APB low-speed (APB1) prescaler
		Set and cleared by software to configure the division factor of APB1 clock
		(PCLK1). Make sure that PCLK1 does not exceed 36MHz.
		0xx: HCLK not divided
		100: HCLK divided by 2
		101: HCLK divided by 4
		110: HCLK divided by 8
		111: HCLK divided by 16
7:4	AHBPRES[3:0]	AHB prescaler
		Set and cleared by software to configure the division factor of the AHB clock
		(HCLK).
		0xxx: SYSCLK not divided
		1000: SYSCLK divided by 2
		1001: SYSCLK divided by 4
		1010: SYSCLK divided by 8
		1011: SYSCLK divided by 16
		1100: SYSCLK divided by 64
		1101: SYSCLK divided by 128
		1110: SYSCLK divided by 256
		1111: SYSCLK divided by 512
3:2	SCLKSTS[1:0]	System clock switching status
		Set and cleared by hardware to indicate which clock source is used as system clock
		00: The system clock comes from HSI
		01: The system clock comes from HSE
		10: The system clock comes from the PLL output
		11: Unavailable
1:0	SCLKSW[1:0]	System clock switch
		Set and cleared by software to select the system clock source.
		Set by hardware to force HSI selection when exiting from the stop2 or standby
		mode, or when the HSE oscillator fails (RCC_CTRL.CLKSSEN is enabled).
		00: Select HSI as system clock
		01: Select HSE as system clock
		10: Select PLL output as system clock
		11: Unavailable

5.3.4 Clock Interrupt Register (RCC_CLKINT)

Address offset: 0x08

Reset value: 0x0000 0000

Bit Field	Name	Description
31:24	Reserved	Reserved, the reset value must be maintained.
23	CLKSSICLR	Clock security system interrupt clear
		Set by the software to clear the CLKSSIF flag.
		0: No effect
		1: Clear the CLKSSIF flag
22:21	Reserved	Reserved, the reset value must be maintained.
20	PLLRDICLR	PLL ready interrupt clear
		Set by the software to clear the PLLRDIF flag.
		0: No effect
		1: Clear the PLLRDIF flag
19	HSERDICLR	HSE ready interrupt clear
		Set by the software to clear the HSERDIF flag.
		0: Not used
		1: Clear HSERDIF flag
18	HSIRDICLR	HSI ready interrupt clear
		Set by the software to clear the HSIRDIF flag.
		0: Not used
		1: Clear the HSIRDIF flag
17	LSERDICLR	LSE ready interrupt clear
		Set by the software to clear the LSERDIF flag.
		0: Not used
		1: Clear LSERDIF flag
16	LSIRDICLR	LSI ready interrupt clear
		Set by software to clear the LSIRDIF flag.
		0: Not used
		1: Clear the LSIRDIF flag
15:13	Reserved	Reserved, the reset value must be maintained.
12	PLLRDIEN	PLL ready interrupt enable
		Set and cleared by software to enable and disable PLL ready interrupt
		0: Disable PLL ready interrupt

Bit Field	Name	Description
		1: Enable PLL ready interrupt
11	HSERDIEN	HSE ready interrupt enable
		Set and cleared by software to enable and disable HSE ready interrupt.
		0: Disable HSE ready interrupt
		1: Enable HSE Ready Interrupt
10	HSIRDIEN	HSI ready interrupt enable
		Set and cleared by software to enable and disable HSI ready interrupt.
		0: Disable HSI ready interrupt
		1: Enable HSI ready interrupt
9	LSERDIEN	LSE ready interrupt enable
		Set and cleared by software to enable and disable LSE ready interrupt.
		0: Disable LSE ready interrupt
		1: Enable LSE ready interrupt
8	LSIRDIEN	LSI ready interrupt enable
O	ESIREIE	Set and cleared by software to enable and disable LSI ready interrupt.
		O: Disable LSI ready interrupt
		1: Enable LSI ready interrupt
7	CLKSSIF	Clock security system interrupt flag
,	CERSSII	Set by hardware when a failure is detected in the external HSE oscillator.
		O: No clock security system interrupt caused by HSE clock failure
		1: Clock security system interrupt caused by HSE clock failure
6:5	Reserved	Reserved, the reset value must be maintained.
4	PLLRDIF	PLL ready interrupt flag
т	TEERDII	This bit is set by hardware when PLLRDIEN is set and PLL clock is ready.
		This bit is cleared by software by setting the PLLRDICLR bit.
		0: No clock ready interrupt caused by PLL lock
		1: Clock ready interrupt caused by PLL lock
3	HSERDIF	HSE ready interrupt flag
3	IISERDII	Set by hardware when HSERDIEN is set and the HSE clock is ready.
		This bit is cleared by software by setting the HSERDICLR bit.
		0: No clock ready interrupt caused by HSE oscillator
		1: Clock ready interrupt caused by HSE oscillator
2	HSIRDIF	HSI ready interrupt flag
۷	HSIKDIF	Set by hardware when HSIRDIEN is set and the HSI clock is ready.
		This bit is cleared by software by setting the HSERDICLR bit. 0: No clock ready interrupt caused by HSI oscillator
1	I CEDDIE	1: Clock ready interrupt caused by HSI oscillator
1	LSERDIF	LSE ready interrupt flag
		Set by hardware when LSERDIEN is set and the LSE clock is ready.
		This bit is cleared by the software by setting the LSERDICLR bit.
		0: No clock ready interrupt caused by LSE oscillator
		1: Clock ready interrupt caused by LSE oscillator

Bit Field	Name	Description
0	LSIRDIF	LSI ready interrupt flag
		Set by the hardware when LSIRDIEN is set and the LSI clock is ready.
		This bit is cleared by software by setting the LSIRDICLR bit.
		0: No clock ready interrupt caused by LSI oscillator
		1: Clock ready interrupt caused by LSI oscillator

5.3.5 APB2 Peripheral Reset Register (RCC_APB2PRST)

Address offset: 0x0c

Reset value: 0x0000 0000

31										21	20	19	18	17	16
	1			1	Reserved			1		1	I2C4RST	I2C3RST	UART7 RST	UART6 RST	DVPRST
15	14	13	12	11	10			7	6	5	rw 4	rw 3	rw 2	rw I	rw 0
Reserved	USART1 RST	TIM8RST	SPIIRST	TIM1RST		Rese	rved		IOPERST	IOPDRST	IOPCRST	IOPBRST	IOPARST	Reserved	AFIORST
	rw	fW	rw	rw					rw	rw	rw	rw	rw		rw

Bit Field	Name	Description
31:21	Reserved	Reserved, the reset value must be maintained.
20	I2C4RST	I2C4 reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset I2C4
19	I2C3RST	I2C3 reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset I2C3
18	UART7RST	UART7 reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset UART7
17	UART6RST	UART6 reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset UART6
16	DVPRST	DVP reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset DVP
15	Reserved	Reserved, the reset value must be maintained.
14	USART1RST	USART1 reset
		Set and cleared by software.

Bit Field	Name	Description
		0: Clear the reset
		1: Reset USART1
13	TIM8RST	TIM8 timer reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset TIM8 timer
12	SPI1RST	SPI1 reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset SPI1
11	TIM1RST	TIM1 timer reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset TIM1 timer
10:7	Reserved	Reserved, the reset value must be maintained.
6	IOPERST	GPIO port E reset.
		Set or cleared by software.
		0: Clear the reset
		1: Reset GPIO port E
5	IOPDRST	GPIO port D reset.
		Set or cleared by software.
		0: Clear the reset
		1: Reset GPIO port D
4	IOPCRST	GPIO port C reset.
		Set or cleared by software.
		0: Clear the reset
		1: Reset GPIO port C
3	IOPBRST	GPIO port B reset.
		Set or cleared by software.
		0: Clear the reset
		1: Reset GPIO port B
2	IOPAMPRST	GPIO port A reset.
		Set or cleared by software.
		0: Clear the reset
		1: Reset GPIO port A
1	Reserved	Reserved, the reset value must be maintained.
0	AFIORST	Alternate function IO reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset Alternate Function

5.3.6 APB1 Peripheral Reset Register (RCC_APB1PRST)

Address offset: 0x10

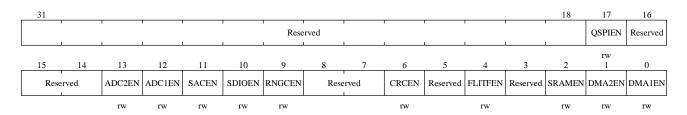
Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	erved	DACRST	PWRRST	BKPRST	CAN2RST	CANIRST	Reserved	USBRST	I2C2RST	I2C1RST	UART5 RST	UART4 RST	USART3 RST	USART2 RST	Reserved
15	14	rw 13	rw 12	rw 11	rw 10	rw		rw	rw 6	rw 5	rw 4	rw 3	rw 2	rw 1	0
SPI3RST	SPI2RST	Rese	rved	WWDG RST			Reserved		1	TIM7RST	TIM6RST	TIM5RST	TIM4RST	TIM3RST	TIM2RST
rw	rw			rw						rw	rw	rw	rw	rw	rw

Bit Field	Name	Description
31:30	Reserved	Reserved, the reset value must be maintained.
29	DACRST	DAC interface reset.
		Set or cleared by software.
		0: Clear the reset
		1: Reset the DAC interface
28	PWRRST	Power interface reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset the power interface
27	BKPRST	Backup interface reset.
		Set or cleared by software.
		0: Clear the reset
		1: Reset the Backup interface
26	CAN2RST	CAN2 reset
		Set or cleared by software.
		0: Clear the reset
		1: Reset CAN2
25	CAN1RST	CAN1 reset
		Set or cleared by software.
		0: Clear the reset
		1: Reset CAN1
24	Reserved	Reserved, the reset value must be maintained.
23	USBRST	USB reset.
		Set or cleared by software.
		0: clear the reset
		1: Reset USB
22	I2C2RST	I2C2 reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset I2C2

Nanshan District, Shenzhen, 518057, P.R.China

Bit Field	Name	Description
21	I2C1RST	I2C1 reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset I2C1
20	UART5RST	UART5 reset.
		Set or cleared by software.
		0: clear the reset
		1: Reset UART5
19	UART4RST	UART4 reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset UART4
18	USART3RST	USART3 reset.
		Set or cleared by software.
		0: clear the reset
		1: Reset USART3
17	USART2RST	USART2 reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset USART2
16	Reserved	Reserved, the reset value must be maintained.
15	SPI3RST	SPI3 reset.
		Set or cleared by software.
		0: clear the reset
		1: Reset SPI3
14	SPI2RST	SPI2 reset.
		Set or cleared by software.
		0: clear the reset
		1: Reset SPI2
13:12	Reserved	Reserved, the reset value must be maintained.
11	WWDGRST	Window watchdog reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset window watchdog
10:6	Reserved	Reserved, the reset value must be maintained.
5	TIM7RST	TIM7 timer reset.
		Set or cleared by software.
		0: clear the reset
		1: Reset the TIM7 timer
4	TIM6RST	TIM6 timer reset
		Set and cleared by software.
		0: Clear the reset



Bit Field	Name	Description
		1: Reset TIM6 timer
3	TIM5RST	TIM5 timer reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset TIM5 timer
2	TIM4RST	TIM4 timer reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset TIM4 timer
1	TIM3RST	TIM3 timer reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset TIM3 timer
0	TIM2RST	TIM2 timer reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset TIM2 timer

5.3.7 AHB Peripheral Clock Enable Register (RCC_AHBPCLKEN)

Address offset: 0x14

Reset value: 0x0000 0014

Bit Field	Name	Description
31:18	Reserved	Reserved, the reset value must be maintained.
17	QSPIEN	QSPI clock enable
		Set and cleared by software.
		0: QSPI clock disabled
		1: QSPI clock enabled
16:14	Reserved	Reserved, the reset value must be maintained.
13	ADC2EN	ADC2 clock enable
		Set and cleared by software.
		0: ADC2 clock disabled
		1: ADC2 clock enabled
12	ADC1EN	ADC1 clock enable
		Set and cleared by software.

Bit Field	Name	Description
		0: ADC1 clock disabled
		1: ADC1 clock enabled
11	SACEN	SAC clock enable
		Set and cleared by software.
		0: SAC clock disabled
		1: SAC clock enabled
10	SDIOEN	SAC clock enable
		Set and cleared by software.
		0: SAC clock disabled
		1: SAC clock enabled
9	RNGCEN	RNGC clock enable
		Set and cleared by software.
		0: RNGC clock disabled
		1: RNGC clock enabled
8:7	Reserved	Reserved, the reset value must be maintained.
6	CRCEN	CRC clock enable
		Set and cleared by software.
		0: CRC clock disabled
		1: CRC clock enabled
5	Reserved	Reserved, the reset value must be maintained.
4	FLITFEN	Flash interface circuit clock enable.
		Set or cleared by software.
		0: Disable the clock of the flash interface circuit
		1: Enable the clock of the flash interface circuit
3	Reserved	Reserved
2	SRAMEN	SRAM interface clock enable
		Set and cleared by software to disable/enable SRAM interface clock during Sleep
		mode.
		0: SRAM interface clock disabled during Sleep mode.
		1: SRAM interface clock enabled during Sleep mode
0	DMA2EN	DMA2 clock enable
		Set and cleared by software.
		0: DMA2 clock disabled
		1: DMA2 clock enabled
0	DMA1EN	DMA1 clock enable
		Set and cleared by software.
		0: DMA1 clock disabled
		1: DMA1 clock enabled

5.3.8 APB2 Peripheral Clock Enable Register (RCC_APB2PCLKEN)

74

Address offset: 0x18

Reset value: 0x0000 0000

31										21	20	19	18	17	16
			ı		Reserved				1		12C4EN	I2C3EN	UART7EN	UART6EN	DVPEN
15	14	13	12	11	10			7	6	5	rw 4	rw 3	rw 2	rw 1	rw 0
Reserved	USART1 EN	TIM8EN	SPITEN	TIMIEN		Rese	rved		IOPEEN	IOPDEN	IOPCEN	IOPBEN	IOPAEN	Reserved	AFIOEN
	rw	ľW	rw	rw					rw	rw	rw	rw	rw		rw

Bit Field	Name	Description
31:21	Reserved	Reserved, the reset value must be maintained.
20	I2C4EN	I2C4 clock enable
		Set and cleared by software.
		0: I2C4 clock disabled
		1: I2C4 clock enabled
19	I2C3EN	I2C3 clock enable
		Set and cleared by software.
		0: I2C3 clock disabled
		1: I2C3 clock enabled
18	UART7EN	UART7 clock enable
		Set and cleared by software.
		0: UART7 clock disabled
		1: UART7 clock enabled
17	UART6EN	UART6 clock enable
		Set and cleared by software.
		0: UART6 clock disabled
		1: UART6 clock enabled
16	DVPEN	DVP clock enable
		Set and cleared by software.
		0: DVP clock disabled
		1: DVP clock enabled
15	Reserved	Reserved, the reset value must be maintained.
14	USART1EN	USART1 clock enable
		Set and cleared by software.
		0: USART1 clock disabled
		1: USART1 clock enabled
13	TIM8EN	TIM8 Timer clock enable
		Set and cleared by software.
		0: TIM8 timer clock disabled
		1: TIM8 timer clock enabled
12	SPI1EN	SPI1 clock enable
		Set and cleared by software.
		0: SPI1 clock disabled
		1: SPI1 clock enabled

Bit Field	Name	Description
11	TIM1EN	TIM1 timer clock enable
		Set and cleared by software.
		0: TIM1 timer clock disabled
		1: TIM1 timer clock enabled
10:7	Reserved	Reserved, the reset value must be maintained.
6	IOPEEN	IO Port E clock enable
		Set and cleared by software.
		0: IO Port E clock disabled
		1: IO Port E clock enabled
5	IOPDEN	IO Port D clock enable
		Set and cleared by software.
		0: IO Port D clock disabled
		1: IO Port D clock enabled
4	IOPCEN	IO Port C clock enable
		Set and cleared by software.
		0: IO Port C clock disabled
		1: IO Port C clock enabled
3	IOPBEN	IO Port B clock enable
		Set and cleared by software.
		0: IO Port B clock disabled
		1: IO Port B clock enabled
2	IOPAEN	IO Port A clock enable
		Set and cleared by software.
		0: IO Port A clock disabled
		1: IO Port A clock enabled
1	Reserved	Reserved, the reset value must be maintained.
0	AFIOEN	Alternate function IO clock enable
		Set and cleared by software.
		0: Alternate Function IO clock disabled
		1: Alternate Function IO clock enabled

5.3.9 APB1 Peripheral Clock Enable Register (RCC_APB1PCLKEN)

76

Address offset: 0x1c

Reset value: 0x0000 0000

Nanshan District, Shenzhen, 518057, P.R.China

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	erved	DACEN	PWREN	BKPEN	CAN2EN	CAN1EN	Reserved	USBEN	I2C2EN	I2C1EN	UART5EN	UART4EN	USART3 EN	USART2 EN	Reserved
15	14	rw 13	rw 12	rw 11	rw 10	rw		rw	rw 6	rw 5	rw 4	rw 3	rw 2	rw 1	0
SPI3EN	SPI2EN	Rese	erved	WWDG EN			Reserved			TIM7EN	TIM6EN	TIM5EN	TIM4EN	TIM3EN	TIM2EN
rw	rw			rw						rw	rw	rw	rw	rw	rw

Bit Field	Name	Description
31:30	Reserved	Reserved, the reset value must be maintained.
29	DACEN	DAC interface clock enable
		Set and cleared by software.
		0: DAC interface clock disabled
		1: DAC interface clock enable
28	PWREN	Power interface clock enable
		Set and cleared by software.
		0: Power interface clock disabled
		1: Power interface clock enable
27	BKPEN	Backup interface clock enable
		Set and cleared by software.
		0: Backup interface clock disabled
		1: Backup interface clock enabled
26	CAN2EN	CAN2 clock enable
		Set and cleared by software.
		0: CAN2 clock disabled
		1: CAN2 clock enabled
25	CAN1EN	CAN1 clock enable
		Set and cleared by software.
		0: CAN1 clock disabled
		1: CAN1 clock enabled
24	Reserved	Reserved, the reset value must be maintained.
23	USBEN	USB clock enable
		Set and cleared by software.
		0: USB clock disabled
		1: USB clock enabled
22	I2C2EN	I2C2 clock enable
		Set and cleared by software.
		0: I2C2 clock disabled
		1: I2C2 clock enabled
21	I2C1EN	I2C1 clock enable
		Set and cleared by software.
		0: I2C1 clock disabled
		1: I2C1 clock enabled

Bit Field	Name	Description
20	UART5EN	UART5 clock enable
		Set and cleared by software.
		0: UART5 clock disabled
		1: UART5 clock enabled
19	UART4EN	UART4 clock enable
		Set and cleared by software.
		0: UART4 clock disabled
		1: UART4 clock enabled
18	USART3EN	USART2 clock enable
		Set and cleared by software.
		0: USART3 clock disabled
		1: USART3 clock enabled
17	USART2EN	USART2 clock enable
		Set and cleared by software.
		0: USART2 clock disabled
		1: USART2 clock enabled
16	Reserved	Reserved, the reset value must be maintained.
15	SPI3EN	SPI3 clock enable
		Set and cleared by software.
		0: SPI3 clock disabled
		1: SPI3 clock enabled
14	SPI2EN	SPI2 clock enable
		Set and cleared by software.
		0: SPI2 clock disabled
		1: SPI2 clock enabled
13:12	Reserved	Reserved, the reset value must be maintained.
11	WWDGEN	Window watchdog clock enable
		Set and cleared by software.
		0: Window watchdog clock disabled
		1: Window watchdog clock enabled
10:6	Reserved	Reserved, the reset value must be maintained.
5	TIM7EN	TIM7 timer clock enable
		Set and cleared by software.
		0: TIM7 clock disabled
		1: TIM7 clock enabled
4	TIM6EN	TIM6 timer clock enable
		Set and cleared by software.
		0: TIM6 clock disabled
		1: TIM6 clock enabled
3	TIM5EN	TIM5 timer clock enable
		Set and cleared by software.

Bit Field	Name	Description
		0: TIM5 clock disabled
		1: TIM5 clock enabled
2	TIM4EN	TIM4 timer clock enable
		Set and cleared by software.
		0: TIM4 clock disabled
		1: TIM4 clock enabled
1	TIM3EN	TIM3 timer clock enable
		Set and cleared by software.
		0: TIM3 clock disabled
		1: TIM3 clock enabled
0	TIM2EN	TIM2 timer clock enable
		Set and cleared by software.
		0: TIM2 clock disabled
		1: TIM2 clock enabled

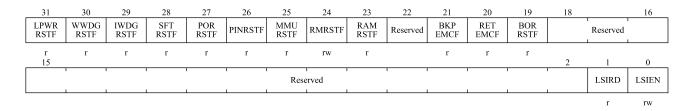
5.3.10 Backup Domain Control Register (RCC_BDCTRL)

Address offset: 0x20

Reset value: 0x0000 0000

31												17	16
		1 1	'			Reserved						1	BDSFT RST
15	14			10	9	8	7			3	2	1	rw 0
RTCEN		R	teserved	 1	RTCSI	EL[1:0]		1	Reserved	1	LSEBP	LSERD	LSEEN
rw					r	w		•			rw	rw	rw

Bit Field	Name	Description			
31:17	Reserved	Reserved, the reset value must be maintained.			
16	BDSFTRST	Backup domain software reset.			
		Set or cleared by software.			
		0: No effect			
		1: Reset the entire backup domain			
15	RTCEN	RTC clock enable			
		Set and cleared by software.			
		0: Disable RTC clock			
		1: Enable RTC clock			
14:10	Reserved	Reserved, the reset value must be maintained.			
9:8	RTCSEL[1:0]	RTC clock source selection			
		Set by software to select RTC clock source. Once the RTC clock source is selected,			
		it cannot be changed until the next backup domain is reset. These bits can be reset			
		by setting the BDSFTRST bit.			
		00: No clock			


Bit Field	Name	Description
		01: LSE oscillator selected as RTC clock
		10: LSI oscillator selected as RTC clock
		11: HSE oscillator divided by 128 selected as RTC clock
7:3	Reserved	Reserved, the reset value must be maintained.
2	LSEBP	External low-speed oscillator bypass
		In debug mode, set and cleared by software to bypass oscillator. This bit can only
		be written when the external low-speed oscillator is disabled.
		0: LSE oscillator not bypassed
		1: LSE oscillator bypassed
1	LSERD	External low-speed clock oscillator ready
		Set and cleared by hardware to indicate if the LSE oscillator is ready. After the
		LSEEN bit is cleared, LSERD goes low after 6 cycles of the LSE clock.
		0: External low-speed oscillator not ready
		1: External low-speed oscillator ready
0	LSEEN	External low-speed clock oscillator enable
		Set and cleared by software.
		0: Disable the external low-speed oscillator
		1: Enable the external low-speed oscillator.

Note: The RCC_BDCTRL.LSEEN, RCC_BDCTRL.LSEBP, RCC_BDCTRL.RTCSEL and RCC_BDCTRL.RTCEN bits are in the backup domain. Therefore, these bits are write-protected after reset and can only be changed after the PWR_CTRL.DBKP bit is set. These bits can only be cleared by a backup domain reset. Any internal or external reset will not affect these bits.

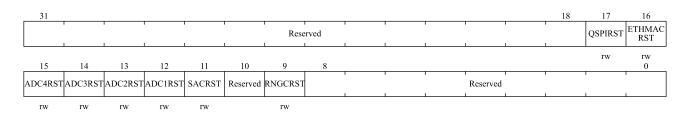
5.3.11 Clock Control/Status Register (RCC_CTRLSTS)

Address offset: 0x24

Reset value: 0x0C000003

Bit Field	Name	Description
31	LPWRRSTF	Low power reset flag
		Set by hardware when a low-power management reset occurs.
		Cleared by software by writing to the RMRSTF bit.
		0: No low-power management reset occurred
		1: A low-power management reset occurred
30	WWDGRSTF	Window watchdog reset flag
		Set by hardware when a window watchdog reset occurs.

Bit Field	Name	Description			
		Cleared by software by writing to the RMRSTF bit.			
		0: No windowed watchdog reset occurred			
		1: Window watchdog reset occurred			
29	IWDGRSTF	Independent watchdog reset flag			
		Set by hardware when an independent watchdog reset occurs			
		Cleared by software by writing to the RMRSTF bit.			
		0: No independent watchdog reset occurred			
		1: Independent watchdog reset occurred			
28	SFTRSTF	Software reset flag			
		Set by hardware when a software reset occurs.			
		Cleared by software by writing to the RMRSTF bit.			
		0: No software reset occurred			
		1: Software reset occurred			
27	PORRSTF	Power-on/power-down reset flag			
		Set by hardware when a power-on/power-down reset occurs			
		Cleared by software by writing to the RMRSTF bit.			
		0: No power on/power off reset occurred			
		1: Power-on/power-off reset occurred			
26	PINRSTF	External pin reset flag			
		Set by hardware when a reset from the NRST pin occurs.			
		Cleared by software by writing to the RMRSTF bit.			
		0: No NRST pin reset occurred			
		1: NRST pin reset occurred			
25	MMURSTF	MMU reset flag			
		Set by hardware when MMU reset occurs.			
		Cleared by software by writing to the RMRSTF bit.			
		0: No MMU reset occurred			
		1: MMU reset occurred			
24	RMRSTF	Clear the reset flag			
		Set by the software to clear the reset flag.			
		0: No effect			
		1: Clear the reset flag			
23	RAMRSTF	RAM reset flag.			
		Set by hardware when a RAM reset occurs and cleared by software by writing to			
		the RMRSTF bit.			
		0: No RAM reset occurred			
		1: A RAM reset has occurred			
22	Reserved	Reserved, the reset value must be maintained.			
21	BKPEMCF	Backup domain EMC reset flag.			
		Set by hardware when a backup domain EMC reset occurs, and cleared by software			
		writing the RMRSTF bit.			
		0: No backup domain EMC reset occurred			



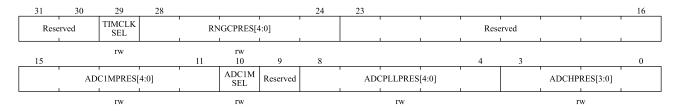
Bit Field	Name	Description
		1: A backup domain EMC reset has occurred
20	RETEMCF	Retention domain EMC reset flag.
		Set by hardware when a Retention domain EMC reset occurs, and cleared by
		software writing the RMRSTF bit.
		0: No Retention domain EMC reset occurred
		1: A Retention domain EMC reset has occurred
19	BORRSTF	BOR reset flag
		Set by hardware when a BOR reset occurs, and cleared by software writing the
		RMRSTF bit.
		0: No BOR reset occurred
		1: A BOR reset has occurred
18:2	Reserved	Reserved, the reset value must be maintained.
1	LSIRD	Internal low-speed oscillator ready
		Set and cleared by hardware to indicate if the internal RC 40 KHz oscillator is
		ready. After LSIEN is cleared, LSIRD goes low after 3 internal RC 40 KHz
		oscillator clock cycles.
		0: Internal 40KHz RC oscillator clock not ready
		1: Internal 40KHz RC oscillator clock ready
0	LSIEN	Internal low-speed oscillator enable
		Set and cleared by software.
		0: Disable the internal RC 40 kHz oscillator
		1: Enable the internal RC 40 kHz oscillator

5.3.12 AHB Peripheral Reset Register (RCC_AHBPRST)

Address offset: 0x28

Reset value: 0x0000 0000

Bit Field	Name	Description	
31:18	Reserved	Reserved, the reset value must be maintained.	
17	QSPIRST	QSPI reset	
		Set and cleared by software.	
		0: Clear the reset	
		1: Reset QSPI	
16:14	Reserved	Reserved, the reset value must be maintained.	
13	ADC2RST	ADC2 reset	



Bit Field	Name	Description
		Set and cleared by software.
		0: Clear the reset
		1: Reset ADC2
12	ADC1RST	ADC1 reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset ADC1
11	SACRST	SAC reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset SAC
10	Reserved	Reserved, the reset value must be maintained.
9	RNGCRST	RNGC reset
		Set and cleared by software.
		0: Clear the reset
		1: Reset RNGC
8:0	Reserved	Reserved, the reset value must be maintained.

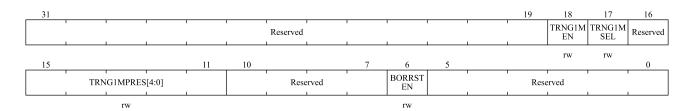
5.3.13 Clock Configuration Register 2 (RCC_CFG2)

Address offset: 0x2c

Reset value: 0x0000 3800

Bit Field	Name	Description	
31:30	Reserved	Reserved, the reset value must be maintained.	
29	TIMCLKSEL	TIM1/8 clock source selection	
		Set and cleared by software.	
		0: PCLK2 is selected as TIM1/8 clock source if APB2 prescaler is 1. Otherwise,	
		PCLK2 \times 2 is selected.	
		1: SYSCLK input clock is selected as TIM1/8 clock source.	
28:24	RNGCPRES[4:0]	RNGC prescaler.	
		Software sets or clears these bits to configure the prescale factor for the RNGC	
		clock.	
		00000: SYSCLK is not divided	
		00001: SYSCLK divided by 2	
		00010: SYSCLK divided by 3	

Bit Field	Bit Field Name Description			
		11110: SYSCLK divided by 31		
		11111: SYSCLK divided by 32		
23:16	Reserved	Reserved, the reset value must be maintained.		
15:11	ADC1MPRES[4:0]	ADC 1M clock prescaler		
		Set and cleared by software to configure the division factor of ADC 1M clock		
		source.		
		00000: ADC 1M clock source not divided		
		00001: ADC 1M clock source divided by 2		
		00010: ADC 1M clock source divided by 3		
		11110: ADC 1M clock source divided by 31		
		11111: ADC 1M clock source divided by 32		
		Note: ADC clock must be configured to 1M		
10	ADC1MSEL	ADC 1M clock source selection.		
		Set or cleared by software.		
		0: Select HSI oscillator clock as the input clock of ADC 1M		
		1: Select HSE oscillator clock as the input clock of ADC 1M		
9	Reserved	Reserved, the reset value must be maintained.		
8:4	ADCPLLPRES[4:0]	ADC PLL prescaler		
		Set and cleared by software to configure the division factor from the PLL clock to		
		the ADC.		
		0xxxx: ADC PLL clock is disabled		
		10000: PLL clock not divided		
		10001: PLL clock divided by 2		
		10010: PLL clock divided by 4		
		10011: PLL clock divided by 6		
		10100: PLL clock divided by 8		
		10101: PLL clock divided by 10		
		10110: PLL clock divided by 12		
		10111: PLL clock divided by 16		
		11000: PLL clock divided by 32		
		11001: PLL clock divided by 64		
		11010: PLL clock divided by 128		
		11011: PLL clock divided by 256		
		Others: PLL clock divided by 256		
3:0	ADCHPRES[3:0]	ADC HCLK prescaler		
		Set and cleared by software to configure the division factor from the HCLK clock		
		to the ADC.		
		0000: HCLK clock not divided		
		0001: HCLK clock divided by 2		
		0010: HCLK clock divided by 4		



Bit Field	Name	Description	
		0011: HCLK clock divided by 6	
		0100: HCLK clock divided by 8	
		0101: HCLK clock divided by 10	
		0110: HCLK clock divided by 12	
		0111: HCLK clock divided by 16	
		1000: HCLK clock divided by 32	
		Others: HCLK clock divided by 32	

5.3.14 Clock Configuration Register 3 (RCC_CFG3)

Address offset: 0x30

Reset value: 0x0000 3800

Bit Field	Name	Description	
31:19	Reserved	Reserved, the reset value must be maintained.	
18	TRNG1MEN	TRNG analog interface clock enable.	
		Set or cleared by software.	
		0: Disable TRNG analog interface clock	
		1: Enable TRNG analog interface clock	
17	TRNG1MSEL	TRNG 1M clock selection.	
		Set or cleared by software.	
		0: Select HSI oscillator as TRNG 1M input clock	
		1: Select HSE oscillator as TRNG 1M input clock	
16	Reserved	Reserved, the reset value must be maintained.	
15:11	TRNG1MPRES[4:0]	TRNG 1M clock prescaler.	
		Software sets or clears these bits to generate the TRNG 1M clock.	
		0000x: TRNG 1M clock source divided by 2	
		0001x: TRNG 1M clock source divided by 4	
		0010x: TRNG 1M clock source divided by 6	
		0011x: TRNG 1M clock source divided by 8	
		0100x: TRNG 1M clock source divided by 10	
		1111x: TRNG 1M clock source divided by 32	
10:7	Reserved	Reserved, the reset value must be maintained.	
6	BORRSTEN	BOR reset enable	
		Set and cleared by software.	

Bit Field	Name	Description		
		0: Disable BOR reset		
		1: Enable BOR reset		
5:0	Reserved	Reserved, the reset value must be maintained.		

6 GPIO and AFIO

6.1 Summary

GPIO is general purpose input/output, and AFIO is alternate function input/output. Up to 65 GPIO are supported on the chip, which are divided into 5 groups (GPIOA/GPIOB/GPIOC/GPIOD/GPIOE) with 16 ports in each group (8 in group D and 9 in group E). GPIO port and other alternate peripherals share pins, which can be configured by users according to requirements. Each GPIO pin can be independently configured as an output, input or alternate peripheral function port. Except for the analog function pin, all other GPIO pins have the ability to pass large current.

GPIO ports can be configured in the following modes by software:

- Input floating
- Input pull-up
- Input pull-down
- Analog function
- Open drain output
- Push-pull output
- Push-pull alternate function
- Open-drain alternate function

Each I/O port bit can be programmed arbitrarily, but the I/O port register must be accessed as a 32-bit word (16-bit half word or 8-bit byte access is not allowed). The figure below shows the basic structure of an I/O port.

Write Bit set/clear register Output data Output Control Write/Read From On-chip peripherals Output driver I/O PIN Diode ON/OFF Read Input data register Schmitt trigger AFIO input ON/OFF Enter On-chip perpherals Analog input ON/OFF Input driver

Figure 6-1 Basic structure of I/O port

6.2 I/O function description

6.2.1 I/O mode configuration

IO mode control is set by configuration registers $GPIOx_PL_CFG$, $GPIOx_PH_CFG$ (x=A,B,C,D,E) and output register $GPIOx_POD$. The IO configurations in different operation modes are shown in the following table:

Co	onfiguration mode	PCFG1	PCFG0	PMODE1	PMODE0	PODx register
Universal	Push-Pull	0	0			0 or 1
output	Open-Drain	U	1	01: 10N	MHz max	0 or 1
Alternate	Push-Pull		0	10: 2MHz	max	Not use
function output	Open-Drain	1	1	1: 50M	1Hz max	Not use
	Analog mode	0	0			Not use
Innut	Input floating	U	1	00	eserved	Not use
Input	Input pull-down	1		00: 10	eserveu	0
	Input pull-up	1	0			1

Table 6-1 I/O mode and configuration relationship

I/O characteristics under different configurations are shown in the following table:

Nations Technologies Inc.

Tel: +86-755-86309900 Email: info@nationstech.com

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

Table 6-2 I/O characteristics of different IO configurations

Characteristic GPIO input		GPIO output	GPIO output Analog mode	
Output buffer	Disable	Enable	Disable	According to peripheral function configuration
Schmitt trigger	Enable	Enable	Disable The output value is forced to 0.	According to peripheral function configuration
Pull up/Pull down/floating	Configurable	Disable	Disable	According to peripheral function configuration
Open-drain mode	Disable	Configurable, GPIO outputs 0 when the data is "0" and high impedance when he data is "1"	Disable	Configurable, GPIO outputs 0 when the data is "0" and high impedance when he data is "1".
Input data register (IO status)	Read-write	Readable	Read as 0.	Readable
Output data register (write value)	Invalid	Read-write	Invalid	Readable

6.2.1.1 Input mode

When I/O port is configured in input mode:

- The data that appears on the I/O pin is sampled to the input data register at every positive edge of APB2 clock.
- ■Read access to the input data register can get I/O status..
- Output buffer is disabled.
- Schmidt trigger input is activated.
- Weak pull-up and pull-down resistors are connected according to the input configuration (pull-up, pull-down or floating).

Write/Read

Output data register

Write/Read

Output Driver

On/OFF

ON/OFF

ON/OFF

Input driver

Input float/pull up/pull down

Figure 6-2 Input float/pull-up/pull-down configuration

6.2.1.2 Output mode

When I/O port is configured as output mode:

- Schmidt trigger input is activated
- Weak pull-up and pull-down resistors are disabled.
- Output buffer is activated.
 - ◆ Open-drain mode: '0' on the output data register activates N-MOS, and the pin outputs low level.

'1' port on the output data register make the pin in a high impedance state (P-MOS is never activated)

◆ Push-pull mode: '0' on the output data register activates N-MOS, and the pin outputs low level.

90

'1' on the output data register activates P-MOS, and the pin outputs high level.

- The data appearing on the I/O pin is sampled to the input data register at every APB2 clock cycle.
- Read access to the input data register can get I/O status...
- The read access to the output data register gets the last written value.

Output driver V_{DD} Push-pull/Open-drain P-MOS Bit set/clear register Output data registe Write/Read N-MOS I/O PIN Diode 0N Input data register Read Schmitt trigger Vss Input driver

Figure 6-3 Output mode configuration

6.2.1.3 Alternate function mode

When I/O ports are configured for alternate function mode:

- Schmidt trigger input is activated.
- Weak pull-up and pull-down resistors are disabled.
- In the open-drain or push-pull configuration, the output buffer is turned on.
- Signals of built-in peripherals drive the output buffer.
- The data appearing on the I/O pin is sampled to the input data register at every APB2 clock cycle.

- I/O status can be obtained by reading and accessing the input data register.
- The read access to the output data register gets the last written value.

Push-pull/Open-drain/Close Bit set/clear register Output data registe Output Control Write/Read AFIO output N-MOS From On-chip peripherals I/O PIN Diode AFIO input V_{DD} Enter On-chip peripherals ON/OFF ON Vss Input date register Read Schmitt trigger ON/OFF Input driver

Figure 6-4 Alternate function configuration

6.2.1.4 Analog mode

When the I/O port is configured in analog mode:

- Weak pull-up and pull-down resistors are disabled.
- Read access to the input data register gets the value "0".
- Output buffer is disabled.
- Schmidt trigger input is disabled and output value is forced to '0' (zero consumption on each analog I / O pin is achieved)

Write/Read

Output data register

Write/Read

Analog Input

From On-chip peripherals

OFF

Read

Input data register

Schmitt trigger

Input driver

Figure 6-5 High impedance analog mode configuration

6.2.2 Status after reset

During and just after the reset, the alternate functions are not active, and the I/O port is configured to be in analog mode (PCFGy[1:0]=00b, PMODEy[1:0]=00b) by default. But there are several exceptional signals:

- BOOTO、NRST、OSC_IN、OSC_OUT has no GPIO function by default
 - ◆ BOOT0 pin default configuration is input pull down
 - NRST pull up input and output
- After reset, start SWD_JTAG when debugging system related pins by default, and put JTAG pin into input pull-up or pull-down mode
 - PA15: JTDI is placed in input pull-up mode
 - PA14: JTCK is placed in input pull down mode
 - PA13: JTMS is placed in input pull-up mode
 - PB4: NJTRST is placed in input pull-up mode
 - ◆ PB3:JTD0 is placed in the push-pull output without pull-down.
- PD0 and PD1:
 - ◆ PD0 and PD1 are in default analog mode for pin packages with 80 or more pins.
 - ◆ PD0 and PD1 are multiplexed to OSC_IN/OUT for pin packages with less than 80 pins.

- PC13、PC14、PC15:
 - ◆ PC13~15 are the three IOs in the backup domain. After the backup domain is powered on for the first time, these three IOs default to analog mode;
- PB2/BOOT1:
 - ◆ PB2/BOOT1 is in the pull-down input state by default;
 - ♦ BOOT0 default configuration is input pull-down. Refer to the following table (If the BOOT pin is not connected, the Flash main storage area is selected by default).

Start mode select pin		Start mode	Description	
BOOT1	BOOT0	Start mode	Description	
X	0	Main flash memory	The main flash memory serves as the boot	
			area.	
0	1	System memory	System memory as boot area	
1	1	Built in SRAM Built-in SRAM as startup area		

6.2.3 Individual bit setting and bit clearing

By writing '1' to the bit to be changed in the set register (GPIOx_PBSC) and reset register (GPIOx_PBC), the individual bit operation of the data register (GPIOx_POD) can be realized, and one or more bits can be set/reset. The bit written with '1' is set or cleared accordingly, and the bit not written with '1' will not be changed. The software does not need to disable interrupts, and is completed in a single APB2 write operation.

6.2.4 External interrupt/wake-up line

All ports have external interrupt capability, which can be configured in EXTI module:

- The port must be configured in input mode.
- All ports can be configured for wake-up in SLEEP/STOP0/STOP2 mode, and the rising or falling edge can be configured.
- PA0 can be used to wake up in STANDBY mode.
- The general purpose I/O port (as shown in Figure 7-2) is connected to 16 external interrupt/event lines and is configured by register AFIO_EXTI_CFGx.

6.2.5 Alternate function

When I/O ports are configured for alternate function mode, the port bit is used for peripheral alternate function, and the port bit configuration register (GPIOx_PL_CFG/ GPIOx_PH_CFG) must be programmed before use, as follows:

- Input alternate function: The port must be configured in input mode (floating, pull-up or pull-down) and the input pin must be externally driven.
- Output alternate function: The port must be configured to alternate output mode (push-pull or open-drain).
- Bidirectional alternate function: The port bit must be configured with the alternate function output mode (push-

pull or open-drain). At this time, the input driver is configured to input floating mode.

In the output alternate function mode, the pin is disconnected from the output data register and connected with the output signal of the on-chip peripheral. If the software configures a GPIO pin as output alternate function, but the peripheral is not activated, then its output will be uncertain.

6.2.5.1 Clock output MCO

The microcontroller allows the clock signal to be output to the external MCO pin (PA8). PA8 must be configured to push-pull alternate output function mode. The following four clock signals can be selected as MCO clocks, and the selection of the clock is controlled by MCO[2:0] bits in the clock configuration register (RCC_CFG):

- SYSCLK divided clock
- HSI
- HSE
- PLL divided clock

6.2.5.2 Software remapping I/O alternate function

In order to expand the flexibility of alternate peripheral functions under different device packages, some peripheral alternate functions can be remapped to other pins. You can configure the corresponding register (AFIO_RMP_CFG) by software. At this time, the alternate function is disconnected from its original pin and remapped to the new pin.

6.2.5.3 Functional remapping of backup domain pins PC13~PC15

6.2.5.3.1 Functional description of backup power domain pins PC13~PC15

PC13~PC15 pins are located in the backup domain and can be used in GPIO mode or alternate function mode:

- When the backup domain is powered by VDD (internal analog switch connected to VDD), the following functions are available:
 - ◆ PC14 and PC15 can be used for GPIO or LSE pins.
 - ◆ PC13 can be used as a general-purpose I/O port, TAMPER pin, RTC calibration clock, RTC alarm clock or second output (see 4.4 backup register)

Note: Because the analog switch can only pass low current (3mA), the functions of I/O ports of PC13, PC14, PC15 in the output mode are limited: the speed must be limited below 2MHz, the maximum load is 30pF, and these I/O ports must not be used as current sources (such as driving LEDs).

- When the backup domain is powered by VBAT (the analog switch is connected to VBAT after VDD is off), the following functions can be used:
 - ◆ PC14 and PC15 can only be used for LSE pins.
 - ◆ PC13 can be used as a TAMPER pin, RTC alarm clock or second output (see 14.2.8), and output RTC calibration clock, RTC alarm clock pulse or second pulse on PC13 pin (when this pin is not used for intrusion detection). For the convenience of measurement, the RTC clock can be divided by 64 and output to the intrusion detection pin TAMPER. Turn on this function by setting RTC_CTRL.COEN bit.

6.2.5.3.2 PC13~PC15 function mapping

According to the previous description, the configuration conditions of different modes of PC13~PC15 are sorted out as follows:

PC14 and PC15	condition	Pin mode configuration
GPIO mode	LSE is off, the backup domain is powered by VDD, and it can only be	The mode of GPIO depends
	used in GPIO mode when the 1.1V power supply is turned off without	on the application.
	entering the low power mode(STANDBY, STOP2)	
LSE mode	The LSE priority is high, and the LSE mode will be entered if the above	Analog mode
	conditions are not met.	
PC13	PC13 condition	
GPIO mode	The backup domain is powered by VDD, and can only be used in GPIO	The mode of GPIO depends
	mode when the 1.1V power supply is turned off without entering the low	on the application.
	power mode(STANDBY, STOP2)	
TAMPER pin	You can configure this input at any time.	Input floating
RTC calibration clock, RTC	ration clock, RTC When this pin is not used for intrusion detection, it can be used to output	
alarm clock pulse or second	RTC calibration clock, RTC alarm clock pulse or second pulse, so the	
pulse	priority is lower than the TAMPER function.	

Divided by the power domain managed by IOM of the upper and lower PC13~PC15 PAD:

- ■GPIOx_PH_CFG/GPIOx_PID/GPIOx_POD/GPIOx_PBSC/GPIOx_PBC/GPIOx_PLOCK_CFG and other GPIO related configuration registers are in the Core power domain;
- The Mux logic of these three PAD is in VBAT domain, and the default mode is GPIO Input floating mode; PC14 and PC15 decide which mode and Mux they are in according to LSEEN, backup domain power supply control signal, chip mode signal, GPIOC_PH_CFG, TAMPER and clock output control.

Note: The control signal of whether the backup power domain is powered by VDD or VBAT is automatically switched by PWR module, which should be obtained by POR signal of VDD domain.

6.2.5.4 Use the OSC_IN/OSC_OUT pin as the GPIO port PD0/PD1

If the external high-speed oscillator is not turned on in the application, the pin OSC_IN/OSC_OUT can be used as PD0/PD1 of GPIO, which is realized by setting the alternate remapping and debugging I/O configuration register (AFIO_RMP_CFG), as described below:

Bit 15	PD01_RMP: PD0/ PD1 is mapped to OSC_ in/OSC_out (PD0/PD1 mapping on OSC_IN/OSC_OUT)
	This bit can be set to '1' or '0' by software. It controls the GPIO function image of PD0 and PD1. PD0 and PD1 can be
	mapped to the OSC_IN and OSC_OUT pins when the main oscillator HSE is not used (the system runs on the internal
	8MHz RC oscillator).
	0: Do not remap PD0 and PD1;
	1:PD0 is mapped to OSC _ in, and pd1 is mapped to OSC_OUT.
	This function can only be applied to 48-pin and 64-pin packages (there are PD0 and PD1 on 80-pin, 100-pin and 128-
	pin packages, and there is no need to remap them).

Note: The external interrupt/event function has not been remapped. On 48-pin and 64-pin packages, PD0 and PD1

cannot be used to generate external interrupts/events. That is, for LQFP48/64 package, there are only two pins OSC_IN and OSC_OUT (without PD0 and PD1), which can be mapped to PD0 and PD1 when external crystal oscillator is not used. For 80-pin and above packages, PD0 and PD1 pins are available, and OSC_IN and OSC_OUT are available, so there is no need to remap PD0/1 to OSC_IN/OSC_OUT.

6.2.5.5 JTAG/SWD alternate function remapping

The SW-JTAG debug interface is enabled by default when the chip is powered on, and the debug interface is mapped to the GPIO port, as shown in the following Table.

Alternate function	GPIO port
JTMS/SWDIO	PA13
JTCK/SWCLK	PA14
JTDI	PA15
JTDO	PB3
NJTRST	PB4

If you need to use its GPIO function during debugging, you can set the alternate function remapping and debugging I/O configuration register (AFIO_RMP_CFG). SWJ_JTAG_CFG[2:0] bits can change the above remapping configuration. See the Table below.

Table 6-3 Debug port image

		SWD_JTAG I/O pin allocation				
SWJ_JTAG_CFG[2:0]	Possible debug ports for	PA13/	PA14/	PA15/	PB3/	PB4/
		JTMS/	JTCK/	JTDI	JTDO	NJTRST
		SWDIO	SWCLK			
000	Complete SWD_JTAG (JTAG-DP+SW-DP)	I/O is not	I/O is not	I/O is not	I/O is not	I/O is not
000	(reset state)	available	available	available	available	available
001	Complete SWD_JTAG (JTAG-DP+SW-DP)	I/O is not	I/O is not	I/O is not	I/O is not	I/O
001	But there is no NJTRST.	available	available	available	available	available
010	Turn off JTAG-DP and enable SW-DP.	I/O is not	I/O is not	I/O	I/O available	I/O
010	Turn on TTAG-DF and enable 3w-DF.	available		I/O available	available	
100	Turn off JTAG-DP and SW-DP.	I/O	I/O	I/O	I/O available	I/O
100	Turn on Trag-DF and SW-DF.	available	available	available	1/O avallable	available
other	Forbidden					

6.2.5.5.1 SWJ_CFG configuration items

When the write buffer of APB bridge is full, one more APB cycle is needed when writing AFIO_RMP_CFG register. This is because the release of JTAGSW pin takes two APB cycles to ensure that the input signals of NJTRST and TCK are clean.

The first cycle: the signal input to the kernel by SWD_JTAG with 1/0 input is connected to 0 or 1(NJTRST/TDI/TMS is connected to 1,JTCK is connected to 0);

97

Second cycle: IOM controls signals of SWD_JTAG pin (such as direction, pull-down, schmidt input, etc.).

6.2.5.5.2 Pull-down configuration

Since the pins of JTAG are directly connected to the internal debug register (JTCK/SWCLK is directly connected to the clock terminal), it is necessary to ensure that the input pins of JTAG cannot be floating. In order to avoid any uncontrollable IO level, JTAG's input pin is fixed with internal pull-down and pull-up:

NJTRST: Internal pull-up

■ JTDI: Internal pull-up

■ JTMS/SWDIO: Internal pull-up

■ JTCK/SWCLK: Internal pull-down

6.2.5.6 ADC external trigger alternate function remapping

The external trigger source of injection conversion and regular conversion of ADC supports remapping. See alternate remapping and debug I/O configuration register (AFIO_RMP_CFG).

Table 6-4 ADC1 external trigger injection conversion alternate function remapping

Alternate function	ADC1_ETRI = 0	ADC1_ETRI = 1
ADC1 external trigger	ADC1 external trigger injection conversion is connected	ADC1 external trigger injection conversion
injection conversion	to EXTI15.	is connected to TIM8_CH4

Table 6-5 ADC1 external trigger regular conversion alternate function remapping

Alternate function ADC1_ETRR = 0		$ADC1_ETRR = 1$
ADC1 external trigger ADC1 external trigger regular conversion is connected to		ADC1 external trigger regular conversion is
rule conversion	EXTI11.	connected to TIM8_TRGO

Table 6-6 ADC2 external trigger injection conversion alternate function remapping

Alternate function	ADC2_ETRI = 0	ADC2_ETRI = 1
ADC2 external trigger	ADC2 external trigger injection conversion is connected	ADC2 external trigger injection conversion is
injection conversion	to EXTI15.	connected to TIM8_CH4

Table 6-7 ADC2 external trigger regular conversion alternate function remapping

Alternate function	ADC2_ETRR = 0	ADC2_ETRR = 1
ADC2 external trigger	ADC2 external trigger regular conversion is connected to	ADC2 external trigger regular conversion is
rule conversion	EXTI11.	connected to TIM8_TRGO

6.2.5.7 TIMx alternate function remapping

Table 6-8 TIM5 alternate function remapping

Alternate function TIM5CH4_RMP = 0		TIM5CH4_RMP = 1
TIM5_CH4 TIM5_CH4 is connected to PA3		The LSI internal oscillator is connected to TIM5_CH4 to calibrate the
		LSI

Table 6-9 TIM4 alternate function remapping

Alternate function TIM4_RMP = 0		$TIM4_RMP = 1$
TIM4_CH1	PB6	

TIM4_CH2	PB7	
TIM4_CH3	PB8	PD14
TIM4_CH4	PB9	PD15

Table 6-10 TIM3 alternate Function remapping

Alternate function	$TIM3_RMP[1:0] = 00$ $TIM3_RMP[1:0] = 10$		TIM3_RMP[1:0] = 11
	(No remapping)	(Partial remapping)	(Full remapping)
TIM3_ETR			
TIM3_CH1	PA6	PB4	PC6
TIM3_CH2	PA7	PB5	PC7
TIM3_CH3	PB0		PC8
TIM3_CH4	PB1		PC9

Table 6-11 TIM2 alternate function remapping

Alternate function	$TIM2_RMP[1:0] = 00$	$TIM2_RMP[1:0] = 01$	TIM2_RMP[1:0] = 10	TIM2_RMP[1:0] = 11
	(No remapping)	(Partial remapping)	(Partial remapping)	(Full remapping)
TIM2_CH1	PA0	PA15	PA0	PA15
TIM2_CH2	PA1	PB3	PA1	PB3
TIM2_CH3	PA2		PB	10
TIM2_CH4	PA3		PB	311

Table 6-12 TIM1 alternate function remapping

Alternate function	$TIM1_RMP[1:0] = 00$	$TIM1_RMP[1:0] = 01$	$TIM1_RMP[1:0] = 10$	TIM1_RMP[1:0] = 11
	(No remapping)	(partial remapping)	(Partial remapping)	(Full remapping)
TIM1_ETR	P.	A12	PA12	PE7
TIM1_CH1	P	PA8	PA8	PE9
TIM1_CH2	PA9		PA9	PE11
TIM1_CH3	PA10		PA10	PE13
TIM1_CH4	PA11		PA11	
TEAM1_BKIN	PB12	PA6	PB5	
TIM1_CH1N	PB13	PA7	PB13	PE8
TIM1_CH2N	PB14	PB0	PB14	PE10
TIM1_CH3N	PB15	PB1	PB15	PE12

Table 6-13 TIM8 alternate function remapping

Alternate function	$TIM8_RMP[1:0] = 00$	$TIM8_RMP[1:0] = 01$	$TIM8_RMP[1:0] = 11$
	(No remapping)	(Partial remapping)	(Full remapping)
TIM8_ETR	PA0	PB4	PB4
TIM8_CH1	PC6	PC6	PD14
TIM8_CH2	PC7	PC7	PD15
TIM8_CH3	PC8	PC8	PC8
TIM8_CH4	PC9	PC9	PC9
TEAM8_BKIN	PA6	PB3	PB3

Alternate function	$TIM8_RMP[1:0] = 00$	$TIM8_RMP[1:0] = 01$	$TIM8_RMP[1:0] = 11$
	(No remapping)	(Partial remapping)	(Full remapping)
TIM8_CH1N	PA7	PA15	PA15
TIM8_CH2N	PB0	PC12	PC12
TIM8_CH3N	PB1	PD2	PD2

6.2.5.8 CAN alternate function remapping

6.2.5.8.1 CAN1 alternate function remapping

The CAN1 signal can be mapped to port A, port B or port D, as shown in the following Table. For port D, there is no remapping function on 48-pin and 64-pin packages (there are no PD0 and PD1 on these packages).

Table 6-14 CAN1 alternate function remapping

Alternate function	$CAN1_RMP[1:0] = 00$	$CAN1_RMP[1:0] = 01$	CAN1_RMP[1:0] = 10	CAN1_RMP[1:0] = 11
CAN1_RX	PA11	PD8	PB8	PD0
CAN1_TX	PA12	PD9	PB9	PD1

6.2.5.8.2 CAN2 alternate function remapping

CAN2 signal can be mapped to port B or port D, as shown in the following Table.

Table 6-15 CAN2 alternate function remapping

Alternate function	$CAN2_RMP[1:0] = 00$	$CAN2_RMP[1:0] = 01$
CAN2_RX	PB12	PB5
CAN2_TX	PB13	PB6

6.2.5.9 DVP alternate function remapping

The mapping relationship of DVP signals is shown in the following Table.

Table 6-16 DVP alternate function remapping

Alternate function	DVP_RMP[1:0] = 00
DVP_HSYNC	PA1
DVP_VSYNC	PA2
DVP_PCLK	PA3
DVP_D0	PA4
DVP_D1	PA5
DVP_D2	PA6
DVP_D3	PA7
DVP_D4	PC4
DVP_D5	PC5
DVP_D6	PB0
DVP_D7	PB1

6.2.5.10 USARTx alternate function remapping

6.2.5.10.1 USART1 pin remapping

USART1/2/3 interfaces have remapping function. See the alternate remapping configuration register (AFIO_RMP_CFG).

Table 6-17 USART1 alternate function remapping

Alternate function	USART1_RMP = 0	USART1_RMP = 1
USART1_CTS	PA11	
USART1_RTS	PA12	
USART1_TX	PA9	PB6
USART1_RX	PA10	PB7
USART1_CK	Pa	A8

6.2.5.10.2 USART2 pin remapping

Table 6-18 USART2 alternate function remapping

Alternate function	USART2_RMP[1:0] = 00	USART2_RMP[1:0] = 01	USART2_RMP[1:0] = 10	USART2_RMP [1:0] =11
USART2_CTS	PA0	PD3	PC6	PA15
USART2_RTS	PA1	PD4	PC7	PB3
USART2_TX	PA2	PD5	PC8	PB4
USART2_RX	PA3	PD6	PC9	PB5
USART2_CK	PA4	PD7	/	PA4

6.2.5.10.3 USART3 pin remapping

Table 6-19 USART3 alternate function remapping

Alternate function	USART3_RMP[1:0] = 00	USART3_RMP[1:0] = 01	USART3_RMP[1:0] = 11
USART3_TX	PB10	PC10	PD8
USART3_RX	PB11	PC11	PD9
USART3_CK	PB12	PC12	PD10
USART3_CTS	PE	/	
USART3_RTS	PE	/	

6.2.5.11 UARTx alternate function remapping

UART4/5/6/7 interfaces have remapping function. See the alternate remapping configuration register (AFIO_RMP_CFG3).

6.2.5.11.1 UART4 pin remapping

Table 6-20 UART4 alternate function remapping

Alternate function	UART4_RMP[1:0] = 00	UART4_RMP[1:0] = 01	UART4_RMP[1:0] = 10	UART4_RMP [1:0] =11
UART4_TX	PC10	PB2	PA13	PD0
UART4_RX	PC11	PE7	PA14	PD1

101

6.2.5.11.2 UART5 pin remapping

Table 6-21 UART5 alternate function remapping

Alternate function	UART5_RMP[1:0] = 00	UART5_RMP[1:0] = 01	UART5_RMP[1:0] = 10	UART5_RMP [1:0] =11
UART5_TX	PC12	PB13	PE8	PB8
UART5_RX	PD2	PB14	PE9	PB9

6.2.5.11.3 UART6 pin remapping

Table 6-22 UART6 alternate function remapping

Alternate function	UART6_RMP[1:0] = 00	UART6_RMP[1:0] = 10	UART6_RMP[1:0] = 11
UART6_TX	PE2	PC0	PB0
UART6_RX	PE3	PC1	PB1

6.2.5.11.4 UART7 pin remapping

Table 6-23 UART7 alternate function remapping

Alternate function	$UART7_RMP[1:0] = 00$	UART7_RMP[1:0] = 01
UART7_TX	PC4	PC2
UART7_RX	PC5	PC3

6.2.5.12 I2C alternate function remapping

6.2.5.12.1 I2C1 pin remapping

See alternate remapping configuration register (AFIO_RMP_CFG).

Table 6-24 I2C1 pin remapping

Alternate function	I2C1_RMP= 0	I2C1_RMP= 1
I2C1_SCL	PB6	PB8
I2C1_SDA	PB7	PB9
I2C1_SMBA	PB5	

6.2.5.12.2 I2C2 pin remapping

See alternate remapping configuration register (AFIO_RMP_CFG3).

Table 6-25 I2C2 pin remapping

Alternate function	$I2C2_RMP[1:0] = 00$	$I2C2_RMP[1:0] = 11$
I2C2_SCL	PB10	PA4
I2C2_SDA	PB11	PA5
I2C2_SMBA	PB12	

6.2.5.12.3 I2C3 pin remapping

See alternate remapping configuration register (AFIO_RMP_CFG3).

Table 6-26 I2C3 pin remapping

Alternate function	$I2C3_RMP[1:0] = 00$	I2C3_RMP[1:0] = 11
I2C3_SCL	PC0	PC4
I2C3_SDA	PC1	PC5

6.2.5.12.4 I2C4 pin remapping

See alternate remapping configuration register (AFIO_RMP_CFG3).

Table 6-27 I2C4 pin remapping

Alternate function	I2C4_RMP[1:0] = 00	I2C4_RMP[1:0] = 01	I2C4_RMP[1:0] = 11
I2C4_SCL	PC6	PD14	PA9
I2C4_SDA	PC7	PD15	PA10

6.2.5.13 SPI/I2S alternate function remapping

6.2.5.13.1 SPI1 pin remapping

See alternate remapping configuration register (AFIO_RMP_CFG).

Table6-28 SPI1 pin remapping

Alternate function	SPI1_RMP[1:0] = 00	SPI1_RMP[1:0] = 01	SPI1_RMP[1:0] = 10	SPI1_RMP [1:0] =11
SPI1_NSS	PA4	PA15	PB2	PB2
SPI1_SCK	PA5	PB3	PA5	PE7
SPI1_MISO	PA6	PB4	PA6	PE8
SPI1_MOSI	PA7	PB5	PA7	PE9

6.2.5.13.2 SPI2/I2S2 pin remapping

See alternate remapping configuration register (AFIO_RMP_CFG3).

Table 6-29 SPI2/I2S2 pin remapping

Alternate function	SPI2_RMP[1:0] = 00	SPI2_RMP[1:0] = 01	SPI2_RMP[1:0] = 11
SPI2_NSS/I2S2_WS	PB12	PC6	PE10
SPI2_SCK/I2S2_CK	PB13	PC7	PE11
SPI2_MISO	PB14	PC8	PE12
SPI2_MOSI/I2S2_SD	PB15	PC9	PE13

6.2.5.13.3 SPI3/I2S3 pin remapping

See alternate remapping configuration register (AFIO_RMP_CFG3).

Table 6-30 SPI3/I2S3 pin remapping

Alternate function	SPI3_RMP[1:0] = 00	SPI3_RMP[1:0] = 01	SPI3_RMP[1:0] = 11
SPI3_NSS/I2S3_WS	PA15	PD2	PC2
SPI3_SCK/I2S3_CK	PB3	PC10	PC3
SPI3_MISO	PB4	PC11	PA0
SPI3_MOSI/I2S3_SD	PB5	PC12	PA1

6.2.5.14 SDIO alternate function remapping

See alternate remapping configuration register (AFIO_RMP_CFG3).

Table 6-31 SDIO pin remapping

Alternate function	SDIO_RMP = 0	SDIO_RMP = 1
SDIO_0	PC8	PE8
SDIO_1	PC9	PE9
SDIO_2	PC10	PE10
SDIO_3	PC11 PE11	
SDIO_4	PB8	
SDIO_5	PB9	
SDIO_6	PC6	
SDIO_7	PC7	
SDIO_CK	PC12 PE12	
SDIO_CMD	PD2 PE13	

6.2.5.15 QSPI alternate function remapping

QSPI only supports master mode, and does not support multi-master mode. In single-line mode, QSPI_IO1 acts as MISO, supports push-pull alternate output, Input floating or pull-up input. See alternate remapping configuration register (AFIO_RMP_CFG3).

Table 6-32 QSPI pin remapping

Alternate function	$QSPI_RMP[1:0] = 00$	QSPI_RMP[1:0] = 11
QSPI_NSS	PA4	PC10
QSPI_CLK	PA5	PC11
QSPI_IO0	PA6	PC12
QSPI_IO1	PA7	PD0
QSPI_ IO2	PC4	PD1
QSPI_ IO3	PC5	PD2

6.2.6 IO configuration of peripherals

Table 6-33 ADC/DAC

ADC/DAC pin	GPIO configuration
ADC	Analog mode
DAC	Analog mode

Table 6-34 TIM1/TIM8

TIM1/TIM8 pin	Configuration	PAD configuration mode
TIM1/9 CH-	Input capture channel x	Input floating
TIM1/8_CHx	Output channel x	Push-pull alternate output
TIM1/8_CHxN	Complementary output channel x	Push-pull alternate output
TIM1/8_BKIN	Brake input	Input floating

Nations Technologies Inc.

Tel: +86-755-86309900 Email: info@nationstech.com

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

TIM1/TIM8 pin	Configuration	PAD configuration mode
TIM1/8_ETR	External trigger clock input	Input floating

Table 6-35 TIM2/3/4/5

TIM2/3/4/5 pin	Configuration	PAD configuration mode
TIM2/2/4/5 CH.	Input capture channel x	Input floating
TIM2/3/4/5_CHx	Output channel x	Push-pull alternate output
TIM2/3/4/5_ETR	External trigger clock input	Input floating

Table 6-36 bxCAN

bxCAN pin	GPIO configuration
CAN_TX	Push-pull alternate output
CAN_RX	Input floating or input pull-up

Table 6-37 DVP

DVP pin	GPIO configuration
DVP_HSYNC	Input floating
DVP_VSYNC	Input floating
DVP_PCLK	Input floating
DVP_D0	Input floating
DVP_D1	Input floating
DVP_D2	Input floating
DVP_D3	Input floating
DVP_D4	Input floating
DVP_D5	Input floating
DVP_D6	Input floating
DVP_D7	Input floating

Table 6-38 USART

USART pin	Configuration	GPIO configuration
HCADT. TV	full duplex transmissions	Push-pull alternate output
USARTx_TX	Half duplex synchronous mode	Push-pull alternate output
LICADT DV	full duplex transmissions	Input floating or input pull-up
USARTx_RX	Half duplex synchronous mode	Unused, can be used as general I/O.
USARTx_CK	Synchronous mode	Push-pull alternate output
USARTx_RTS	Hardware flow control	Push-pull alternate output
USARTx_CTS	Hardware flow control	Input floating or input pull-up

Table 6-39 I2C

I2C pin	Description	GPIO configuration
I2Cx_SCL	I2C clock	Open-drain alternate output
I2Cx_SDA	I2C data	Open-drain alternate output
I2Cx_SMBA	SMBA data	Push-pull alternate output

Table 6-40 SPI

SPI pin	Description	GPIO configuration
SPIx_SCK	Master mode	Push-pull alternate output
	Slave mode	Input floating
	Full duplex mode/ Master mode	Push-pull alternate output
CDI., MOCI	Full duplex mode/slave mode	Input floating or input pull-up or push-pull alternate output
SPIx_MOSI	Simple bidirectional data line/ Master mode	Push-pull alternate output
	Simple bidirectional data line/slave mode	Unused, can be used as general I/O.
	Full duplex mode/ Master mode	Input floating or input pull-up or push-pull alternate output
SPIx MISO	Full duplex mode/slave mode	Push-pull alternate output
SFIX_IMISO	Simple bidirectional data line/ Master mode	Unused, can be used as general I/O.
	Simple bidirectional data line/slave mode	Push-pull alternate output
	Hardware master/slave mode	Input floating or input pull-up or input pull-down
SPIx NSS	Hardware mode /NSS output enable	Push-pull alternate output (NSS can choose idle high
3117_1/33		resistance or idle is 1 when it is the master)
	Software mode	Unused, can be used as general I/O.

Table 6-41 I2S

I2S pin	Configuration	GPIO configuration
12C WC	Master mode	Push-pull alternate output
I2Sx_WS	Slave mode	Input floating
IOC., CV	Master mode	Push-pull alternate output
I2Sx_CK	Slave mode	Input floating
130 CD	transmitter	Push-pull alternate output
I2Sx_SD	receiver	Input floating or input pull-up or input pull-down
ISS. MCV	Master mode	Push-pull alternate output
I2Sx_MCK	Slave mode	Unused, can be used as general I/O.

Table 6-42 SDIO

SDIO pin	GPIO configuration
SDIO_CK	Push-pull alternate output
SDIO_CMD	Push-pull alternate output
SDIO[D7:D0]	Push-pull alternate output

Table 6-43 QSPI

QSPI pin	GPIO configuration	remarks
QSPI_IO3	Push-pull alternate output	QSPI only supports master mode, and does
QSPI_IO2	Push-pull alternate output	not support multi-master mode.
QSPI_IO1	Push-pull alternate output	
QSPI_IO0	Push-pull alternate output	
QSPI_CLK	Push-pull alternate output	
QSPI_NSS	Push-pull alternate output	

Table 6-44 USB

USB pin	GPIO configuration
USB_DM	Once the USB module is enabled, these pins are automatically connected to the
USB_DP	internal USB transceiver.

Table 6-45 other

pin	Alternate function	GPIO configuration
TAMPER-RTC	RTC output	When configuring BKP_CR and BKP_RTCCR registers,
TAMPER-RIC	TAMPER event input	it is forced by hardware.
MCO	Clock output	Push-pull alternate output
EXTI input line	External interrupt input	Input floating or input pull-up or input pull-down

6.2.7 GPIO locking mechanism

The locking mechanism is used to freeze the IO configuration to prevent accidental changes. When a LOCK program is executed on a port bit, the port configuration cannot be changed until the next reset. Refer to the port configuration lock register GPIOx_PLOCK_CFG.

- PLOCKK_CFG is GPIOx_PLOCK_CFG[16], which will become 1 only after the PLOCKK_CFG is operated according to the correct sequence w1->w0->w1->r0 (where r0 is required); After that, it will become 0 only after system reset.
- PLOCK_CFGy is GPIOx_PLOCK_CFG [15:0], which can only be modified when PLOCKK_ CFG = 0, that is, it is unlocked.
- The sequence w1->w0->w1->r0 is valid only when the PLOCKK_CFG is written at the same time as the non-zero GPIOx_PLOCKK_CFG [15: 0]. GPIOx_PLOCK_CFG [15:0] must not be changed during sequence writing;
- GPIOx_PH_CFG/GPIOx_PL_CFG bits can be modified as long as PLOCK _ CFG = 0, which is not affected by the configuration of GPIOx_PLOCK_CFG [15:0].
- PLOCKK_CFG=1, GPIOx_PH_CFG/GPIOx_PL_CFG is controlled by GPIOx_PLOCK_CFG [15:0], corresponding to PLOCK_CFGy (y=0...15) =1 which is a locked configuration and cannot be modified, and PLOCK_CFGy=0, can be modified.
- If the sequence operation is wrong, w1->w0->w1->r0 must be performed again to initiate the locking operation again.

107

6.3 GPIO registers

These peripheral registers must be operated as 32-bit words.

6.3.1 GPIO register overview

GPIOA base address: 0x40010800

GPIOB base address: 0x40010C00

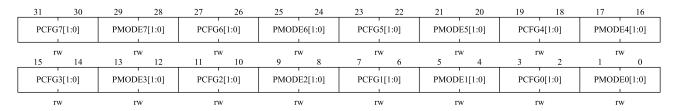
GPIOC base address: 0x40011000

GPIOD base address: 0x40011400

GPIOE base address: 0x40011800

Table 6-46 GPIO registers overview

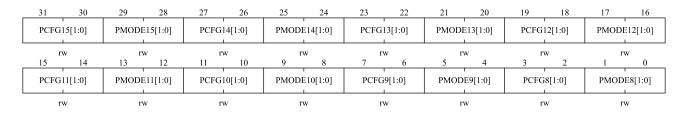
Offset	Re	gister	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	∞	7	9	5	4	3	2	-	0
000h	GPIOx	_PL_CFG	IO-LIE-OGOG	PCFG/[1:0]	10 132340	PMODE/[1:0]	10 110 0000	PCFG6[1:0]	10,110,140,14	PMODE6[1:0]		PCFG5[1:0]	10.112TIGOM	rMODE3[1:0]	10-111-010d	PCFG4[1:0]	DMODE4[1.0]	FMODE4[1:0]	POTO211.01	rcrus[1:0]	PMODE2[1.0]	rMODES[1:0]	DCEG2[1:0]	10.02[1:0]	PMODE2[1:0]	1100012[1:0]	10.111.0104	PCFG1[1:0]	PACOPETET.01	rMODE1[1:0]	PCEC-011-01	rCrow[1.v.]	PMODE0[1:0]	
	Reset Value	x=B	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	reset value	x=A,C,D,E	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
004h	GPIOx	_PH_CFG	10:13:000	PCFG13[1:0]	io i io i de contra	PMODEI3[1:0]	177	PCFG14[1:0]	E TALLACI AL	PMODE14[1:0]		PCFG13[1:0]	IO. I TO LITTED MAI	FMODE15[1:0]	10,136,1304	PCFG12[1:0]	IO.11C13GOMa	FMODE12[1:0]	10:111:000	rcrom[1:0]	10.111.11.01.01	rMODELI[1:0]	DCEG10[1:0]	6:1010101	PMODE10(1.0)	0:1 017770W1	10.1100.0104	PCFG9[1:0]	IO. FJOGFGOLVA	PMODE9[1:0]	DCEC8[1.0]	[v:1]	PMODE8[1:0]	
	Reset Value	x=A	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		x=B,C,D,E	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
008h	GPI	Ox_PID								Rese	rved	ı							PID15	PID14	PID13	PID12	PID11	PID10	PID9	PID8	PID7	PID6	PID5	PID4	PID3	PID2	PID1	PID0
ooon	Rese	et Value								Rese	a ved								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GPIC	0x_POD																	POD15	POD14	POD13	POD12	POD11	POD10	POD9	POD8	POD7	POD6	POD5	POD4	POD3	POD2	POD1	POD0
00Ch		x=A								Rese	erved	l							1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Reset Value	х=В																	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
		x=C,D,E																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
010h	GPIO	x_PBSC	PBC15	PBC14	PBC13	PBC12	PBC11	PBC10	PBC9	PBC8	PBC7	PBC6	PBC5	PBC4	PBC3	PBC2	PBC1	PBC0	PBS15	PBS14	PBS13	PBS12	PBS11	PBS10	6SBd	PBS8	LS84	PBS6	PBS5	PBS4	PBS3	PBS2	PBS1	PBS0
	Rese	et Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
014h	GPIO	Dx_PBC								Rese	erved	l							PBC15	PBC14	PBC13	PBC12	PBC11	PBC10	PBC9	PBC8	PBC7	PBC6	PBC5	PBC4	PBC3	PBC2	PBC1	PBC0
	Rese	et Value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
018h	GPIOx_P	LOCK_CFG							R	eserv	ed							PLOCKK_CFG	PLOCK_CFG15	PLOCK_CFG14	PLOCK_CFG13	PLOCK_CFG12	PLOCK_CFG11	PLOCK_CFG10	PLOCK_CFG9	PLOCK_CFG8	PLOCK_CFG7	PLOCK_CFG6	PLOCK_CFG5	PLOCK_CFG4	PLOCK_CFG3	PLOCK_CFG2	PLOCK_CFG1	PLOCK_CFG0
	Rese	et Value																0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01Ch															Res	erved	l																	
020h	GPIOx	_DS_CFG								Rese	erved	l							DS_CFG15	DS_CFG 14	DS_CFG13	DS_CFG12	DS_CFG11	DS_CFG10	DS_CFG9	DS_CFG8	DS_CFG7	DS_CFG6	DS_CFG5	DS_CFG4	DS_CFG3	DS_CFG2	DS_CFG1	DS_CFG0
	Reset Value	x=A,B,C,D,E																	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
024h	GPIOx	_SR_CFG								Rese	erved	I							SR_CFG15	SR_CFG14	SR_CFG13	SR_CFG12	SR_CFG11	SR_CFG10	SR_CFG9	SR_CFG8	SR_CFG7	SR_CFG6	SR_CFG5	SR_CFG4	SR_CFG3	SR_CFG2	SR_CFG1	SR_CFG0
	Reset Value	x=A,B,C,D,E																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


108

6.3.2 GPIO port low configuration register (GPIOx_PL_CFG)

Address offset: 0x00

Reset value: 0x0000 0000 (x=A, C, D, E); 0x0008 0800 (x=B)



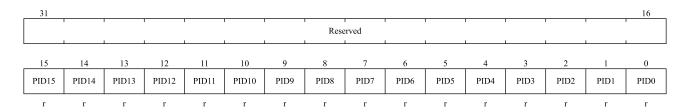
Bit field	Name	Description
31:30	PCFGy[1:0]	X port configuration bit $(y = 07)$
27:26		PMODE[1:0]=00 In input mode:
23:22		00: analog function mode (state after reset)
19:18		01: Input floating mode
15:14		10: input pull-up/pull-down mode (note: when configuring the input pull-up/pull-
11:10		down mode, you need to set/reset the corresponding GPIOx_POD register)
7:6		11: reserved
3:2		When PMODE[1:0]>00 output mode:
		00: General push-pull output mode
		01: General open-drain output mode
		10: Alternate function push-pull output mode
		11: Open-drain output mode of alternate function
29:28	PMODEy[1:0]	Mode bit of port x ($y = 07$)
25:24		00: input mode (state after reset)
21:20		01: output mode, maximum speed 2MHz
17:16		10: output mode, maximum speed 10MHz
13:12		11: output mode, maximum speed 50MHz
9:8		
5:4		
1:0		

6.3.3 GPIO port high configuration register (GPIOx_PH_CFG)

Address offset: 0x04

Reset value: 0x8880 0000(x=A); 0x0000 0000(x=B,C,D,E)

Bit field	Name	Description
31:30	PCFGy[1:0]	Port x configuration bit $(y = 815)$
27:26		PMODE[1:0]=00 In input mode:
23:22		00: analog function mode (state after reset)



Bit field	Name	Description
19:18		01: Input floating mode
15:14		10: input pull-up/pull-down mode (note: when configuring the input pull-up/pull-
11:10		down mode, you need to set/reset the corresponding GPIOx_POD register)
7:6		11: reserved
3:2		When MODE[1:0]>00 output mode:
		00: General push-pull output mode
		01: General open-drain output mode
		10: Alternate function push-pull output mode
		11: Open-drain output mode of alternate function
29:28	PMODEy[1:0]	Mode bit of port $x (y = 815)$
25:24		00: input mode (state after reset)
21:20		01: output mode, maximum speed 2MHz
17:16		10: output mode, maximum speed 10MHz
13:12		11: output mode, maximum speed 50MHz
9:8		
5:4		
1:0		

6.3.4 GPIO port input data register (GPIOx_PID)

Address offset: 0x08

Reset value: 0x0000 0000

Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained.
15:0	PIDy	Port input data $(y = 015)$
		These bits are read-only and can only be read in the form of 16-bit words, and the
		read value is the state of the corresponding I/O port.

110

6.3.5 GPIO port output data register (GPIOx_POD)

Address offset: 0x0C

Reset value: 0x0000 A000(x=A); 0x0000 0010(x=B); 0x0000 0000(x=C,D,E)

31															16
		'	'	•			Rese	rved		'		•			
			l	1			1			l		1	L	I	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
POD15	POD14	POD13	POD12	POD11	POD10	POD9	POD8	POD7	POD6	POD5	POD4	POD3	POD2	POD1	POD0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained.
15:0	PODy	Port output data ($y = 015$)
		These bits can only be read or written in the form of 16-bit words. GPIOx_PBSC(x =
		AE) can be independently set/cleared for the corresponding POD bit.

6.3.6 GPIO port bit setting/clearing register (GPIOx_PBSC)

Address offset: 0x10

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PBC15	PBC14	PBC13	PBC12	PBC11	PBC10	PBC9	PBC8	PBC7	PBC6	PBC5	PBC4	PBC3	PBC2	PBC1	PBC0
w 15	w 14	w 13	w 12	w 11	w 10	w 9	w 8	w 7	w 6	w 5	w 4	w 3	w 2	w 1	w 0
PBS15	PBS14	PBS13	PBS12	PBS11	PBS10	PBS9	PBS8	PBS7	PBS6	PBS5	PBS4	PBS3	PBS2	PBS1	PBS0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w

Bit field	Name	Description
31:16	PBCy	Clear bit y of port GPIOx ($y = 015$)
		These bits can only be written and operated as words (16 bits).
		0: does not affect the corresponding PODy bit
		1: Clear the corresponding PODy bit to 0
		Note: if the corresponding bits of PBSy and PBCy are set at the same time, the PBSy
		bit works.
15:0	PBSy	Set bit y of port GPIOx $(y = 015)$
		These bits can only be written and operated as words (16 bits).
		0: does not affect the corresponding PODy bit
		1: Set the corresponding PODy bit to 1

111

6.3.7 GPIO port bit clear register (GPIOx_PBC)

Address offset: 0x14

Reset value: 0x0000 0000

31															16
	'	'	1	1	'	l	Rese	rved		•	•	•	'		'
	1	1	I.	1		1	1	1		L	1	1	I.	1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PBC15	PBC14	PBC13	PBC12	PBC11	PBC10	PBC9	PBC8	PBC7	PBC6	PBC5	PBC4	PBC3	PBC2	PBC1	PBC0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w

Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained.
15:0	PBCy	Clear bit y of port GPIOx ($y = 015$)
		These bits can only be written and operated as words (16 bits).
		0: does not affect the corresponding PODy bit
		1: Clear the corresponding PODy bit to 0

${\bf 6.3.8~GPIO~port~lock~configuration~register~(GPIOx_PLOCK_CFG~)}$

Address offset: 0x18

Reset value: 0x0000 0000

31														17	16
	1	ı	ı	ı	1	1	Reserved	1	ı	ı	ı	1	ı		PLOCKK _CFG
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	rw 0
PLOCK _CFG15	PLOCK _CFG14	PLOCK _CFG13	PLOCK _CFG12	PLOCK _CFG11	PLOCK _CFG10	PLOCK _CFG9	PLOCK _CFG8	PLOCK _CFG7	PLOCK _CFG6	PLOCK _CFG5	PLOCK _CFG4	PLOCK _CFG3	PLOCK _CFG2	PLOCK _CFG1	PLOCK _CFG0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit field	Name	Description
31:17	Reserved	Reserved, the reset value must be maintained.
16	PLOCKK_CFG	Lock key. This bit can be read at any time, and it can only be modified by the key
		lock write sequence.
		0: Port configuration lock key is activated
		1: The port configuration lock key is activated, and the GPIOx_PLOCK_CFG register
		is locked before the next system reset. The write sequence of the lock key:
		Write 1 -> write 0 -> write 1 -> read 0 -> read 1
		The last reading can be omitted, but it can be used to confirm that the lock key has
		been activated.
		Note: the value of PLOCK_CFG [15:0] cannot be changed when the writing
		sequence of lock key is operated. Any error in the operation key writing sequence will
		not activate the key.
15:0	PLOCK_CFGy	Configuration lock bit y of port GPIOx $(y = 015)$
		These bits are readable and writable but can only be written when the PLOCKK_CFG
		bit is 0.
		0: Do not lock the configuration of the port
		1: Lock the configuration of the port

112

${\bf 6.3.9~GPIO~driver~capability~configuration~register~(GPIOx_DS_CFG~)}$

Address offset: 0x20

Reset value: 0x0000 FFFF (x = A,B,C,D,E)

31															16
	'		'	'	'		Rese	rved		'	'	'	'	•	
			1			<u> </u>	1			1				1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DS _CFG15	DS _CFG14	DS _CFG13	DS _CFG12	DS _CFG11	DS _CFG10	DS _CFG9	DS _CFG8	DS _CFG7	DS _CFG6	DS _CFG5	DS _CFG4	DS _CFG3	DS _CFG2	DS _CFG1	DS _CFG0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained.
15:0	DS_CFGy	The drive capability configuration bit y of port GPIOx ($y = 015$)
		These bits can only be read or written in the form of 16-bit words.
		0: 2mA
		1: Controlled by PMODEy of GPIOx_PH_CFG/GPIOx_PL_CFG.
		PMODE: 00/01, 4mA;
		PMODEy: 10, 8mA;
		PMODEy: 11, 12mA.

6.3.10 GPIO flip rate configuration register (GPIOx_SR_CFG)

Address offset: 0x24

Reset value: 0x0000 FFFF (x=A,B,C,D,E)

31															16
			'	•		·	Rese	rved	!	'	•	•	'		
			l				l			l			L	1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SR _CFG15	SR _CFG14	SR _CFG13	SR _CFG12	SR _CFG11	SR _CFG10	SR _CFG9	SR _CFG8	SR _CFG7	SR _CFG6	SR _CFG5	SR _CFG4	SR _CFG3	SR _CFG2	SR _CFG1	SR _CFG0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

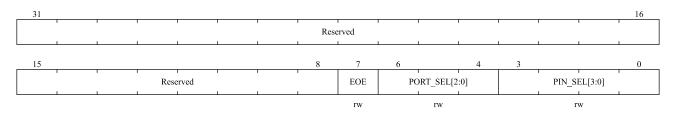
Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained.
15:0	SR_CFGy	Port GPIOx flip rate configuration bit y ($y = 015$)
		These bits can only be read or written in the form of 16-bit words.
		0: fast flip
		1: Slow flip

6.4 AFIO registers

6.4.1 AFIO register overview

AFIO base address: 0x40010000

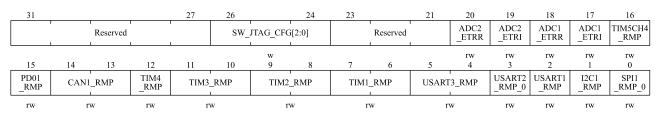
Table 6-47 AFIO register overview


Offset	Register	31	29	27	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0	
000h	AFIO_ECTRL		Reserved																	EOE PORT_SEL[2:0]				PIN_SEL[3:0]							
	Reset Value																						0	0	0	0	0	0	0	0	
004h	AFIO_RMP_CFG	F	Reserved		SW_JTAG_CFG[2:0]			Reserved		ADC2_ETRR	ADC2_ETRI	ADC1_ETRR	ADC1_ETRI	TIM5CH4_RMP	PD01_RMP	10°13diyad 110 v.D	CANI_KMP[1:0]	TIM4_RMP	TING DAMPHIO	LIMB_KIMP[1:0]	TIM2 BMB[1:0]	1 HMZ_NIME[1:0]	Wildhad that	11M11_KMP[1:0]	IOTIJAINA EERVSII	USAK 13_KMP[1:0]	USART2_RMP_0	USART1_RMP	I2C1_RMP	SPI1_RMP_0	
	Reset Value			0	0	0				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
008h	AFIO_EXTI_CFG1					Res	ervec	ı							EX	TI3_C	CFG[:	3:0]	EX	TI2_C	CFG[3	3:0]	EX	TI1_0	CFG[3	3:0]	EXT	EXTI0_CFG[3:0]			
ooon	Reset Value					TCG	ici vec								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
00Ch	AFIO_EXTI_CFG2					Pos	erved	1							EX	TI7_C	CFG[:	3:0]	EX	TI6_C	CFG[3	3:0]	EX	TI5_0	CFG[:	3:0]	EXTI4_CFG[3:0]			:0]	
OOCH	Reset Value					Kes	CI VCC	1							0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0101	AFIO_EXTI_CFG3					Das	eserved						EXT	П11_	_CFG[3:0] EXTI10_CFG[3:0]			EX	TI9_0	CFG[3	3:0]	EXTI8_CFG[3:0]			:0]						
010h	Reset Value				Res	ervec	1							0 0 0 0 0 0 0 0			0	0	0	0	0	0 0 0 0									
014h	AFIO_EXTI_CFG4					Pos	oruge	ad						EXT	TI15_CFG[3:0] EXTI14_CFG[3:0]				3:0]	EXTI13_CFG[3:0]				EXTI12_CFG[3:0]							
01411	Reset Value					Kes	served					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
020h	AFIO_RMP_CFG3	TIM8_RMP[1:0]	Reserved	UART7_RMP[1:0]		UART6_RMP[1:0]	UARTS_RMP[1:0]			UAK 14_KWIP[1:0]	USART2_RMP_1	SPII_RMP_1	¢.	Reserved	OPLI BANG CIGO	SF13_KMP[1:0]	to the cree	SF12_KMP[1:0]	DC4 PARELO	12C4_KWIF[1:0]	12C3 PMP[1-0]	12C3_NWIP[1:0]	10.17dMd coor	12C2_KMIP[1:0]	IO. FIGWA 103O	USPI_KMP[1:0]	Reserved	CAND DMD[1:0]	CANZ_NWI [1:0]	SDIO_RMP	
	Reset Value	0 0		0 0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	
024h	AFIO_RMP_CFG4		OSDI_MSO_ Reserved						10-13dWd dXd	DVF_KMF[1:0]	QSPI_XIP_EN										Reserved										
	Reset Value				0	0	0	0	0	0	0																				
028h	AFIO_RMP_CFG5	Reserved					EMC_GB4_DETECT_EN	EMC_GB3_DETECT_EN	EMC_GB2_DETECT_EN	EMC_GB1_DETECT_EN	EMC_GBN4_DETECT_EN	EMC_GBN3_DETECT_EN	EMC_GBN2_DETECT_EN	EMC_GBN1_DETECT_EN	EMC_CLAMP4_DETECT_EN	EMC_CLAMP3_DETECT_EN	EMC_CLAMP2_DETECT_EN	EMC_CLAMP1_DETECT_EN	EMC_GB4_RST_EN	EMC_GB3_RST_EN	EMC_GB2_RST_EN	EMC_GB1_RST_EN	EMC_GBN4_RST_EN	EMC_GBN3_RST_EN	EMC_GBN2_RST_EN	EMC_GBN1_RST_EN	EMC_CLAMP4_RST_EN	EMC_CLAMP3_RST_EN	EMC_CLAMP2_RST_EN	EMC_CLAMP1_RST_EN	
	Reset Value															0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

6.4.2 AFIO event control register (AFIO_ECTRL)

Address offset: 0x00

Reset value: 0x0000 0000



Bit field	Name	Description
31:8	Reserved	Reserved, the reset value must be maintained.
7	EOE	Event output enable bit.
		When this bit is set, the Cortex event output signal will be connected to the I/O port
		selected by PORT_SEL[2:0] and PIN_SEL[3:0].
		0: Output prohibited
		1: Output enable
6:4	PORT_SEL[2:0]	Port selection bit
		Select the port used to output the event output signal of cortex:
		000: select port A
		001: select port B
		010: select port C
		011: select port D
		100: select port E
3:0	PIN_SEL[3:0]	Pin select bit
		Select the pin used to output the Cortex event output signal, (x=AE) corresponding
		to the I/O selected by PORT_SEL[2:0].
		0000: select Px0 0001: select Px1 0010: select Px2 0011: select Px3
		0100: select Px4 0101: select Px5 0110: select Px6 0111: select Px7
		1000: select Px8 1001: select Px9 1010: select Px10 1011: select Px11
		1100: select Px12 1101: select Px13 1110: select Px14 1111: select Px15

6.4.3 AFIO alternate remap configuration register (AFIO_RMP_CFG)

Address offset: 0x04

Reset value: 0x0000 0000

Nations Technologies Inc.

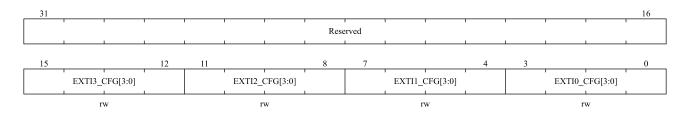
Tel: +86-755-86309900 Email: info@nationstech.com

 $Address: Nations\ Tower, \#109\ Baoshen\ Road,\ Hi\text{-tech\ Park\ North}.$

Bit field	Name	Description
31:27	Reserved	Reserved, the reset value must be maintained.
26:24	SW_JTAG_CFG[2:0]	Serial wire JTAG configuration
		These bits can only be written by software (reading these bits will return an
		undefined value) and are used to configure the I/O ports of the SWD_JTAG
		alternate function. SWD_JTAG (Serial Wire JTAG) supports JTAG or SWD to
		access Cortex's debug port. The default state after system reset is to enable SWJ.
		In this state, JTAG or SW (serial wire) mode can be selected through a specific
		signal on the JTMS/JTCK pin.
		000: Full SWD_JTAG (JTAG-DP + SW-DP): reset state;
		001: Full SWD_JTAG (JTAG-DP + SW-DP) but no NJTRST;
		010: Turn off JTAG-DP and enable SW-DP;
		100: Turn off JTAG-DP, turn off SW-DP;
		Other values: no effect.
23:21	Reserved	Reserved, the reset value must be maintained.
20	ADC2_ETRR	ADC2 regular conversion external trigger remapping
	_	This bit can be set to '1' or set to '0' by software. It controls the trigger input
		connected to the external trigger of ADC2 regular conversion.
		0: ADC2 regular conversion external trigger is connected to EXTI11
		1: ADC2 regular conversion external trigger is connected to TIM8_TRGO
19	ADC2_ETRI	ADC2 injection conversion external trigger remapping
.,		This bit can be set to '1' or set to '0' by software. It controls the trigger input
		connected to the ADC2 injection conversion external trigger.
		0: ADC2 injection conversion external trigger is connected to EXTI15
		1: ADC2 injection conversion external trigger is connected to TIM8_CH4.
18	ADC1_ETRR	ADC1 regular conversion external trigger remapping
10	/IDCI_ETIUC	This bit can be set to '1' or set to '0' by software. It controls the trigger input
		connected to the external trigger of ADC1 regular conversion.
		0: ADC1 regular conversion external trigger is connected to EXTI11
		1: ADC1 regular conversion external trigger is connected to TIM8_TRGO
17	ADC1_ETRI	ADC1 injection conversion external trigger remapping
17	ADCI_LIKI	This bit can be set to '1' or set to '0' by software. It controls the trigger input
		connected to the ADC1 injection conversion external trigger.
		0: ADC1 injection conversion external trigger is connected to EXTI15
		1: ADC1 injection conversion external trigger is connected to EAT115
16	TIM5CH4_RMP	
10	TIMSCH4_KMF	TIM5_CH4 internal remapping This his can be cet to 'll' or set to '0' by software. It controls the internal image of
		This bit can be set to '1' or set to '0' by software. It controls the internal image of
		TIM5_CH4.
		0: TIM5_CH4 is connected to PA3
		1: LSI internal oscillator is connected to TIM5_CH4, the purpose is to calibrate
15	DD01 D14D	the LSI
15	PD01_RMP	PD0/PD1 mapping on OSC_IN/OSC_OUT (PD0/PD1 mapping on
		OSC_IN/OSC_OUT)

Bit field	Name	Description
		This bit can be set to '1' or set to '0' by software. It controls the GPIO function
		image of PD0 and PD1. When the main oscillator HSE is not used (the system
		runs on the internal 8MHz RC oscillator), PD0 and PD1 can be mapped to the
		OSC_IN and OSC_OUT pins. This function can only be applied to packages with
		pins below 80 (PD0 and PD1 appear on packages with pins 80 and above and do
		not need to be remapped).
		0: Do not remap PD0 and PD1;
		1: PD0 is mapped to OSC_IN, PD1 is mapped to OSC_OUT.
14:13	CAN1_RMP[1:0]	CAN1 alternate function remapping
		These bits can be set to '1' or set to '0' by software to control the re-mapping of
		the alternate functions CAN1_RX and CAN1_TX on products with only a single
		CAN interface.
		00: CAN1_RX is mapped to PA11, CAN1_TX is mapped to PA12;
		01: CAN1_RX is mapped to PD8, CAN1_TX is mapped to PD9;
		10: CAN1_RX is mapped to PB8, CAN1_TX is mapped to PB9 (cannot be used
		for 36-pin package);
		11: CAN1_RX is mapped to PD0, CAN1_TX is mapped to PD1.
12	TIM4_RMP	Remapping of Timer 4
	1201-12012	This bit can be set to '1' or set to '0' by software to control the mapping of
		channels 1-4 of TIM4 to the GPIO port.
		0: No remapping (TIM4_CH1/PB6, TIM4_CH2/PB7, TIM4_CH3/PB8,
		TIM4_CH4/PB9);
		1: Full image (TIM4_CH1, TIM4_CH2 no function, TIM4_CH3/PD14,
		TIM4_CH4/PD15).
11.10	TIM2 DMD[1 0]	Note: Remapping does not affect TIM4_ETR on PEO.
11:10	TIM3_RMP[1:0]	Remapping of Timer 3
		These bits can be set to '1' or set to '0' by software to control the image of Timer 3
		channels 1 to 4 on the GPIO port.
		00: no remapping (CH1/PA6, CH2/PA7, CH3/PB0, CH4/PB1);
		01: unused combination;
		10: Partial image (CH1/PB4, CH2/PB5, CH3/PB0, CH4/PB1);
		11: Full image (CH1/PC6, CH2/PC7, CH3/PC8, CH4/PC9).
		Note: Remaking does not affect TIM3_ETR on PD2.
9:8	TIM2_RMP[1:0]	Remapping of Timer 2
		These bits can be set to '1' or set to '0' by software to control the image of Timer 2
		channels 1 to 4 and external trigger (ETR) on the GPIO port.
		00: no remapping (CH1/ETR/PA0, CH2/PA1, CH3/PA2, CH4/PA3);
		01: Partial image (CH1/ETR/PA15, CH2/PB3, CH3/PA2, CH4/PA3);
		10: Partial image (CH1/ETR/PA0, CH2/PA1, CH3/PB10, CH4/PB11);
		11: Complete image (CH1/ETR/PA15, CH2/PB3, CH3/PB10, CH4/PB11).
7:6	TIM1_RMP[1:0]	Remapping of Timer 1
		These bits can be set to '1' or set to '0' by software to control timer 1 channels 1 to

Bit field	Name	Description
		4, 1N to 3N, external trigger (ETR) and brake input
		(BKIN) The image on the GPIO port.
		00: no remap (ETR/PA12, CH1/PA8, CH2/PA9, CH3/PA10, CH4/PA11,
		BKIN/PB12, CH1N/PB13, CH2N/PB14, CH3N/PB15);
		01: partial image (ETR/ PA12, CH1/PA8, CH2/PA9, CH3/PA10, CH4/PA11,
		BKIN/PA6, CH1N/PA7, CH2N/PB0, CH3N/PB1);
		10: Partial image (ETR/PA12, CH1/PA8, CH2/PA9, CH3/PA10, CH4/PA11,
		BKIN/PB5, CH1N/PB13, CH2N/PB14, CH3N/PB15);
		11: Full image (ETR/PE7, CH1/PE9, CH2/PE11, CH3/none, CH4/none,
		BKIN/none, CH1N/PE8, CH2N/PE10, CH3N/PE12).
5:4	USART3_RMP[1:0]	Remapping of USART3
		These bits can be set to '1' or set to '0' by software to control the image of the
		CTS, RTS, CK, TX and RX alternate functions of USART3 on the GPIO port.
		00: No remapping (TX/PB10, RX/PB11, CK/PB12, CTS/PB13, RTS/PB14);
		01: Partial image (TX/PC10, RX/PC11, CK/PC12, CTS/PB13, RTS/PB14);
		10: Unused combination;
		11: Full image (TX/PD8, RX/PD9, CK/PD10, CTS/PD11, RTS/none).
3	USART2_RMP_0	Remapping of USART2
		These bits can be set to '1' or set to '0' by software and used in conjunction with
		USART2_RMP_1 to form USART2_RMP[1:0] to control the image of the CTS,
		RTS, CK, TX and RX alternate functions of USART2 on the GPIO port.
		00: No remapping (CTS/PA0, RTS/PA1, TX/PA2, RX/PA3, CK/PA4);
		01: Remapping (CTS/PD3, RTS/PD4, TX/PD5, RX/PD6, CK/PD7);
		10: Remapping (CTS/PC6, RTS/PC7, TX/PC8, RX/PC9, CK/-);
		11: Remapping (CTS/PA15, RTS/PB3, TX/PB4, RX/PB5, CK/PA4).
		Note: Synchronous mode is not supported when the USART2_RMP[1:0] is 0x10.
2	USART1_RMP[1:0]	Remapping of USART1
		This bit can be set to '1' or set to '0' by software to control the image of the TX
		and RX alternate functions of USART1 on the GPIO port.
		0: No remapping (TX/PA9, RX/PA10);
		1: Remapping (TX/PB6, RX/PB7).
1	I2C1_RMP	Remapping of I2C1
		This bit can be set to '1' or set to '0' by software to control the image of I2C1's
		SCL and SDA alternate functions on the GPIO port.
		0: No remapping (SCL/PB6, SDA/PB7);
		1: Remapping (SCL/PB8, SDA/PB9).
	SPI1_RMP_0	Remapping of SPI1
0	DI II_IXIVII _U	T The state of the
0	Si ii_kivii _o	This bit can be set to '1' or set to '0' by software and used in conjunction with
0	SITI_KWI_0	This bit can be set to '1' or set to '0' by software and used in conjunction with SPI1_RMP_1 to form SPI1_RMP[1:0] to control the image of SPI1's NSS, SCK,
0	SITI_KWI_0	
0	SITI_KWI_0	SPI1_RMP_1 to form SPI1_RMP[1:0] to control the image of SPI1's NSS, SCK,



Bit field	Name	Description
		10: Remapping (NSS/PB2, SCK/PA5, MISO/PA6, MOSI/PA7);
		11: Remapping (NSS/PB2, SCK/PE7, MISO/PE8, MOSI/PE9);

6.4.4 AFIO external interrupt configuration register 1(AFIO_EXTI_CFG1)

Address offset: 0x08

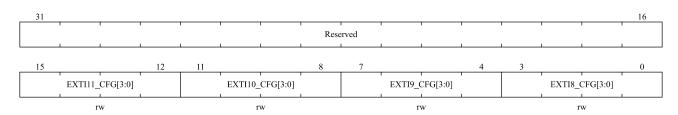
Reset value: 0x0000 0000

Bit field	Name	Description	
31:16	Reserved	Reserved, the reset value must be maintained.	
15:0	EXTIx_CFG[3:0]	EXTIx configuration ($x = 03$)	
		These bits can be read and written by software and used to select the input so	urce of
		the EXTI0 external interrupt:	
		0000: PA0 pin 0001: PB0 pin 0010: PC0 pin	
		0011: PD0 pin 0100: reserve others: reserve	
		the EXTI1 external interrupt:	
		0000: PA1 pin 0001: PB1 pin 0010: PC1 pin	
		0011: PD1 pin 0100: reserve others: reserve	
		the EXTI2 external interrupt:	
		0000: PA2 pin 0001: PB2 pin 0010: PC2 pin	
		0011: PD2 pin 0100: PE2 pin others: reserve	
		the EXTI3 external interrupt:	
		0000: PA3 pin 0001: PB3 pin 0010: PC3 pin	
		0011: reserve 0100: PE3 pin others: reserve	

6.4.5 AFIO external interrupt configuration register 2(AFIO_EXTI_CFG2)

Address offset: 0x0C

Reset value: 0x0000 0000



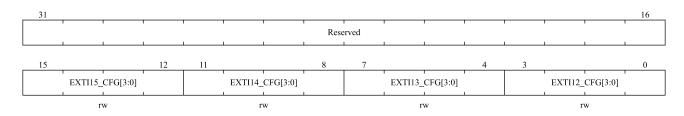
Bit field	Name	Description		
31:16	Reserved	Reserved, the reset value must be maintained.		
15:0	EXTIx_CFG[3:0]	EXTIx configuration ($x = 47$)		
		These bits can be read and written by software and used to select the input source of		
		the EXTI4 external interrupt:		
		0000: PA4 pin 0001: PB4 pin 0010: PC4 pin		
		0011: reserve 0100: reserve others: reserve		
		the EXTI5 external interrupt:		
		0000: PA5 pin 0001: PB5 pin 0010: PC5 pin		
		0011: reserve 0100: reserve others: reserve		
		the EXTI6 external interrupt:		
		0000: PA6 pin 0001: PB6 pin 0010: PC6 pin		
		0011: reserve 0100: reserve others: reserve		
		the EXTI7 external interrupt:		
		0000: PA7 pin 0001: PB7 pin 0010: PC7 pin		
		0011: reserve 0100: PE7 pin others: reserve		

6.4.6 AFIO external interrupt configuration register 3(AFIO_EXTI_CFG3)

Address offset: 0x10

Reset value: 0x0000 0000

Bit field	Name	Description		
31:16	Reserved	Reserved, the reset value must be maintained.		
15:0	EXTIx_CFG[3:0]	EXTIx configuration ($x = 811$)		
		These bits can be read	and written by software a	and used to select the input source of
		the EXTI8 external int	terrupt.	
		0000: PA8 pin	0001: PB8 pin	0010: PC8 pin
		0011: PD8 pin	0100: PE8 pin	others: reserve
		the EXTI9 external int	terrupt:	
		0000: PA9 pin	0001: PB9 pin	0010: PC9 pin
		0011: PD9 pin	0100: PE9 pin	others: reserve
		the EXTI10 external in	nterrupt.:	
		0000: PA10 pin	0001: PB10 pin	0010: PC10 pin
		0011: PD10 pin	0100: PE10 pin	others: reserve
		the EXTI11 external in	nterrupt.:	
		0000: PA11 pin	0001: PB11 pin	0010: PC11 pin

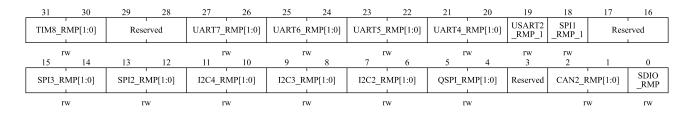


Bit field	Name	Description		
		0011: reserve	0100: PE11 pin	others: reserve

6.4.7 AFIO external interrupt configuration register 4(AFIO_EXTI_CFG4)

Address offset: 0x14

Reset value: 0x0000 0000



Bit field	Name	Description		
31:16	Reserved	Reserved, the reset value must be maintained.		
15:0	EXTIx_CFG[3:0]	EXTIx configuration (x	x = 1215)	
		These bits can be read	and written by software a	nd used to select the input source of
		the EXTI12 external in	terrupt:	
		0000: PA12 pin	0001: PB12 pin	0010: PC12 pin
		0011: reserve	0100: PE12 pin	others: reserve
		the EXTI13 external in	terrupt:	
		0000: PA13 pin	0001: PB13 pin	0010: PC13 pin
		0011: reserve	0100: PE13 pin	others: reserve
		the EXTI14 external in	terrupt:	
		0000: PA14 pin	0001: PB14 pin	0010: PC14 pin
		0011: PD14 pin	0100: reserve	others: reserve
		the EXTI15 external in	terrupt:	
		0000: PA15 pin	0001: PB15 pin	0010: PC15 pin
		0011: PD15 pin	0100: reserve	others: reserve

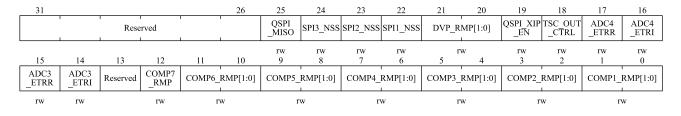
6.4.8 AFIO alternate remapping configuration register 3(AFIO_RMP_CFG3)

Address offset: 0x20

Reset value: 0x0000 0000

Bit field	Name	Description
31:30	TIM8_RMP[1:0]	Remapping of Timer 8
		These bits can be set to '1' or set to '0' by software to control the image of Timer 8
		channels 1 to 2 on the GPIO port.
		00: No remapping (ETR/PA0, CH1/PC6, CH2/PC7, CH3/PC8, CH4/PC9,
		BKIN/PA6, CH1N/PA7, CH2N/PB0, CH3N/PB1);
		01: Partial image (ETR/PB4, CH1/PC6, CH2/PC7, CH3/PC8, CH4/PC9,
		BKIN/PB3, CH1N/PA15, CH2N/PC12, CH3N/PD2);
		10: Unused combination;
		11: Partial image (ETR/PB4, CH1/PD14, CH2/PD15, CH3/PC8, CH4/PC9,
		BKIN/PB3, CH1N/PA15, CH2N/PC12, CH3N/PD2).
29:28	Reserved	Reserved, the reset value must be maintained.
27:26	UART7_RMP[1:0]	Remapping of UART7
		These bits can be set to '1' or set to '0' by software to control the image of the TX
		and RX alternate functions of UART7 on the GPIO port.
		00: No remapping (TX/PC4, RX/PC5);
		01: Remapping (TX/PC2, RX/PC3);
		10: Unused combination;
		11: Unused combination;
25:24	UART6_RMP[1:0]	Remapping of UART6
		These bits can be set to '1' or set to '0' by software to control the image of the TX
		and RX alternate functions of UART6 on the GPIO port.
		00: No remapping (TX/PE2, RX/PE3);
		01: Unused combination;
		10: Remapping (TX/PC0, RX/PC1);
		11: Remapping (TX/PB0, RX/PB1).
23:22	UART5_RMP[1:0]	Remapping of UART5
		These bits can be set to '1' or set to '0' by software to control the image of the TX
		and RX alternate functions of UART5 on the GPIO port.
		00: No remapping (TX/PC12, RX/PD2);
		01: Remapping (TX/PB13, RX/PB14);
		10: Remapping (TX/PE8, RX/PE9);
		11: Remapping (TX/PB8, RX/PB9).
21:20	UART4_RMP[1:0]	Remapping of UART4
		These bits can be set to '1' or set to '0' by software to control the image of the TX
		and RX alternate functions of UART4 on the GPIO port.
		00: No remapping (TX/PC10, RX/PC11);
		01: Remapping (TX/PB2, RX/PE7);
		10: Remapping (TX/PA13, RX/PA14);
		11: Remapping (TX/PD0, RX/PD1).
19	USART2_RMP_1	Remapping of USART2
1/	ODINIZ_NVII_I	These bits can be set to '1' or set to '0' by software and used in conjunction with
		USART2_RMP_0 to form USART2_RMP[1:0] to control the image of the CTS,
		USAK12_KIVIP_U tO 101111 USAK12_KIVIP[1:U] tO control the 1mage of the C1S,

Bit field	Name	Description
		RTS, CK, TX and RX alternate functions of USART2 on the GPIO port.
		00: No remapping (CTS/PA0, RTS/PA1, TX/PA2, RX/PA3, CK/PA4);
		01: Unused combination;
		10: Remapping (CTS/PC6, RTS/PC7, TX/PC8, RX/PC9, CK/-);
		11: Remapping (CTS/PA15, RTS/PB3, TX/PB4, RX/PB5, CK/PA4).
18	SPI1_RMP_1	Remapping of SPI1
		This bit can be set to '1' or set to '0' by software and used in conjunction with
		SPI1_RMP_0 to form SPI1_RMP[1:0] to control the image of NSS, SCK, MISO
		and MOSI alternate functions of SPI1 on the GPIO port.
		00: No remapping (NSS/PA4, SCK/PA5, MISO/PA6, MOSI/PA7);
		01: Remapping (NSS/PA15, SCK/PB3, MISO/PB4, MOSI/PB5);
		10: Remapping (NSS/PB2, SCK/PA5, MISO/PA6, MOSI/PA7);
		11: Remapping (NSS/PB2, SCK/PE7, MISO/PE8, MOSI/PE9);
17:16	Reserved	Reserved, the reset value must be maintained.
15:14	SPI3_RMP[1:0]	Remapping of SPI3
		This bit can be set to '1' or set to '0' by software to control the image of the NSS,
		SCK, MISO and MOSI alternate functions of SPI3 on the GPIO port.
		00: No remapping (NSS/WS/PA15, SCK/CK/PB3, MISO/PB4, MOSI/PB5);
		01: Remapping (NSS/WS/PD2, SCK/CK/PC10, MISO/PC11, MOSI/PC12);
		10: Unused combination;
		11: Remapping (NSS/WS/PC2, SCK/CK/PC3, MISO/PA0, MOSI/PA1).
13:12	SPI2_RMP[1:0]	Remapping of SPI2
		This bit can be set to '1' or set to '0' by software to control the image of the NSS,
		SCK, MISO and MOSI alternate functions of SPI2 on the GPIO port.
		00: No remapping (NSS/WS/PB12, SCK/CK/PB13, MISO/PB14, MOSI/PB15);
		01: Remapping (NSS/WS/PC6, SCK/CK/PC7, MISO/PC8, MOSI/PC9);
		10: Unused combination;
		11: Remapping (NSS/WS/PE10, SCK/CK/PE11, MISO/PE12, MOSI/PE13).
11:10	I2C4_RMP[1:0]	I2C4 remapping
		This bit can be set to '1' or set to '0' by software to control the image of I2C4's SDA
		and SCL alternate functions on the GPIO port.
		00: No remapping (SCL/PC6, SDA/PC7);
		01: Remapping (SCL/PD14, SDA/PD15);
		10: Unused combination;
		11: Remapping (SCL/PA9, SDA/PA10).
9:8	I2C3_RMP[1:0]	I2C3 remapping
		This bit can be set to '1' or set to '0' by software to control the image of I2C3's SDA
		and SCL alternate functions on the GPIO port.
		00: No remapping (SCL/PC0, SDA/PC1);
		01: Unused combination;
		10: Unused combination;
		11: Remapping (SCL/PC4, SDA/PC5).



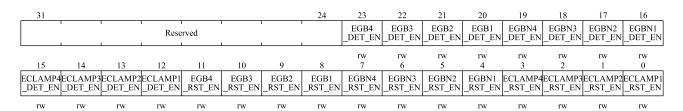
Bit field	Name	Description
7:6	I2C2_RMP[1:0]	I2C2 remapping
		This bit can be set to '1' or set to '0' by software to control the image of I2C2's SDA
		and SCL alternate functions on the GPIO port.
		00: No remapping (SCL/PB10, SDA/PB11);
		01: Unused combination;;
		10: Unused combination;
		11: Remapping (SCL/PC4, SDA/PA5).
5:4	QSPI_RMP[1:0]	Remapping of QSPI
		This bit can be set to '1' or set to '0' by software to control the image of QSPI's IO0,
		IO1, IO2, IO3, CLK, and NSS alternate functions on the GPIO port.
		00: No remapping (NSS/PA4, SCK/PA5, IO0/PA6, IO1/PA7, IO2/PC4, IO3/PC5);
		01: Unused combination;
		10: Unused combination;
		11: Remapping (NSS/PC10, SCK/PC11, IO0/PC12, IO1/PD0, IO2/PD1, IO3/PD2).
3	Reserved	Reserved, the reset value must be maintained.
2:1	CAN2_RMP[1:0]	CAN2 remapping
		This bit can be set to '1' or set to '0' by software to control the image of the
		CAN2_RX and CAN2_TX alternate functions of CAN2 on the GPIO port.
		00: No remapping (RX/PB12, TX/PB13);
		01: Remapping (RX/PB5, TX/PB6);
		10: Unused combination;
		11: Unused combination.
0	SDIO_RMP	SDIO remapping
		This bit can be set to '1' or set to '0' by software to control the image of the alternate
		function port. D4/PB8, D5/PB9, D6/PC6, D7/PC7 are not re-imaged.
		0: No remapping (DO/PC8, D1/PC9, D2/PC10, D3/PC11, CK/PC12, CMD/PD2);
		1: Remapping (DO/PE8, D1/PE9, D2/PE10, D3/PE11, CK/PE12, CMD/PE13);

${\bf 6.4.9~AFIO~alternate~remap~configuration~register~4~(AFIO_~RMP_CFG4~)}$

Address offset: 0x24

Reset value: 0x0000 0000

Bit field	Name	Description
31:26	Reserved	Reserved, the reset value must be maintained.
25	QSPI_MISO	The IO1 pin of QSPI is equivalent to MISO in standard single-wire mode, and the



Bit field	Name	Description
		pin attributes can be configured as:
		0: The QSPI module automatically controls whether it is input or output
		1: Fixed as Input floating
24	SPI3_NSS	NSS mode bit of SPI3 (when NSS is configured as AFIO push-pull).
		0: NSS is high impedance when idle
		1: NSS is 1 when idle
23	SPI2_NSS	NSS mode bit of SPI2 (when NSS is configured as AFIO push-pull).
		0: NSS is high impedance when idle
		1: NSS is 1 when idle
22	SPI1_NSS	NSS mode bit of SPI1 (when NSS is configured as AFIO push-pull).
		0: NSS is high impedance when idle
		1: NSS is 1 when idle
21:20	DVP_RMP[1:0]	Remapping of DVP
		This bit can be set to '1' or '0' by software.
		00: No remapping (HSYNC/PA1, VSYNC/PA2, CLK/PA3, D0/PA4, D1/PA5,
		D2/PA6, D3/PA7, D4/PC4, D5/PC5, D6/PB0, D7/PB1) ;
		01: Unused combination;
		10: Unused combination;
		11: Unused combination;.
18	Reserved	Reserved, the reset value must be maintained.
18	Reserved	Reserved, the reset value must be maintained.
17:0	Reserved	Reserved, the reset value must be maintained.

${\bf 6.4.10~AFIO~alternate~remapping~configuration~register~5} (AFIO_RMP_CFG5)$

Address offset: 0x28

Reset value: 0x0000 0000

Bit field	Name	Description
31:24	Reserved	Reserved, the reset value must be maintained.
23	EGB4_DET_EN	EMC GB4 detection enable bit (ground bounce detection).
		0: Disable
		1: Enable
22	EGB3_DET_EN	EMC GB3 detection enable bit.
		0: Disable
		1: Enable

Bit field	Name	Description
21	EGB2_DET_EN	EMC GB2 detection enable bit.
		0: Disable
		1: Enable
20	EGB1_DET_EN	EMC GB1 detection enable bit.
		0: Disable
		1: Enable
19	EGBN4_DET_EN	EMC GBN4 detection enable bit.
		0: Disable
		1: Enable
18	EGBN3_DET_EN	EMC GBN3 detection enable bit.
		0: Disable
		1: Enable
17	EGBN2_DET_EN	EMC GBN2 detection enable bit.
		0: Disable
		1: Enable
16	EGBN1_DET_EN	EMC GBN1 detection enable bit.
		0: Disable
		1: Enable
15	ECLAMP4_DET_EN	EMC CLAMP4 detection enable bit for VDD_4.
		0: Disable
		1: Enable
14	ECLAMP3_DET_EN	EMC CLAMP3 detection enable bit for VDD_3.
		0: Disable
		1: Enable
13	ECLAMP2_DET_EN	EMC CLAMP2 detection enable bit for VDD_2.
		0: Disable
		1: Enable
12	ECLAMP1_DET_EN	EMC CLAMP1 detection enable bit for VDD_1.
		0: Disable
		1: Enable
11	EGB4_RST_EN	When EMC GB4 detects it, the system resets the enable bit.
		0: Disable
		1: Enable
10	EGB3_RST_EN	When EMC GB3 detects it, the system resets the enable bit.
		0: Disable
		1: Enable
9	EGB2_RST_EN	When EMC GB2 detects it, the system resets the enable bit.
		0: Disable
		1: Enable
8	EGB1_RST_EN	When EMC GB1 detects it, the system resets the enable bit.
		0: Disable
		1: Enable

Bit field	Name	Description
7	EGBN4_RST_EN	When EMC GBN4 detects it, the system resets the enable bit.
		0: Disable
		1: Enable
6	EGBN3_RST_EN	When EMC GBN3 detects it, the system resets the enable bit.
		0: Disable
		1: Enable
5	EGBN2_RST_EN	When EMC GBN2 is detected, the system resets the enable bit.
		0: Disable
		1: Enable
4	EGBN1_RST_EN	When EMC GBN1 is detected, the system resets the enable bit.
		0: Disable
		1: Enable
3	ECLAMP4_RST_EN	When EMC CLAMP4 detects it, the system resets the enable bit.
		0: Disable
		1: Enable
2	ECLAMP3_RST_EN	When EMC CLAMP3 detects, the system resets the enable bit.
		0: Disable
		1: Enable
1	ECLAMP2_RST_EN	When EMC CLAMP2 detects, the system resets the enable bit.
		0: Disable
		1: Enable
0	ECLAMP1_RST_EN	When EMC CLAMP1 detects, the system resets the enable bit.
		0: Disable
		1: Enable

7 Interrupts and events

7.1 Nested vectored interrupt controller

Features

- 86 maskable interrupt channels (excluding 16 interrupt lines of Cortex-M4).
- 16 programmable priority levels (4-bit interrupt priority level is used);
- Low-latency exception and interrupt handling;
- Power management control;
- Implementation of system control register;

Nested Vector Interrupt Controller (NVIC) is closely connected with the interface of processor core, which can realize low-latency interrupt handling and efficiently handle late interrupts. The nested vector interrupt controller manages interrupts including kernel exceptions.

7.1.1 SysTick calibration value register

The system tick calibration value is fixed at 18000. When the system tick clock is set to 18 MHz (the maximum value of HCLK/8), a 1ms time reference is generated.

7.1.2 Interrupt and exception vectors

Table 7-1 Vector table

Position	Priority	Type of priority	Acronym	Description	Address
	-	-	-	reserve	0x0000_0000
	-3	Fixed	Reset	reset	0x0000_0004
		Fixed		Unmatchable interrupt RCC Clock Security System (CSS) is	0x0000_0008
	-2		NMI	coupled to NMI vector	
	-1	Fixed	Hardware failure (HardFault)	All types of failures	0x0000_000C
	0	Settable	Management (MemManage)	Memory management	0x0000_0010
	1	Settable	BusFault (bus fault)	Refers to prefetch failure, memory access failure.	0x0000_0014
	2	Settable	Error (UsageFault)	Undefined instruction or illegal status	0x0000_0018
	-	-	-	reserve	0x0000_001C ~0x0000_002B
	3	Settable	SVCall	System service call through SWI instruction	0x0000_002C
	4	Settable	DebugMonitor (debug monitor)	Debugging monitor	0x0000_0030

Position	Priority	Type of priority	Acronym	Description	Address
	-	-	-	reserve	0x0000_0034
	5	Settable	PendSV	System services that can be suspended	0x0000_0038
	6	Settable	SysTick	System tick timer	0x0000_003C
0	7	Settable	WWDG	Window timer interrupt	0x0000_0040
1	8	Settable	PVD	Power supply voltage detection (PVD) interrupt to EXTI line 16	0x0000_0044
2	9	Settable	TAMPER	Intrusion detection interrupt	0x0000_0048
3	10	Settable	RTC_WKUP	The real-time clock (RTC) connected to EXTI line 20 wakes up the interrupt.	0x0000_004C
4	11	Settable	FLASH	Global flash interrupt	0x0000_0050
5	12	Settable	RCC	And reset clock control (RCC) interrupt.	0x0000_0054
6	13	Settable	EXTI0	EXTI line 0 interrupt	0x0000_0058
7	14	Settable	EXTI1	EXTI line 1 interrupt	0x0000_005C
8	15	Settable	EXTI2	EXTI line 2 interrupt	0x0000_0060
9	16	Settable	EXTI3	EXTI line 3 interrupt	0x0000_0064
10	17	Settable	EXTI4	EXTI line 4 interrupt	0x0000_0068
11	18	Settable	DMA1 channel 1	DMA1 channel 1 global interrupt	0x0000_006C
12	19	Settable	DMA1 channel 2	DMA1 channel 2 global interrupt	0x0000_0070
13	20	Settable	1 DMA1 channel 3	DMA1 channel 3 global interrupt	0x0000_0074
14	21	Settable	1 DMA1 channel 4	DMA1 channel 4 global interrupt	0x0000_0078
15	22	Settable	DMA1 channel 5	DMA1 channel 5 global interrupt	0x0000_007C
16	23	Settable	DMA1 channel 6	DMA1 channel 6 global interrupt	0x0000_0080
17	24	Settable	DMA1 channel 7	DMA1 channel 7 global interrupt	0x0000_0084
18	25	Settable	ADC1_2	ADC1 and ADC2 global interrupts	0x0000_0088
19	26	Settable	USB_HP_CAN1_TX	USB high priority interrupt /CAN1 send interrupt	0x0000_008C
20	27	Settable	USB_LP_CAN1_RX0	USB low priority interrupt /CAN1 receives 0 interrupt	0x0000_0090
21	28	Settable	CAN1_RX1	CAN1 receive 1 interrupt	0x0000_0094
22	29	Settable	CAN_SCE	CAN1 SCE interrupt	0x0000_0098
23	30	Settable	EXTI9_5	EXTI line [9:5] interrupt	0x0000_009C
24	31	Settable	TIM1_BRK	TIM1 brake interrupt	0x0000_00A0
25	32	Settable	TIM1_UP	TIM1 update interrupt	0x0000_00A4
26	33	Settable	TIM1_TRG_COM	TIM1 trigger and communication interruption	0x0000_00A8
27	34	Settable	TIM1_CC	TIM1 capture comparison interrupt	0x0000_00AC
28	35	Settable	TIM2	TIM2 global Interrupt	0x0000_00B0
29	36	Settable	TIM3	TIM3 global Interrupt	0x0000_00B4
30	37	Settable	TIM4	TIM4 global Interrupt	0x0000_00B8
31	38	Settable	I2C1_EV	I2C1 event interrupt	0x0000_00BC

					<u> </u>
Position	Priority	Type of priority	Acronym	Description	Address
32	39	Settable	I2C1_ER	I2C1 error interrupt	0x0000_00C0
33	40	Settable	I2C2_EV	I2C2 event interrupt	0x0000_00C4
34	41	Settable	I2C2_ER	I2C2 error interrupt	0x0000_00C8
35	42	Settable	SPI1	SPI1 global interrupt	0x0000_00CC
36	43	Settable	SPI2_I2S2	SPI2/I2S2 global interrupt	0x0000_00D0
37	44	Settable	USART1	USART1 global interrupt	0x0000_00D4
38	45	Settable	USART2	USART2 global interrupt	0x0000_00D8
39	46	Settable	USART3	USART3 global interrupt	0x0000_00DC
40	47	Settable	EXTI15_10	EXTI line [15:10] interrupt	0x0000_00E0
41	48	Settable	RTC Alarm	RTC alarm interrupt connected to EXTI line 17	0x0000_00E4
42	49	Settable	USBWKUP	USB wake-up interrupt connected to EXTI line 18	0x0000_00E8
43	50	Settable	TIM8_BRK	TIM8 brake interrupt	0x0000_00EC
44	51	Settable	TIM8_UP	TIM8 update interrupt	0x0000_00F0
45	52	Settable	TIM8_TRG_COM	TIM8 trigger and communication interrupt	0x0000_00F4
46	53	Settable	TIM8_CC	TIM8 capture comparison interrupt	0x0000_00F8
47	54	Settable	Reserve	Reserve	0x0000_00FC
48	55	Settable	Reserve	Reserve	0x0000_0100
49	56	Settable	SDIO	SDIO global interrupt	0x0000_0104
50	57	Settable	TIM5	TIM5 global interrupt	0x0000_0108
51	58	Settable	SPI3_I2S3	SPI3/I2S3 global interrupt	0x0000_010C
52	59	Settable	UART4	UART4 global interrupt	0x0000_0110
53	60	Settable	UART5	UART5 global interrupt	0x0000_0114
54	61	Settable	TIM6	TIM6 global Interrupt	0x0000_0118
55	62	Settable	TIM7	TIM7 global interrupt	0x0000_011C
56	63	Settable	DMA2 channel 1	DMA2 channel 1 global interrupt	0x0000_0120
57	64	Settable	DMA2 channel 2	DMA2 channel 2 global interrupt	0x0000_0124
58	65	Settable	DMA2 channel 3	DMA2 channel 3 global interrupt	0x0000_0128
59	66	Settable	DMA2 channel 4	DMA2 channel 4 global interrupt	0x0000_012C
60	67	Settable	DMA2 channel 5	DMA2 channel 5 global interrupt	0x0000_0130
61	68	Settable	Reserve	Reserve	0x0000_0134
62	69	Settable	Reserve	Reserve	0x0000_0138
63	70	Settable	CAN2_TX	CAN2 send interrupt	0x0000_013C
64	71	Settable	CAN2_RX0	CAN2 receive 0 interrupt	0x0000_0140
65	72	Settable	CAN2_RX1	CAN2 receive 1 interrupt	0x0000_0144
66	73	Settable	CAN2_SCE	CAN2 SCE interrupt	0x0000_0148
67	74	Settable	QSPI	QSPI global interrupt	0x0000_014C
68	75	Settable	DMA2 channel 6	DMA2 channel 6 global interrupt	0x0000_0150

Position	Priority	Type of	Acronym	Description	Address
		priority	-	•	
69	76	Settable	DMA2 channel 7	DMA2 channel 7 global interrupt	0x0000_0154
70	77	Settable	I2C3_EV	I2C3 event interrupt	0x0000_0158
71	78	Settable	I2C3_ER	I2C3 error interrupt	0x0000_015C
72	79	Settable	I2C4_EV	I2C4 event interrupt	0x0000_0160
73	80	Settable	I2C4_ER	I2C4 error interrupt	0x0000_0164
74	81	Settable	UART6	UART6 global interrupt	0x0000_0168
75	82	Settable	UART7	UART7 global interrupt	0x0000_016C
76	83	Settable	DMA1 channel 8	DMA1 channel 8 global interrupt	0x0000_0170
77	84	Settable	DMA2 channel 8	DMA2 channel 8 global interrupt	0x0000_0174
78	85	Settable	DVP	DVP global interrupt	0x0000_0178
79	86	Settable	BAG	SAC global interrupt	0x0000_017C
80	87	Settable	MMU	MMU global interrupt	0x0000_0180
81	88	Settable	Reserve	Reserve	0x0000_0184
82	89	Settable	Reserve	Reserve	0x0000_0188
83	90	Settable	Reserve	Reserve	0x0000_018C
84	91	Settable	Reserve	Reserve	0x0000_0190
85	92	Settable	R-SRAM	R-SRAM error interrupt	0x0000_0194

7.2 External interrupt/event controller (EXTI)

7.2.1 Introduction

The external interrupt/event controller includes 21 edge detection circuits that generate interrupt/event triggers. Each input line can be independently configured with pulse or Pending level input type, and three trigger event types of rising edge, falling edge or both edge can also be independently configured. The Pending register holds the interrupt request of the status line, The interrupt request can be cleared by writing a '1' operation in the corresponding bit of the Pending register.

7.2.2 Main features

The main features of EXTI controller are as follows:

- Support 21 software interrupt/event requests
- The corresponding interrupt/event of each input line can be independently configured with trigger or mask.

- Each interrupt line has an independent status bit.
- Support pulse or suspend input type
- Three types of trigger events are supported: rising edge, falling edge or double edge.
- Wake-up to exit low-power mode

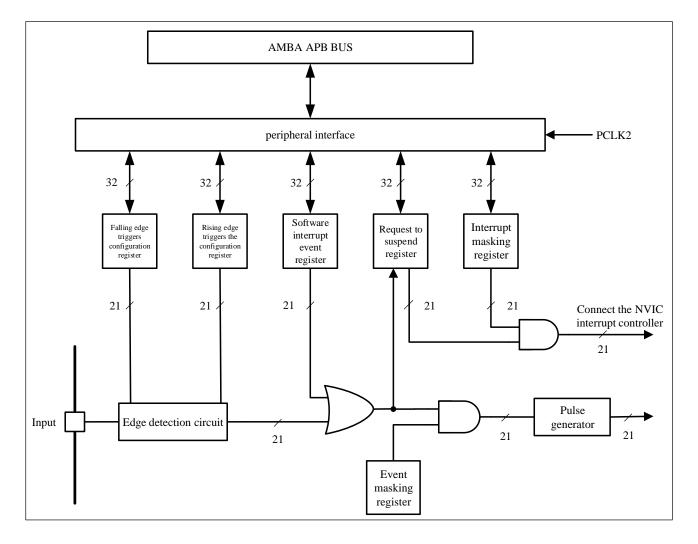


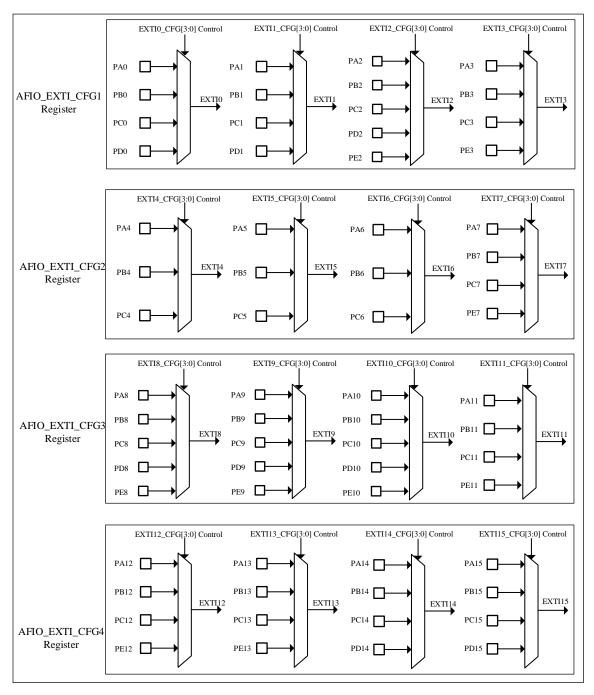
Figure 7-1 External interrupt/event controller block diagram

7.2.3 Functional description

EXTI contains 21 interrupt lines, of which 16 are from I/O pins and 5 are from internal peripherals or modules. To generate an interrupt, the NVIC interrupt channel of the external interrupt controller must be configured to enable the corresponding interrupt line. Select the type of rising edge, falling edge or double edge trigger event through edge trigger configuration registers EXTI_RT_CFG and EXTI_FT_CFG, and write '1' to the corresponding bit of the interrupt mask register EXTI_IMASK to open the interrupt request. When the preset edge trigger polarity is detected on the external interrupt line, an interrupt request will be generated and the corresponding Pending bit will be set to '1'. Writing '1' in the corresponding bit of the Pending register will clear the interrupt request.

To generate an event, the corresponding event line must be configured and enabled. According to the required polarity of edge detection, set the rising/falling edge trigger configuration register, and write '1' in the corresponding bit of the event mask register to allow the interrupt request. When the preset edge occurs on the event line, an event request pulse will be generated, and the corresponding Pending bit will not be set to '1'.

In addition, by writing '1' in the software interrupt/event register, an interrupt/event request can also be generated by software.



- Hardware interrupt configuration, select and configure 21 lines as interrupt sources as required:
 - ◆ Configure the mask bits of 21 interrupt lines (EXTI_IMASK);
 - ◆ Configure the trigger configuration bits (EXTI_RT_CFG and EXTI_FT_CFG) of the selected disconnection;
 - ◆ Configure the enable and mask bits that control the NVIC interrupt channel mapped to the External Interrupt Controller so that an interrupt coming from one of the 21 lines can be correctly acknowledged.
- Hardware configuration, select and configure 21 lines as event sources as required:
 - ◆ Configure the mask bits of 21 event lines (EXTI_EMASK);
 - ◆ Configure the trigger selection bits (EXTI_RT_CFG and EXTI_FT_CFG) of the event lines.
- Software interrupt/event configuration, select and configure 21 lines as software interrupt/event lines as required:
 - ◆ Configure 21 interrupt/event line mask bits (EXTI_IMASK, EXTI_EMASK);
 - ◆ Configure the request bit of the software interrupt event register (EXTI_SWIE).

7.2.4 EXTI line mapping

Figure 7-2 External interrupt GPIO mapping

configure external interrupts/events on the GPIO line through AFIO_EXTI_CFGy, the AFIO clock must be enabled first. The general I/O port is connected to 16 external interrupt/event lines in the way shown above. The other 5 EXTI lines are connected as follows:

- The EXTI line 16 is connected to PVD output
- The EXTI line 17 is connected to RTC alarm event

Nations Technologies Inc.

Tel: +86-755-86309900 Email: info@nationstech.com

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

To

- The EXTI line 18 is connected to the USB wake-up event
- The EXTI line 19 is reserved
- The EXTI line 20 is connected to RTC wake-up event

7.3 EXTI registers

EXTI base address: 0x40010400

7.3.1 EXTI register overview

Table 7-2 EXTI register overview

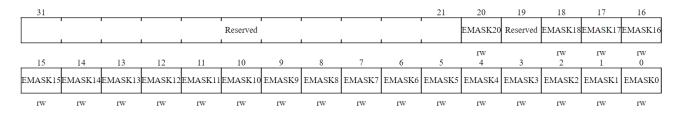
Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	∞	7	9	5	4	3	2	1	0
000h	EXTI_IMASK		Reserved							IMA_SK20	Reserved									IMA	SK[18	3:0]											
	Reset Value												0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
004h	EXTI_EMASK		Reserved								EMA_SK20	Reserved									ЕМА	SK[1	8:0]										
	Reset Value												0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
008h	EXTI_RT_CFG		Reserved								RT_C-FG20	Reserved								:	RT_C	FG[1	8:0]										
	Reset Value												0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00Ch	EXTI_FT_CFG					R	leserv	/ed					FT_C-FG20	Reserved									FT_C	FG[1	8:0]								
	Reset Value												0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								0	0	0								
010h	EXTI_SWIE					R	leserv	/ed					SWI_E20	Reserved									SW	IE[18:	:0]								
<u> </u>	Reset Value												0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
014h	EXTI_PEND	Reserved							PEND20	Reserved	PEND18	PEND17	PEND16	PEND15	PEND14	PEND13	PEND12	PEND11	PEND10	PEND9	PEND8	PEND7	PEND6	PEND5	PEND4	PEND3	PEND2	PENDI	PEND0				
<u> </u>	Reset Value												0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					0	0	0	0	0											
018h	EXTI_TS_SEL]	Reser	ved															SSEL		
	Reset Value																												0	0	0	0	

135

7.3.2 EXTI interrupt mask register (EXTI_IMASK)

Address offset: 0x00

Reset value: 0x0000 0000


31										21	20	19	18	17	16
					Reserved						IMASK20	Reserved	IMASK18	IMASK17	IMASK16
15	14	13	12	11	10	9	8	7	6	5	rw 4	3	rw 2	rw 1	rw 0
IMASK15	IMASK14	IMASK13	IMASK12	IMASK11	IMASK10	IMASK9	IMASK8	IMASK7	IMASK6	IMASK5	IMASK4	IMASK3	IMASK2	IMASK1	IMASK0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit field	Name	Description							
31:21	Reserved	Reserved, the reset value must be maintained.							
20	IMASK20	Interrupt mask on line 20							
		0: Interrupt request from line 20 is masked;							
		1: Interrupt request from line 20 is not masked.							
19	Reserved	Reserved, the reset value must be maintained.							
18:0	IMASKx	Interrupt mask on line $x(x \text{ is } 0, 1, 217, 18)$							
		0: Interrupt request from line x is masked;							
		1: Interrupt request from line x is not masked.							

7.3.3 EXTI event mask register (EXTI_EMASK)

Address offset: 0x04

Reset value: 0x0000 0000

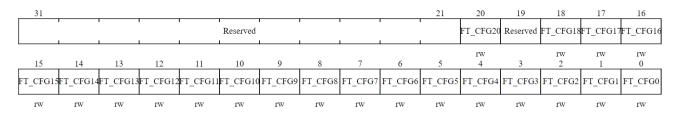
Bit field	Name	Description								
31:21	Reserved	Reserved, the reset value must be maintained.								
20	EMASK20	Event mask on line 20								
		0: Event request from line 20 is masked;								
		1: Event request from line 20 is not masked								
19	Reserved	Reserved, the reset value must be maintained.								
18:0	EMASKx	Event mask on line x(x is 0, 1, 217, 18)								
		0: Event request from line x is masked;								
		1: Event request from line x is not masked								

136

7.3.4 Rising trigger selection register (EXTI_RT_CFG)

Address offset: 0x08

Reset value: 0x0000 0000


31										21	20	19	18	17	16
			ı		Reserved					ı	RT _CFG20	Reserved	RT _CFG18	RT _CFG17	RT _CFG16
15	14	13	12	11	10	9	8	7	6	5	rw 4	3	rw 2	rw 1	rw 0
RT _CFG15	RT _CFG14	RT _CFG13	RT _CFG12	RT _CFG11	RT _CFG10	RT _CFG9	RT _CFG8	RT _CFG7	RT _CFG6	RT _CFG5	RT _CFG4	RT _CFG3	RT _CFG2	RT _CFG1	RT _CFG0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit field	Name	Description
31:21	Reserved	Reserved, the reset value must be maintained.
20	RT_CFG20	Rising trigger event configuration bit of line 20.
		0: Rising trigger disabled (interrupts and events) for input line 20.
		1: Rising trigger enabled (interrupts and events) for input line 20.
19	Reserved	Reserved, the reset value must be maintained.
18:0	RT_CFGx	Rising trigger event configuration bit of line x. (x is 0, 1, 217, 18)
		0: Rising trigger disabled (interrupts and events) for input line x.
		1: Rising trigger enabled (interrupts and events) for input line x.

7.3.5 Falling trigger selection register (EXTI_FT_CFG)

Address offset: 0x0C

Reset value: 0x0000 0000

Bit field	Name	Description
31:21	Reserved	Reserved, the reset value must be maintained.
20	FT_CFG20	Falling trigger event configuration bit of line 20.
		0: Falling trigger disabled (interrupts and events) for input line 20.
		1: Falling trigger enabled (interrupts and events) for input line 20.
19	Reserved	Reserved, the reset value must be maintained.
18:0	FT_CFGx	Falling trigger event configuration bit of line x. (x is 0, 1, 217, 18)
		0: Falling trigger disabled (interrupts and events) for input line x.
		1: Falling trigger enabled (interrupts and events) for input line x.

137

7.3.6 EXTI software interrupt event register (EXTI_SWIE)

Address offset: 0x10

Reset value: 0x0000 0000

31										21	20	19	18	17	16
	1				Reserved						SWIE20	Reserved	SWIE18	SWIE17	SWIE16
15	14	13	12	11	10	9	8	7	6	5	rc_w1 4	3	rc_w1	rc_w1	rc_w1
SWIE15	SWIE14	SWIE13	SWIE12	SWIE11	SWIE10	SWIE9	SWIE8	SWIE7	SWIE6	SWIE5	SWIE4	SWIE3	SWIE2	SWIE1	SWIE0
rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1

Bit field	Name	Description
31:21	Reserved	Reserved, the reset value must be maintained.
20	SWIE20	Software interrupt on line 20
		When this bit is '0', writing '1' will set the corresponding Pending bit in EXTI_PEND.
		If this interrupt is allowed in EXTI_IMASK and EXTI_EMASK, an interrupt will be
		generated at this time.
		Note: By writing 'I' to clear the corresponding bit of EXTI_PEND, this bit can be
		cleared to '0'.
19	Reserved	Reserved, the reset value must be maintained.
18:0	SWIEx	Software interrupt on line x. (x is 0, 1, 217, 18)
		When this bit is '0', writing '1' will set the corresponding Pending bit in EXTI_PEND.
		If this interrupt is allowed in EXTI_IMASK and EXTI_EMASK, an interrupt will be
		generated at this time.
		Note: By writing 'I' to clear the corresponding bit of EXTI_PEND, this bit can be
		cleared to '0'.

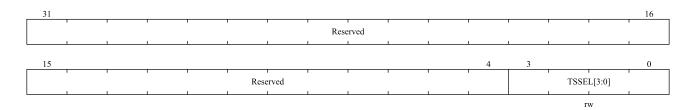
7.3.7 EXTI pending register (EXTI_PEND)

Address offset: 0x14

Reset value: 0x0000 0000

31										21	20	19	18	17	16
	'				Reserved	· ·		1	1	1	PEND20	Reserved	PEND18	PEND17	PEND16
15	14	13	12	11	10	9	8	7	6	5	rc_w1	3	rc_w1	rc_w1	rc_w1
PENI	PEND14	PEND13	PEND12	PEND11	PEND10	PEND9	PEND8	PEND7	PEND6	PEND5	PEND4	PEND3	PEND2	PEND1	PEND0
rc_w	1 rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1

Bit field	Name	Description
31:21	Reserved	Reserved, the reset value must be maintained.
20	PEND20	Pending bit on line 20
		0: No pending request occurred.
		1: A pending trigger request has occurred.
		This bit is set to '1' when a selected edge trigger event occurs on the external interrupt
		line. Write '1' in this bit to clear it, or change the polarity of edge detection to clear
		this bit.
19	Reserved	Reserved, the reset value must be maintained.
18:0	PENDx	Pending bit on line x. (x is 0, 1, 217, 18)



Bit field	Name	Description
		0: No pending request occurred.
		1: A pending trigger request has occurred.
		This bit is set to '1' when a selected edge trigger event occurs on the external interrupt
		line. Write '1' in this bit to clear it, or change the polarity of edge detection to clear
		this bit.

7.3.8 EXTI timestamp trigger source selection register (EXTI_TS_SEL)

Address offset: 0x18

Reset value: 0x0000 0000

Bit field	Name	Description
31:4	Reserved	Reserved, the reset value must be maintained.
3:0	TSSEL[3:0]	Select external interrupt input as trigger source of timestamp event.
		0: Select EXTI0 as the trigger source of timestamp event;
		1: select EXTI1 as the trigger source of timestamp event;
		15: Select EXTI15 as the trigger source of timestamp events.

8 DMA controller

8.1 Introduction

The DMA controller can access totally 7 AHB slaves: Flash, SRAM, ADC, SDIO, QSPI, ABP1 and APB2. DMA Controller is controlled by CPU to perform fast data movement from source to destination. After configuration, data can be transferred without CPU intervention. Thus, CPU can be released for other computation/control tasks or save overall system power consumption.

The chip has two DMA (DMA1, DMA2) controllers, and each DMA controller has 8 logical channels. Each logic channel is to serve memory access requests from single or multiple peripherals. Internal arbiter controls the priority of different DMA channels.

8.2 Main features

- 16 independently configurable DMA channels: 8 channels each for DMA1 and DMA2.
- Support three transfer types which are Memory-to-Memory, Memory-to-Peripheral and Peripheral-to-Memory.
- Each DMA channel supports hardware requests and software triggers to initiate transfer, and is configured by software.
- Each DMA channel has dedicated software priority level (DMA_CHCFGx.PRIOLVL [1:0] bits, corresponding to 4 levels of priority) which can be configured individually. Channels with the same software priority level will further compare hardware index (channel number) to decide final priority (lower index number channel will has higher priority).
- Configurable source and destination size. Address setting should correspond to data size.
- Configurable circular transfer mode for each channel.
- Each channel has 3 independent event flags and interrupts (Transfer complete, Half transfer, Transfer error), and 1 global interrupt flag (set by logical OR of 3 events).
- Access totally 7 AHB slaves: Flash, SRAM, ADC, SDIO, QSPI, APB1 and APB2.
- Configurable data transmit number $(0\sim65535)$.

8.3 Block diagram

Flash ICode Flash Interface controller DCode Cortex-M4F System SRAM **Bus matrix** Bridge 1 CH1 Bridge 2 CH2 DAC USART1 SDIO I2C1 CH8 SPI1 DMA I2C2 **QSPI** TIM1 Arbiter USART2 TIM8 ADC USART3 AHB slave UART6 device UART4 UART7 DMA requests UART5 CH1 SPI2/I2S SPI3/I2S DVP CH8 TIM2 Arbiter TIM3 TIM4 AHB slave DMA requests device TIM5 TIM6 TIM7

Figure 8-1 DMA block diagram

8.4 Function description

DMA controller and CortexTM-M4F core share the same system data bus. When CPU and DMA access the same target (RAM or peripheral) at the same time, DMA request will suspend CPU from accessing the system bus for several cycles, and the bus arbiter will perform cyclic scheduling. This allows the CPU to get at least half of the system bus (memory or peripheral) bandwidth.

8.4.1 DMA operation

A DMA request can be triggered by hardware peripherals or software, and the DMA controller processes the request according to the priority level of the channel. The data is read from the source address according to the configured transfer address and bit width, and then the read data is stored in the destination address space. After one operation, the controller calculates the number of remaining transfers and updates the source address and the destination address of the next transfer.

141

Each DMA data transfer consists of three operations:

- Data access: determine the source address (DMA_PADDRx or DMA_MADDRx) according to the transfer direction and read data from the source address.
- Data storage: determine the destination address (DMA_PADDRx or DMA_MADDRx) according to the transfer direction and store the read data into the destination address space.
- Calculate the number of outstanding operations, perform a decrement operation of the DMA_TXNUMx register, and update the source and destination addresses of the next operation.

8.4.2 Channel priority and arbitration

The DMA uses an arbitration strategy to handle multiple requests from different channels. The priority of each channel is programmable in the channel control register (DMA CHCFGx).

4 levels of priority:

- ♦ Very high priority
- ♦ High priority
- ♦ Medium priority
- Low priority

By default, channel with lower index has higher priority if the programmed priority is the same.

8.4.3 DMA channels and number of transfers

Each channel can perform DMA transfer between the peripheral register at the specified address and the memory address. The number of data transferred by DMA is programmable, and the maximum supported value is 65535. The DMA_TXNUM register is decremented after each transfer.

8.4.4 Programmable data bit width

Peripheral and memory transfer data bit width supports byte, half-word and word, which can be programmed through DMA_CHCFGx.PSIZE and DMA_CHCFGx.MSIZE.

When DMA_CHCFGx.PSIZE and DMA_CHCFGx.MSIZE are different, the DMA module aligns the data according to the Table 8-1 below.

Table 8-1 Programmable data width and endian operation (when PINC = MINC = 1)

width (bit) tion fransfer (bit) of (bit) Address / data Transfer operations Address / data 8 18 18 0x0 / B0 1: R B0 7:01 @0x0, W B0 7:01 @0x0 0x0 / B0 8 28 0x0 / B0 1: R B0 7:01 @0x1, W B1 7:01 @0x1 0x1 / B1 8 0x1 / B1 0x1 / B1 0x2 / B2 0x2 / B2 0x3 / B3 8 16 0x3 / B3 4: R B3 7:01 @0x3, W B3 7:01 @0x3 0x3 / B3 8 16 0x1 / B1 0x0 / B0 1: R B0 7:01 @0x3, W 00B1 15:01 @0x0 0x0 / 00B0 8 16 0x1 / B1 2: R B1 7:01 @0x3, W 00B2 15:01 @0x0 0x2 / 00B1 8 16 0x1 / B1 2: R B1 7:01 @0x3, W 00B2 15:01 @0x4 0x4 / 00B2 8 32 0x3 / B3 4: R B3 7:01 @0x3, W 00B0000B1 3:01 @0x0 0x0 / 00B00B0 8 32 0x3 / B3 4: R B3 7:01 @0x3, W 000000B1 3:01 @0x0 0x0 / 00000B0 8 32 0x3 / B3 4: R B3 7:01 @0x3, W 000000B1 3:01 @0x0 0x0 / 00000B1 9 0x4 / B3B4 0x4 / B3B4	Source		Number			
oht width (bit) transfer (bit) Address / data (R: Read,W: Write) Address / data 8 8 8 A (bit) 0x0 / B0 1: R Bo [7:0] @0x1, W B1 [7:0] @0x1 0x1 / B1 8 8 4 0x1 / B1 2: R B1 [7:0] @0x2, W B2 [7:0] @0x2 0x2 / B2 8 9 0x3 / B3 4: R B3 [7:0] @0x3, W B3 [7:0] @0x3 0x3 / B3 8 16 0x4 / B1 2: R B1 [7:0] @0x1, W 00B1 [15:0] @0x2 0x2 / 00B1 8 16 0x4 / B1 2: R B1 [7:0] @0x2, W 00B2 [15:0] @0x4 0x4 / 00B2 9 0x3 / B3 4: R B3 [7:0] @0x3, W 00B3 [15:0] @0x4 0x4 / 00B2 8 0x3 / B3 4: R B3 [7:0] @0x1, W 000000B1 [31:0] @0x0 0x6 / 00B3 8 0x4 / B1 2: R B1 [7:0] @0x1, W 000000B1 [31:0] @0x0 0x6 / 00000B1 16 0x2 / B2 3: R B2 [7:0] @0x1, W 000000B2 [31:0] @0x0 0x6 / 00000B2 16 0x3 / B3 4: R B3 [7:0] @0x1, W 000000B2 [31:0] @0x0 0x6 / 00000B2 16 0x4 / B54 2: R B1 [7:0] @0x1, W 000000B3 [31:0] @0x0 0x6 / 00000B2 16			of	Source:	Transfer operations	Destination:
Note		width	transfer	Address / data	(R: Read,W: Write)	Address / data
8	(DIL)	(bit)	(bit)			
8				0x0 / B0	1: R B0 [7:0] @0x0, W B0 [7:0] @0x0	0x0 / B0
16	0	0	4	0x1 / B1	2: R B1 [7:0] @0x1, W B1 [7:0] @0x1	0x1 / B1
None	0	٥	4	0x2 / B2	3: R B2 [7:0] @0x2, W B2 [7:0] @0x2	0x2 / B2
8				0x3 / B3	4: R B3 [7:0] @0x3, W B3 [7:0] @0x3	0x3 / B3
8				0x0 / B0	1: R B0 [7:0] @0x0, W 00B0 [15:0] @0x0	0x0 / 00B0
16	0	1.6	4	0x1 / B1	2: R B1 [7:0] @0x1, W 00B1 [15:0] @0x2	0x2 / 00B1
No. No.	8	16	4	0x2 / B2	3: R B2 [7:0] @0x2, W 00B2 [15:0] @0x4	0x4 / 00B2
8				0x3 / B3	4: R B3 [7:0] @0x3, W 00B3 [15:0] @0x6	0x6 / 00B3
16				0x0 / B0	1: R B0 [7:0] @0x0, W 000000B0 [31:0] @0x0	0x0 / 000000B0
16		22	,	0x1 / B1	2: R B1 [7:0] @0x1, W 000000B1 [31:0] @0x4	0x4 / 000000B1
16	8	32	4	0x2 / B2	3: R B2 [7:0] @0x2, W 000000B2 [31:0] @0x8	0x8 / 000000B2
16				0x3 / B3	4: R B3 [7:0] @0x3, W 000000B3 [31:0] @0xC	0xC / 000000B3
16 8 4 0x4/B5B4 3: R B5B4 [15:0] @0x4, W B4 [7:0] @0x2 0x2/B4 0x6/B7B6 4: R B7B6 [15:0] @0x6, W B6 [7:0] @0x3 0x3/B6				0x0 / B1B0	1: R B1B0 [15:0] @0x0, W B0 [7:0] @0x0	0x0 / B0
16	1.0		,	0x2 / B3B2	2: R B3B2 [15:0] @0x2, W B2 [7:0] @0x1	0x1 / B2
16	16	8	4	0x4 / B5B4	3: R B5B4 [15:0] @0x4, W B4 [7:0] @0x2	0x2 / B4
16				0x6 / B7B6	4: R B7B6 [15:0] @0x6, W B6 [7:0] @0x3	0x3 / B6
16				0x0 / B1B0	1: R B1B0 [15:0] @0x0, W B1B0 [15:0] @0x0	0x0 / B1B0
16			,	0x2 / B3B2	2: R B3B2 [15:0] @0x2, W B3B2 [15:0] @0x2	0x2 / B3B2
16 32 4 0x0 / B1B0 1: R B1B0 [15:0] @0x0, W 0000B1B0 [31:0] @0x0 0x0 / 0000B1B0 0x2 / B3B2 2: R B3B2 [15:0] @0x2, W 0000B3B2 [31:0] @0x4 0x4 / 0000B3B2 0x4 0x4 / 0000B3B2 0x4 / B5B4 0x6 / B7B6 4: R B7B6 [15:0] @0x4, W 0000B5B4 [31:0] @0xC 0xC / 0000B7B6 0x0 / 0x0 / B3B2B1B0 1: R B3B2B1B0 [31:0] @0x0, W B0 [7:0] @0x0 0x0 / B0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B4 [7:0] @0x1 0x1 / B4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0xC, W BC [7:0] @0x2 0x2 / B8 0xC / BFBEBDBC 4: R BFBEBDBC [31:0] @0xC, W BC [7:0] @0x3 0x3 / BC 0x0 / B3B2B1B0 1: R B3B2B1B0 [31:0] @0x0, W B1B0 [15:0] @0x0 0x0 / B1B0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B5B4 [15:0] @0x2 0x2 / B5B4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x4, W B5B4 [15:0] @0x4 0x4 / B9B8 0xC / BFBEBDBC 4: R BFBEBDBC [31:0] @0x4, W B5B4 [15:0] @0x4 0x4 / B9B8 0xC / BFBEBDBC 4: R BFBEBDBC [31:0] @0x4, W B5B4 [15:0] @0x6 0x6 / BDBC 0x0 / B3B2B1B0 1: R B3B2B1B0 [31:0] @0x0, W B3B2B1B0 [31:0] @0x6 0x6 / BDBC 0x0 / B3B2B1B0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x0, W B3B2B1B0 [31:0] @0x0 0x0 / B3B2B1B0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B7B6B5B4 [31:0] @0x4 0x4 / B7B6B5B4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x0, W B3B2B1B0 [31:0] @0x0 0x0 / B3B2B1B0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B7B6B5B4 [31:0] @0x0 0x0 / B3B2B1B0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B7B6B5B4 [31:0] @0x4 0x4 / B7B6B5B4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x0, W B3B2B1B0 [31:0] @0x0 0x0 / B3B2B1B0 0x4 / B7B6B5B4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x4, W B7B6B5B4 [31:0] @0x4 0x4 / B7B6B5B4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x4, W B7B6B5B4 [31:0] @0x8 0x8 / BBBAB9B8 0x8 / BBBAB9B8	16	16	4	0x4 / B5B4	3: R B5B4 [15:0] @0x4, W B5B4 [15:0] @0x4	0x4 / B5B4
16				0x6 / B7B6	4: R B7B6 [15:0] @0x6, W B7B6 [15:0] @0x6	0x6 / B7B6
16 32 4 0x4/B5B4 3: R B5B4 [15:0] @0x4, W 0000B5B4 [31:0] @0x8 0x8/0000B5B4 0x6/B7B6 4: R B7B6 [15:0] @0x6, W 0000B7B6 [31:0] @0xC 0xC/0000B7B6 32 8 4 0x4/B7B6B5B4 2: R B7B6B5B4 [31:0] @0x0, W B0 [7:0] @0x0 0x0/B0 0x1/B4 0x8/BBBAB9B8 3: R BBBAB9B8 [31:0] @0x4, W B4 [7:0] @0x1 0x1/B4 0x8/BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W B8 [7:0] @0x2 0x2/B8 0xC/BFBEBDBC 4: R BFBEBDBC [31:0] @0xC, W BC [7:0] @0x3 0x3/BC 0x0/B3B2B1B0 1: R B3B2B1B0 [31:0] @0xC, W BC [7:0] @0x0 0x0/B1B0 0x4/B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B5B4 [15:0] @0x2 0x2/B5B4 0x8/BBBAB9B8 3: R BBBAB9B8 [31:0] @0x4, W B5B4 [15:0] @0x4 0x4/B9B8 0xC/BFBEBDBC 4: R BFBEBDBC [31:0] @0x6, W BDBC [15:0] @0x4 0x4/B9B8 0xC/BFBEBDBC 4: R BFBEBDBC [31:0] @0xC, W BDBC [15:0] @0x6 0x6/BDBC 0x4/B7B6B5B4 2: R B7B6B5B4 [31:0] @0x0, W B3B2B1B0 [31:0] @0x0 0x0/B3B2B1B0 0x4/B7B6B5B4 0x8/BBBAB9B8 3: R BBBAB9B8 [31:0] @0x4, W B7B6B5B4 [31:0] @0x4 0x4/B7B6B5B4 0x4/B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B7B6B5B4 [31:0] @0x4 0x4/B7B6B5B4 0x4/B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B7B6B5B4 [31:0] @0x4 0x4/B7B6B5B4 0x8/BBBAB9B8 [31:0] @0x4, W B7B6B5B4 [31:0] @0x4 0x4/B7B6B5B4 0x8/BBBAB9B8 [31:0] @0x4, W B7B6B5B4 [31:0] @0x4 0x4/B7B6B5B4 0x8/BBBAB9B8 [31:0] @0x4, W B7B6B5B4 [31:0] @0x8 0x8/BBBAB9B8				0x0 / B1B0	1: R B1B0 [15:0] @0x0, W 0000B1B0 [31:0] @0x0	0x0 / 0000B1B0
32 8 4 00x4 / B5B4 3: R B5B4 [15:0] @0x4, W 0000B5B4 [31:0] @0x8 0x8 / 0000B5B4 0x6 / B7B6 4: R B7B6 [15:0] @0x6, W 0000B7B6 [31:0] @0xC 0xC / 0000B7B6 1: R B3B2B1B0 [31:0] @0x0, W B0 [7:0] @0x0 0x0 / B0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B4 [7:0] @0x1 0x1 / B4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W B8 [7:0] @0x2 0x2 / B8 0xC / BFBEBDBC 4: R BFBEBDBC [31:0] @0xC, W BC [7:0] @0x3 0x3 / BC 0x0 / B3B2B1B0 1: R B3B2B1B0 [31:0] @0x0, W B1B0 [15:0] @0x0 0x0 / B1B0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B5B4 [15:0] @0x2 0x2 / B5B4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x4, W B5B4 [15:0] @0x4 0x4 / B9B8 0xC / BFBEBDBC 4: R BFBEBDBC [31:0] @0x6, W BDBC [15:0] @0x6 0x6 / BDBC 0x0 / B3B2B1B0 1: R B3B2B1B0 [31:0] @0x0, W B3B2B1B0 [31:0] @0x6 0x6 / BDBC 0x0 / B3B2B1B0 1: R B3B2B1B0 [31:0] @0x0, W B3B2B1B0 [31:0] @0x0 0x0 / B3B2B1B0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x0, W B3B2B1B0 [31:0] @0x0 0x0 / B3B2B1B0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x0, W B3B2B1B0 [31:0] @0x0 0x0 / B3B2B1B0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x0, W B3B2B1B0 [31:0] @0x0 0x0 / B3B2B1B0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B7B6B5B4 [31:0] @0x4 0x4 / B7B6B5B4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W BBBAB9B8 [31:0] @0x8 0x8 / BBBAB9B8			,	0x2 / B3B2	2: R B3B2 [15:0] @0x2, W 0000B3B2 [31:0] @0x4	0x4 / 0000B3B2
32 8 4 0x0 / B3B2B1B0 1: R B3B2B1B0 [31:0] @0x0, W B0 [7:0] @0x0 0x0 / B0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B4 [7:0] @0x1 0x1 / B4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W B8 [7:0] @0x2 0x2 / B8 0xC / BFBEBDBC 4: R BFBEBDBC [31:0] @0xC, W BC [7:0] @0x3 0x3 / BC 0x0 / B3B2B1B0 1: R B3B2B1B0 [31:0] @0x0, W B1B0 [15:0] @0x0 0x0 / B1B0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B5B4 [15:0] @0x2 0x2 / B5B4 0xC / BFBEBDBC 4: R BFBEBDBC [31:0] @0x8, W B9B8 [15:0] @0x4 0x4 / B9B8 0xC / BFBEBDBC 4: R BFBEBDBC [31:0] @0xC, W BDBC [15:0] @0x6 0x6 / BDBC 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x0, W B3B2B1B0 [31:0] @0x0 0x0 / B3B2B1B0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B7B6B5B4 [31:0] @0x4 0x4 / B7B6B5B4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x4, W B7B6B5B4 [31:0] @0x4 0x4 / B7B6B5B4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x4, W B7B6B5B4 [31:0] @0x4 0x4 / B7B6B5B4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x4, W B7B6B5B4 [31:0] @0x4 0x4 / B7B6B5B4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x4, W B7B6B5B4 [31:0] @0x8 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W BBBAB9B8 [31:0] @0x8 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W BBBAB9B8 [31:0] @0x8 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W BBBAB9B8 [31:0] @0x8 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W BBBAB9B8 [31:0] @0x8 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W BBBAB9B8 [31:0] @0x8 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W BBBAB9B8 [31:0] @0x8 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W BBBAB9B8 [31:0] @0x8 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W BBBAB9B8 [31:0] @0x8 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W BBBAB9B8 [31:0] @0x8 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W BBBAB9B8 [31:0] @0x8 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8 0x8 / BBBAB9B8 3: R BBBABPB8 [31:0] @0x8 0x8 / BBBABPB8 3: R BBBABPB8 [31:	16	32	4	0x4 / B5B4	3: R B5B4 [15:0] @0x4, W 0000B5B4 [31:0] @0x8	0x8 / 0000B5B4
32 8 4 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B4 [7:0] @0x1 0x1 / B4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W B8 [7:0] @0x2 0x2 / B8 0xC / BFBEBDBC 4: R BFBEBDBC [31:0] @0xC, W BC [7:0] @0x3 0x3 / BC 0x0 / B3B2B1B0 1: R B3B2B1B0 [31:0] @0x0, W B1B0 [15:0] @0x0 0x0 / B1B0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B5B4 [15:0] @0x2 0x2 / B5B4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W B9B8 [15:0] @0x4 0x4 / B9B8 0xC / BFBEBDBC 4: R BFBEBDBC [31:0] @0xC, W BDBC [15:0] @0x6 0x6 / BDBC 32 32 4 0x8 / BBBAB9B8 1: R B3B2B1B0 [31:0] @0x0, W B3B2B1B0 [31:0] @0x0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x0, W B3B2B1B0 [31:0] @0x0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B7B6B5B4 [31:0] @0x4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x4, W B7B6B5B4 [31:0] @0x4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W BBBAB9B8 [31:0] @0x8 0x8 / BBBAB9B8				0x6 / B7B6	4: R B7B6 [15:0] @0x6, W 0000B7B6 [31:0] @0xC	0xC / 0000B7B6
32 8 4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W B8 [7:0] @0x2 0x2 / B8 0xC / BFBEBDBC 4: R BFBEBDBC [31:0] @0xC, W BC [7:0] @0x3 0x3 / BC 32 0x0 / B3B2B1B0 1: R B3B2B1B0 [31:0] @0x0, W B1B0 [15:0] @0x0 0x0 / B1B0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B5B4 [15:0] @0x2 0x2 / B5B4 0xC / BFBEBDBC 4: R BFBEBDBC [31:0] @0x8, W B9B8 [15:0] @0x4 0x4 / B9B8 0xC / BFBEBDBC 4: R BFBEBDBC [31:0] @0xC, W BDBC [15:0] @0x6 0x6 / BDBC 32 32 4 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B7B6B5B4 [31:0] @0x4 0x4 / B7B6B5B4 32 32 4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W BBBAB9B8 [31:0] @0x8 0x8 / BBBAB9B8				0x0 / B3B2B1B0	1: R B3B2B1B0 [31:0] @0x0, W B0 [7:0] @0x0	0x0 / B0
32 0x8 / BBBAB9B8 3: R BBBAB9B8 31:0] @0x8, W B8 [7:0] @0x2 0x2 / B8 0xC / BFBEBDBC 4: R BFBEBDBC [31:0] @0xC, W BC [7:0] @0x3 0x3 / BC 0x0 / B3B2B1B0 1: R B3B2B1B0 [31:0] @0x0, W B1B0 [15:0] @0x0 0x0 / B1B0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B5B4 [15:0] @0x2 0x2 / B5B4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W B9B8 [15:0] @0x4 0x4 / B9B8 0xC / BFBEBDBC 4: R BFBEBDBC [31:0] @0xC, W BDBC [15:0] @0x6 0x6 / BDBC 0x0 / B3B2B1B0 1: R B3B2B1B0 [31:0] @0x0, W B3B2B1B0 [31:0] @0x0 0x0 / B3B2B1B0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B7B6B5B4 [31:0] @0x4 0x4 / B7B6B5B4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W BBBAB9B8 [31:0] @0x8 0x8 / BBBAB9B8 0x8 /			,	0x4 / B7B6B5B4	2: R B7B6B5B4 [31:0] @0x4, W B4 [7:0] @0x1	0x1 / B4
32	32	8	4	0x8 / BBBAB9B8	3: R BBBAB9B8 [31:0] @0x8, W B8 [7:0] @0x2	0x2 / B8
32				0xC / BFBEBDBC	4: R BFBEBDBC [31:0] @0xC, W BC [7:0] @0x3	0x3 / BC
32 16 4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W B9B8 [15:0] @0x4 0x4 / B9B8 0xC / BFBEBDBC 4: R BFBEBDBC [31:0] @0xC, W BDBC [15:0] @0x6 0x6 / BDBC 0x0 / B3B2B1B0 1: R B3B2B1B0 [31:0] @0x0, W B3B2B1B0 [31:0] @0x0 0x0 / B3B2B1B0 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B7B6B5B4 [31:0] @0x4 0x4 / B7B6B5B4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W BBBAB9B8 [31:0] @0x8 0x8 / BBBAB9B8 0				0x0 / B3B2B1B0	1: R B3B2B1B0 [31:0] @0x0, W B1B0 [15:0] @0x0	0x0 / B1B0
32 32 4 0x8 / BBBAB9B8 [31:0] @0x8, W B9B8 [15:0] @0x4 (0x4 / B9B8 (0xC / BFBEBDBC 4: R BFBEBDBC [31:0] @0xC, W BDBC [15:0] @0x6 (0x6 / BDBC (0x6			,	0x4 / B7B6B5B4	2: R B7B6B5B4 [31:0] @0x4, W B5B4 [15:0] @0x2	0x2 / B5B4
32 32 4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W B3B2B1B0 [31:0] @0x8 (0x4 / B7B6B5B4	32	16	4	0x8 / BBBAB9B8	3: R BBBAB9B8 [31:0] @0x8, W B9B8 [15:0] @0x4	0x4 / B9B8
32 32 4 0x4 / B7B6B5B4 2: R B7B6B5B4 [31:0] @0x4, W B7B6B5B4 [31:0] @0x4 0x4 / B7B6B5B4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W BBBAB9B8 [31:0] @0x8 0x8 / BBBAB9B8				0xC / BFBEBDBC	4: R BFBEBDBC [31:0] @0xC, W BDBC [15:0] @0x6	0x6 / BDBC
32 32 4 0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W BBBAB9B8 [31:0] @0x8 0x8 / BBBAB9B8				0x0 / B3B2B1B0	1: R B3B2B1B0 [31:0] @0x0, W B3B2B1B0 [31:0] @0x0	0x0 / B3B2B1B0
0x8 / BBBAB9B8 3: R BBBAB9B8 [31:0] @0x8, W BBBAB9B8 [31:0] @0x8 0x8 / BBBAB9B8	22	22		0x4 / B7B6B5B4	2: R B7B6B5B4 [31:0] @0x4, W B7B6B5B4 [31:0] @0x4	0x4 / B7B6B5B4
OvC / REBERDRO M. R. RERERDRO (31.01 @OvC. W. RERERDRO (31.01 @OvC. OvC. / REBERDRO	32	32	4	0x8 / BBBAB9B8	3: R BBBAB9B8 [31:0] @0x8, W BBBAB9B8 [31:0] @0x8	0x8 / BBBAB9B8
				0xC / BFBEBDBC	4: R BFBEBDBC [31:0] @0xC, W BFBEBDBC [31:0] @0xC	0xC / BFBEBDBC

Note:

DMA always provide full 32-bits data to HWDATA[31:0] no matter what destination size it is (HSIZE still follows destination size setting for device supports byte/half-word operation). The HWDATA[31:0] it provides follow rules as follow:

- When source size is smaller than destination size, DMA pads the MSB with 0 until their sizes match and duplicates it to be 32 bits. E.g., source is 8 bits data 0x55 and destination size is 16 bits. DMA pads the source data with 0 to make it 16 bits and become 0x0055, then duplicate it to 32-bit data 0x0055_0055 and provide to HWDATA[31:0]; (if destination size is 32-bit then DMA will only pad source data with 0).
- When source size is larger or equal to destination size and smaller than 32 bits, DMA duplicates source data to 32 bits data. E.g., source data is 8 bits data 0x1F, HWDATA[31:0] =0x1F1F_1F1F. if source data is 16 bits data 0x2345, then HWDATA[31:0] = 0x2345_2345.

This guarantees peripherals that only support word operation won't generate bus error and the desired data can still move to the place we want with extra bits i.e. 0 padding. If user wants to configure an 8-bit register but is aligned to a 32-bit address boundary, the source size should be set to 8 bits and destination to 32 bits so extra bits will be padded with 0.

8.4.5 Peripheral/Memory address incrementation

DMA_CHCFGx.PINC and DMA_CHCFGx.MINC respectively control whether the peripheral address and memory address are enabled in auto-increment mode. The software cannot (can read) write the address register during transfer.

- In auto-increment mode, the next address to be transferred is automatically increased according to the data bit width (1, 2 or 4) after each transfer. The address of the first transfer is stored in DMA_PADDRx or DMA_MADDRx register.
- In fixed mode, the address is always fixed to the initial address.

At the end of transfer (i.e. the transfer count changes to 0), different processes will be carried out according to whether the current work is under circular mode or not.

- In acyclic mode, DMA stops after the transfer is completed. To start a new DMA transfer, need to rewrite the transfer number in the DMA_TXNUMx register with the DMA channel disabled.
- In circular mode, at the end of a transfer, the content of the DMA_TXNUMx register will be automatically reloaded to its initial value, and the current internal peripheral or memory address register will also be reloaded to the initial base address set by the DMA_PADDRx or DMA_MADDRx register.

144

8.4.6 Channel configuration procedure

The detail configuration flow is as below:

- 1. Configure interrupt mask bits, 1: enable interrupts, 0 disable interrupts.
- 2. Configure channel peripheral address and memory address and transfer direction.
- 3. Configure channel priority, 0: lowest, 3: highest.
- 4. Configure peripheral and memory address increment.
- 5. Configure channel transfer block size.

- 6. If necessary, configure circular mode.
- 7. If it is memory to memory, configure MEM2MEM mode.
- 8. Repeat step 1~8 on channel 1~8.
- 9. Enable corresponding channel.

If software is used to serve interrupt, software must enquire interrupt status register to check which interrupt occurred (software needs to write 1 to interrupt flag clear bit to clear the corresponding interrupt). Before enable channel, all interrupts corresponding to the channel should be cleared.

If the interrupt is transfer complete interrupt, software can configure the next transfer, or report to user this channel transformation is done.

8.4.7 Flow control

Three major flow controls are supported:

- Memory to memory
- Memory to peripheral
- Peripheral to memory

Flow control is controlled by two register bits in each DMA channel configuration register. Flow control is used to control source/destination and direction of DMA channel.

Table 8-2 Flow control table

DMA_CHCFGx.MEM2MEM	DMA_CHCFGx.DIR	Source	Destination	Transfer	
1		M	M	AHB read to AHB write, can do back2back	
1	X	Memory	Memory	transfer	
0	1		AHB Peripheral	AHB read to AHB write, single transfer	
U	1	Memory	APB Peripheral	AHB read to APB write, single transfer	
		AHB		ALID wood to ALID write simple transfer	
0	0	Peripheral	Memory	AHB read to AHB write, single transfer	
		APB Peripheral		APB read to AHB write, single transfer	

8.4.8 Circular mode

The circular mode is used to process circular buffers and continuous data transmission (such as ADC scan mode). The DMA_CHCFGx.CIRC is used to enable this function. When the circular mode is activated, if the number of data to be transferred becomes 0, it will automatically be restored to the initial value when configuring the channel, and the DMA operation will continue.

If the user wants to turn off the circular mode, the user needs to write 0 to DMA_CHCFGx.CHEN to disable the DMA channel, and then write 0 to DMA_CHCFGx.CIRC (when DMA_CHCFGx.CHEN is 1, other bits in the DMA_CHCFGx register cannot be rewritten).

8.4.9 Error management

DMA access to a reserved address area will cause DMA transmission errors. When an error occurs, the transfer error flag is set, and the hardware automatically clears the current DMA channel enable bit (DMA_CHCFGx.CHEN), and the channel operation is stopped. If the transfer error interrupt enable bit is set in the DMA_CHCFGx register, an interrupt will be generated.

8.4.10 Interrupt

• Transfer complete interrupt:

An interrupt is generated when channel data transfer is complete. Interrupt is a level signal. Each channel has its dedicated interrupt, interrupt mask control and interrupt status bit. interrupt status bit is cleared when interrupt flag clear bit is set.

Half transfer interrupt:

An interrupt is generated when half of the channel data is transferred. Interrupt is a level signal. Each channel has its dedicated interrupt, interrupt mask control and interrupt status bit. interrupt status bit is cleared when interrupt flag clear bit is set.

• Transfer error interrupt:

An interrupt is generated when bus returned error. Interrupt is a level signal. Each channel has its dedicated interrupt, interrupt mask control and interrupt status bit. interrupt status bit is cleared when interrupt flag clear bit is set.

 Interrupt event
 Event flag bit
 Enable control bit

 Half transfer
 HTXF
 HTXIE

 Transfer complete
 TXCF
 TXCIE

 Transfer error
 ERRF
 ERRIE

Table 8-3 DMA interrupt request

8.4.11 DMA request mapping

8.4.11.1 DMA1 controller

The DMA1 request mapping is shown in the following figure. By configuring the registers of the corresponding peripherals, the DMA requests of each peripheral can be turned on or off independently, and according to the channel priority, only one request is valid at the same time.

Figure 8-2 DMA1 request mapping

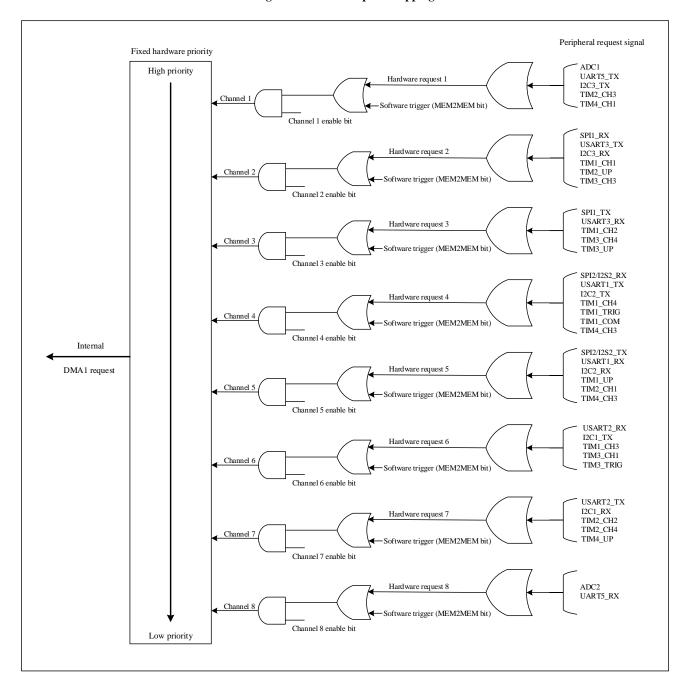


Table 8-4 DMA1 request mapping table for each channel

Periphera l	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	Channel 7	Channel 8
ADC	ADC1	-	-	-	-	-	-	ADC2
SPI/I2S	-	SPI1_RX	SPI1_TX	SPI2/I2S2_R X	SPI2/I2S2_T X	-	-	-
USART	UART5_T	USART3_T	USART3_R	USART1_TX	USART1_RX	USART2_R	USART2_T	UART5_R
	X	X	X			X	X	X
I2C	I2C3_TX	I2C3_RX		I2C2_TX	I2C2_RX	I2C1_TX	I2C1_RX	

Nations Technologies Inc.

Tel: +86-755-86309900 Email: info@nationstech.com

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

Periphera l	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	Channel 7	Channel 8
TIM1	-	TIM1_CH1	TIM1_CH2	TIM1_CH4 TIM1_TRIG TIM1_COM	TIM1_UP	TIM1_CH3	-	-
TIM2	TIM2_CH3	TIM2_UP	-	-	TIM2_CH1	-	TIM2_CH2 TIM2_CH4	-
TIM3	-	TIM3_CH3	TIM3_CH4 TIM3_UP	-	-	TIM3_CH1 TIM3_TRIG	-	-
TIM4	TIM4_CH1	-	-	TIM4_CH2	TIM4_CH3	-	TIM4_UP	-

8.4.11.2 DMA2 controller

The DMA2 request mapping is shown in the following figure. By configuring the registers of the corresponding peripherals, the DMA requests of each peripheral can be turned on or off independently, and according to the channel priority, only one request is valid at the same time.

Figure 8-3 DMA2 request mapping

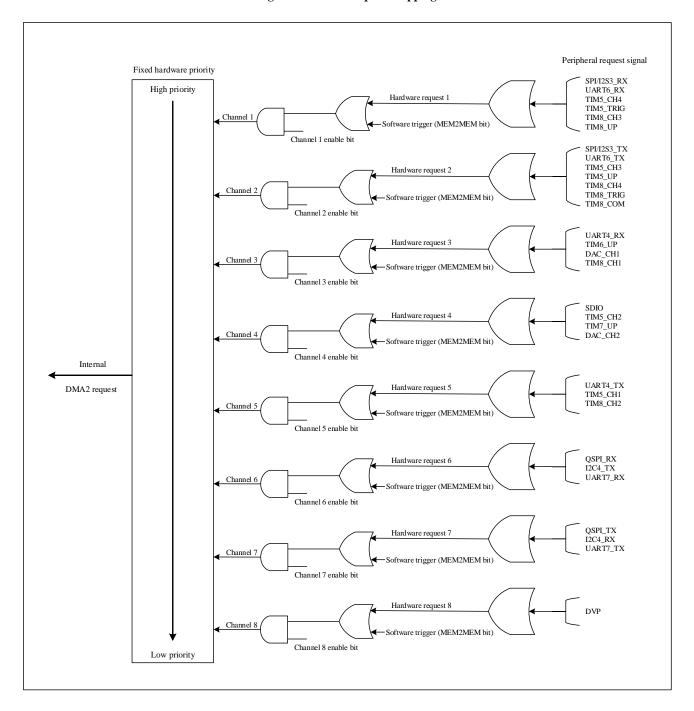


Table 8-5 DMA2 request mapping table for each channel

Peripheral	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	Channel 7	Channel 8
SPI/I2S	SPI3/I2S3_RX	SPI3/I2S3_TX	-	-	-	QSPI_RX	QSPI_TX	-
I2C4	-	-	-	-	-	I2C4_TX	I2C4_RX	-
UART	UART6_RX	UART6_TX	UART4_RX	-	UART4_TX	UART7_RX	UART7_TX	-
SDIO	-	-	-	SDIO	-	-	-	-
TIME	TIM5_CH4	TIM5_CH3	-	TIME CHO	TIME CILI	-	-	-
TIM5	TIM5_TRIG	TIM5_UP		TIM5_CH2	TIM5_CH1			

Nations Technologies Inc.

Tel: +86-755-86309900 Email: info@nationstech.com

 $Address: \ Nations \ Tower, \#109 \ Baoshen \ Road, \ Hi\text{-tech Park North}.$

Peripheral	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	Channel 7	Channel 8
TIM6/DAC			TIM6_UP		-	-	-	-
TIMO/DAC	-	-	DAC_CH1	-				
TIM7/DAC				TIM7_UP	-	-	-	-
TIM//DAC	-	-	-	DAC_CH2				
	TIM8_CH3	TIM8_CH4				-	-	-
TIM8	TIM8_UP	TIM8_TRIG	TIM8_CH1	-	TIM8_CH2			
	TIMO_UF	TIM8_COM						
DVP	-	-	-	-	-	-	-	DVP

8.5 DMA registers

DMA1 base address: 0x4002_0400; DMA2 base address: 0x4002_0000.

8.5.1 DMA register overview

Table 8-6 DMA register overview

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	=	10	6	∞	7	9	5	4	3	2	-	0
			.F8	TXCF8	F8					F6	HTXF6	,F6	F6			,F5			.F4	,F4	F4	F3	.F3	,F3	F3	F2	.F2	,F2	F2	F1	ΉI	ΈI	E
000h	DMA_INTSTS	ERRF8	HTXF8	IXC	GLBF8	ERRF7	HTXF7	TXCF7	GLBF7	ERRF6	XII	TXCF6	GLBF6	ERRF5	HTXF5	TXCF5	GLBF5	ERRF4	HTXF4	TXCF4	GLBF4	ERRF3	HTXF3	TXCF3	GLBF3	ERRF2	HTXF2	TXCF2	GLBF2	ERRF1	HTXF1	TXCF1	GLBF1
	Reset Value	0	0 0 0 0 0 0 0 0 0 0									0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0					
		RF8	KF8 KF8 KF7 KF7 KF7 KF7 KF7 KF6 KF6 KF6 KF6 KF6 KF6 KF7									BF5	CERRF4	XF4	CF4	BF4	RF3	CHTXF3	CF3	ВЕЗ	CERRF2	XF2	CTXCF2	BF2	RF1	XF1	CF1	BF1					
004h	DMA_INTCLR	CERRF8	CHTXF8 CGLBF8 CGLBF8 CGLBF7 CHTXF7 CTXCF7 CGLBF7 CGLBF6 CGTXCF6								CGLBF5	CER	CHTXF4	CTXCF4	CGLBF4	CERRF3	H	CTXCF3	CGLBF3	CER	CHTXF2	XLC	CGLBF2	CERRF1	CHTXF1	CTXCF1	CGLBF1						
	Reset Value	0										0	0	0	0	0	0	0	0	0	0	0	0	0	0		0						
																			М	5	[5]		J.	,	_								
																			ME		<u>-</u>	2.17	<u>:</u>	2	2	Ş	S	C	N N	ΊΕ	ΊΕ	Œ	Z
008h	DMA_CHCFG1								R	eserve	d								МЕМ2МЕМ	7	PKIOLVL[1:0]		MSIZE[1:0]		rsize[1:0]	MINC	PINC	CIRC	DIR	ERRIE	HTXIE	TXCIE	CHEN
																			ME	ž	ž	7	Ž	ř	<u>7</u>								
	Reset Value																		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000	DMA_TXNUM1								D	1										•				NI	TX[15:0]							
00Ch	Reset Value								Rese	rved								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
010h	DMA_PADDR1															ΑI	DR[3	31:0]															
UTUII	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
014h	DMA_MADDR1		ADDR[3									31:0]																					
01411	Reset Value	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0						
018h	DMA_CHSEL1	Reserved																		CH	_SEL	[5:0]											
01011	Reset Value	Reserved																			0	0	0	0	0	0							
01Ch	DMA_CHCFG2		Reserved										МЕМ2МЕМ	E E E E E E E	PKIOL VL[1:0]	to Haziow	MSIZE[1:0]	10.1137724	PSIZE[1:0]	MINC	PINC	CIRC	DIR	ERRIE	HTXIE	TXCIE	CHEN						
	Reset Value																		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
020h	DMA_TXNUM2								Rese	mr.o.d														NI]XTC	15:0]							
02011	Reset Value								Kest	ı veu								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
024h	DMA_PADDR2																DDR[3																
02411	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
028h	DMA_MADDR2																DR[3	_															
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02Ch	DMA_CHSEL2													Rese	rved															SEL		I . I	_
	Reset Value																		_		_	1		1		_	_	0	0	0	0	0	0
030h	DMA_CHCFG3								R	eserve	d								МЕМ2МЕМ		PRIOLVL[1:0]	·	MSIZE[1:0]	·	FSIZE [1:0]	MINC	PINC	CIRC	DIR	ERRIE	HTXIE		CHEN
	Reset Value																		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
034h	DMA_TXNUM3								Rese	rved								<u> </u>]XTC								
	Reset Value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
038h	DMA_PADDR3															ΑI	DDR[3	31:0]															

Seek Valee See
Column C
Seet Value
Machinary Mach
Reservation
MA MA MA MA MA MA MA MA
May Name
May Name
Mean Manage
MATEMINAL REPORT NAME No. 1
Mary Applies Mary
Mach Alabous Mach
Math Mark Mark Math Mark Math Mark Mark Mark Mark Mark Mark Mark Mark
May
Seed Value Color DAM_CRISTIS PRESERVE PRESERV
Column
Reservable Reserv
Sect Value
Secondary Seco
Secondary Seco
Secondary Seco
Oct DMA_FADDRS Reserved R
State March Marc
MA_PADDRS
MANADOR MANA
DMA_MADDRS DMA_CHSELS Reserved
Reset Value
Reset Value
Reset Value Reset Value Reset Value Reset Value Of 10
Reset Value
Reset Value
Reset Value
Reset Value
DMA_TXNUM6 Reserved
Order Reservative Order Reserved Order Ord
DMA_PADDR6 Reset Value O O O O O O O O O
O'Ah Reset Value O O O O O O O O O
Reset Value
Reset Value
Reset Value
DMA_CHCFG7 Reserved Reserve
Reset Value
Reset Value
Reset Value
Reset Value
DMA_PADDR7
Reset Value
OSAN Reset Value O O O O O O O O O
Reset Value
OSCH Reset Value O O O O O O O O O
DMA_CHSEL7 Reset Value Reserved Reserved DMA_CHCFG8 Reserved Re
O94h Reset Value Reserved Reserved O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DMA_TYNIIM9
Reset Value
DMA_PADDR8
DMA MADDR8 ADDR[31:0]
0A0h Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<u> </u>
DMA_CHSEL8 CH_SEL[5:0]
0A4h DMA_CHSEL8 Reset Value Reserved CH_SEL[5:0] 0 0 0 0 0 0
DMA_CHSEL8 CH_SEL[5:0]

8.5.2 DMA interrupt status register (DMA_INTSTS)

Address offset: 0x00

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ERRF8	HTXF8	TXCF8	GLBF8	ERRF7	HTXF7	TXCF7	GLBF7	ERRF6	HTXF6	TXCF6	GLBF6	ERRF5	HTXF5	TXCF5	GLBF5
r 15	r 14	r 13	r 12	r 11	r 10	r 9	r 8	r 7	r 6	r 5	r 4	r 3	r 2	r 1	r 0
ERRF4	HTXF4	TXCF4	GLBF4	ERRF3	HTXF3	TXCF3	GLBF3	ERRF2	HTXF2	TXCF2	GLBF2	ERRF1	HTXF1	TXCF1	GLBF1
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bit field	Name	Description
31/27/23/19/15/11/7/3	ERRFx	Transfer error flag for channel x (x=18).
		Hardware sets this bit when transfer error happen. This bit is cleared by software by
		writing '1' to DMA_INTCLR.CERRFx bit.
		0: Transfer error no happened on channel x.
		1: Transfer error happened on channel x.
30/26/22/18/14/10/6/2	HTXFx	Half transfer flag for channel x (x=18).
		Hardware sets this bit when half transfer is done. This bit is cleared by software by
		writing '1' to DMA_INTCLR.CHTXFx bit.
		0: Half transfer not yet done on channel x.
		1: Half transfer was done on channel x.
29/25/21/17/13/9/5/1	TXCFx	Transfer complete flag for channel x (x=18).
		Hardware sets this bit when transfer is done. This bit is cleared by software by writing
		'1' to DMA_INTCLR.CTXCFx bit.
		0: Transfer not yet done on channel x.
		1: Transfer was done on channel x.
28/24/20/16/12/8/4/0	GLBFx	Global flag for channel x (x=18).
		Hardware sets this bit when any interrupt events happen in this channel. This bit is
		cleared by software by writing '1' to DMA_INTCLR.CGLBFx bit.
		0: No transfer error, half transfer or transfer done event happen on channel x.
		1: One of transfer error, half transfer or transfer done event happen on channel x.

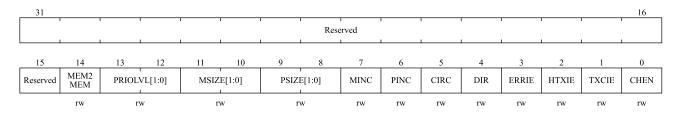
152

8.5.3 DMA interrupt flag clear register (DMA_INTCLR)

Address offset: 0x04

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CERRF8	CHTXF8	CTXCF8	CGLBF8	CERRF7	CHTXF7	CTXCF7	CGLBF7	CERRF6	CHTXF6	CTXCF6	CGLBF6	CERRF5	CHTXF5	CTXCF5	CGLBF5
rw 15	rw 14	rw 13	rw 12	rw 11	rw 10	rw 9	rw 8	rw 7	rw 6	rw 5	rw 4	rw 3	rw 2	rw 1	rw 0
CERRF4	CHTXF4	CTXCF4	CGLBF4	CERRF3	CHTXF3	CTXCF3	CGLBF3	CERRF2	CHTXF2	CTXCF2	CGLBF2	CERRF1	CHTXF1	CTXCF1	CGLBF1
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw


Bit field	Name	Description
31/27/23/19/15/11/7/3	CERRFx	Clear transfer error flag for channel x (x=18).
		Software can set this bit to clear ERRF of corresponding channel.
		0: No action.
		1: Reset DMA_INTSTS.ERRF bit of corresponding channel.
30/26/22/18/14/10/6/2	CHTXFx	Clear half transfer flag for channel x ($x=18$).
		Software can set this bit to clear HTXF of corresponding channel.
		0: No action.
		1: Reset DMA_INTSTS.HTXF bit of corresponding channel.
29/25/21/17/13/9/5/1	CTXCFx	Clear transfer complete flag for channel x ($x=18$).
		Software can set this bit to clear TXCF of corresponding channel.
		0: No action.
		1: Reset DMA_INTSTS.TXCF bit of corresponding channel.
28/24/20/16/12/8/4/0	CGLBFx	Clear global event flag for channel x ($x=18$).
		Software can set this bit to clear GLBF of corresponding channel.
		0: No action.
		1: Reset DMA_INTSTS.GLBF bit of corresponding channel.

8.5.4 DMA channel x configuration register (DMA_CHCFGx)

The x is channel number, x = 1...8

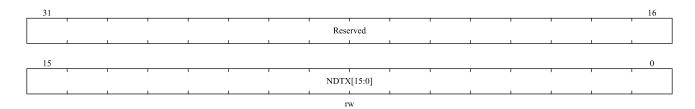
Address offset: 0x08+20*(x-1)

Reset value: 0x0000 0000

Bit field	Name	Description
31:15	Reserved	Reserved, the reset value must be maintained.
14	MEM2MEM	Memory to memory mode.
		Software can configure this channel to memory to memory transfer when it is not
		yet enabled.
		0: Channel transfer between memory and peripheral.

Bit field	Name Description	
		1: Channel set to memory to memory transfer.
13:12	PRIOLVL[1:0]	Channel priority.
		Software can program channel priority when channel is not enable.
		00: Low
		01: Medium
		10: High
		11: Very high
11:10	MSIZE[1:0]	Memory data size.
		Software can configure data size read/write from/to memory address.
		00: 8-bits
		01: 16-bits
		10: 32-bits
		11: Reserved
9:8	PSIZE[1:0]	Peripheral data size.
		Software can configure data size read/write from/to peripheral address.
		00: 8-bits
		01: 16-bits
		10: 32-bits
		11: Reserved
7	MINC	Memory increment mode.
		Software can enable/disable memory address increment mode.
		0: Memory address won't increase with each transfer.
		1: Memory address increase with each transfer.
6	PINC	Peripheral increment mode.
		Software can enable/disable peripheral address increment mode.
		0: Peripheral address won't increase with each transfer.
		1: Peripheral address increase with each transfer.
5	CIRC	Circular mode.
		Software can set/clear this bit.
		0: Channel will stop after one round of transfer.
		1: Channel configure as circular mode.
4	DIR	Data transfer direction
		Software can set/clear this bit.
		0: Data transfer from Peripheral to Memory
		1: Data transfer from Memory to Peripheral.
3	ERRIE	Transfer error interrupt enable.
		Software can enable/disable transfer error interrupt.
		0: Disable transfer error interrupt of channel x.
		1: Enable transfer error interrupt of channel x.
2	HTXIE	Half transfer interrupt enable.
		Software can enable/disable half transfer interrupt.
		0: Disable half transfer interrupt of channel x.

Bit field	Name	Description	
		1: Enable half transfer interrupt of channel x.	
1	TXCIE	Transfer complete interrupt enable.	
		Software can enable/disable transfer complete interrupt.	
		0: Disable transfer complete interrupt of channel x.	
		1: Enable transfer complete interrupt of channel x.	
0	CHEN	Channel enable.	
		Software can set/reset this bit.	
		0: Disable channel.	
		1: Enable channel.	


8.5.5 DMA channel x transfer number register (DMA_TXNUMx)

The x is channel number, x = 1...8

Address offset: 0x0c+20 * (x-1)

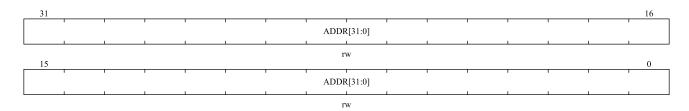
Reset value: 0x0000 0000

This register can only be written if the channel is disabled (DMA_CHCFGx.CHEN = 0).

Bit field	Name	Description	
31:16	Reserved	Reserved, the reset value must be maintained.	
15:0	NDTX	Number of data to transfer.	
		Number of data to be transferred (0 \sim 65535). Software can read/write the number of	
	transfers when channel is disable and it will be read only after channel enable. Eve		
	successful transfer of corresponding DMA channel will decrease this register by 1.		
		circular mode is enable, it will automatically reload pre-set value when it reach zero.	
		Otherwise it will keep at zero and reset channel enable.	

155

8.5.6 DMA channel x peripheral address register (DMA_PADDRx)

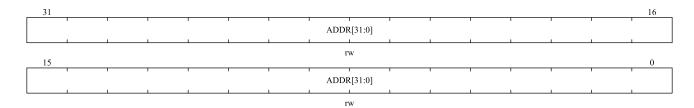

The x is channel number, x = 1...8

Address offset: 0x10+20*(x-1)

Reset value: 0x0000 0000

This register can only be written if the channel is disabled (DMA_CHCFGx.CHEN = 0).

Bit field	Name	Description	
31:0	ADDR	Peripheral address.	
		Peripheral starting address for DMA to read/write from/to.	
		Increment of address will be decided by DMA_CHCFGx.PSIZE. With	
	DMA_CHCFGx.PSIZE equal to 01, DMA ignores bit 0 of PADDR and if		
		DMA_CHCFGx.PSIZE equal to 10 DMA will ignore bit [1:0] of PADDR.	


8.5.7 DMA channel x memory address register (DMA MADDRx)

The x is channel number, x = 1...8

Address offset: 0x14+20 * (x-1)

Reset value: 0x0000 0000

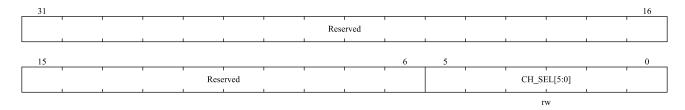
This register can only be written if the channel is disabled (DMA_CHCFGx.CHEN = 0).

Bit field	Name	Description	
31:0	ADDR	ADDR Memory address.	
		Memory starting address for DMA to read/write from/to.	
		Increment of address will be decided by DMA_CHCFGx.MSIZE. With	
		DMA_CHCFGx.MSIZE equal to 01, DMA ignores bit 0 of MADDR and if	
		DMA_CHCFGx.MSIZE equal to 10 DMA will ignore bit [1:0] of MADDR.	

$8.5.8\ DMA1\ channel\ x\ channel\ request\ select\ register\ (DMA1_CHSELx)$

The x is channel number, x = 1...8

Address offset: 0x18+20 * (x-1)


Reset value: 0x0000 0000

Writing to this register is only valid when the channel MAP is enabled (DMA_CHMAPEN.MAP_EN=1). This register is used to manage the DMA1 channel mapped by the DMA1 peripheral request.

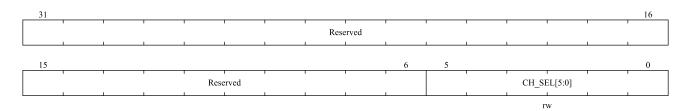
Note: After the channel MAP is enabled, DMA channel selection register will change to the default value. It is

necessary to configure the corresponding mapping for each channel that has been used. If it is not reconfigured, all channels of DMA1 will only respond to the DMA request of ADC1.

Bit field	Name	Description	
31:6	Reserved	Reserved, the reset value must be maintained.	
5:0	CH_SEL[5:0]	DMA1 channel request selection	
		40: UART5_RX	
		39: ADC2	
		38: I2C1_RX	
		37: TIM4_UP	
		36: TIM2_CH4	
		35: TIM2_CH2	
		34: USART2_TX	
		33: I2C1_TX	
		32: TIM3_TRIG	
		31: TIM3_CH1	
		30: TIM1_CH3	
		29: USART2_RX	
		28: I2C2_RX	
		27: TIM4_CH3	
		26: TIM2_CH1	
		25: SP2I/I2S2_TX	
		24: TIM1_UP	
		23: USART1_RX	
		22: I2C2_TX	
		21: SP2I/I2S2_RX	
		20: TIM4_CH2	
		19: TIM1_COM	
		18: TIM1_TRIG	
		17: TIM1_CH4	
		16: USART1_TX	
		15: SPI1_TX	
		14: TIM3_UP	
		13: TIM3_CH4	
		12: TIM1_CH2	
		11: USART3_RX	
		10: SPI1_RX	

Bit field	Name	Description	
		9: TIM3_CH3	
		8: TIM2_UP	
		7: TIM1_CH1	
		6: I2C3_RX	
		5: USART3_TX	
		4: TIM4_CH1	
		3: TIM2_CH3	
		2: I2C3_TX	
		1: UART5_TX	
		0: ADC1	

8.5.9 DMA2 channel x channel request select register (DMA2_CHSELx)


The x is channel number, x = 1...8

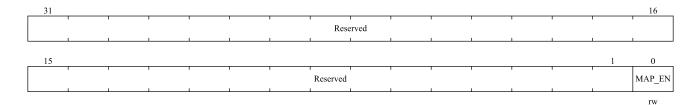
Address offset: 0x18+20 * (x-1)

Reset value: 0x0000 0000

Writing to this register is only valid when the channel MAP is enabled (DMA_CHMAPEN.MAP_EN=1). This register is used to manage the DMA2 channel mapped by the DMA2 peripheral request.

Note: After the channel MAP is enabled, DMA channel selection register will change to the default value. It is necessary to configure the corresponding mapping for each channel that has been used. If it is not reconfigured, all channels of DMA2 will only respond to the DMA request of TIM5_CH4.

Bit field	Name	Description	
31:6	Reserved	Reserved, the reset value must be maintained.	
5:0	CH_SEL[5:0]	DMA2 channel request selection	
		32: DVP	
		31: Reserved	
		30: UART7_TX	
		29: I2C4_RX	
		28: QSPI_TX	
		27: UART7_RX	
		26: I2C4_TX	
		25: QSPI_RX	
		24: UART4_TX	
		23: TIM5_CH1	


Bit field	Name	Description
		22: TIM8_CH2
		21: Reserved
		20: DAC2
		19: TIM7_UP
		18: SDIO
		17: TIM5_CH2
		16: DAC1
		15: TIM6_UP
		14: UART4_RX
		13: TIM8_CH1
		12: UART6_TX
		11: SPI3/I2S3_TX
		10: TIM5_UP
		9: TIM5_CH3
		8: TIM8_COM
		7: TIM8_TRIG
		6: TIM8_CH4
		5: UART6_RX
		4: SPI3/I2S3_RX
		3: TIM8_UP
		2: TIM8_CH3
		1: TIM5_TRIG
		0: TIM5_CH4

8.5.10 DMA channel MAP enable register (DMA_CHMAPEN)

Address offset: 0xA8

Reset value: 0x0000 0000

Note: After the MAP is enabled, DMA will respond to the DMA request according to the configuration of the selection register. It is necessary to configure the channel request selection of the peripheral. If it is not configured, DMA will only respond to the default value of the channel selection register (DMA1 is ADC1, DMA2 is TIM5_CH4).

Bit field	Name	Description	
31:1	Reserved	Reserved, the reset value must be maintained.	
0	MAP_EN	Channel MAP enable.	
		0: Disable channel MAP	

Bit field	Name	Description	
		1: Enable channel MAP	

9 Analog to digital conversion (ADC)

9.1 Introduction

The 12-bit ADC is a high-speed analog-to-digital converter using successive approximation. It has multiple channels. The A/D conversion of each channel has four execution modes: single, continuous, scan or discontinuous. ADC measurements are stored (left-aligned/right-aligned) in 16-bit data registers. The application can detect that the input voltage is within user-defined high/low thresholds by analog watchdog and the maximum frequency of the input clock to the ADC is 80MHz.

9.2 Main features

- Supports 2 ADC, supports single-ended and differential inputs, and can measure up to 16 external and 3 internal sources.
- ADC1 supports 9 external channels, ADC2 supports 7 external channels.
- Support 12-bit, 10-bit, 8-bit, 6-bit resolution configurable.
 - ◆ The highest sampling rate 4.7MSPS under 12bit resolution.
 - ◆ The highest sampling rate 6.1MSPS under 10bit resolution.
 - ◆ The highest sampling rate 7.3MSPS under 8bit resolution.
 - ◆ The highest sampling rate 8.9MSPS under 6bit resolution.
- ADC clock source is divided into working clock source, sampling clock source and timing clock source
 - Only AHB_CLK can be configured as the working clock source,up to 144MHz.
 - ◆ PLL can be configured as a sampling clock source, up to 80MHz, support frequency division 1,2,4,6,8,10,12,16,32,64,128,256.
 - ◆ The AHB_CLK can be configured as the sampling clock source, up to 80MHz, and supports frequency division 1,2,4,6,8,10,12,16,32.
 - ◆ The timing clock is used for internal timing functions and the frequency must be configured to 1MHz.
- Support trigger sampling, Including EXTI/TIMER.
- Programmable channel sampling interval.
- Support auto scan mode.
- Support 2 conversion modes.
 - Single conversion.
 - ◆ Continuous conversion.
- Support discontinuous mode.
- Support self-calibration.

- Support DMA.
- Interrupt generation.
 - ◆ At the end of conversion.
 - ◆ At the end of injection conversion.
 - Analog watchdog event.
- Data alignment with embedded data consistency.
- Both regular conversions and injection conversions have external triggering options.
- ADC power requirements: 1.8V to 3. 6V.
- ADC input voltage range: V_{REF} $\leq V_{IN} \leq V_{REF+}$.
- Dual ADC mode, ADC1 and ADC2 combined.

9.3 Function Description

The block diagram and pin description of the ADC are as follows:

162

Analog watchdog Analog watchdog eve Data bus Interrupt ADC Interrupt to NVIC Data register and of injected conversion Injected data registers (4 x 16 bits) Regular data register (16 bits) End of conversion Regular Injected channels ADCCLK V_{REF} · ADC prescaler Analog to digital channels V_{SSA} ADCx IN1 ADCx_IN2 Gpio : : ADCx_INx V_{TS} V_{REFINT} $V_{BAT/2}$ ADC_CTRL2.
EXTRIRIG bit ADC_CTRL2. EXTJTRIG bit ADC_CTRL2. _ EXTJSEL[2:0] bits ADC_CTRL2. EXTRSEL[2:0] bits EEEEEE AFIO_RMP_CFG ADCx_ETRI bit AFIO_RMP_CFG. ADCx_ETRR bit TIM8_CH4 15 Trigger signal for ADC1 and ADC2

Figure 9-1 Block diagram of a single ADC

Table 9-1 ADC pins

Name	Types	Description
$ m V_{DDA}$	Input, analog power supply	Equivalent to V_{DD} analog power supply and: $1.8V \le V_{DDA} \le$
		$V_{DD}(3.6V)$
$V_{ m SSA}$	Input, analog power supply ground	Equivalent to V _{SS} analog power supply ground
V_{REF+}	Input, analog reference positive	Positive reference voltage used by ADC, $1.8V \le V_{REF+} \le V_{DDA}$
V _{REF} -	Input, analog reference negative	The low/negative reference voltage used by the ADC, $V_{REF-} = V_{SSA}$
ADCx_IN	Analog input signal	Analog external input channels

Note:

- 1. V_{DDA} and V_{SSA}. They should be separately connected to V_{DD} and V_{SS}.
- 2. If there is a VREF- Pins (depending on the package), it must be connected to VSSA.

Tel: +86-755-86309900 Email: info@nationstech.com

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

- 3. If there are no VREF+ pins (depending on the package), try to ensure that the voltage values of VDDA and VDD are the same, otherwise the ADC accuracy will be affected.
- 4. External channel reference data sheet.

9.3.1 ADC clock

An ADC requires three clocks, HCLK, ADC_CLK and ADC_1MCLK.

- HCLK is used for the register access.
- ADC_CLK is the working clock of ADC. ADC_CLK has two sources (HCLK divider or PLL divider). HCLK divider and system are synchronous clock, while PLL divider and system are asynchronous clock. The advantage of using a synchronous clock is that there is no uncertainty when triggering the ADC to respond to the trigger. The advantage of using PLL's divider clock is that the ADC's working clock can be handled independently without affecting other modules attached to the HCLK
- ADC_1MCLK for internal timing function, configured in RCC, frequency size must be configured to 1MHz

- 1. Configuration PLL as a clock source, up to 72 MHz, support frequency division 1,2,4,6,8,10,12,16,32, 64,128,256
- 2. The AHB_CLK frequency division can be configured as a working clock up to 72MHz. The AHB_CLK frequency division can be 1,2,4,6,8,10,12,16,32
- 3. When switching the ADC_1M clock source, you need to ensure that the HSI clock is turned on

HCLK ADC_CLK

HCLK

ADC_IMCLK

ADC IMCLK

Figure 9-2 ADC clock

9.3.2 ADC switch control

You can proceed to the next step only after the power-up process is complete. You can check if the power-up is complete by polling the ADC_CTRL3.RDY bit.

You can set the ADC_CTRL2.ON bit to turn on the ADC. When the ADC_CTRL2.ON bit is set for the first time, it wakes up the ADC from the power-off state. After a power-on delay of ADC (t_{STAB}), and the conversion begins when the ADC_CTRL2.ON bit is set again.

The conversion can be stopped by clearing the ADC_CTRL2.ONbit and placing the ADC in power-off mode. In this mode, the ADC consumes almost no power (just a few μA). Power-down can be checked by polling the ADC CTRL3.PDRDY bit.

When the ADC is disabled, the default mode is power-down. In this mode, as long as the power is on, there is no need to re-calibrate, and the calibration value is automatically maintained in the ADC. To further reduce power consumption, the ADC has a deep sleep mode. When ADC Disable is in deep sleep mode, the calibration value inside the ADC is lost and needs to be recalibrated. Deep sleep saves about $0.2\mu A$ of power consumption.

Note: That when in dual ADC mode, it is best to select the same sleep mode for both ADCs. Register ADC_CTRL3.DPWMOD which controls ADC deep sleep mode.

9.3.3 Channel selection

Each channel can be configured as a regular sequence and an injection sequence.

Injection sequence consists of multiple conversions, up to a maximum of 4. The ADC_JSEQ register specifies the injection channel and the conversion order of the injection channel. The ADC_JSEQ.JLEN[1:0] bits specified injection sequence length.

Regular sequence consists of multiple conversions, up to a maximum of 16. The ADC_RSEQx registers specify the regular channels and the conversion order of the regular channels. The ADC_RSEQ1.LEN[3:0] bits specified regular channel sequence length.

Note: During conversion, changes to the ADC_RSEQx or ADC_JSEQ registers are prohibited; the ADC_RSEQx or ADC_JSEQ registers can only be changed when the ADC is idle.

Channel Selection VINP[0] Fast Channel VINN[0] VREF- --₩-Fast Channe ADC1_IN1 ₩ VINN[1] Fast Channel VINP[2] ADC1_IN2 ₩ VINP[3] Fast Channel VINN[3] ₩ Fast Channe VINN[4] 1×1 Fast Channel VINP[5] ADC1_IN5 VINN[5] Slow Channel VINP[6] ADC12 IN6 -₩ Slow Channe VINP[7] ₩ VINN[7] ₩. SAR Slow Channe ADC12_IN8 ADC1 VINN[8] ₩ VINP[9] Slow Channel ₩ ADC12 IN9 VINN[9] VINP[10] Slow Channel ADC12 IN10 ₩ VINN[10] ₩ VINP[11] Slow Channel ADC12_IN11 VINN[11] VREF-₩. VINP[12] Slow Channel VREF+ ₩ VINN[12] VREF-Slow Channel VINP[13] VREF+ ₩ VINN[13] VREF-VINP[14] Slow Channel VREF+ ₩ VINN[14] VREF-₩ VINP[15] Slow Channel ₩ VINN[15] VINP[16] VREF-Slow Channel ₩ VINN[16] VREF-VINP[17] Slow Channel VBAT/2 VINN[17] VREF-VINP[18] Slow Channel VINN[18] VREF-1×1 ADC2 Channel Selection VINP[0] Fast Channel VREF+ VINN[0] VINP[1] Fast Channel ADC2_IN1 ₩ VINN[1] ₩ VINP[2] Fast Channel Vinn[2] ₩ VINP[3] Fast Channe Vinn[3] Fast Channel VINP[4] ADC2 IN4 Fast Channel VINP[5] ADC2_IN5 ₩ VINN[5] ₩ Slow Channel VINN[6] ₩ Slow Channel VINP[7] Vinn[7] Slow Channel VINP[8] ₩ ADC2 VINP[9] Slow Channel ₩ VINN[9] ₩ Slow Channel VINN[10] ₩ VINP[11] Slow Channe ₩ VINP[12] Slow Channel ADC2 IN12 [₩ VINN[12] Slow Channel ADC2_IN13 VINN[13]

VRFF-

VREF-

VREF+

VREF-

VREF+

VREF-

VREF-

VREFINT

VINP[14]

VINN[14]

VINP[15]

VINN[15]

VINP[16]

VINN[16]

VINP[17]

VINN[17]

VINP[18]

VINN[18]

Figure 9-3 ADC1 and ADC2 channel pin connections

-₩

-⊳⊲-

₩

Slow Channe

Slow Channel

Slow Channel

Slow Channel

Slow Channe

9.3.4 Internal channel

- The temperature sensor is connected to channel ADC1 IN16.
- $V_{BAT/2}$ is connected to channel ADC1_IN17.
- Internal reference voltage VREFINT is connected to ADCx_IN18.

Internal channels can be converted by injection or regular channels.

Note: The temperature sensor, $V_{BAT/2}$ *can only be used in the ADC1.*

9.3.5 Single conversion mode

The ADC can enter the single conversion mode by configuring ADC_CTRL2.CTU to 0. In this mode, external triggering(for regular channels or injection channels) or setting ADC_CTRL2.ON=1(for regular channels only) can start the ADC to start conversion, and the ADC only performs one conversion.

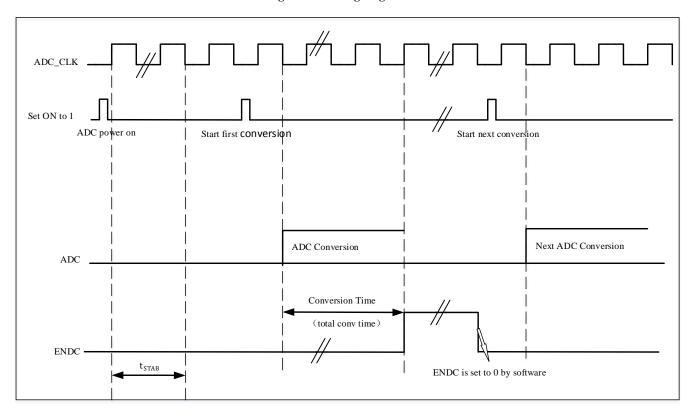
After the conversion starts, when an injection channel conversion is completed, the injection channel conversion end flag(ADC_STS.JENDC) will be set to 1. If the injection channel conversion end interruptenable (ADC_CTRL1.JENDCIEN) bit is set to 1, an interrupt will be generated at this time, and the converted data will be stored in the ADC_JDATx register.

After the conversion starts, when a regular channel conversion is completed, the regular channel conversion end flag(ADC_STS.ENDC) will be set to 1. If the regular channel conversion end interruptenable (ADC_CTRL1.ENDCIEN) bit is set to 1, an interrupt will be generated at this time, and the converted data will be stored in the ADC_DAT register.

After single conversion, the ADC stops.

9.3.6 Continuous conversion mode

The ADC can enter the continuous conversion mode by configuring ADC_CTRL2.CTU to 1. In this mode, external triggering or setting ADC_CTRL2.ON to 1 can start the ADC to start conversion, and the ADC will continuously convert the selected channel. Continuous mode is only valid for regular channels, not for injection channels.


After the conversion starts, when a regular channel conversion is completed, the regular channel end of conversion flag bit (ADC_STS.ENDC) will be set to 1. If the regular channel conversion end interrupt enable bit (ADC_CTRL1.ENDCIEN) is set to 1 at this time, an interrupt will be generated. The converted data will be stored in the ADC_DAT register.

9.3.7 Timing diagram

When ADC_CTRL2.ON is set to 1 for the first time, the ADC is powered on. After the ADC is powered on, the ADC needs a certain time(t_{STAB}) to ensure its stability. After the ADC is stable, write 1 to ADC_CTRL2.ON again, the ADC starts to convert, and the conversion end flag will be set to 1 after the conversion is completed.

Figure 9-4 Timing diagram

9.3.8 Analog watchdog

The analog watchdog can be enabled on the regular channel by setting ADC_CTRL1.AWDGERCH to 1, or the analog watchdog on the injection channel can be enabled by setting ADC_CTRL1.AWDGEJCH to 1. The high threshold of the analog watchdog can be set by configuring ADC_WDGHIGH.HTH, and the low threshold of the analog watchdog can be set by configuring ADC_WDGLOW.LTH. The threshold of the analog watchdog has nothing to do with the way of data alignment, because the comparison of the ADC's conversion value with the threshold is done before the alignment .When the value of ADC analog conversion is higher than the high threshold of the analog watchdog or lower than the low threshold of the analog watchdog, the analog watchdog flag (ADC_STS.AWDG) will be set to 1, if ADC_CTRL1.AWDGIEN has been configured to 1, an interrupt will be generated at this time. The analog watchdog can be controlled for one or more channels by configuring ADC_CTRL1.AWDGSGLEN and ADC_CTRL1.AWDGCH[4:0].

Table 9-2 Analog watchdog channel selection

Channel	Al	DC_CTRL1 register control	bit
Channel	AWDGSGLEN	AWDGERCH	AWDGEJCH
There is none	Any value	0	0
All injection channels	0	0	1
All regular channels	0	1	0
All injection and regular channels	0	1	1
A single injection channel	1	0	1
A single regulars of the channel	1	1	0

Nations Technologies Inc.

Tel: +86-755-86309900 Email: info@nationstech.com

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

1	_	_	_
A single injection or regular channels	1	1	1
	_	=	=

9.3.9 Scanning mode

By configuring ADC_CTRL1.SCAMD to 1, the scan conversion mode can be turned on, and by configuring the four registers ADC_RSEQ1, ADC_RSEQ2, ADC_RSEQ3, ADC_JSEQ, the conversion sequence can be selected, and the ADC will scan and convert all the regular or Injected channels. After the conversion is started, the channels will be converted one by one. If ADC_CTRL2.CTU is 1 at this time, the conversion will be restarted from the first channel of the conversion sequence after the conversion of all regular channels is completed. Injected channel does not support continuous mode. The DMA function can be turned on by setting ADC_CTRL2.ENDMA to 1, and the DMA will transfer the data to the SRAM after the regular channel conversion is completed.

Note: In dual ADC mode, the DMA function on the regular channel of ADC2 needs to be completed by the DMA of ADC1.

9.3.10 Injection channel management

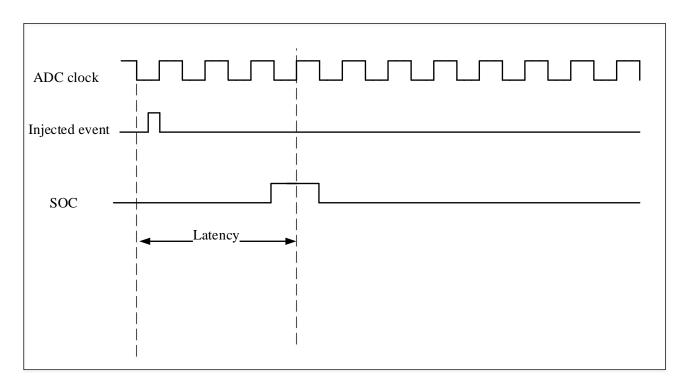
9.3.10.1 Automatic injection

If ADC_CTRL1.AUTOJC bit is set, then the Injected channels are automatically converted following the regular channels mentioned by ADC_RSEQ and ADC_JSEQx. A single trigger can conver up to 16+ 4 channels. Setting ADC_CTRL2.CTU the conversion sequence will be converted continuously.

When this function is turned on, the external trigger of the injection channel needs to be turned off.

This function cannot be used with the discontinuous mode at the same time.

When the ADC clock prescale factor is 2, there is a delay of two ADC clock intervals when the conversion sequence changes from regular to injection or injection to regular. When the ADC clock prescale factor is 4 to 8, there is a delay of one ADC clock intervals when the conversion sequence changes from regular to injection or injection to regular.


9.3.10.2 Trigger injection

Set ADC_CTRL1.AUTOJC to 0 and ADC_CTRL1.SCAMD to 1 to enable the trigger injection function. In this function, the regular channel of continuous conversion is triggered by setting ADC_CTRL2.ON or by external trigger. When the regular channel is converted, if an external injection trigger is generated, the current conversion will be suspended, and the injection sequence channel will start conversion. When the injection sequence channel conversion is completed, the interrupted conversion of regular sequence channel will be resumed. If a regular event is generated during the injection conversion, the regular sequence channel will start conversion after the injection sequence channel conversion is completed.

When using this function, the time interval between the injection channel triggers needs to be greater than the time required for the injection sequence to complete the conversion.

Figure 9-5 Injection conversion delay

Note: For the maximum delay value, please refer to the electrical characteristics section in the data manual.

9.3.11 Discontinuous mode

9.3.11.1 Regular channels

Configure ADC_CTRL1.DREGCH to 1 to enable the discontinuous mode on the regular channel, obtain the regular sequence by configuring ADC_RSEQ1, ADC_RSEQ2, ADC_RSEQ3, and configure ADC_CTRL1.DCTU[2:0] to control the conversion of n channels each time a trigger signal is generated.

When the trigger signal is generated, it will convert n channels of the regular sequence and then stop, until the next trigger signal is generated. Next trigger will continue to convert n channels from the point where the previous conversion stopped, until all channels of the regular sequence are converted (If the last trigger occurs and the remaining channels in the conversion sequence are less than n, only the remaining channels will be converted and the conversion will be stopped), and the end of conversion flag bit will also be set to 1. When the conversion of all channels in the conversion sequence is completed, when the next trigger signal occurs, the conversion starts from the first channel of the regular sequence again.

9.3.11.2 Injection channels

Configure ADC_CTRL1.DJCH to 1 to enable the discontinuous mode on the injection channel, obtain the injection sequence by configuring ADC_JSEQ.

When the trigger signal is generated, it will convert 1 channel of the injection sequence and then stop. Until the next trigger signal is generated. Next trigger will continue to convert 1 channel from the point where the previous conversion stopped until all channels of the injection sequence are converted, and the end of conversion flag bit will

also be set to 1. When the conversion of all channels in the conversion sequence is completed, when the next trigger signal occurs, the conversion starts from the first channel of the injection sequence again.

Only one of injection conversion and regular conversion can be set to discontinuous mode at the same time, and the automatic injection function and discontinuous mode cannot be set at the same time.

9.4 Calibration

In order to reduce the error, the ADC will have a built-in self-calibration mechanism. Before the A/D conversion, this self-calibration mechanism is used to calculate a calibration factor on each capacitor. Errors due to changes in the internal capacitor bank during conversion are eliminated by this calibration factor. The application program sets the ADC_CTRL2.ENCAL bit to 1 to start self-calibration. During the calibration, the ADC_CTRL2.ENCAL bit remains 1. After the calibration, the ADC_CTRL2.ENCAL bit is cleared by hardware, and then the A/D conversion starts.

Note:

- 1. It is recommended to perform a calibration after each power-on. If the ADC has been converted and is in continuous conversion mode, the calibration operation cannot be completed..
- 2. The default is single-end calibration, and for differential automatic calibration, you must set ADC_CTRL3.CALDIF to 1. Then write 1 to ADC_CTRL2.ENCAL bit and wait for calibration complete (ADC_CTRL2.ENCAL bit will clear 0 automatically after calibration).

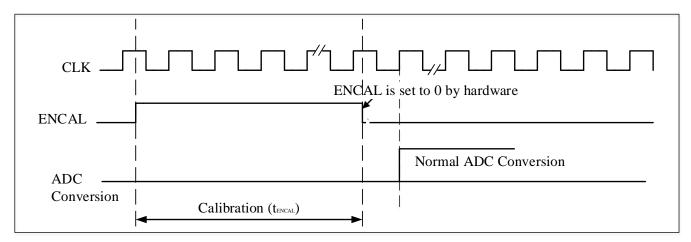


Figure 9-6 Calibration sequence diagram

9.5 Data aligned

There are two alignment methods for data storage after conversion: left-aligned and right-aligned. The alignment can be set by the ADC_CTRL2.ALIG bit. ADC_CTRL2.ALIG = 0 is right-aligned, as shown in **Table 9-3**, ADC_CTRL2.ALIG = 1 is left-aligned, as shown in **Table 9-4**.

For injection sequence, the SYM bit is the extended sign value, and the data stored in the register is the conversion result minus the user-defined offset in the ADC_JOFFSETx register, so the result can be a negative value; for regular sequence, there is no need to subtract offset value.

Table 9-3 Right-align data

The Injection sequence

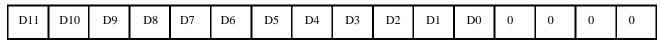
(12bit resolution)

SYM	SYM	SYM	SYM	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

The regular sequence

(12bit resolution)

Table 9-4 Left-aligne data


Injection sequence

(12bit resolution)

SYM	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	0	0	0
-----	-----	-----	----	----	----	----	----	----	----	----	----	----	---	---	---

The regular sequence

(12bit resolution)

Note: When the conversion digits are 10, 8, and 6, refer to the alignment with 12 conversion digits

9.6 Programmable channel sampling time

Specify the number of sampling cycles of ADC in ADC_SAMPTx.SAMPx[2:0], and then the ADC samples the input voltage in the specified sampling cycle. For different channels, you can select different sampling time. The total conversion time is calculated as follows:

 $T_{CONV} = Sampling time + 12.5 cycles$

Example:

ADCCLK=72MHz, the sampling time is 1. 5 cycles and resolution is 12bit, the total conversion time is "1.5 + 12.5" ADCCLK cycles, that is:

$$T_{CONV} = 1.5 + 12.5 = 14 \text{ cycle} = 0.1944 \mu \text{s}$$

9.7 Externally triggered conversion

For the regular sequence, software sets the ADC_CTRL2.EXTRTRIG bit to 1, then the regular channel can use the rising edge of the external event to trigger the start conversion, and then the software sets the ADC_CTRL2.EXTRSEL[2:0] bits to select the external trigger source of the regular sequence. The external trigger source selection is shown in the table below. If you select EXTI line 11 or TIM8_TRGO as the external trigger source, you can set the AFIO_RMP_CFG.ADC1_ETRR or AFIO_RMP_CFG.ADC2_ETRR bit to implement; if you select SWSTRRCH as the external trigger source, you can start the regular channel conversion by setting

ADC_CTRL2.SWSTRRCH to 1.

Table 9-5 External trigger for regular channels of ADC1 and ADC2

EXTRSEL[2:0]	Trigger source	Туре
000	TIM1_CC1 event	
001	TIM1_CC2 event	
010	TIM1_CC3 event	Internal signal from the on this times
011	TIM2_CC2 event	Internal signal from the on-chip timer
100	TIM3_TRGO event	
101	TIM4_CC4 event	
110	EXTI line11/TIM8_TRGO event	External pin/internal signal from on-chip timer
111	SWSTRRCH	Software control bit

For the injection sequence, the software sets the ADC_CTRL2.EXTJTRIG bit to 1, then the injection channel can use the rising edge of the external event to trigger the start conversion, and the software sets the ADC_CTRL2.EXTJSEL[2:0] bits to select the external trigger source of the injection sequence. The external trigger source selection is shown in the table below. If you select EXTI line 15 or TIM8_CC4 as the external trigger source, you can set the AFIO_RMP_CFG.ADC1_ETRI or AFIO_RMP_CFG.ADC2_ETRI bit to implement; if you select SWSTRJCH as the external trigger source, you can start the injection channel conversion by setting ADC_CTRL2.SWSTRJCH to 1.

Table 9-6 External trigger for injection channel of ADC1 and ADC2

EXTJSEL[2:0]	Trigger source	Туре
000	TIM1_TRGO event	
001	TIM1_CC4 event	
010	TIM2_TRGO event	Internal simulform the english times
011	TIM2_CC1 event	Internal signal from the on-chip timer
100	TIM3_CC4 event	
101	TIM4_TRGO event	
110	EXTI line15/TIM8_CC4 event	External pin/internal signal from on-chip timer
111	SWSTRJCH	Software control bit

Note: Injection triggers can interrupt conversion of the regular sequence.

9.8 DMA requests

In order to avoid the loss of the regular channel conversion result saved in the ADC_DAT register due to excessive data when multiple regular channels are converted, the ADC_CTRL2.ENDMA bit can be set to 1 to use DMA. When the ADC regular channel conversion ends, a DMA request is generated. After the DMA receives the request, it will transfer the converted data from the ADC_DAT register to the destination address specified by the user.

Note: In independent ADC mode, ADC1, ADC2 have DMA function. In dual ADC mode, the data converted by ADC2 is in the data register of ADC1.

9.9 ADC Mode

ADC1 (master) and ADC2 (slave) can form a dual ADC mode.

The ADC working mode can be selected by configuring ADC_CTRL1.DUSEL[3:0], which can be configured as independent mode or dual ADC mode. The ADC mode can be configured as the following working modes:

- Independent mode.
- Synchronous injection mode.
- Synchronous regular mode.
- Fast alternate mode.
- Slow alternate mode.
- Rotation trigger mode.
- Synchronous regular mode + synchronous injection mode.
- Synchronous regular mode + rotation trigger mode.
- Synchronous injection mode + alternate mode.

Note:

- 1. When configuring dual ADC mode, if external event trigger is required, it is necessary to configure the main ADC external event trigger, the slave ADC software trigger, the master ADC and the slave ADC external trigger must be enabled at the same time, so as to avoid the wrong trigger conversion of the slave ADC.
- 2. When working in dual ADC mode, even if DMA is not used to transfer data, DMA needs to be enabled, and the converted data from the ADC can be read through the data register of the main ADC.

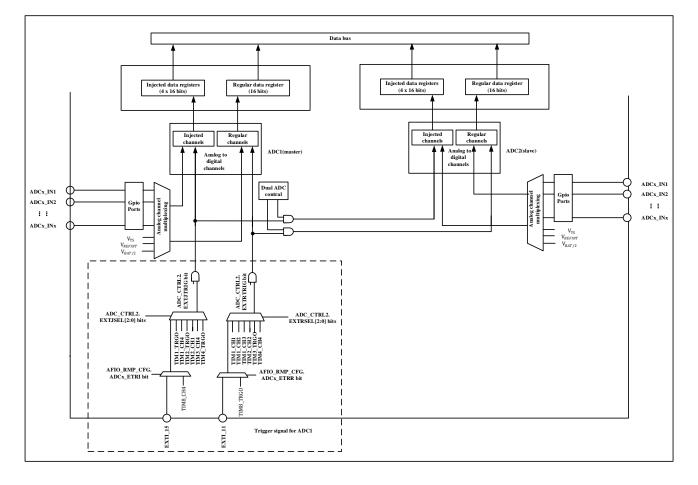
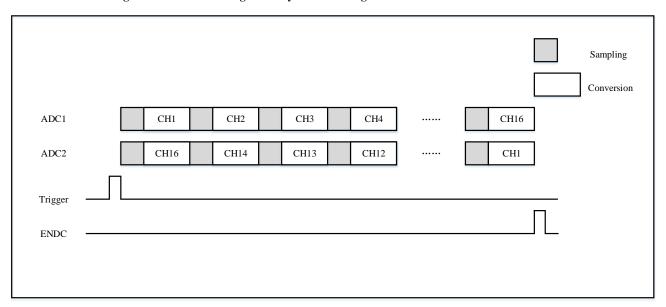


Figure 9-7 Dual ADC Block Diagram

9.9.1 Independent mode

In this mode, each ADC works independently.

9.9.2 Synchronous regular mode

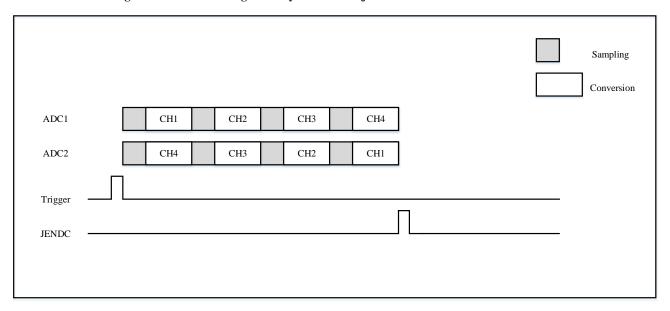

In this mode, a regular sequence is converted, and the external trigger comes from the multiplexer of ADC1, which is determined by ADC_CTRL2.EXTRSEL[2:0], and ADC2 will be triggered synchronously.

If ADC1 or ADC2 sets ADC_CTRL1.ENDCIEN, when the conversion of the regular sequence of ADC1 or ADC2 is completed, an ENDC interrupt will be generated, and the converted data will be stored in the ADC_DAT register. The high half word of ADC_DAT is the conversion data of ADC2. The low half word of ADC_DAT is the conversion data of ADC1, and 32-bit DMA can be used to transfer the data of ADC_DAT to SRAM.

- 1. Do not convert the same channel on 2 ADCs (the sampling times of two ADCs on the same channel cannot overlap).
- 2. In the synchronous regular mode, the synchronous conversion regular sequence of ADC1 and ADC2 needs to be set to the same time, or the interval of the trigger signal is longer than the sequence with longer conversion time. If the interval between the trigger signals is smaller than the conversion of the longer sequence, the shorter sequence may start to convert again when the longer sequence is not completed.

Figure 9-8 Schematic diagram of synchronous regular mode conversion of 16 channels

9.9.3 Synchronous injection mode

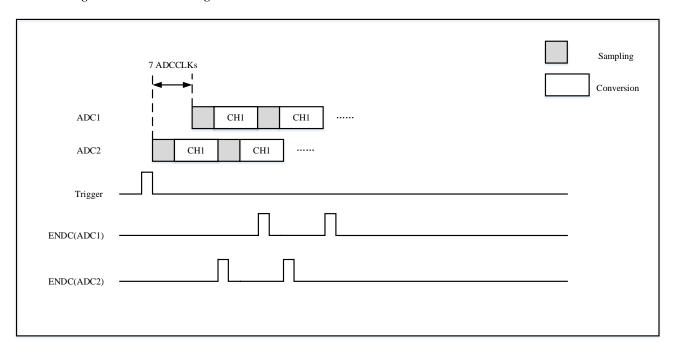

Converting an injection sequence in this mode, the external trigger comes from the multiplexer of ADC1, determined by ADC_CTRL2.EXTJSEL[2:0], ADC2 will be triggered synchronously.

If ADC1 or ADC2 sets ADC_CTRL1.JENDCIEN, a JENDC interrupt will be generated when the conversion of the injection sequence of ADC1 or ADC2 is completed, and the converted data will be stored in the respective ADC_JDATx registers.

- 1. Do not convert the same channel on 2 ADCs (the sampling times of two ADCs on the same channel cannot overlap).
- 2. In the synchronous injection mode, the injection sequence of the synchronous conversion of ADC1 and ADC2 needs to be set to the same time, or the interval of the trigger signal is longer than the sequence with a longer conversion time. If the interval between the trigger signals is smaller than the conversion of the longer sequence, the shorter sequence may start to convert again when the longer sequence is not completed.

Figure 9-9 Schematic diagram of synchronous injection mode conversion of 4 channels

9.9.4 Fast alternate mode

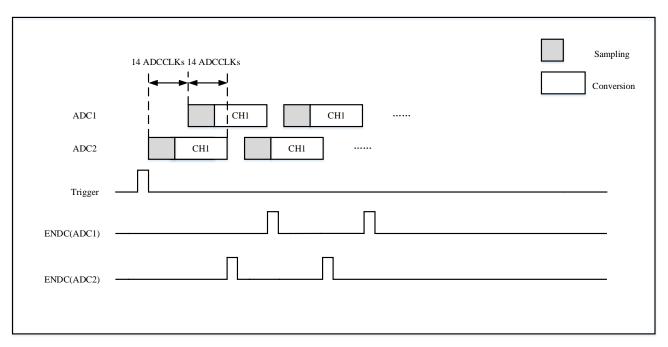

This mode is for regular sequences (usually one channel). The external trigger comes from the multiplexer of ADC1, which is determined by ADC_CTRL2.EXTRSEL[2:0]. When the trigger occurs, ADC2 converts immediately and ADC1 starts converting after 7 ADC clock cycles. If ADC_CTRL2.CTU is set for ADC1 and ADC2, then the selected regular sequence will be converted continuously.

The converted data will be stored in the ADC_DAT register. The high halfword of ADC_DAT is the conversion data of ADC2, and the low halfword of ADC_DAT is the conversion data of ADC1. If ADC1 or ADC2 sets ADC_CTRL1.ENDCIEN, when the conversion of the regular sequence of ADC1 or ADC2 is completed,, an ENDC interrupt will be generated. At this time, if ADC_CTRL2.ENDMA is set, a DMA transfer request can be generated, and the data of ADC_DAT can be passed through DMA transfers to SRAM.

- 1. When using fast alternate mode, make sure that no injection channel is externally triggered.
- 2. The sampling time must be less than 7 ADC clock cycles to avoid overlapping sampling cycles when ADC1 and ADC2 convert the same channel.

Figure 9-10 Schematic diagram of fast alternate mode conversion for continuous conversion of 1 channel

9.9.5 Slow alternate mode


This mode is for regular sequences (usually one channel). The external trigger comes from the multiplexer of ADC1, which is determined by ADC_CTRL2.EXTRSEL[2:0]. When the trigger is generated, ADC2 converts immediately, ADC1 starts to convert after 14 ADC clock cycles, ADC2 starts to convert again after 14 ADC clock cycles, and so on. This mode automatically continuously converts the regular sequence without the need to set ADC_CTRL2.CTU.

The converted data will be stored in the ADC_DAT register. The high half word of ADC_DAT is the conversion data of ADC2, and the low half word of ADC_DAT is the converted data of ADC1. If ADC1 or ADC2 sets ADC_CTRL1.ENDCIEN, when the conversion of the regular sequence of ADC1 or ADC2 is completed, an ENDC interrupt will be generated. At this time, if ADC_CTRL2.ENDMA is set, a DMA transfer request can be generated, and the data of ADC_DAT can be transferred to SRAM through DMA.

- 1. When using slow alternate mode, make sure that no injection channel is externally triggered.
- 2. The sampling time must be less than 14 ADC clock cycles to avoid overlapping sampling cycles when ADC1 and ADC2 convert the same channel.

Figure 9-11 Schematic diagram of slow alternate mode conversion for 1 channel

9.9.6 Rotation trigger Mode

This mode is suitable for injection sequences. The external trigger comes from the multiplexer of ADC1, which is determined by ADC_CTRL2.EXTJSEL[2:0]. When the first trigger is generated, all injection channels of ADC1 are converted, when the second trigger is generated, all injection channels of ADC2 are converted, and so on. If ADC1 or ADC2 sets ADC_CTRL1.JENDCIEN, a JENDC interrupt will be generated when the conversion of the injection sequence of ADC1 or ADC2 is completed. When all injection sequences have been converted, another external trigger is generated, and the rotation trigger starts again.

Sampling Conversion Injection Injection Injection ADC1 sequence sequence sequence Injection Injection Injection ADC2 sequence Trigger JENDC(ADC1) JENDC(ADC2)

179

Figure 9-12 Rotation triggering: injecting channel groups

If the injection discontinuous mode is used on ADC1 and ADC2 at the same time, when the first trigger is generated, the first group of injection channels of ADC1 is converted; when the second trigger is generated, the first group of injection channels of ADC2 is converted; when the third trigger is generated, the second group of injection channels of ADC1 is converted. When the fourth trigger is generated, the second group of injection channels of ADC2 is converted, and the cycle is continues. If ADC1 or ADC2 sets ADC_CTRL1.JENDCIEN, a JENDC interrupt will be generated when the conversion of the injection sequence of ADC1 or ADC2 is completed. When all injection sequences have been converted, another external trigger is generated, and the rotation trigger starts again.

Sampling
Conversion

ADC1
CH1
CH2
CH3
CH4

ADC2
CH5
CH6
CH7
CH8

Trigger

JENDC(ADC1)
JENDC(ADC2)

Figure 9-13 Rotation trigger: inject channel group in discontinuous mode

9.9.7 Mixed synchronous regular mode + synchronous injection mode

In this mode, the transition of the synchronous injection channel can interrupt the transition of the synchronous regular channel.

Note: In this mode, the sequence of synchronous conversion of ADC1 and ADC2 needs to be set to the same time, or the interval of the trigger signal is greater than that of the sequence with longer conversion time. If the interval between the trigger signals is smaller than the conversion of the longer sequence, the shorter sequence may start to convert again when the longer sequence is not completed.

9.9.8 Mixed synchronous regular mode + rotation trigger mode

Rotation triggered transitions of the injection channel can interrupt transitions of a synchronous regular channel.

When the injection channel event occurs, the injection rotation conversion starts immediately. If a regular conversion is in progress, both the master ADC and the slave ADC will stop the regular conversion to ensure that the regular conversion can be resumed synchronously after the injection conversion is completed.

Note: In this mode, the sequence of synchronous conversion of ADC1 and ADC2 needs to be set to the same time, or the interval of the trigger signal is greater than that of the sequence with longer conversion time. If the interval

Trigge

between the trigger signals is smaller than the conversion of the longer sequence, the shorter sequence may start to convert again when the longer sequence is not completed.

ADC1 regular CH1 CH2 CH3 CH3 CH4 CH4 CH5 ADC1 injection CH13 channel ADC2 regular CH7 CH8 CH10 CH9 CH9 channel ADC2 injection

Figure 9-14 Combination of rotation mode and synchronous regular mode

If another injection trigger occurs during the injection transition, this trigger will be ignored. As shown below:

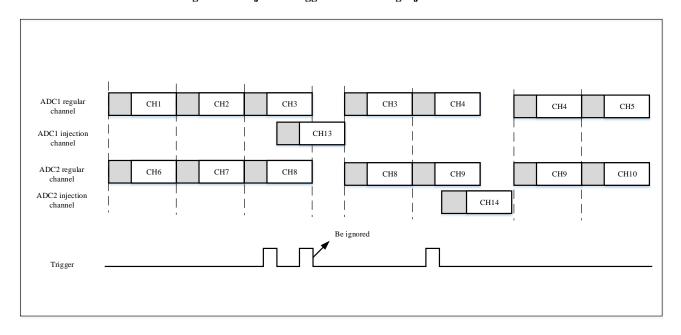
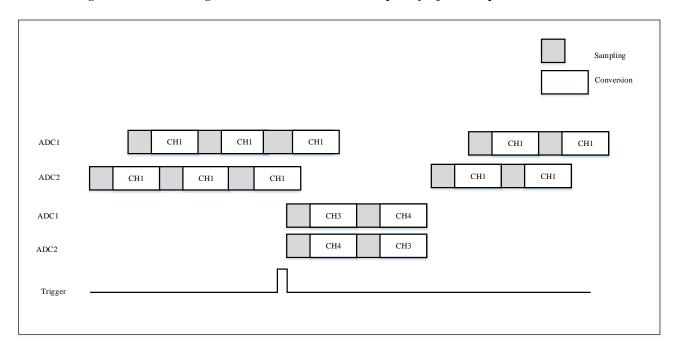


Figure 9-15 Injection trigger occurs during injection transition

9.9.9 Mixed synchronous injection mode + alternate mode

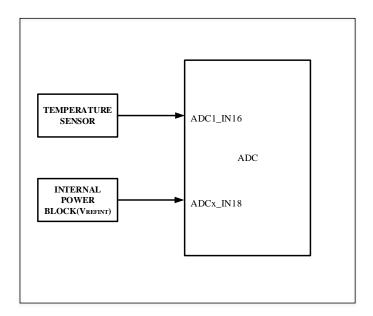
In this mode, when the injection trigger occurs, the alternate conversion will be interrupted, the injection conversion will be started, and the alternate conversion will be resumed after the injection conversion is completed.


Note: When the ADC clock prescale factor is set to 4, the sampling time will not be evenly distributed after the

181

alternate mode recovery, and the sampling interval is 8 ADC clock cycles alternated with 6 ADC clock cycles instead of 7 ADCs evenly clock cycle.

Figure 9-16 Alternate single-channel conversions are interrupted by injection sequences CH3 and CH4


9.10 Temperature sensor

Set the ADC_CTRL2.TEMPEN bit to 1, enable the temperature sensor and V_{REFINT}, and use the temperature sensor to detect the ambient temperature when the device is working. The output voltage sampled by the temperature sensor is converted into a digital value by the ADC_IN16 channel. When the temperature sensor is working, the ideal sampling time is 17.1us; when the temperature sensor is not working, the ADC CTR2.TEMPEN bit can be cleared by software to reduce power consumption. As follows is a block diagram of a temperature sensor.

The output voltage of the temperature sensor changes linearly with temperature. Different chips will have different offsets in the temperature curve due to different production processes. Through testing, it is found that the maximum offset is 3 °C. This characteristic makes the internal temperature sensor more suitable for detecting temperature changes. Not suitable for measuring absolute temperature. When accurate temperature measurement is required, an external temperature sensor should be used.

Figure 9-17 Temperature sensor and VREFINT diagram of the channel

9.10.1 Temperature sensor using flow

- 1) Configure the channel (ADC_IN16) and sampling time of the channel to be 17.1 us
- 2) Set ADC_CTRL2.TEMPEN bit to 1 to enable temperature sensor and VREFINT
- 3) Set ADC_CTRL2.ON bit to 1 to start ADC conversion (or through external trigger)
- 4) Read the temperature data in the ADC data register, and calculate the temperature value by the following formula:

Temperature ($^{\circ}$ C) = {($V_{30} - V_{SENSE}$) / Avg_Slope} + 30- T_{offset}

In which:

 $V_{30} = V_{SENSE}$ at 30 degrees celsius

Avg_Slope = temperature and Average slope of a V_{SENSE} curve (mV/°C or μ V/°C)

 T_{offset} = empirical value for temperature error compensation ($^{\circ}$ C)

Refer to the values of V₃₀ and Avg_Slope in the electrical characteristics chapter of the datasheet.

Note: There is a settling time before the sensor wakes up from the power-off mode to the correct output of VSENSE; there is also a settling time after the ADC is powered on, so in order to shorten the delay, the ADC_CTRL2.TEMPEN and ADC_CTRL2.ON bits should be set at the same time.

9.11 ADC interrupt

ADC interrupts can be from an end of regular or injection sequence conversion, an analog watchdog event when input voltage exceeds the threshold, any end of regular or injection channel conversion. These interrupts have independent interrupt enable bits.

There are 2 status flags in the ADC_STS register: injection sequence channel conversion started (JSTR) and regular

sequence channel conversion started (STR). But there are no interrupts associated with these two flags in the ADC.

Note: ADC1 and ADC2 share one interrupt entry.

Table 9-7 ADC interrupt

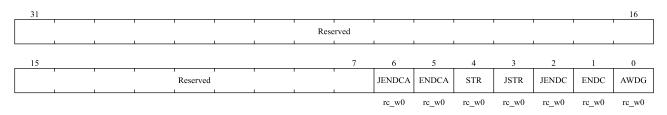
Interrupt event	Event flags	Enable control bit
Regular sequence or injection conversion is complete	ENDC	ENDCIEN
Injection sequence conversion is complete	JENDC	JENDCIEN
Analog watchdog status bit is set	AWDG	AWDGIEN
Any regular channel interruption is enabled	ENDCA	ENDCAIEN
Any injection channel interruption is enabled	JENDCA	JENDCAIEN

9.12 ADC registers

9.12.1 ADC register overview

Table 9-8 ADC register overview

Offset	Register	31 30 29 28 27 26	25 24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
000h	ADC_STS						R	eserve	ed												JENDCA	ENDCA	STR	JSTR	JENDC	ENDC	AWDG
	Reset Value																				0	0	0	0	0	0	0
004h	ADC_CTRL1	Reserved		AWDGERCH	AWDGEJCH	Document	Nesel ved		DU	SEL		I	DCTU	J	DJCH	DREGCH	AUTOJC	AWDGSGLEN	SCANMD	JENDCIEN	AWDGIEN	ENDIEN		AV	VDGC	СН	
	Reset Value	0 0 0 0 0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
008h	ADC_CTRL2	Reserved		TEMPEN	SWSTRRCH	SWSTRJCH	EXTRTRIG		EXTRSEL[2:0]		Reserved	EXTJTRIG		EXTISEL		ALIG		Reserved	ENDMA			Reserved			ENCAL	CTU	NO
	Reset Value			0	0	0	0	0	0	0		0	0	0	0	0			0						0	0	0
00Ch	ADC_SAMPT1	Reserved			SAMP17[2:0]			SAMP16[2:0]			SAMP15[2:0]			SAMP14[2:0]			SAMP13[2:0]			SAMP12[2:0]			SAMP11[2:0]			SAMP10[2:0]	
	Reset Value			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
010h	ADC_SAMPT2	Reserved SAMP9[2:0]	MP8[2:0]		SAMP7[2:0]			SAMP6[2:0]			SAMP5[2:0]			SAMP4[2:0]			SAMP3[2:0]			SAMP2[2:0]			SAMP1[2:0]			SAMP0[2:0]	
	Reset Value	0 0 0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
014h	ADC_JOFFSET1				Rese	rved										_		0	0	OFFSETJCH		CH2[11:0]				0	
	Reset Value															0	0	0	0					0	0	0	0
018h	ADC_JOFFSET2				Rese	rved										L_	_	_	_			CH2[:		-	_	_	
	Reset Value ADC_JOFFSET3															0	0	0	0	0 OFF	0	0 CH3[:	0	0	0	0	0
01Ch	Reset Value				Rese	rved										0	0	0	0	0	0	0	0	0	0	0	0
	ADC_JOFFSET4																Ü	Ü	Ü			CH4[Ü		
020h	Reset Value				Rese	rved										0	0	0	0	0	0	0	0	0	0	0	0
	ADC_WDGHIGH															U	U					U	U	U	U	U	U
024h	Reset Value	Reserved HTH[11:0]											0														
		LTH[11:0]												U													
028h	ADC_WDGLOW		Rese	rved								0	0	0	0	0	0			_	0	0	0	0	0	0	
020	Reset Value				LEN	[2,0]			CE-	016	1.03	U	0	0	0	0	0	0	0	0	0	0	0	0	0	.01	0
02Ch	ADC_RSEQ1	Reserved						_	Q16[4		SEQ15[-					SEQ14[4:0]						SEQ13[4:0			0		
030h	Reset Value ADC_RSEQ2	SEQ12[4:0]		0 SE	0 Q11[4	0	0	0	0 SE	0 Q10[4	4:0]	0	0	0 SE	0 EQ9[4	:0]	0	0	0 SE	0 Q8[4	:0]	0	0	0 SE	0 Q7[4:	0	0



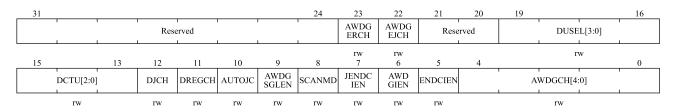
T			_	~	_		10	-	~	6)	-		_	~	_	10	10	-	~	61	-			г.								_
Offset	Register	31	29	28	_	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
	Reset Value		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
034h	ADC_RSEQ3	Reserved		SE	EQ12[4	:0]			SE	Q11[4	4:0]			SE	Q10[4:0]			SI	E Q 9[4	:0]			SE	EQ8[4	:0]			SE	EQ7[4	:0]	
	Reset Value	Ro	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
038h	ADC_JSEQ		Reserved									JLEN[1:0]		JS	EQ4[4:0]			JS	EQ3[4	4:0]			JSI	EQ2[4	4:0]			JSI	EQ1[1:0]	
	Reset Value										0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
03Ch	ADC_JDAT1							Rese	rvod														J	DAT	1[15:0)]						
03CII	Reset Value							Kese	i veu								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
040h	ADC_JDAT2							Rese	arra d														J	DAT2	2[15:0)]						
04011	Reset Value							Rese	rveu								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
044h	ADC_JDAT3			Reserved																			J	DAT:	3[15:0)]						
044n	Reset Value							Kese	rvea								0 0 0 0 0 0						0	0	0	0	0	0	0 0 0 0			
048h	ADC_JDAT4							Rese	mro d														J	DAT-	1[15:0)]						
04811	Reset Value							Rese	rveu								0	0 0 0 0 0 0 0 0 0 0						0	0	0	0	0	0	0		
04Ch	ADC_DAT							Rese	rvod								DAT[15:0]															
04CII	Reset Value							Kese	i veu								0	0 0 0 0 0 0				0 0 0 0 0					0	0	0	0	0	
050h	ADC_DIFSEL					R	eserve	ed	DIFSEL[18:0]											Reserved												
	Reset Value													0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Re
054h	ADC_CALFACT			г	Reserve	v4						CALF	ACT	D[6:0]					D	eserv	od						CALF	ACT	S[6:0]	
03411	Reset Value			r	Cesei ve	au .				0	0	0	0	0	0	0				ı	.csci v	cu				0	0	0	0	0	0	0
058h	ADC_CTRL3									Rese	erved										VBATMEN	DPWMOD	JENDCAIEN	ENDCAIEN	BPCAL	PDRDY	RDY	CKMOD	CALALD	CALDIF		KES[1:0]
	Reset Value																				0	0	0	0	0	0	0	0	0	0	0	0
05Ch	ADC_SAMPT3													Rese	erved														SAMPSEL		SAMP[2:0]	
1	Reset Value																												0	0	0	0

9.12.2 ADC status register (ADC_STS)

Address offset: 0x00

Reset value: 0x0000 0000

Bit field	Name	Description
31:15	Reserved	Reserved, the reset value must be maintained
6	JENDCA	Any injected channel end of conversion flag
		This bit is set by hardware at the end of any injection channel conversion and cleared by
		software.
		0: Conversion is not complete;
		1: Conversion is complete.
5	ENDCA	Any channel end of conversion flag
		This bit is set by hardware at the end of any channel (regular or injection) conversion and
		cleared by software.



Bit field	Name	Description
		0: Conversion is not complete;
		1: Conversion is complete.
4	STR	Regular channel start flag
		This bit is set by hardware at the start of regular channel conversion and cleared by software.
		0: Regular channel conversion has not started.
		1: Regular channel conversion has started.
3	JSTR	Injected channel start flag
		This bit is set by hardware at the start of the injection channel conversion and cleared by
		software.
		0: Injection sequence channel conversion has not started.
		1: Injection sequence channel conversion has started.
2	JENDC	Injected channel end of conversion
		This bit is set by hardware at the end of all injection sequence channel conversions and
		cleared by software
		0: Conversion is not complete.
		1: Conversion is complete.
1	ENDC	Conversion sequence channel end of conversion
		This bit is set by hardware at the end of all regular(or injection) sequence channel
		conversion and cleared by software
		0: Conversion is not complete.
		1: Conversion is complete.
0	AWDG	Analog watchdog flag
		This bit is set by hardware and cleared by software when converted voltage values are outside
		the range defined by the ADC_LTR and ADC_HTR registers
		0: Analog watchdog event not occurs;
		1: Analog watchdog event occurs.

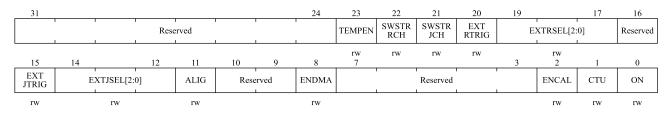
9.12.3 ADC control register 1 (ADC_CTRL1)

Address offset: 0x04

Reset value: 0x0000 0000

Bit field	Name	Description
31:24	Reserved	Reserved, the reset value must be maintained
23	AWDGERCH	Analog watchdog enable on regular channels
		This bit is set and cleared by the software.
		0: Disables analog watchdog on regular channel.

Bit field	Name	Description
		1: Use analog watchdog on regular channels.
22	AWDGEJCH	Analog watchdog enable on injected channels
		This bit is set and cleared by the software.
		0: Disables analog watchdog on injection channel.
		1: Use analog watchdog on the injection channel.
21:20	Reserved	Reserved, the reset value must be maintained
19:16	DUSEL[3:0]	Dual mode selection
		Software uses these bits to select modes of operation.
		0000: independent mode;
		0001: mixed synchronous regular mode + synchronous injection mode;
		0010: mixed synchronous regular mode + rotation trigger mode;
		0011: mixed synchronous injection mode + fast alternate mode;
		0100: mixed synchronous injection mode + slow alternate mode;
		0101: synchronous injection mode;
		0110: synchronous regular mode;
		0111: fast alternate mode;
		1000: slow alternate mode;
		1001: rotation trigger mode.
		Note: These bits are reserved in ADC2 and ADC4. Changing the channel configuration in dual
		ADC mode will cause a restart condition. It is recommended to turn off the dual ADC mode
		before changing the configuration to avoid synchronization loss.
15:13	DCTU[2:0]	Discontinuous mode channel count
		The software uses these bits to define the number of channels for converting after receiving an
		external trigger in discontinuous mode
		000: 1 channel
		001: 2 channels
		111: 8 channels
12	DJCH	Discontinuous mode on injected channels
		This bit is set and cleared by the software. It is used to turn on or off discontinuous mode on injected
		channels.
		0: Disable discontinuous mode on injection sequence channel
		1: Enable discontinuous mode on injection sequence channel
11	DREGCH	Discontinuous mode is on regular channels.
		This bit is set and cleared by the software. It is used to turn on or off discontinuous mode on regular
		channels.
		0: Disable discontinuous mode on regular sequence channel
		1: Enable discontinuous mode on regular sequence channel
10	AUTOJC	Automatic injected sequence conversion
		This bit is set and cleared by the software to enable or disable automatic injection sequence
		channel conversion after regular sequence channel conversion is complete


Bit field	Name	Description
		0: Disable automatic injection channel conversion.
		1: Enable automatic injection channel conversion.
9	AWDGSGLEN	Enable the watchdog on a single channel in scan mode
		This bit is set and cleared by software to enable or disable analog watchdog functions on
		channels specified by ADC_CTRL1.AWDGCH[4:0]
		0: Use watchdog on all channels.
		1: Use watchdog on single channel.
8	SCANMD	Scan mode
		This bit is set and cleared by the software to enable or disable scan mode. In scan mode, the
		conversion is made by ADC_RSEQx or the selected channel of the ADC_JSEQ register.
		0: Disable scan mode.
		1: Enable scan mode.
		Note: If the ADC_CTRL1.ENDCIEN or ADC_CTRL1.JENDCIEN bits are set separately,
		ADC_STS.ENDC or ADC_STS.JENDC interrupts occur only after the last channel has been
		converted.
7	JENDCIEN	Interrupt enable for injected channels
		This bit is set and cleared by the software to disallow or allow interrupts after all injection
		channel conversions have finished.
		0: Disable JENDC interruption.
		1: Enable JENDC interruption.
6	AWDGIEN	Analog watchdog interrupt enable
		This bit is set and cleared by software to disallow or allow interrupt generated by analog
		watchdog. In scan mode, if the watchdog detects an out-of-range value, the scan is aborted
		only when that bit is set.
		0: Disable analog watchdog interruption.
		1: Enable analog watchdog interruption.
5	ENDCIEN	Interrupt enable for any channel
		This bit is set and cleared by the software to disallow or allow interrupts to occur after the
		regular or injected channel conversion ends.
		0: Disable ENDC interruption.
		1: Enable ENDC interruption.
4:0	AWDGCH[4:0]	Analog watchdog channel select bits
		These bits are set and cleared by software to select input channels that analog watchdog
		protection.
		00000: ADC analog input channel 0
		00001: ADC analog input channel 1
		01111: ADC analog input channel 15
		10000: ADC analog input channel 16
		10001: ADC analog input channel 17
		10010: ADC analog input channel 18
		Reserved all other values.

9.12.4 ADC control register 2 (ADC_CTRL2)

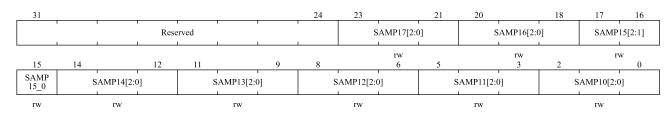
Address offset: 0x08

Reset value: 0x0000 0000

Bit field	Name	Description
31:24	Reserved	Reserved, the reset value must be maintained
23	TEMPEN	Temperature sensor and V _{REFINT} Enable
		This bit is set and cleared by the software to enable or disable the temperature sensor and
		V _{REFINT} Channel.
		0: Disables the temperature sensor and V_{REFINT} .
		1: Enable the temperature sensor and V _{REFINT} .
22	SWSTRRCH	Start conversion of regular channels
		This bit is set by the software to start the conversion and cleared by the hardware as soon as the
		conversion begins. If SWSTRRCH is selected as the trigger event in the
		ADC_CTRL2.EXTRSEL[2:0] bit, which is used to initiate the conversion of a set of regular
		channels
		0: Reset state.
		1: Starts converting the regular channel.
21	SWSTRJCH	Start conversion of injected channels
		This bit is set by the software to initiate the conversion and can be cleared by the software or by
		the hardware as soon as the conversion begins. If SWSTRJCH is selected as the trigger event in
		the ADC_CTRL2.EXTJSEL[2:0] bit, which is used to initiate a conversion of a set of injected
		channels
		0: Reset state.
		1: Starts converting the injection channel.
20	EXTRTRIG	External trigger conversion mode for regular channels
		This bit is set and cleared by software to enable or disable external triggering events that can
		start regular sequence conversion.
		0: Start conversion without external events.
		1: Use an external event to start the conversion.
19:17	EXTRSEL[2:0]	External event select for regular sequence
		These bits select external events to start the regular sequence conversion
		Trigger configuration for ADC1 and ADC2:
		000: TIM1_CC1 event; 100: TIM3_TRGO event;
		001: TIM1_CC2 event; 101: TIM4_CC4 event;
		010: TIM1_CC3 event; 110: EXTI line 11/TIM8_TRGO event;

189

Bit field	Name	Description								
		011: TIM2_CC2 event; 111: SWSTRRCH.								
16	Reserved	Reserved, the reset value must be maintained								
15	EXTJTRIG	External trigger conversion mode for injected channels								
		This bit is set and cleared by software to enable or disable external triggering events that can								
		start injection sequence conversion.								
		0: Start conversion without external events.								
		1: Use an external event to start the conversion.								
14:12	EXTJSEL[2:0]	External event select for injected sequence								
		These bits select the External event used to trigger the injected sequence conversion.								
		Trigger configuration for ADC1 and ADC2:								
		000: TIM1_TRGO event; 100: TIM3_CC4 event;								
		001: TIM1_CC4 event; 101: TIM4_TRGO event;								
		010: TIM2_TRGO event; 110: EXTI line 15/TIM8_CC4 event;								
		011: TIM2_CC1 event; 111: SWSTRRCH.								
11	ALIG	Data alignment								
		This bit is set and cleared by the software. Refer to Table 9-3 and Table 9-4.								
		0: Right-aligned.								
		1: Left-aligned.								
10:9	Reserved	Reserved, the reset value must be maintained								
8	ENDMA	Direct memory access mode								
		This bit is set and cleared by the software. See the DMA Controller chapter for details.								
		0: Do not use DMA mode.								
		1: Use DMA mode.								
7:3	Reserved	Reserved, the reset value must be maintained								
2	ENCAL	A/D calibration								
		This bit is set by software to start calibration and cleared by hardware at the end of calibration.								
		0: Calibration completed;								
		1: Starts calibration.								
1	CTU	Continuous conversion								
		This bit is set and cleared by the software. If this bit is set, the conversion continues until the bit								
		is cleared.								
		0: Single conversion mode.								
		1: Continuous conversion mode.								
0	ON	A/D converter ON/OFF								
		This bit is set and cleared by the software. When the bit is 0', writing '1' will wake the ADC								
		from power-off mode.								
		When the bit is' 1', writing '1' starts the conversion. The application should note that there is a								
		delay t _{STAB} between the time the converter is powered on and the time the conversion begins, see								
		Figure 9-4.								
		0: Close ADC conversion/calibration and enter power-down mode.								
		1: Start ADC and start conversion.								

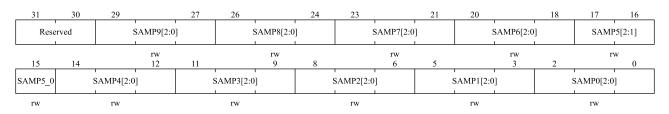


Bit field	Name	Description
		Note: If there are other bits changed in this register along with ON, the conversion will not be
		triggered. This is to prevent the wrong conversion from being triggered.

9.12.5 ADC sampling time register 1 (ADC_SAMPT1)

Address offset: 0x0C

Reset value: 0x0000 0000



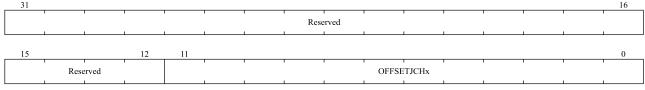
Bit field	Name	Description								
31:24	Reserved	Reserved, the reset value must be maintained								
23:0	SAMPx[2:0]	Channel x sample time selection								
		These bits are used to independently select the sampling time for each channel. The channel selection								
		bit must remain constant during the sampling period.								
		ADC_SAMPT3.SAMPSEL = 0, the sampling time is set as follows:								
		000: 1.5 cycles 100: 41.5 cycles								
		001: 7.5 cycles 101: 55.5 cycles								
		010: 13.5 cycles 110: 71.5 cycles								
		011: 28.5 cycles 111: 239.5 cycles								
		ADC_SAMPT3.SAMPSEL = 1, the sampling time is set as follows:								
		000: 1.5 cycles 100: 19.5 cycles								
		001: 2.5 cycles 101: 61.5 cycles								
		010: 4.5 cycles 110: 181.5 cycles								
		011: 7.5 cycles 111: 601.5 cycles								

9.12.6 ADC sampling time register 2 (ADC_SAMPT2)

Address offset: 0x10

Reset value: 0x0000 0000

Bit field	Name	Description
31:30	Reserved	Reserved, the reset value must be maintained



Bit field	Name	Description								
29:0	SAMPx[2:0]	Channel x sample time selection								
		These bits are used to independently select the sampling time for each channel. The channel								
		selection bit must remain constant during the sampling period.								
		ADC_SAMPT3.SAMP	SEL = 0, the sampling time is set as follows:							
		000: 1.5 cycles 100: 41.5 cycles								
		001: 7.5 cycles	101: 55.5 cycles							
		010: 13.5 cycles 110: 71.5 cycles								
		011: 28.5 cycles 111: 239.5 cycles								
		ADC_SAMPT3.SAMP	SEL = 1, the sampling time is set as follows:							
		000: 1.5 cycles	100: 19.5 cycles							
		001: 2.5 cycles	101: 61.5 cycles							
		010: 4.5 cycles	110: 181.5 cycles							
		011: 7.5 cycles	111: 601.5 cycles							

9.12.7 ADC injected channel data offset register x (ADC_JOFFSETx) (x=1...4)

Address offset: 0x14-0x20

Reset value: 0x0000 0000


rw

Bit field	Name	Description
31:12	Reserved	Reserved, the reset value must be maintained
11:0	OFFSETJCHx[11:0]	Data offset for injected channel x
		These bits define the values used to subtract from the original conversion data when the
		conversion is injected into the channel. The result of the conversion can be read in the
		ADC_JDATx register.

9.12.8 ADC watchdog high threshold register (ADC_WDGHIGH)

Address offset: 0x24

Reset value: 0x0000 0FFF

192

Nations Technologies Inc.

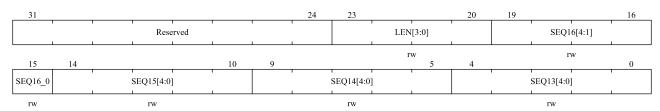
Tel: +86-755-86309900 Email: info@nationstech.com

Bit field	Name	Description
31:12	Reserved	Reserved, the reset value must be maintained
11:0	HTH[11:0]	Analog watchdog high threshold
		These bits define the high thresholds for analog watchdog.

9.12.9 ADC watchdog low threshold register (ADC_WDGLOW)

Address offset: 0x28

Reset value: 0x0000 0000



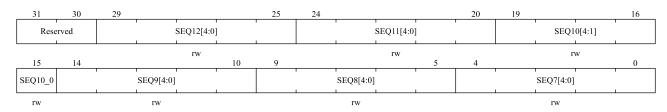
Bit field	Name	Description
31:12	Reserved	Reserved, the reset value must be maintained
11:0	LTH[11:0]	Analog watchdog low threshold
		These bits define the low thresholds for analog watchdog.

9.12.10 ADC regular sequence register 1 (ADC_RSEQ1)

Address offset: 0x2C

Reset value: 0x0000 0000

Bit field	Name	Description							
31:24	Reserved	eserved, the reset value must be maintained							
23:20	LEN[3:0]	Regular channel sequence length							
		These bits are software-defined as the number of channels in the regular sequence channel conversion.							
		0000: 1 conversion							
		0001: 2 conversions							
		1111: 16 conversions							
19:15	SEQ16[4:0]	16th conversion in regular sequence							
		These bits are software-defined as the number (0 to 18) of the 16th conversion channel in the							
		conversion sequence.							
14:10	SEQ15[4:0]	15th conversion in regular sequence							



Bit field	Name	Description
9:5	SEQ14[4:0]	14th conversion in regular sequence
4:0	SEQ13[4:0]	13th conversion in regular sequence

9.12.11 ADC regular sequence register 2 (ADC_RSEQ2)

Address offset: 0x30

Reset value: 0x0000 0000

Bit field	Name	Description
31:30	Reserved	Reserved, the reset value must be maintained
29:25	SEQ12[4:0]	12th conversion in regular sequence
		These bits are software-defined as the number (0 to 18) of the 12th conversion channel in the
		conversion sequence.
24:20	SEQ11[4:0]	11th conversion in regular sequence
19:15	SEQ10[4:0]	10th conversion in regular sequence
14:10	SEQ9[4:0]	9th conversion in regular sequence
9:5	SEQ8[4:0]	8th conversion in regular sequence
4:0	SEQ7[4:0]	7th conversion in regular sequence

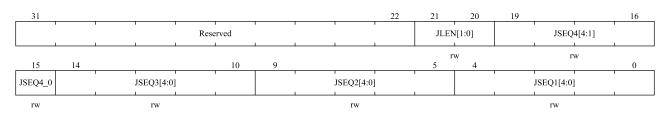
9.12.12 ADC regular sequence register 3 (ADC_RSEQ3)

Address offset: 0x34

Reset value: 0x0000 0000

31	30	29				25	24				20	19			16
Rese	rved		'	SEQ6[4:0]		'			SEQ5[4:0]	,			SEQ4	[4:1]	·
15	14			rw	10	0		1	rw	5	4		rv	w	
SEQ4_0			SEQ3[4:0]					SEQ2[4:0]			-	ı	SEQ1[4:0]		
rw			rw					rw					rw		

Bit field	Name	Description	
31:30	Reserved	Reserved, the reset value must be maintained	
29:25	SEQ6[4:0]	6th conversion in regular sequence These bits are software-defined as the number (0 to 18) of the 6th transition channel in the	
		conversion sequence.	
24:20	SEQ5[4:0]	5th conversion in regular sequence	
19:15	SEQ4[4:0]	4th conversion in regular sequence	



Bit field	Name	Description	
14:10	SEQ3[4:0]	3rd conversion in regular sequence	
9:5	SEQ2[4:0]	nd conversion in regular sequence	
4:0	SEQ1[4:0]	1st conversion in regular sequence	

9.12.13 ADC Injection sequence register (ADC_JSEQ)

Address offset: 0x38

Reset value: 0x0000 0000

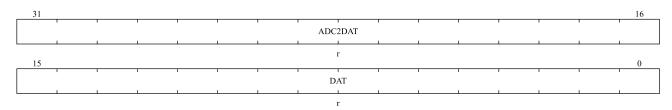
Bit field	Name	Description			
31:22	Reserved	Reserved, the reset value must be maintained			
21:20	JLEN[1:0]	Injected sequence length			
		These bits are software-defined as the number of channels in the injected channel conversion			
		sequence.			
		00: 1 conversion			
		01: 2 conversions			
		10: 3 conversions			
		11: 4 conversions			
19:15	JSEQ4[4:0] This is the 4th conversion in the injected sequence.				
		These bits are software-defined as the number (0 to 18) of the fourth transition channel in the			
		conversion sequence.			
		Note: Different from regular conversion sequences, if the length of ADC_JSEQ.JLEN[1:0] is			
		than 4, the sequence of conversion starts from (4-JLEN). For example, ADC_JSEQ[21:0] = 10			
		00011 00011 00111 00010 means that the scan conversion will be converted in the following			
		channel order: 7, 3, 3 instead of 2, 7, 3.			
14:10	JSEQ3[4:0]	3rd conversion in injected sequence			
9:5	JSEQ2[4:0]	2nd conversion in injected sequence			
4:0	JSEQ1[4:0]	1st conversion in injected sequence			

195

9.12.14 ADC injection data register x (ADC_JDATx) (x=1...4)

Address offset: 0x3C - 0x48

Reset value: 0x0000 0000

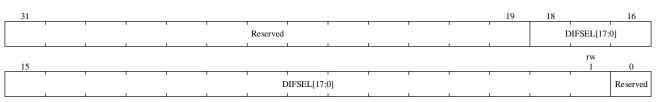

	31															16
		1			1	!	'	Rese	rved		ļ	!	!		'	
L		1	1		1	ı	1			1	1	1		1	ı	
	15															0
					1			ID	A.T.			ı			ı	
								JD	AI							
_		1			1	l					l					

Bit field	Name	escription	
31:16	Reserved	served, the reset value must be maintained	
15:0	JDAT[15:0]	jected data for conversions	
		These bits are read-only and contain the conversion results of the injected channel. The data is left-	
		aligned or right-aligned	

9.12.15 ADC regulars data register (ADC_DAT)

Address offset: 0x4C

Reset value: 0x0000 0000



Bit field	Name	Description			
31:16	ADC2DAT[15:0]	Data converted by ADC2/ADC4 (ADC2 data, ADC4 data)			
		In ADC1 and ADC3: In dual ADC mode, these bits contain the regular channel data converted by			
		ADC2 and ADC4.			
		In ADC2 and ADC4: These bits are not used.			
15:0	DAT[15:0]	Regular data for conversion			
		These bits are read-only and contain the conversion results of the regular channel. The data is left-			
		aligned or right-aligned as shown in Table 9-3 and Table 9-4.			

9.12.16 ADC differential mode selection register (ADC_DIFSEL)

Address offset: 0x50

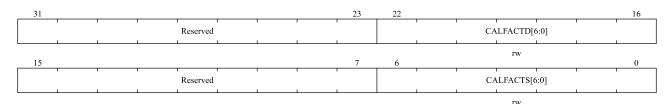
Reset value: 0x0000 0000

rw

Nations Technologies Inc.

Tel: +86-755-86309900 Email: info@nationstech.com

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.



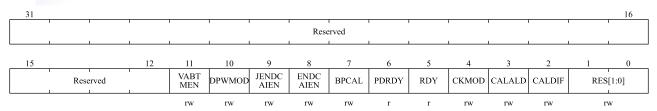
Bit field	Name	Description	
31:19	Reserved	Reserved, the reset value must be maintained	
18:1	DIFSEL[17:0]	Differential mode for channels 18 to 1	
		DIFSEL[i] = 0: ADC channel input i+1 is configured in single-ended mode;	
		DIFSEL[i] = 1: ADC channel input i+1 is configured in differential mode	
0	Reserved	Reserved, the reset value must be maintained	

9.12.17 ADC calibration factor (ADC_CALFACT)

Address offset: 0x54

Reset value: 0x0000 0000

Bit field Name **Description** 31:23 Reserved Reserved, the reset value must be maintained 22:16 CALFACTD[6:0] Calibration factors in differential mode This bit can be written by hardware or software After the differential input calibration is complete, the hardware will update it according to the calibration coefficient. Software can write these bits with a new calibration factor. If the new calibration coefficient is different from the current coefficient stored in the analog ADC, the coefficient will be applied after a new differential calibration is initiated. Note: software allows write only when ADC_CTRL2.ON=1, ADC_STS.STR =0, ADC_STS.JSTR =0 (ADC does not process conversion or start conversion) 15:7 Reserved Reserved, the reset value must be maintained 6:0 CALFACTS[6:0] Calibration factors in Single-Ended mode This bit can be written by hardware or software After the single-end input calibration is completed, the hardware will update it according to the calibration coefficient. Software can write these bits with a new calibration factor. If the new calibration coefficient is different from the current coefficient stored in the analog ADC, the coefficient will be applied after a new single-ended calibration is initiated. Note: software allows write only when ADC_CTRL2.ON=1, ADC_STS.STR =0, ADC_STS.JSTR =0 (ADC does not process conversion or start conversion)


197

9.12.18 ADC control register 3 (ADC_CTRL3)

Address offset: 0x58

Reset value: 0x0000 0043

Bit field	Name	Description
31:12	Reserved	Reserved, the reset value must be maintained
11	VBATMEN	Vbat monitor enable
		0: Disable
		1: Enable
10	DPWMOD	Deep power mode
		0: When the ADC is disabled, the ADC enters low power mode
		1: When the ADC is disabled, the ADC enters deep sleep mode
9	JENDCAIEN	Interrupt enable for any injected channels
		This bit is set and cleared by the software to enable/disable the injection channel conversion end
		interrupt
		0: ADC_STS.JENDCA interrupt is disabled
		1: ADC_STS.JENDCA interrupt is enabled
8	ENDCAIEN	Interrupt enable for any channel
		This bit is set and cleared by the software to enable/disable any channel conversion end interrupt
		0: ADC_STS.ENDCA interrupt is disabled
		1: ADC_STS.ENDCA interrupt is enabled
7	BPCAL	Bypass calibration
		0: Disable
		1: Enabled
6	PDRDY ADC power down ready	
0: Not ready		0: Not ready
		1: Get ready
5	RDY	ADC ready
		0: Not ready
		1: Get ready
4	CKMOD	Clock mode
		0: Select AHB for synchronization clock
		1: Select PLL for asynchronous clock
3	CALALD	Calibration auto load
		0: Disables automatic loading
		1: Enables automatic loading
2	CALDIF	Differential mode for calibration
		This bit is set and cleared by software to configure the calibrated single-ended or differential input
		mode
		0: Writing ADC_CTRL2.ENCAL bits will start calibration in single-ended input mode
		1: Writing ADC_CTRL2.ENCAL bits will start calibration in differential input mode

Bit field	Name	Description			
1:0	RES[1:0]	Data resolution			
		This bit is set and cleared by the software to select the resolution of the conversion			
		00: 6-bits			
		01: 8-bits			
		10: 10-bits			
		11: 12-bits			

9.12.19 ADC sampling time register 3 (ADC_SAMPT3)

Address offset: 0x5C

Reset value: 0x0000 0000

Bit field	Name	Description				
31:4	Reserved	Reserved, the reset value must be maintained				
3	SAMPSEL	Sample Time Selection				
		When SAMPSEL = 0, the value of SAMPx[2:0] is set as follows:				
		000: 1.5 cycles 100: 41.5 cycles				
		001: 7.5 cycles 101: 55.5 cycles				
		010: 13.5 cycles 110: 71.5 cycles				
		011: 28.5 cycles 111: 239.5 cycles				
		When SAMPSEL = 1, the value of SAMPx[2:0] is set as follows:				
		000: 1.5 cycles 100: 19.5 cycles				
		001: 2.5 cycles 101: 61.5 cycles				
		010: 4.5 cycles 110: 181.5 cycles				
		011: 7.5 cycles 111: 601.5 cycles				
2:0	SAMP18[2:0]	Channel Sample Time				
		The channel sampling time definition is consistent with ADC_SAMPT2				

10 Digital to analog conversion (DAC)

10.1 DAC is introduced

DAC is a digital/analog converter, mainly digital input, voltage output.DAC data can be 8-bit or 12-bit and supports DMA functionality.When the DAC is configured in 12-bit mode, the DAC data can be right-aligned or left-aligned.When the DAC is configured in 8-bit mode, the DAC data can be right-aligned.The DAC output channel has 2, with independent converter. Both channels can be configured to convert independently or to convert simultaneously and update the output simultaneously.VREF+ is used as the DAC reference voltage through the pin input to make the DAC conversion data more accurate.

200

10.2 Main features

- Two independent DAC converter, corresponding to two output channel.
- Monotonous output.
- Support 8-bit or 12-bit output, data in 12-bit mode right-aligned and left-aligned two modes.
- Synchronous update.
- DMA support.
- Noise wave, triangular waveform generation.
- Input reference voltage V_{REF+} .
- External event triggers the conversion.
- Two DAC channels are synchronized or converted independently.

DAC block diagram and pins are shown below.

Figure 10-1 Block diagram of a DAC channel

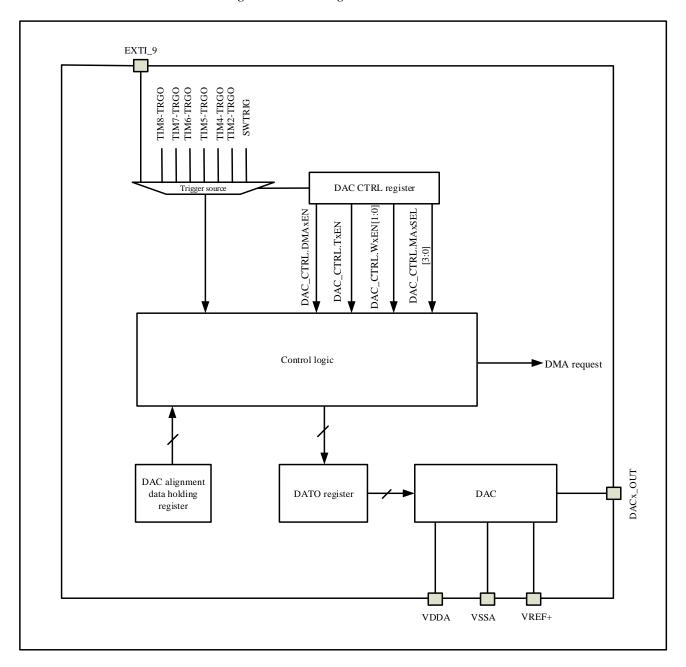


Table 10-1 DAC pins

	Name Description		Type	
		The positive reference voltage used by the	T	
	V_{REF+}	DAC,2.4V \leq V _{REF+} \leq V _{DDA} (3.3V)	Input, analog reference voltage	
	V_{DDA}	Analog power	Input, analog power	
Ī	V_{SSA}	Analog power ground	Input, analog power ground	
	DACx_OUT	DAC analog output	Analog output signal	

Note: When the DACx is enabled, PA4 or PA5 needs to be configured as analog input mode. PA4 or PA5 will automatically connect to the output of the DACx.

10.3 DAC function description and operation description

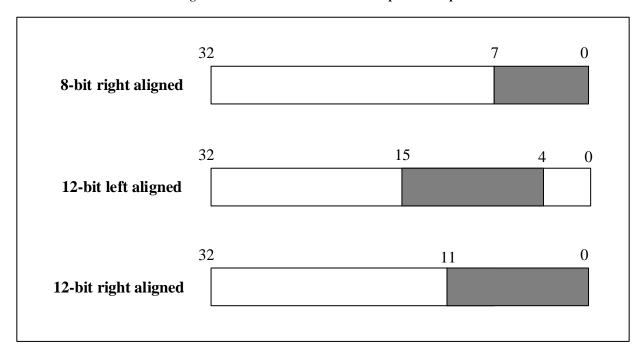
10.3.1 DAC enable

Powering on the DAC can be done by configuring DAC_CTRL. CHxEN = 1. It takes some time for t_{WAKEUP} to open the DAC.

10.3.2 DAC output buffer.

By configuring DAC_CTRL.BxEN to disable or enable the output buffer of DAC, if the output buffer is enable, the output impedance is reduced, the driving ability is enhanced, and the external load can be driven without the external operational amplifier.

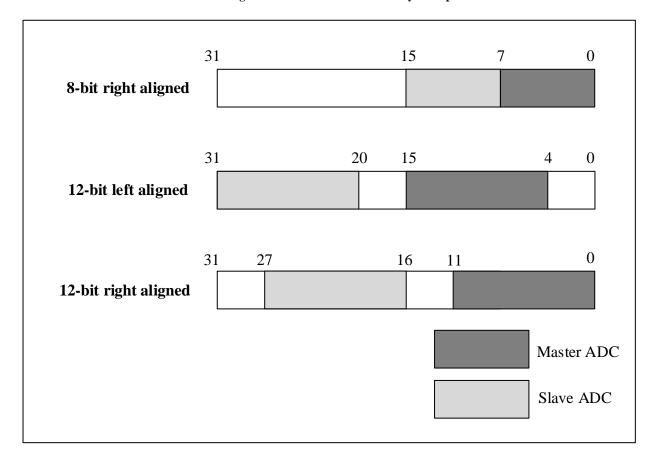
10.3.3 DAC data format


According to the data alignment configuration, the corresponding registers of the data configuration are as follows:

When the DAC outputs independently, there are 3 cases:

- When the configuration data is written to the DAC_DR12CHx register, the data is written to DAC_DR12CHx [11:0], and the 12-bit data is right-aligned. (Actually stored in the register DACCHxD [11:0] bits, DACCHxD is the internal data storage register)
- When the configuration data is written to the DAC_DL12CHx register, the data is written to DAC_DL12CHx [15:4], and the 12-bit data is left-aligned. (Actually stored in the register DACCHxD [11:0] bits, DACCHxD is the internal data storage register)
- When the configuration data is written to the DAC_DR8CHx register, the data is written to DAC_DR8CHx [7:0], and the 8-bit data is right-aligned. (Actually stored in the register DACCHxD[11:4] bits, DACCHxD is the internal data storage register)

Figure 10-2 Data format when DAC independent output



When the DAC outputs synchronously, there are 3 cases:

- When the configuration data is written to the DAC_DR12DCH register, the DAC1 data is written to DAC_DR12DCH [11:0] (Actually stored in the register DACCH1D [11:0] bits, DACCH1D is the internal data storage register), the DAC2 data is written to DAC_DR12DCH [27:16] (Actually stored in the register DACCH2D [11:0] bits, DACCH2D is the internal data storage register).
- When the configuration data is written to the DAC_DR12DCH register, the DAC1 data is written to DAC_DR12DCH [15:4] (Actually stored in the register DACCH1D [11:0] bits, DACCH1D is the internal data storage register), the DAC2 data is written to DAC_DR12DCH [31:20] (Actually stored in the register DACCH2D [11:0] bits, DACCH2D is the internal data storage register).
- When the configuration data is written to the DAC_DR8DCH register, the DAC1 data is written to DAC_DR8DCH [7:0] (Actually stored in the register DACCH1D [11:4] bits, DACCH1D is the internal data storage register), the DAC2 data is written to DAC_DR8DCH [15:8] (Actually stored in the register DACCH2D [11:4] bits, DACCH2D is the internal data storage register).

Figure 10-3 Data format for DAC sync output

10.3.4 DAC trigger

Configure DAC_CTRL. TEN = 1 enables the external trigger of the DAC, and DAC_CTRL.TxSEL [2:0] is configured to select an external triggering event as the external triggering source for the DAC.

Table 10-2 DAC external trigger

Trigger source	Туре	TSEL[2:0]
Timer 6 TRGO events		000
Timer 8 TRGO events	1	001
Timer 7 TRGO events	Internal signal from the on-	010
Timer 5 TRGO events	chip timer	011
Timer 2 TRGO events		100
Timer 4 TRGO events		101
EXTI line 9	External pins	110
SWTRIG (Software Triggered)	Software	111
5 W I KIO (Software Higgered)	control bit	111

When the DAC is triggered by timer output or the rising edge of EXTI line 9, when triggered, the data in the aligned data hold register will be transferred to the DAC_DATOx register. This data transfer process takes 3 APB1 clock cycles.

DAC_SOTTR.TRxEN = 1 can enable the DAC software trigger. When the DAC is triggered by the software, the data of the aligned data hold register will be transmitted to the DAC_DATOx register.

Note:

- 1. Do not change the DAC_CTRL.TxSEL[2:0] bit when the DAC is enabled.
- 2. It takes 1 APB1 clock cycle for the data of the aligned data holding register to be transferred to the DAC_DATOx register when triggered by software.

10.3.5 DAC conversion

If DAC trigger is on, the data in the DAC alignment data hold register will be transferred to the DAC_DATOx register after three APB1 cycles according to the selected trigger event when the hardware trigger occurs. When the software trigger occurs, the data in the DAC alignment data hold register is transferred to the DAC_DATOx register after one APB1 cycle.

After the DAC transfers data to the DAC_DATOx register from its data hold register, the output is valid for the time $t_{\text{SETTTLING}}$, which is related to the supply voltage and the analog output load.

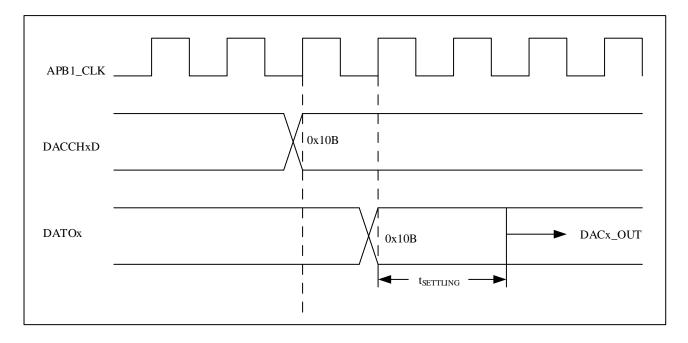


Figure 10-4 Time diagram of transitions with trigger disabled

10.3.6 DAC output voltage

The digital input is converted to analog voltage output by a DAC module in a linear relationship ranging from 0 to V_{REF+} . The output voltage of DAC is calculated as follows:

205

DAC output = $V_{REF} X (DATO / 4095)$.

10.3.7 DMA requests

DAC_CTRL.DMAxEN = 1 is configured to enable DMA function. 2 DMA channels correspond to two DACs respectively. When an external trigger occurs (not a software trigger), a DMA request is generated and the data aligned with the data hold register is then transferred to the DAC_DATOx register.

When the dual DAC mode is turned on, only one DMA is needed to transmit data, so only one DAC is used to turn on the DMA function, and two DMA requests will appear when two DACs are turned on.

Note: DMA requests for DAC have no accumulative function, and when the second external trigger occurs before the response to the first external trigger, the second DMA request cannot be processed and there is no error reporting mechanism.

10.3.8 The noise

DAC can generate noise, by configuring DAC_CTRL.WxEN[1:0] to "01" to turn on the noise function, by configuring DAC_CTRL.MAxSEL[3:0] to select which bits of the linear feedback shift register (LFSR) are masked, the value of LFSR is added to the value of the DAC alignment data holding register and written to the DAC_DATOx register (overflow bits are discarded). The initial value of LFSR is 0xAAA, and the value of LFSR is updated after 3 APB1 cycles after the trigger event occurs.

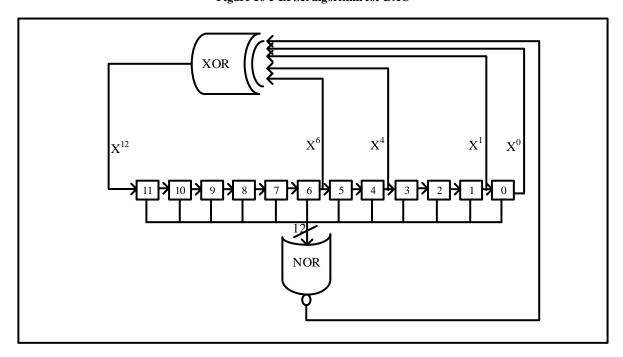
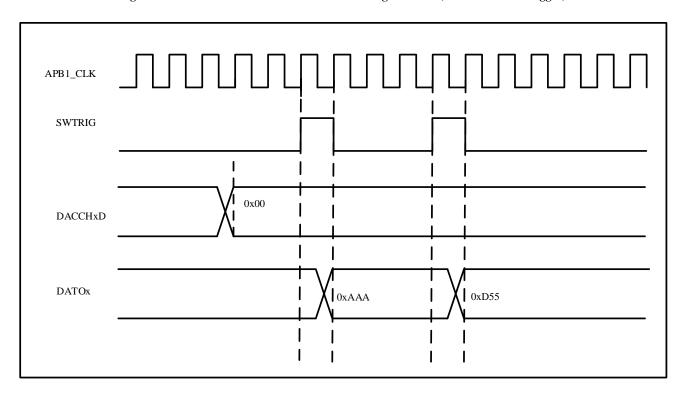
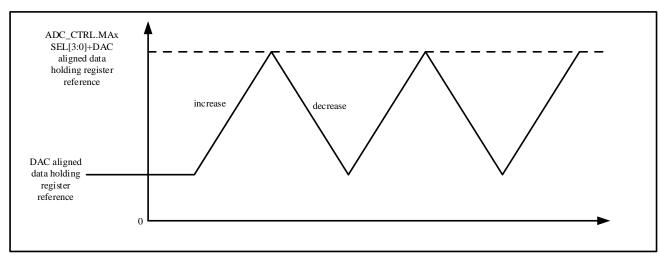



Figure 10-5 LFSR algorithm for DAC

Figure 10-6 DAC conversion with LFSR waveform generation (enable software trigger)



Note: The DAC is configured to trigger to generate noise.

10.3.9 Triangular wave generation

The DAC can generate a triangle wave. The triangle wave function can be turned on by configuring DAC_CTRL.WxEN[1:0] as "10", and the amplitude of the triangle wave can be selected by configuring DAC_CTRL.MAxSEL[3:0]. The value of the internal triangle wave counter is added to the value of the DAC alignment data holding register and written to the DAC_DATOx register (overflow bits are discarded). The value of the triangular wave counter is updated 3 APB1 cycles after the trigger event occurs, the triangular wave counter will accumulate to the maximum amplitude value set, and then decrement to 0, and so on.

Figure 10-7 Triangle wave generation of DAC

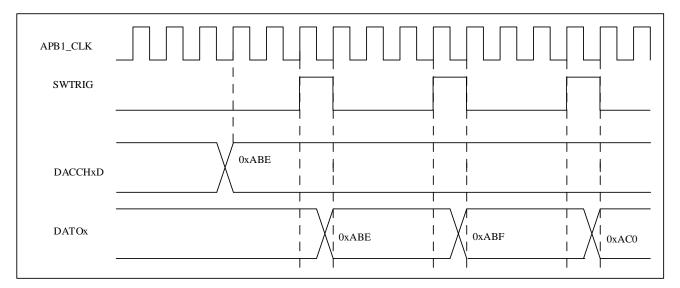


Figure 10-8 DAC conversion with trigonometry generation (enable software trigger)

Note: 1. Only when the DAC is configured to trigger can the triangle wave be generated

2. DAC_CTRL.MAxSEL[3:0] cannot be set after DAC is enabled.

10.4 DAC dual-channel conversion

The two channels of the DAC can work independently or at the same time. In this mode, a total of 3 registers, DAC_DR12DCH, DAC_DL12DCH and DAC_DR8DCH, can be used, which can efficiently utilize the bus bandwidth, and each register can operate on 2 DACs at the same time.

The dual DAC channels turn on the conversion at the same time. There are 11 modes in total. When only one DAC is used for conversion, the other DAC can still operate independently. For details, please refer to the following chapter description.

10.4.1 Independent trigger without waveform generator

The configuration process is as follows:

- Configure DAC_CTRL.T1EN and DAC_CTRL.T2EN to enable trigger enable of DAC1 and DAC2.
- Configure DAC_CTRL.T1SEL[2:0] and DAC_CTRL.T2SEL[2:0] as different values to select different trigger sources.
- Put the data to be converted into the corresponding alignment data holding register.

When the DAC1 trigger event occurs, the value of the aligned data holding register will be transferred to the register DAC_DATO1 after a delay of 3 APB1 clock cycles. When the DAC2 trigger event occurs, the value of the aligned data holding register will be transferred to the register DAC_DATO2 after a delay of 3 APB1 clock cycles.

208

10.4.2 Independent triggers producing the same noise

The configuration process is as follows:

■ Configure DAC_CTRL.T1EN and DAC_CTRL.T2EN to enable trigger enable of DAC1 and DAC2.

- Configure DAC_CTRL.T1SEL[2:0] and DAC_CTRL.T2SEL[2:0] as different values to select different trigger sources.
- Configure DAC_CTRL.W1EN[1:0] and DAC_CTRL.W2EN[1:0] as "01" to select noise generation enable.
- Configure DAC_CTRL.MA1SEL3:0] and DAC_CTRL.MA2SEL3:0] to the same value to get the same LFSR register mask bit.
- Put the data to be converted into the corresponding alignment data holding register.

When the DAC1 trigger event occurs, the counter value of the LFSR register 1 is added to the value of the corresponding data holding register. The added value is transferred to the register DAC_DATO1 after a delay of 3 APB1 clock cycles, and the counter value of the LFSR register 1 will be updated at this time. When the DAC2 trigger event occurs, the counter value of the LFSR register 2 is added to the value of the corresponding data holding register. The added value is transferred to the register DAC_DATO2 after a delay of 3 APB1 clock cycles, and the counter value of the LFSR register 2 will be updated at this time.

10.4.3 Independent triggers that generate different noises

The configuration process is as follows:

- Configure DAC_CTRL.T1EN and DAC_CTRL.T2EN to enable trigger enable of DAC1 and DAC2.
- Configure DAC_CTRL.T1SEL[2:0] and DAC_CTRL.T2SEL[2:0] as different values to select different trigger sources.
- Configure DAC CTRL.W1EN[1:0] and DAC CTRL.W2EN[1:0] as "01" to select noise generation enable.
- Configure DAC_CTRL.MA1SEL3:0] and DAC_CTRL.MA2SEL3:0] as different values to get different LFSR register mask bits.
- Put the data to be converted into the corresponding alignment data holding register.

When the DAC1 trigger event occurs, the counter value of the LFSR register 1 is added to the value of the corresponding data holding register. The added value is transferred to the register DAC_DATO1 after a delay of 3 APB1 clock cycles, and the counter value of the LFSR register 1 will be updated at this time. When the DAC2 trigger event occurs, the counter value of the LFSR register 2 is added to the value of the corresponding data holding register. The added value is transferred to the register DAC_DATO2 after a delay of 3 APB1 clock cycles, and the counter value of the LFSR register 2 will be updated at this time.

10.4.4 Independent triggers that generate the same triangle wave

The configuration process is as follows:

- Configure DAC_CTRL.T1EN and DAC_CTRL.T2EN to enable trigger enable of DAC1 and DAC2.
- Configure DAC_CTRL.T1SEL[2:0] and DAC_CTRL.T2SEL[2:0] as different values to select different trigger sources.
- Configure DAC_CTRL.W1EN[1:0] and DAC_CTRL.W2EN[1:0] as "1x" to select the triangle wave generation enable.

- Configure DAC_CTRL.MA1SEL3:0] and DAC_CTRL.MA2SEL3:0] to the same value to get the same triangle wave amplitude.
- Put the data to be converted into the corresponding alignment data holding register.

When the DAC1 trigger event occurs, the triangular wave amplitude value of DAC1 is added to the corresponding data holding register value. The added value is transferred to the register DAC_DATO1 after a delay of 3 APB1 clock cycles, and the counter value of the triangular wave of DAC1 will be updated at this time. When the DAC2 trigger event occurs, the triangular wave amplitude value of DAC2 is added to the value of the corresponding data holding register. The added value is transferred to the register DAC_DATO2 after a delay of 3 APB1 clock cycles, and the counter value of the triangular wave of DAC2 will be updated at this time.

10.4.5 Independent trigger to generate different triangle waves

The configuration process is as follows:

- Configure DAC_CTRL.T1EN and DAC_CTRL.T2EN to enable trigger enable of DAC1 and DAC2.
- Configure DAC_CTRL.T1SEL[2:0] and DAC_CTRL.T2SEL[2:0] as different values to select different trigger sources.
- Configure DAC_CTRL.W1EN[1:0] and DAC_CTRL.W2EN[1:0] as "1x" to select the triangle wave generation enable.
- Configure DAC_CTRL.MA1SEL3:0] and DAC_CTRL.MA2SEL3:0] as different values to get different triangle wave amplitudes.
- Put the data to be converted into the corresponding alignment data holding register.

When the DAC1 trigger event occurs, the triangular wave amplitude value of DAC1 is added to the corresponding data holding register value. The added value is transferred to the register DAC_DATO1 after a delay of 3 APB1 clock cycles, and the counter value of the triangular wave of DAC1 will be updated at this time. When the DAC2 trigger event occurs, the triangular wave amplitude value of DAC2 is added to the value of the corresponding data holding register. The added value is transferred to the register DAC_DATO2 after a delay of 3 APB1 clock cycles, and the counter value of the triangular wave of DAC2 will be updated at this time.

10.4.6 Simultaneous software startup

The configuration process is as follows:

- Configure DAC_CTRL.T1EN and DAC_CTRL.T2EN to enable trigger enable of DAC1 and DAC2.
- Configure DAC_CTRL.TR1EN and DAC_CTRL.TR2EN to select software trigger.
- Put the data to be converted into the corresponding alignment data holding register.

The value of the aligned data holding register of DAC1 will be transferred into register DAC_DATO1 after a delay of 1 APB1 clock cycle.

The value of the aligned data holding register of DAC2 will be transferred to register DAC_DATO2 after a delay of 1 APB1 clock cycle.

10.4.7 Synchronous trigger without waveform generator

The configuration process is as follows:

- Configure DAC CTRL.T1EN and DAC CTRL.T2EN to enable trigger enable of DAC1 and DAC2.
- Configure DAC_CTRL.T1SEL[2:0] and DAC_CTRL.T2SEL[2:0] to be the same value to select the same trigger source.
- Put the data to be converted into the corresponding alignment data holding register.

When a trigger event occurs, the value of the alignment data holding register of DAC1 will be transferred to the register DAC_DATO1 after a delay of 3 APB1 clock cycles; the value of the alignment data holding register of DAC2 will be transferred to the register DAC_DATO2 after a delay of 3 APB1 clock cycles.

10.4.8 Synchronous triggers that generate the same noise

The configuration process is as follows:

- Configure DAC_CTRL.T1EN and DAC_CTRL.T2EN to enable trigger enable of DAC1 and DAC2.
- Configure DAC_CTRL.T1SEL[2:0] and DAC_CTRL.T2SEL[2:0] to be the same value to select the same trigger source.
- Configure DAC CTRL.W1EN[1:0] and DAC CTRL.W2EN[1:0] as "01" to select noise generation enable.
- Configure DAC_CTRL.MA1SEL3:0] and DAC_CTRL.MA2SEL3:0] to the same value to get the same LFSR register mask bit.
- Put the data to be converted into the corresponding alignment data holding register.

When a trigger event occurs, the counter value of LFSR register 1 is added to the value of the corresponding data holding register. The added value is transferred to register DAC_DATO1 after a delay of 3 APB1 clock cycles, and the counter value of LFSR register 1 will be updated at this time; LFSR The counter value of register 2 is added to the value of the corresponding data holding register. The added value is transferred to register DAC_DATO2 after a delay of 3 APB1 clock cycles, and the counter value of LFSR register 2 will be updated at this time.

10.4.9 Synchronous triggers that generate different noises

The configuration process is as follows:

- Configure DAC_CTRL.T1EN and DAC_CTRL.T2EN to enable trigger enable of DAC1 and DAC2.
- Configure DAC_CTRL.T1SEL[2:0] and DAC_CTRL.T2SEL[2:0] as different values to select different trigger sources.
- Configure DAC_CTRL.W1EN[1:0] and DAC_CTRL.W2EN[1:0] as "01" to select noise generation enable.
- Configure DAC_CTRL.MA1SEL3:0] and DAC_CTRL.MA2SEL3:0] to the same value to get the same LFSR register mask bit.

211

Put the data to be converted into the corresponding alignment data holding register.

When a trigger event occurs, the counter value of LFSR register 1 is added to the value of the corresponding data holding register. The added value is transferred to register DAC_DATO1 after a delay of 3 APB1 clock cycles, and the counter value of LFSR register 1 will be updated at this time; LFSR The counter value of register 2 is added to the value of the corresponding data holding register. The added value is transferred to register DAC_DATO2 after a delay of 3 APB1 clock cycles, and the counter value of LFSR register 2 will be updated at this time.

10.4.10 Synchronous trigger to generate the same triangle wave

The configuration process is as follows:

- Configure DAC_CTRL.T1EN and DAC_CTRL.T2EN to enable trigger enable of DAC1 and DAC2.
- Configure DAC_CTRL.T1SEL[2:0] and DAC_CTRL.T2SEL[2:0] to be the same value to select the same trigger source.
- Configure DAC_CTRL.W1EN[1:0] and DAC_CTRL.W2EN[1:0] as "1x" to select the triangle wave generation enable.
- Configure DAC_CTRL.MA1SEL3:0] and DAC_CTRL.MA2SEL3:0] to the same value to get the same triangle wave amplitude.
- Put the data to be converted into the corresponding alignment data holding register.

When a trigger event occurs, the triangular wave amplitude value of DAC1 is added to the value of the corresponding data holding register. The added value is transferred to the register DAC_DATO1 after a delay of 3 APB1 clock cycles, and the counter value of the triangular wave of DAC1 will be updated at this time; The triangular wave amplitude is added to the value of the corresponding data holding register. The added value is transferred to the register DAC_DATO2 after a delay of 3 APB1 clock cycles, and the counter value of the triangular wave of DAC2 will be updated at this time.

10.4.11 Synchronous trigger to generate different triangle waves

The configuration process is as follows:

- Configure DAC_CTRL.T1EN and DAC_CTRL.T2EN to enable trigger enable of DAC1 and DAC2.
- Configure DAC_CTRL.T1SEL[2:0] and DAC_CTRL.T2SEL[2:0] to be the same value to select the same trigger source.
- Configure DAC_CTRL.W1EN[1:0] and DAC_CTRL.W2EN[1:0] as "1x" to select the triangle wave generation enable.
- Configure DAC_CTRL.MA1SEL3:0] and DAC_CTRL.MA2SEL3:0] as different values to get different triangle wave amplitudes.
- Put the data to be converted into the corresponding alignment data holding register.

When a trigger event occurs, the triangular wave amplitude value of DAC1 is added to the value of the corresponding data holding register. The added value is transferred to the register DAC_DATO1 after a delay of 3 APB1 clock cycles, and the counter value of the triangular wave of DAC1 will be updated at this time; The triangular wave amplitude is added to the value of the corresponding data holding register. The added value is transferred to the

register DAC_DATO2 after a delay of 3 APB1 clock cycles, and the counter value of the triangular wave of DAC2 will be updated at this time.

10.5 DAC register

10.5.1 DAC registers overview

Table 10-3 DAC registers overvie

Offset	Register	31 30 29	28	27	26	24	23	21	20	19	18	17	16	15	113	12	111	6	∞	7	0 4	9	3	2	0 0
000h	DAC_CTRL	Reserved	DMA2EN		MA2SEL[3:0]		W2EN[1:0]		T2SEL[2:0]		T2EN	B2EN	CH2EN	R	eserved	DMA1EN	MA 16TY 13.01	MA13EL[3.0]		W1EN[1:0]		T1SEL[2:0]		TIEN	BIEN
	Reset Value		0	0	0 0	0	0 0	0	0	0	0	0	0			0	0 0	0	0	0 () (0	0	0	0 0
004h	DAC_SOTTR		Reserved									TR2EN TR1EN													
	Reset Value																1								0 0
008h	DAC_DR12CH1						Rese	erved											Γ	DACCI	H1D[1	1:0]			
	Reset Value																0 0	0	0	0 () (0	0	0	0 0
00Ch	DAC_DL12CH1					Rese	erved										DACCH	1D[11:0)]				F	Reserv	ed
	Reset Value													0	0 0	0	0 0	0	0	0 () (0			
010h	DAC_DR8CH1								Rese	rved											D	ACCH	1D[7:0]	
oron	Reset Value		Reserved								0 () (0	0	0	0 0									
014h	DAC_DR12CH2	Reserved										Г	DACCE	12D[1	1:0]										
01411	Reset Value		Reserveu							0 0	0	0	0 () (0	0	0	0 0							
018h	DAC_DL12CH2					Rese	revod										DACCH	2D[11:0)]				T	Reserv	od
01011	Reset Value					Kesc	a veu							0	0 0	0	0 0	0	0	0 () (0		CSCI V	eu
01Ch	DAC_DR8CH2								Rese	rund											D	ACCH:	2D[7:0]	
oren	Reset Value								RCSC.	ived										0 () (0	0	0	0 0
020h	DAC_DR12DCH	Reserved					DACCH	2D[11	:0]						Reserved			DACCH1D[11:0]							
02011	Reset Value	Kesei veu		0	0 0	0	0 0	0	0	0	0	0	0		Reserved		0 0	0	0	0 () (0	0	0	0 0
024h	DAC_DL12DCH	DACCH2D[11:0] Reserved								DACCH	1D[11:0)]				ī	Reserv	ed							
02411	Reset Value	0 0 0	0	0	0 0	0	0 0	0	0		Resc	ived		0	0 0	0	0 0	0	0	0 () (0	•	CCSCI V	cu
028h	DAC_DR8DCH	Decembed						D	ACCI	I2D[7:0]			DACCHII			1D[7:0]								
02011	Reset Value	Reserved 0 0						0 0	0	0 0	0	0	0 () (0	0	0	0 0							
02Ch	DAC_DATO1									D.	ACCH	1DO[1:0]												
	Reset Value	Reserved					0 0	0	0	0 0 0 0 0 0 0 0															
030h	DAC_DATO2						D	d											D	ACCH	2DO[1:0]			
USUh	Reset Value		Reserved						0 0	0	0	0 0 0 0 0 0 0 0				0 0									

10.5.2 DAC control register (DAC_CTRL)

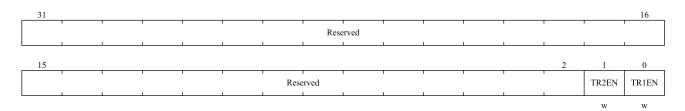
Offset address: 0x00

Reset value: 0x0000 0000

31		29	28	27		24	23	22	21		19	18	17	16
	Reserved		DMA2EN		MA2SEL[3:0]		W2EI	N[1:0]		T2SEL[2:0]		T2EN	B2EN	CH2EN
15		13	rw 12	11	rw	8	7	w 6	5	rw	3	rw 2	rw 1	rw 0
	Reserved		DMA1EN		MA1SEL[3:0]		W1E	N[1:0]		T1SEL[2:0]		TIEN	BIEN	CH1EN
			rw		rw		r	w		rw		rw	rw	rw

Bit field	Name	Description
31:29	Reserved	Reserved, the reset value must be maintained.
28	DMA2EN	The DMA function of the DAC2 is enabled
		The bit is set to 1 and cleared by the software.
		0: Disable DMA for the DAC2;
		1: Enable DMA for the DAC2.
27:24	MA2SEL[3:0]	DAC2 shield/amplitude selector.
		These bits are configured by software to set the LFSR shielding bits for the noise
		function and the amplitude of the triangular wave.
		0000: unmasked LFSR bit 0 / triangular amplitude equals 1;
		0001: unmasked LFSR bit [1:0] / triangular amplitude equal 3;
		0010: unmasked LFSR bit [2:0] / triangular amplitude equals 7;
		0011: unmasked LFSR bit [3:0] / triangular amplitude equals 15;
		0100: unmasked LFSR bit [4:0] / triangular amplitude equals 31;
		0101: unmasked LFSR bit [5:0] / triangular amplitude equals 63;
		0110: unmasked LFSR bit [6:0] / triangular amplitude equals 127;
		0111: unmasked LFSR bit [7:0] / triangular amplitude equals 255;
		1000: unmasked LFSR bit [8:0] / triangular amplitude equals 511;
		1001: unmasked LFSR bit [9:0] / triangular amplitude equals 1023;
		1010: unmasked LFSR bit [10:0] / triangular amplitude equals 2047;
		≥1011: unmasked LFSR bit [11:0] / triangular amplitude equal 4095.
23:22	W2EN[1:0]	DAC2 noise/triangle wave function selection.
		The bits are set to 1 and cleared by the software.
		00: Disable noise and triangle wave;
		01: Enable the noise function;
		1x: Enable the triangle wave function.
21:19	T2SEL[2:0]	DAC2 triggers selection.
21117	12022[2:0]	This bit is used for selection of DAC2 external triggers.
		000: TIM6 TRGO event;
		001: TIM8 TRGO event;
		010: TIM7 TRGO event;
		011: TIM5 TRGO event;
		100: TIM2 TRGO event;
		101: TIM4 TRGO event;
		110: External interrupt line 9;
		111: Software trigger.
18	T2EN	DAC2 trigger on
10	1211	This bit is set to 1 and cleared by the software to enable/disable DAC2 trigger.
		0: Disable DAC2 trigger;
		1: Enable DAC2 trigger.
17	DOEN	
17	B2EN	Enable the DAC2 output buffer. This bit is set to 1 and closed by the software to enable/disable the DAC2's output
		This bit is set to 1 and cleared by the software to enable/disable the DAC2's output
		buffer.

Bit field	Name	Description
		0: Disable the DAC2 output buffer;
		1: Enable the DAC2 output buffer.
16	CH2EN	DAC2 on
		This bit is set to 1 and cleared by the software to enable/disable the DAC2.
		0: Disable the DAC2;
		1: Enable the DAC2.
15:13	Reserved	Reserved, the reset value must be maintained.
12	DMA1EN	The DMA function of the DAC1 is enabled
		The bit is set to 1 and cleared by the software.
		0: Disable DMA for the DAC1;
		1: Enable DMA for the DAC1.
11:8	MA1SEL[3:0]	DAC1 shield/amplitude selector.
		These bits are configured by software to set the LFSR shielding bits for the noise
		function and the amplitude of the triangular wave.
		0000: unmasked LFSR bit 0 / delta amplitude equals 1;
		0001: unmasked LFSR bit [1:0] / triangular amplitude equal 3;
		0010: unmasked LFSR bit [2:0] / triangular amplitude equals 7;
		0011: unmasked LFSR bit [3:0] / triangular amplitude equals 15;
		0100: unmasked LFSR bit [4:0] / triangular amplitude equals 31;
		0101: unmasked LFSR bit [5:0] / triangular amplitude equals 63;
		0110: unmasked LFSR bit [6:0] / triangular amplitude equals 127;
		0111: unmasked LFSR bit [7:0] / triangular amplitude equals 255;
		1000: unmasked LFSR bit [8:0] / triangular amplitude equals 511;
		1001: unmasked LFSR bit [9:0] / triangular amplitude equals 1023;
		1010: unmasked LFSR bit [10:0] / triangular amplitude equals 2047;
		≥1011: unmasked LFSR bit [11:0] / triangular amplitude equal 4095.
7:6	W1EN[1:0]	DAC1 noise/triangle wave function selection.
		The bits are set to 1 and cleared by the software.
		00: Disable noise and triangle wave;
		01: Enable the noise function;
		1x: Enable the triangle wave function.
5:3	T1SEL[2:0]	DAC1 triggers selection.
		This bit is used for selection of DAC1 external triggers.
		000: TIM6 TRGO event;
		001: TIM8 TRGO event;
		010: TIM7 TRGO event;
		011: TIM5 TRGO event;
		100: TIM2 TRGO event;
		101: TIM4 TRGO event;
		110: External interrupt line 9;
		111: Software trigger.
2	T1EN	DAC1 trigger on



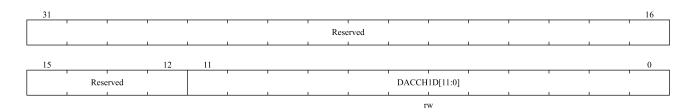
Bit field	Name	Description
		This bit is set to 1 and cleared by the software to enable/disable DAC2 trigger.
		0: Disable DAC1 trigger;
		1: Enable DAC1 trigger.
1	B1EN	Enable the DAC1 output buffer.
		This bit is set to 1 and cleared by the software to enable/disable the DAC1's output
		buffer.
		0: Disable the DAC1 output buffer;
		1: Enable the DAC1 output buffer.
0	CH1EN	DAC1 on
		This bit is set to 1 and cleared by the software to enable/disable the DAC2.
		0: Disable the DAC1;
		1: Enable the DAC1.

10.5.3 DAC software trigger register (DAC_SOTTR)

Offset address: 0x04

Reset value: 0x0000 0000

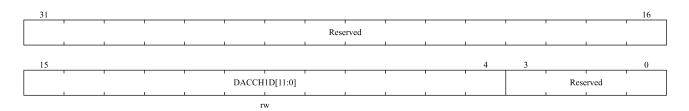
Bit field	Name	Description
31:2	Reserved	Reserved, the reset value must be maintained.
1	TR2EN	The DAC2 software trigger
		This bit is setting by software to enable/disable software trigger.
		0: Disable the DAC2 software trigger.
		1: Enable the DAC2 software trigger.
		Note: After the alignment data hold register transfers data to the DAC_DATO2
		register, this bit will be cleared by the hardware after an APB1 clock.
0	TR1EN	The DAC1 software trigger
		This bit is setting by software to enable/disable software trigger.
		0: Disable the DAC1 software trigger.
		1: Enable the DAC1 software trigger.
		Note: After the alignment data hold register transfers data to the DAC_DATO1
		register, this bit will be cleared by the hardware after an APB1 clock.


10.5.4 12 bit right aligned data hold register for DAC1 (DAC_DR12CH1)

216

Offset address: 0x08

Reset value: 0x0000 0000

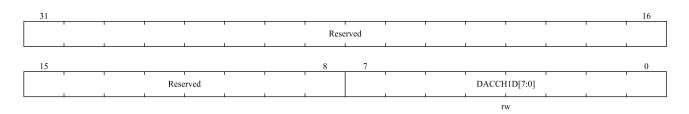


Bit field	Name	Description
31:12	Reserved	Reserved, the reset value must be maintained.
11:0	DACCH1D[11:0]	12-bit right- aligned data for DAC1
		The bits are configured by the software and the DAC1 converts the data.

10.5.5 12 bit left aligned data hold register for DAC1 (DAC_DL12CH1)

Offset address: 0x0c

Reset value: 0x0000 0000



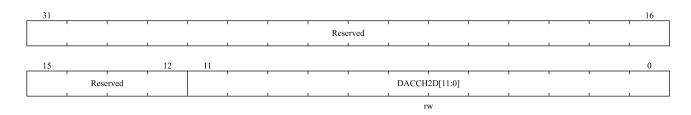
Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained.
15:4	DACCH1D[11:0]	12-bit left-aligned data for DAC1
		The bits are configured by the software and the DAC1 converts the data.
3:0	Reserved	Reserved, the reset value must be maintained.

$10.5.6\ 8\text{-bit right-aligned data hold register for DAC1}\ (DAC_DR8CH1)$

Offset address: 0x10

Reset value: 0x0000 0000

Bit field	Name	Description
31:8	Reserved	Reserved, the reset value must be maintained.

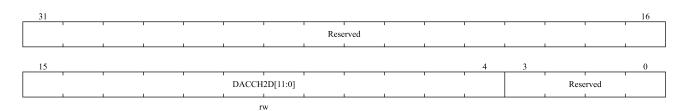


Bit field	Name	Description
7:0	DACCH1D[7:0]	8-bit right- aligned data for DAC1
		The bits are configured by the software and the DAC1 converts the data.

10.5.7 12 bit right aligned data hold register for DAC2 (DAC_DR12CH2)

Offset address: 0x14

Reset value: 0x0000 0000



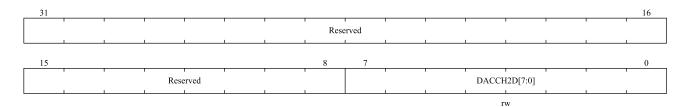
Bit field	Name	Description					
31:12	Reserved	Reserved, the reset value must be maintained.					
11:0	DACCH2D[11:0]	12-bit right- aligned data for DAC2					
		The bits are configured by the software and the DAC2 converts the data.					

10.5.8 12 bit left aligned data hold register for DAC2 (DAC_DL12CH2)

Offset address: 0x18

Reset value: 0x0000 0000

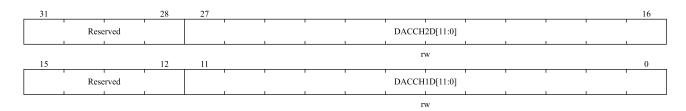
Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained.
15:4	DACCH2D[11:0]	12-bit left-aligned data for DAC2
		The bits are configured by the software and the DAC2 converts the data.
3:0	Reserved	Reserved, the reset value must be maintained.


218

10.5.9 8-bit right-aligned data hold register for DAC2 (DAC_DR8CH2)

Offset address: 0x1C

Reset value: 0x0000 0000



Bit field	Name	Description
31:8	Reserved	Reserved, the reset value must be maintained.
7:0	DACCH2D[7:0]	8-bit right- aligned data for DAC2
		The bits are configured by the software and the DAC2 converts the data.

10.5.10 12 bit right aligned data hold register for dual DAC (DAC_DR12DCH)

Offset address: 0x20

Reset value: 0x0000 0000

Bit field	Name	Description
31:28	Reserved	Reserved, the reset value must be maintained.
27:16	DACCH2D[11:0]	12-bit right- aligned data for DAC2
		The bits are configured by the software and the DAC2 converts the data.
15:12	Reserved	Reserved, the reset value must be maintained.
11:0	DACCH1D[11:0]	12-bit right- aligned data for DAC1
		The bits are configured by the software and the DAC1 converts the data.

10.5.11 12 bit left aligned data hold register for dual DAC (DAC_DL12DCH)

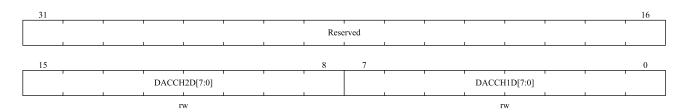
Offset address: 0x24

Reset value: 0x0000 0000

31										20	19			16
	'	1	1	'	DACCH:	2D[11:0]	'		•	'		Rese	erved	'
		1	1		rv	w		I.		l		·		
15														
15										4	3			0
15					DACCH	1D[11:0]				4	3	Rese	erved	0

Bit field	Name	Description
31:20	DACCH2D[11:0]	12-bit left- aligned data for DAC2

219

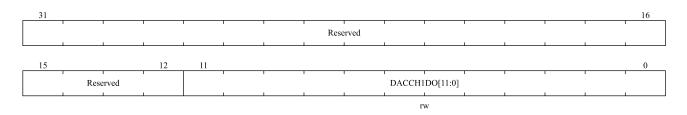


Bit field	Name	Description
		The bits are configured by the software and the DAC2 converts the data.
19:16	Reserved	Reserved, the reset value must be maintained.
15:4	DACCH1D[11:0]	12-bit left- aligned data for DAC1
		The bits are configured by the software and the DAC1 converts the data.
3:0	Reserved	Reserved, the reset value must be maintained.

10.5.12 8 bit right aligned data hold register for dual DAC (DAC_DR8DCH)

Offset address: 0x28

Reset value: 0x0000 0000

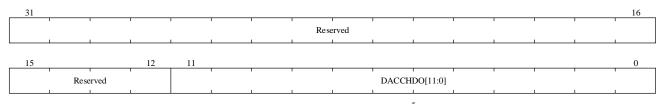


Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained.
15:8	DACCH2D[7:0]	8-bit right- aligned data for DAC2
		The bits are configured by the software and the DAC2 converts the data.
7:0	DACCH1D[7:0]	8-bit right- aligned data for DAC1
		The bits are configured by the software and the DAC1 converts the data.

10.5.13 DAC1 data output register (DAC_DATO1)

Offset address: 0x2C

Reset value: 0x0000 0000


Bit field	Name	Description
31:12	Reserved	Reserved, the reset value must be maintained.
11:0	DACCH1DO[11:0]	DAC1 data output.
		These bits are read-only and represent the output data of the DAC1.

10.5.14 DAC2 data output register (DAC_DATO2)

Offset address: 0x30

Reset value: 0x0000 0000

1

Bit field	Name	Description
31:12	Reserved	Reserved, the reset value must be maintained.
11:0	DACCH2DO[11:0]	DAC2 data output.
		These bits are read-only and represent the output data of the DAC2.

11 Advanced-control timers (TIM1 and TIM8)

11.1 TIM1 and TIM8 introduction

The advanced control timers (TIM1 and TIM8) is mainly used in the following occasions: counting the input signal, measuring the pulse width of the input signal and generating the output waveform, etc.

Advanced timers have complementary output function with dead-time insertion and break function. Suitable for motor control.

11.2 Main features of TIM1 and TIM8

- 16-bit auto-reload counters. (It can realize up-counting, down-counting, up/down counting).
- 16-bit programmable prescaler. (The frequency division factor can be configured with any value between 1 and 65536)
- Programmable Repetition Counter
- TIM1 and TIM8 up to 6 channels
- 4 capture/compare channels, working modes are PWM output, ouput compare, one-pulse mode output, input capture
- The events that generate the interrupt/DMA are as follows:
 - Update event
 - ◆ Trigger event
 - ♦ Input capture
 - Output compare
 - Break input
- Complementary outputs with adjustable dead-time.
 - ◆ For TIM1 and TIM8, channel 1,2,3 support this feature
- Timer can be controlled by external signal
- Timers can be linked together internally for timer synchronization or chaining
- Incremental (quadrature) encoder interface: used for tracking motion and resolving rotation direction and position;

222

■ Hall sensor interface: used to do three-phase motor control;

TIMx BKIN selection Clock failure event From clock controller CSS(Clock Security System) ormal (Power supply voltage detection)
LOOKUP(Core Hardfault) PVD abnormal (Pov CK_TIM18 from RCC Internal clock(CK_INT) To another timer ADC, DAC Polarity selection TRGO-Edge detector TIMx ETR pin Prescaler Input filter Reset, enable up/down, count Slave mode ITRx(x=0, 1,CK PS Encoder mode Psc Prescaler CK_CNT Auto-reload CNT Counte UDIT CCxIT / (Input) TIMx CH1 CCxIT Input filter & -OC1N► TIMx_CH1N TIMx_CH1 Output Control (DTG, Complementary) TIMx_CH2 TRC▶ CCx Event (x = 1, 2, 3, 4)TIMx_CH2N OCxREF Input filter & TIMx CH2 -OC3-► TIMx CH3 -OC3N► TIMx CH3N Input filter & TIMx CH3 TIMx CH4 TIMx_CH4 Input filter & TI4FP4 edge detector 0CxREF FTRE

Figure 11-1 Block diagram of TIM1 and TIM8

11.3 TIM1 and TIM8 function description

11.3.1 Time-base unit

The advanced-control's time-base unit mainly includes: prescaler, counter, auto-reload and repetition counter. When the time base unit is working, the software can read and write the corresponding registers (TIMx_PSC, TIMx_CNT, TIMx AR and TIMx REPCNT) at any time.

Interrupt and DMA output

Depending on the setting of the auto-reload preload enable bit (TIMx CTRL1.ARPEN), the value of the preload register is transferred to the shadow register immediately or at each update event UEV. An update event is generated when the counter reaches the overflow/underflow condition and it can be generated by software when TIMx_CTRL1.UPDIS=0. The counter CK_CNT is valid only when the TIMx_CTRL1.CNTEN bit is set. The counter starts counting one clock cycle after the TIMx_CTRL1.CNTEN bit is set.

11.3.1.1 Prescaler description

The TIMx_PSC register consists of a 16-bit counter that can be used to divide the counter clock frequency by any factor between 1 and 65536. It can be changed on the fly as it is buffered. The prescaler value is only taken into account at the next update event.

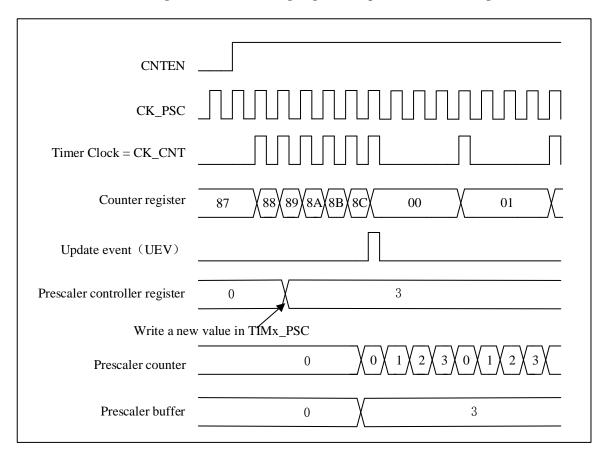


Figure 11-2 Counter timing diagram with prescaler division change from 1 to 4

11.3.2 Counter mode

11.3.2.1 Up-counting mode

In up-counting mode, the counter will count from 0 to the value of the register TIMx_AR, then it resets to 0. And a counter overflow event is generated.

If the TIMx_CTRL1.UPRS bit (select update request) and the TIMx_EVTGEN.UDGN bit are set, an update event (UEV) will generate. And TIMx_STS.UDITF will not be set by hardware, therefore, no update interrupts or update DMA requests are generated. This setting is used in scenarios where you want to clear the counter but do not want to generate an update interrupt.

Depending on the update request source is configured in the TIMx_CTRL1.UPRS, When an update event occurs, the TIMx_STS.UDITF is set, all registers are updated:

- The repetition counter reloads the contents of the TIMx_REPCNT
- Update auto-reload shadow registers with preload value(TIMx_AR), when TIMx_CTRL1.ARPEN = 1.

■ The prescaler shadow register is reloaded with the preload value(TIMx_PSC).

To avoid updating the shadow registers when new values are written to the preload registers, you can disable the update by setting TIMx_CTRL1.UPDIS=1.

When an update event occurs, the counter will still be cleared and the prescaler counter will also be set to 0 (but the prescaler value will remain unchanged).

The figure below shows some examples of the counter behavior and the update flags for different division factors in the up-counting mode.

Figure 11-3 Timing diagram of up-counting. The internal clock divider factor = 2/N

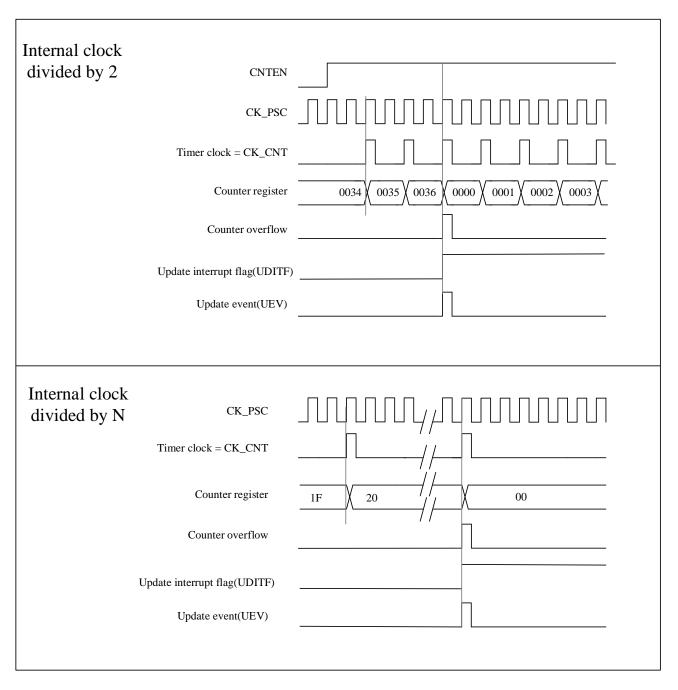
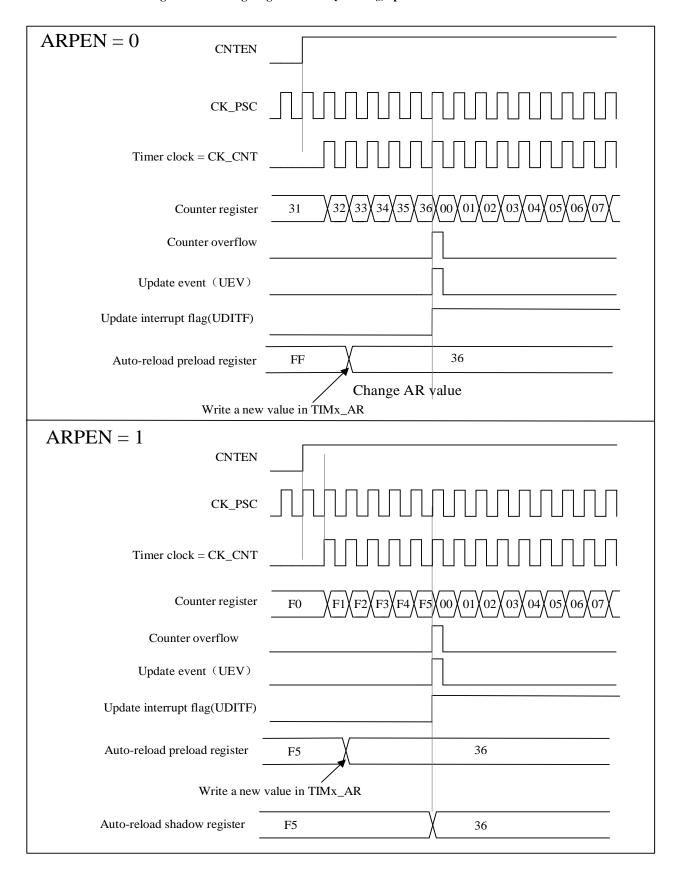



Figure 11-4 Timing diagram of the up-counting, update event when ARPEN=0/1

11.3.2.2 Down-counting mode

In down-counting mode, the counter will decrement from the value of the register TIMx_AR to 0, then restart from the auto-reload value and generate a counter underflow event.

The process of configuring update events and updating registers in down-counting mode is the same as in up-counting mode, see 11.3.2.1.

The figure below shows some examples of the counter behavior and the update flags for different division factors in the down-counting mode.

Internal clock divided by 2 **CNTEN** Timer clock = CK_CNT Counter register 0002 0000 Counter underflow Update event (UEV) Update interrupt flag(UDITF) Internal clock divided by CK PSC Timer clock = CK_CNT Counter register Counter underflow Update event (UEV) Update interrupt flag(UDITF)

Figure 11-5 Timing diagram of the down-counting, internal clock divided factor = 2/N

11.3.2.3 Center-aligned mode

In center-aligned mode, the counter increments from 0 to the value ($TIMx_AR$) – 1, a counter overflow event is generated. It then counts down from the auto-reload value ($TIMx_AR$) to 1 and generates a counter underflow event. Then the counter resets to 0 and starts counting up again.

In this mode, the TIMx_CTRL1.DIR direction bits have no effect and the count direction is updated and specified by hardware. Center-aligned mode is valid when the TIMx_CTRL1. CAMSEL bit is not equal to "00".

The update events can be generated each time the counter overflows and each time the counter underflows.

Alternatively, an update event can also be generated by setting the TIMx_EVTGEN. UDGN bit (either by software or using a slave mode controller). In this case, the counter restarts from 0, as does the prescaler's counter.

Please note: if the update source is a counter overflow, auto-reload update before reloading the counter.

Figure 11-6 Timing diagram of the Center-aligned, internal clock divided factor =2/N

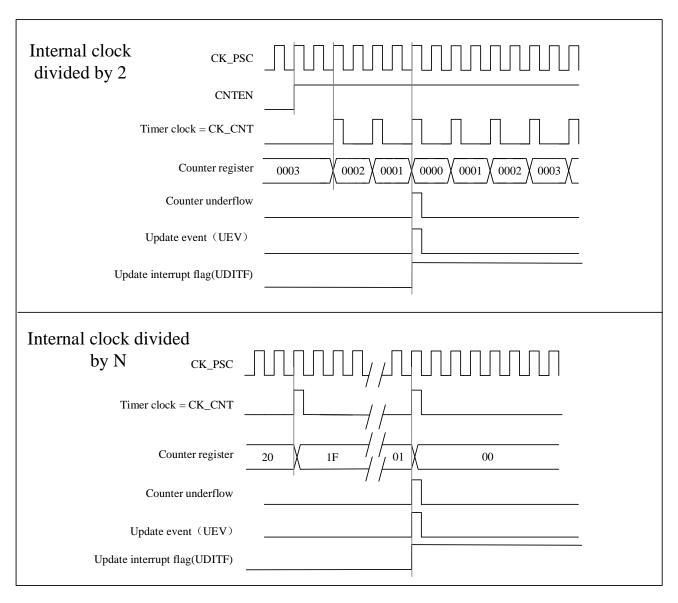
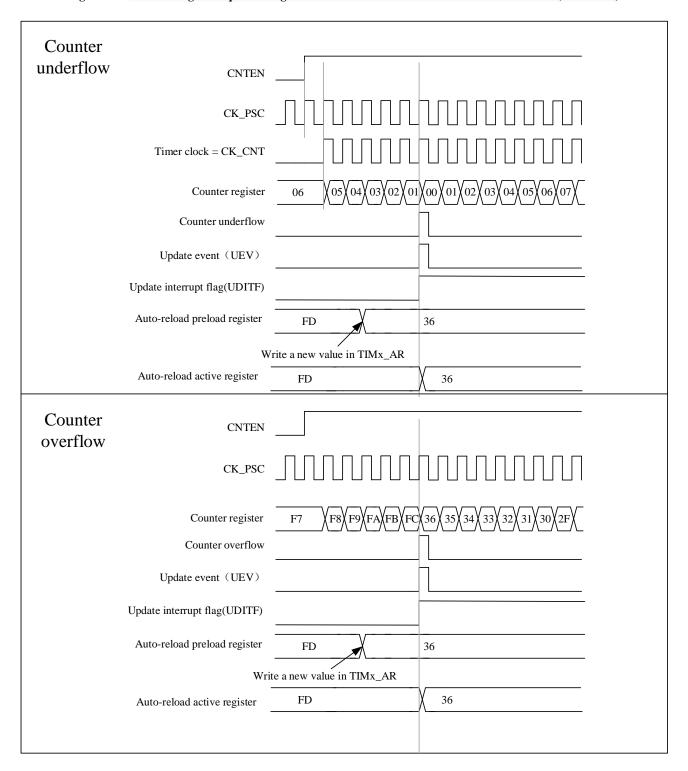



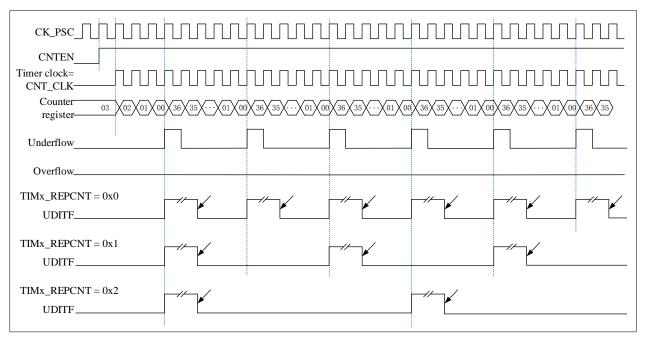
Figure 11-7 A center-aligned sequence diagram that includes counter overflows and underflows (ARPEN=1)

11.3.3 Repetition counter

The basic unit of Section 11.3.1 describes the conditions for generating an update event (UEV). An update event (UEV) is actually only generated when the repeat counter reaches zero, which is valuable for generating PWM signals.

This means that data is transferred from the preload registers to the shadow registers every N+1 counter overflow or

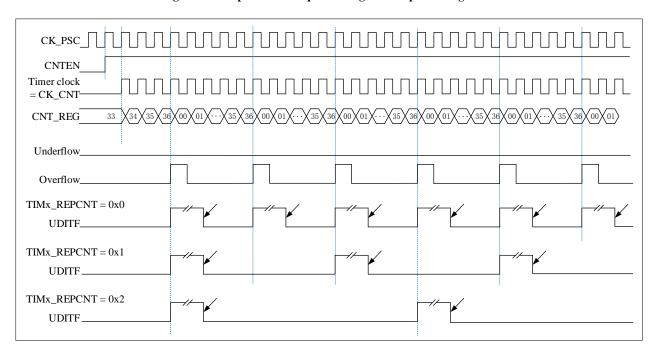
underflow, where N is the value in the TIMx_REPCNT.


The repetition counter is decremented:

- In the up-counting mode, each time the counter reaches the maximum value, an overflow occurs.
- In down-counting mode, each time the counter decrements to the minimum value, an underflow occurs.
- In center-aligned mode, each time the counter overflows or underflows.

Its repetition rate is defined by the value of the TIMx_REPCNT register.

Repetition counters feature automatic reloading. The update event (generated by setting TIMx_EVTGEN.UDGN or hardware through slave mode controller) occurs immediately, regardless of the value of the repeat counter.


 ${\bf Figure~11-8~Repeat~count~sequence~diagram~in~down-counting~mode}$

Software clear

Figure 11-9 Repeat count sequence diagram in up-counting mode

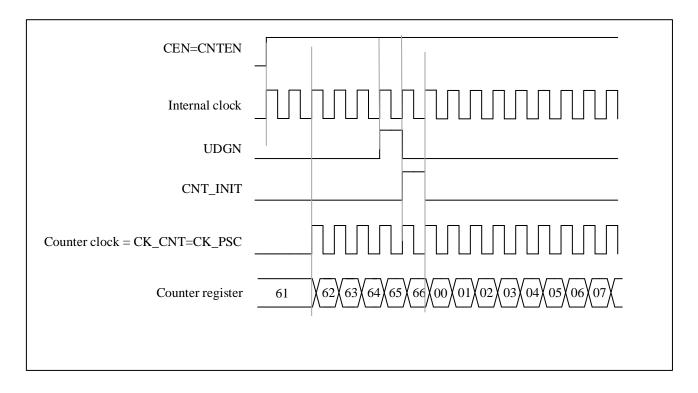
Software clear

Figure 11-10 Repeat count sequence diagram in center-aligned mode

Software clear

231

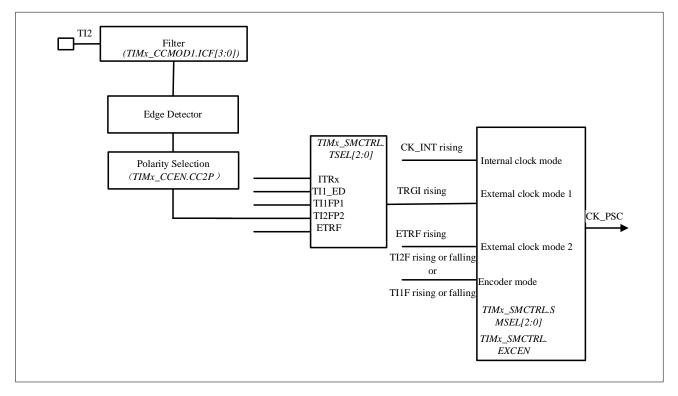
Nanshan District, Shenzhen, 518057, P.R.China


11.3.4 Clock selection

- The internal clock of Advanced-control timers: CK INT
- Two kinds of external clock mode :
 - external input pin
 - external trigger input ETR
- Internal trigger input (ITRx): one timer is used as a prescaler for another timer.

11.3.4.1 Internal clock source (CK_INT)

When the TIMx_SMCTRL.SMSEL is equal to "000", the slave mode controller is disabled. The three control bits (TIMx_CTRL1.CNTEN、TIMx_CTRL1.DIR、TIMx_EVTGEN. UDGN) can only be changed by software (except TIMx_EVTGEN. UDGN, which remains cleared automatically). It is provided that the TIMx_CTRL1.CNTEN bit is written as '1' by soft, the clock source of the prescaler is provided by the internal clock CK_INT.


Figure 11-11 Control circuit in normal mode, internal clock divided by 1

11.3.4.2 External clock source mode 1

Figure 11-12 TI2 external clock connection example

This mode is selected by configuring TIMx_SMCTRL.SMSEL=111. The counter can be configured to count on the rising or falling edge of the clock at the selected input.

For example, to configure up-counting mode to count on the rising edge of the clock at the TI2 input, the configuration steps are as follows:

- Configure TIMx CCMOD1.CC2SEL equal to '01', CC2 channel is configured as input, IC2 is mapped to TI2
- Configure TIMx_CCEN.CC2P equal to '0', select clock rising edge polarity
- To select input filter bandwidth by configuring TIMx_CCMOD1.IC2F[3:0] (if filter is not needed, keep IC2F bit at '0000')
- Configure TIMx SMCTRL.SMSEL equal to '111', select timer external clock mode 1
- Configure TIMx SMCTRL.TSEL equal to '110', select TI2 as the trigger input source
- Configure TIMx CTRL1.CNTEN equal to '1' to start the counter

Note: The capture prescaler is not used for triggering, so it does not need to be configured

When the rising edge of the timer clock occurs at TI2=1, the counter counts once and the TIMx_STS .TITF flag is pulled high.

The delay between the rising edge of TI2 and the actual clock of the counter depends on the resynchronization circuit at the input of TI2.

CNTEN TI2 Timer clock = CK_CNT=CK_PSC Counter register 64 65 66

Write TITF=0

Figure 11-13 Control circuit in external clock mode 1

11.3.4.3 External clock source mode 2

TITF

This mode is selected by TIMx SMCTRL .EXCEN equal to 1. The counter can count on every rising or falling edge of the external trigger input ETR.

The following figure is a schematic diagram of the external trigger input module in External clock source mode 2

TI1F rising or falling Encode mode TI2F rising or falling Polarity Selection $TIMx_SMCTRL.EXTP$ ETR pin External clock TRGI rising mode 1 **ETRP** External clock ETRF rising Prescaler mode 2 /1,/2,/4,/8 CK PSC TIMx_SMCTRL.EXTPS[1:0] CK_INT rising Internal clock f_{DTS} mode Filter Down counter TIMx_SMCTR.EXTF[3:0] TIMx_SMCTRL.EXCE TIMx_SMCTRL.SMSE L[2:0]

Figure 11-14 External trigger input block diagram

For example, use the following configuration steps to make the up counter count every 2 rising edges on ETR.

- Since no filter is needed in this case, make TIMx SMCTRL .EXTF[3:0] equal to '0000'
- Configure the prescaler by making TIMx_SMCTRL.EXTPS[1:0] equal to '01'
- Select the polarity on ETR pin by setting TIMx_SMCTRL.EXTP equal to '0', The rising edge of ETR is valid 234

- External clock mode 2 is selected by setting TIMx_SMCTRL .EXCEN equal to '1'
- Turn on the counter by setting TIMx_CTRL1. CNTEN equal to '1'

The counter counts every 2 rising edges of ETR. The delay between the rising edge of ETR and the actual clock to the counter is due to a resynchronization circuit on the ETRP signal.

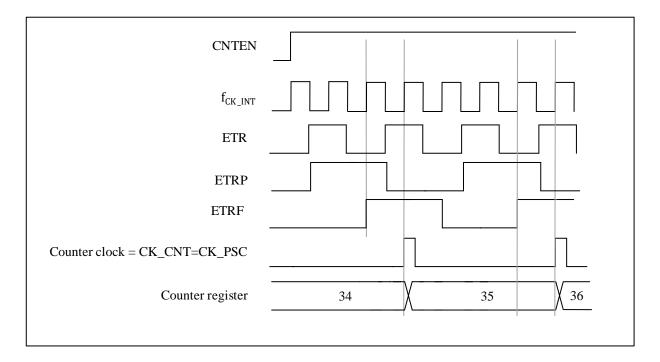
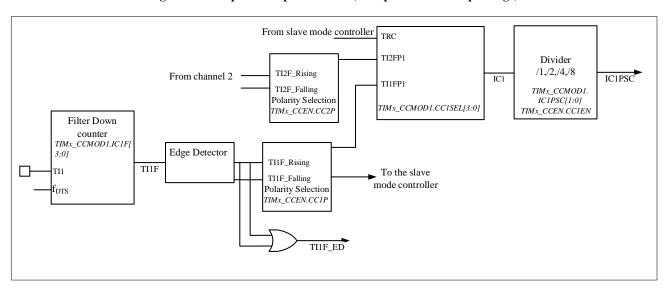


Figure 11-15 Control circuit in external clock mode 2


11.3.5 Capture/compare channels

Capture/compare channels include capture/compare registers and shadow registers. The input section consists of digital filters, multiplexers and prescalers. The output section includes comparators and output controls.

The input signal TIx is sampled and filtered to generate the signal TIxF. A signal (TIxF_rising or TIxF_falling) is then generated by the edge detector of the polarity select function, the polarity of which is selected by the TIMx_CCEN.CCxP bits. This signal can be used as a trigger input for the slave mode controller. At the same time, the signal ICx is sent to the capture register after frequency division. The following figure shows a block diagram of a capture/compare channel.

Figure 11-16 Capture/compare channel (example: channel 1 input stage)

The output part generates an intermediate waveform OCxRef (active high) as reference. The polarity acts at the end of the chain.

Figure 11-17 Capture/compare channel 1 main circuit

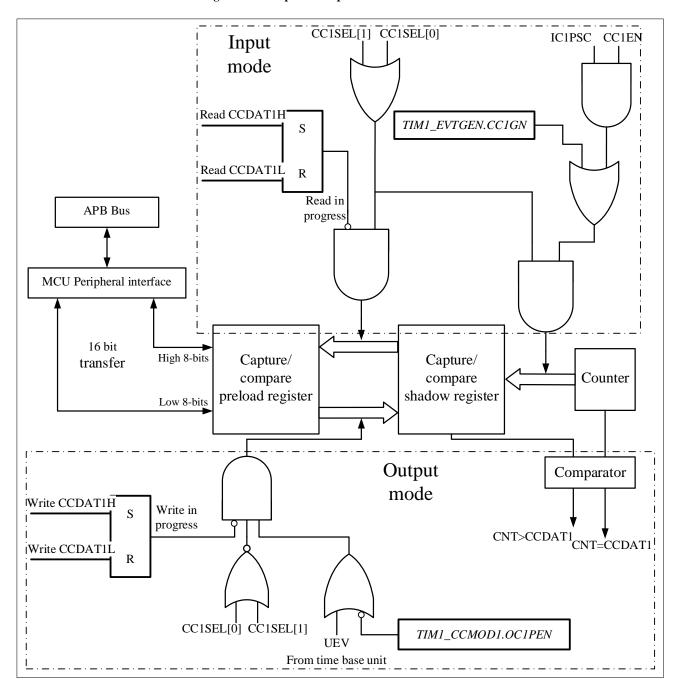


Figure 11-18 Output part of channels (x= 1,2,3, take channel 1 as example)

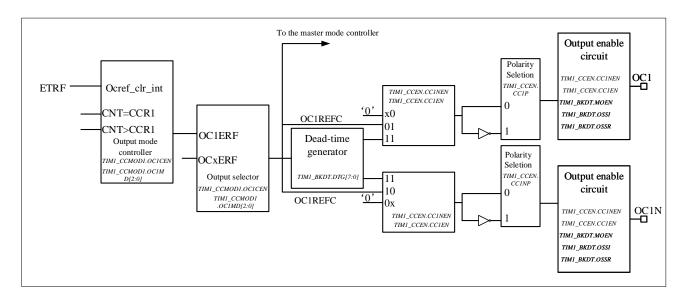
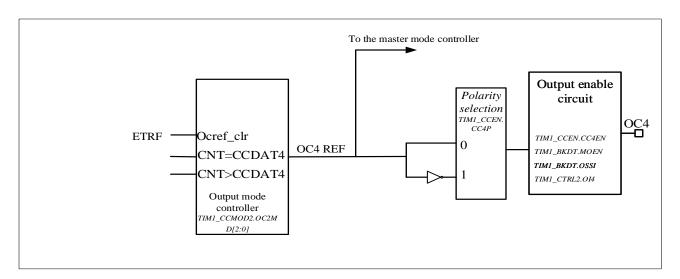



Figure 11-19 Output part of channels (x=4)

Reads and writes always access preloaded registers when capturing/comparing. The two specific working processes are as follows:

In capture mode, the capture is actually done in the shadow register, and then the value in the shadow register is copied into the preload register.

In compare mode, as opposed to capture mode, the value of the preload register is copied into the shadow register, which is compared with the counter.

11.3.6 Input capture mode

In capture mode, the TIMx_CCDATx registers are used to latch the counter value after the ICx signal detects.

There is a capture interrupt flag TIMx_STS.CCxITF, which can issue an interrupt or DMA request if the corresponding interrupt enable is pulled high.

The TIMx_STS. CCxITF bit is set by hardware when a capture event occurs and is cleared by software or by reading the TIMx_CCDATx register.

The overcapture flag TIMx_STS.CCxOCF is set equal to 1 when the counter value is captured in the TIMx_CCDATx register and TIMx_STS.CC1ITF is already pulled high. Unlike the former, TIMx_STS.CCxOCF is cleared by writing 0 to it.

To achieve a rising edge of the TI1 input to capture the counter value into the TIMx_CCDAT1 register, the configuration flow is as follows:

■ To select a valid input:

Configure TIMx_CCMOD1.CC1SEL to '01'. At this time, the input is the CC1 channel, and IC1 is mapped to TI1.

Program the desired input filter duration:

Define the sampling frequency of the TI1 input and the length of the digital filter by configuring the TIMx_CCMODx.ICxF bits. Example: If the input signal jitters up to 5 internal clock cycles, we must choose a filter duration longer than these 5 clock cycles. When 8 consecutive samples (sampled at f_{DTS} frequency) with the new level are detected, we can validate the transition on TI1. Then configure TIMx_CCMOD1. IC1F to '0011'.

- By configuring TIMx_CCEN .CC1P=0, select the rising edge as the valid transition polarity on the TI1 channel.
- Configure the input prescaler. In this example, configure TIMx_CCMOD1.IC1PSC= '00' to disable the prescaler because we want to capture every valid transition.
- Enable capture by configuring TIMx CCEN. CC1EN = '1'.

If you want to enable DMA request, you can configure TIMx_DINTEN.CC1DEN=1.If you want enable related interrupt request, you can configureTIMx_DINTEN.CC1IEN bit=1

11.3.7 PWM input mode

There are some differences between PWM input mode and normal input capture mode, including:

- Two ICx signals are mapped to the same TIx input.
- The two ICx signals are active on edges of opposite polarity.
- Select one of two TIxFP signals as trigger input.
- The slave mode controller is configured in reset mode.

For example, the following configuration flow can be used to know the period and duty cycle of the PWM signal on TI1 (It depends on the frequency of CK_INT and the value of the prescaler).

- Configure TIMx_CCMOD1.CC1SEL equal to '01' to select TI1 as valid input for TIMx_CCDAT1.
- Configure TIMx_CCEN.CC1P equal to '0' to select the active polarity of filtered timer input 1(TI1FP1), valid on the rising edge.

239

■ Configure TIMx CCMOD1.CC2SEL equal to '10' select TI1 as valid input for TIMx CCDAT2.

- Configure TIMx_CCEN.CC2P equal to 1 to select the valid polarity of filtered timer input 2(TI1FP2), valid on the falling edge.
- Configure TIMx_SMCTRL.TSEL=101 to select Filtered timer input 1 (TI1FP1) as valid trigger input.
- Configure TIMx SMCTRL.SMSEL=100 to configure the slave mode controller to reset mode.
- Configure TIMx_CCEN. CC1EN=1 and TIMx_CCEN.CC2EN=1 to enable capture.

TI1 TIMx_CNT 0000 0001 0002 0003 0004 0000 TIMx_CCDAT1 0004 0002 TIMx_CCDAT2 IC1 capture IC2 capture IC1 capture IC2 capture Pulse width Period Reset counter measurement measurement

Figure 11-20 PWM input mode timing

Because of only filter timer input 1 (TI1FP1) and filter timer input 2 (TI2FP2) are connected to the slave mode controller, the PWM input mode can only be used with the TIMx_CH1/TIMx_CH2 signals.

11.3.8 Forced output mode

Software can force output compare signals to active or inactive level directly, in output mode (TIMx_CCMODx.CCxSEL=00).

User can set TIMx_CCMODx. OCxMD=101 to force the output compare signal to active level. And the OCxREF will be forced high, OCx get opposite value to CCxP polarity bit. On the other hand, user can set TIMx_CCMODx. OCxMD=100 to force the output compare signal to inactive level.

The values of the TIMx_CCDATx shadow register and the counter still comparing with each other in this mode.

The comparison between the output compare register TIMx_CCDATx and the counter TIMx_CNT has no effect on OCxREF. And the flag still can be set. Therefore, the interrupt and DMA requests still can be sent.

11.3.9 Output compare mode

User can use this mode to control the output waveform, or to indicate that a period of time has elapsed.

When the capture/compare register and the counter have the same value, the output compare function's operations are as follow:

- TIMx_CCMODx.OCxMD is for output compare mode, and TIMx_CCEN.CCxP is for output polarity. When the compare matches, if set TIMx_CCMODx.OCxMD=000, the output pin will keep its level;if set TIMx_CCMODx.OCxMD=001, the output pin will be set active;if set TIMx_CCMODx.OCxMD=010, the output pin will be set inactive;if set TIMx_CCMODx.OCxMD=011, the output pin will be set to toggle.
- Set TIMx_STS.CCxITF.
- If user set TIMx_DINTEN.CCxIEN, a corresponding interrupt will be generated.
- If user set TIMx_DINTEN.CCxDEN and set TIMx_CTRL2.CCDSEL to select DMA request, and DMA request will be sent.

User can set TIMx_CCMODx.OCxPEN to choose capture/compare shawdow regisete using capture/compare preload registers(TIMx_CCDATx) or not.

The time resolution is one count of the counter.

In one-pulse mode, the output compare mode can also be used to output a single pulse.

Here are the configuration steps for output compare mode:

- First of all, user should select the counter clock.
- Secondly, set TIMx AR and TIMx CCDATx with desired data.
- If user need to generate an interrupt, set TIMx_DINTEN.CCxIEN.
- Then select the output mode by set TIMx_CCEN.CCxP, TIMx_CCMODx.OCxMD, TIMx_CCEN.CCxEN, etc.
- At last, set TIMx_CTRL1.CNTEN to enable the counter.

User can update the output waveform by setting TIMx_CCDATx at any time, as long as the preload register is not enabled. Otherwise the TIMx_CCDATx shadow register will be updated at the next update event.

241

Here is an example.

TIM1_CNT 0069 006A 006B 8800 8801

TIM1_CCDAT1 006A 8801

Write 8801h in CCDAT1 register

OC1REF=OC1 Match detected on CCDAT1

Interrupt generated if enabled

Figure 11-21 Output compare mode, toggle on OC1

11.3.10 PWM mode

User can use PWM mode to generate a signal whose duty cycle is determined by the value of the TIMx_CCDATx register and whose frequency is determined by the value of the TIMx_AR register. And depends on the value of TIMx_CTRL1.CAMSEL, the TIM can generate PWM signal in edge-aligned mode or center-aligned mode.

User can set PWM mode 1 or PWM mode 2 by setting TIMx_CCMODx. OCxMD=110 or setting TIMx_CCMODx. OCxMD=111. To enable preload register, user must set corresponding TIMx_CCMODx.OCxPEN. And then set TIMx_CTRL1.ARPEN to auto-reload preload register eventually.

User can set polarity of OCx by setting TIMx_CCEN.CCxP. On the other hand, to enable the output of OCx, user need to set the combination of the value of CCxEN, CCxNEN, MOEN, OSSI, and OSSR in TIMx_CCEN and TIMx_BKDT.

The values of TIMx_CNT and TIMx_CCDATx are always compared with each other when the TIM is under PWM mode.

Only if an update event occurs, the preload register will transfer to the shadow register. Therefore user must reset all the registers by setting TIMx_EVTGEN.UDGN before the counter starts counting..

11.3.10.1 PWM center-aligned mode

If user set TIMx_CTRL1.CAMSEL equal 01, 10 or 11, the PWM center-aligned mode will be active. The setting of the compare flag depends on the value of TIMx_CTRL1.CAMSEL. There are three kinds of situation that the compare flag is set, only when the counter counts up, only when the counter counts down, or when the counter counts up and counts down. User should not modified TIMx_CTRL1.DIR by software, it is updated by hardware.

Examples of center-aligned PWM waveforms is as follow, and the setting of the waveform are: TIMx_AR=8, PWM mode 1, the compare flag is set when the counter counts down corresponding to TIMx_CTRL1. CAMSEL=01.

Counter register OCXREF '0' CCDATx=0 **CCxITF** AMSEL=10 CAMSEL=11 **OCXREF** CCDATx=4 CAMSEL=01 CAMSEL=10 **CCxITF** CAMSEL=11 **OCXREF** CCDATx=7 CCxITF CAMSEL=10或11 OCXREF '1' CAMSEL=01 CCDATx=8 **CCxITF** CAMSEL=10 CAMSEL=11 OCXREF CCDATx>8 CAMSEL=01 **CCxITF** CAMSEL=10 CAMSEL=11

Figure 11-22 Center-aligned PWM waveform (AR=8)

Notes that user should know when using center-aligned mode are as follow:

- It depends on the value of TIMx_CTRL1.DIR that the counter counts up or down. Cautions that the DIR and CAMSEL bits should not be changed at the same time.
- User should not write the counter while running in center-aligned mode, otherwise it will cause unexpected results. Here are some example:
 - ◆ If the value written into the counter is 0 or is the value of TIMx_AR, the direction will be updated but the update event will not be generated.
 - If the value written into the counter is greater than the value of auto-reload, the direction will not be updated.

■ To be on the safe side, user is suggested setting TIMx_EVTGEN.UDGN to generate an update by software before starting the counter, and not writing the counter while it is running.

11.3.10.2 PWM edge-aligned mode

There are two kinds of configuration in edge-aligned mode, up-counting and down-counting.

Up-counting

User can set TIMx_CTRL1.DIR=0 to make counter counts up.

Here is an example for PWM mode1.

When TIMx_CNT < TIMx_CCDATx, the reference PWM signal OCxREF is high. Otherwise it will be low. If the compare value in TIMx_CCDATx is greater than the auto-reload value, the OCxREF will remains 1. Conversely, if the compare value is 0, the OCxREF will remains 0.

When TIMx_AR=8, the PWM waveforms are as follow.

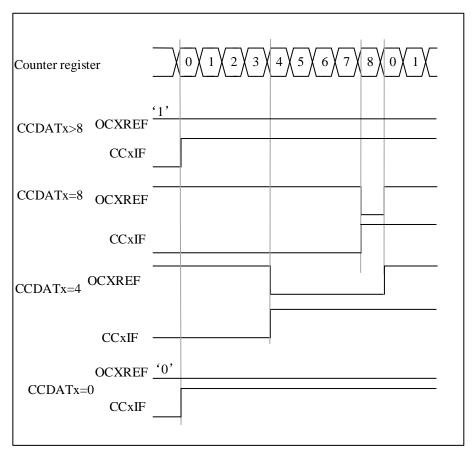


Figure 11-23 Edge-aligned PWM waveform (APR=8)

Down-counting

User can set TIMx_CTRL1.DIR=1 to make counter counts down.

Here is an example for PWM mode1.

When TIMx_CNT > TIMx_CCDATx, the reference PWM signal OCxREF is low. Otherwise it will be high. If the compare value in TIMx_CCDATx is greater than the auto-reload value, the OCxREF will remains 1.

Note: If the nth PWM cycle CCDATx shadow register >= AR value, the shadow register value of CCDATx in the (n+1)th PWM cycle is 0. At the moment when the counter is 0 in the (n+1)th PWM cycle, although the value of the counter = CCDATx shadow register = 0 and OCxREF = '0', no compare event will be generated.

11.3.11 One-pulse mode

In the one-pulse mode (ONEPM), a trigger signal is received, and a pulse t_{PULSE} with a controllable pulse width is generated after a controllable delay t_{DELAY}. The output mode needs to be configured as output compare mode or PWM mode. After selecting one-pulse mode, the counter will stop counting after the update event UEV is generated.

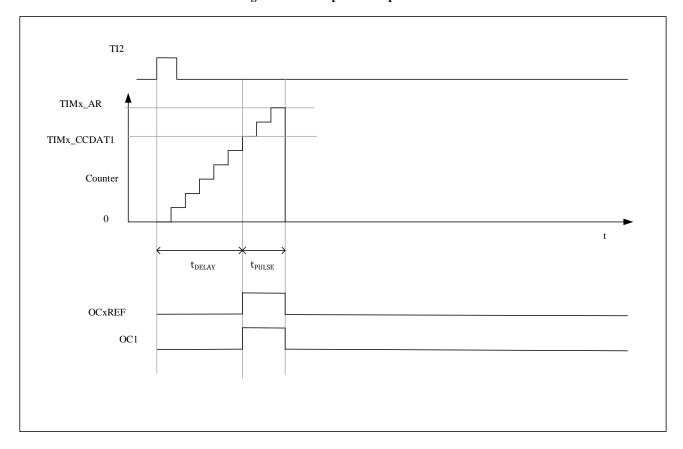


Figure 9-41 Example of One-pulse mode

The following is an example of a one-pulse mode:

A rising edge trigger is detected from the TI2 input, and a pulse with a width of t_{PULSE} is generated on OC1 after a delay of t_{DELAY}.

- 1. Counter configuration: count up, counter TIMx CNT < TIMx CCDAT1 ≤ TIMx AR;
- 2. TI2FP2 is mapped to TI2, TIMx_CCMOD1.CC2SEL= '01'; TI2FP2 is configured for rising edge detection, TIMx_CCEN.CC2P= '0';
- 3. TI2FP2 acts as the trigger (TRGI) of the slave mode controller and starts the counter, TIMx_SMCTRL.TSEL= '110', TIMx_SMCTRL.SMSEL= '110' (trigger mode);
- 4. TIMx_CCDAT1 writes the count value to be delayed (t_{DELAY}), TIMx_AR TIMx_CCDAT1 is the count value of the pulse width t_{PULSE} ;

- 5. Configure TIMx_CTRL1.ONEPM=1 to enable single pulse mode, configure TIMx_CCMOD1.OC1MD = '111' to select PWM2 mode:
- 6. Wait for an external trigger event on TI2, and a one pulse waveform will be output on OC1;

11.3.11.1 Special case: OCx fast enable:

In one-pulse mode, an edge is detected through the TIx input, and triggers the start of the counter to count to the comparison value and then output a pulse. These operations limit the minimum delay t_{DELAY} that can be achieved.

You can set TIMx_CCMODx.OCxFEN=1 to turn on OCx fast enable, after triggering the rising edge, the OCxREF signal will be forced to be converted to the same level as the comparison match occurs immediately, regardless of the comparison result. OCxFEN fast enable only takes effect when the channel mode is configured for PWM1 and PWM2 modes.

11.3.12 Clearing the OCxREF signal on an external event

If user set TIMx_CCMODx.OCxCEN=1, high level of ETRF input can be used to driven the OCxREF signal to low, and the OCxREF signal will remains low, until the next UEV happens. Only output compare and PWM modes can use this function. This cannot be used when it is in forced mode.

Here is an example for it. The operation for ETR should be as follow:

- Set TIMx_SMCTRL.EXTPS=00 to disable the external trigger prescaler.
- Set TIMx_SMCTRL.EXCEN=0 to disable the external clock mode 2.
- Set TIMx_SMCTRL.EXTP and TIMx_SMCTRL.EXTF to configure the external trigger polarity and external trigger filter according to the need.

Here is an example for the case that when ETRF input becomes high, the behavior of OCxREF signal for different value of OCxCEN. Timer is set to be in PWM mode in this case.

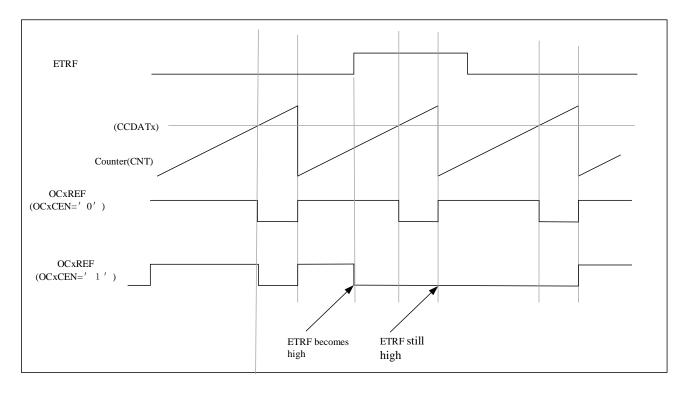


Figure 11-24 Clearing the OCxREF of TIMx

11.3.13 Complementary outputs with dead-time insertion

Advanced-control timer can output two complementary signals, and manage the switching-off and switching-on of outputs. This is called dead-time. User should adjust dead-time depending on the devices connected to the outputs and their characteristics.

User can select the polarity of outputs by setting TIMx_CCEN.CCxP and TIMx_CCEN.CCxNP. And this selection is independently for each output.

User can control the complementary signals OCx and OCxN by setting the combination of several control bits, which are TIMx_CCEN.CCxEN, TIMx_CCEN.CCxNEN, TIMx_BKDT.MOEN, TIMx_CTRL2.OIx, TIMx_CTRL2.OIxN, TIMx_BKDT.OSSI, and TIMx_BKDT.OSSR. When switching to the IDLE state, the dead-time will be activated.

If user set TIMx_CCEN.CCxEN and TIMx_CCEN.CCxNEN at the same time, a dead-time will be insert. If there is a break circuit, the TIMx_BKDT.MOEN should be set too. There are 10-bit dead-time generators for each channel.

Reference waveform OCxREF can generates 2 outputs OCx and OCxN. And if OCx and OCxN are active high, the OCx ouput signal is the same as the reference signal and the OCxN output signal is the opposite of the reference signal. However, OCx output signal will be delayed relative to the reference rising edge and the OCxN output signal will be delayed relative to the reference falling edge. If the delay is greater than the width of the active OCx or OCxN output, the corresponding pulse will not generated.

The relationships between the output signals of the dead-time generator and the reference signal OCxREF are as follow.

Assume that TIMx CCEN.CCxP=0, TIMx CCEN.CCxNP=0, TIMx BKDT.MOEN=1, TIMx CCEN.CCxEN=1,

TIMx_CCEN.CCxNEN=1.

OCxREF Complementary output OCx with dead-time insertion Delay **OCxN** Delay Dead-time waveform with delay greater **OCxREF** than the negative pulse OCx Delay **OCxN** Dead-time waveform **OCxREF** with delay larger than the positive OCx pulse **OCxN** Delay

Figure 11-25 Complementary output with dead-time insertion

User can set TIMx_BKDT.DTGN to programme the dead-time delay for each of the channels.

11.3.13.1 Redirecting OCxREF to OCx or OCxN

User can set TIMx_CCEN.CCxEN and TIMx_CCEN.CCxNEN to re-directed OCxREF to the OCx output or to OCxN output, in output mode.

Here are two ways to use this function. When the complementary remains at its inactive level, user can use this function to send a specific waveform, such as PWM or static active level. User can also use this function to set both outputs in their inactive level or both outputs active and complementary with dead-time.

If user set TIMx_CCEN.CCxEN=0 and TIMx_CCEN.CCxNEN=1, it will not complemented, and OCxN will become active when OCxREF is high. On the other hand, if user set TIMx_CCEN.CCxEN=1 and TIMx_CCEN.CCxNEN=1, OCx will become active when OCxREF is high. On the contrary, OCxN will become active when OCxREF is low.

11.3.14 Break function

The output enable signals and inactive levels will be modified when setting the corresponding control bits when using the break function. However, the output of OCx and OCxN cannot at the active level at the same time no matter when, that is, (CCxP^OIx) ^(CCxNP^OIxN)!=0.

When multiple break signals are enabled, each break signal constitutes an OR logic. Here are some signal which can be the source of breaking.

- The break input pin
- A clock failure event, generated by the clock security system in the clock controller.
- A PVD failure event.
- Core Hardfault event.
- By software through the TIMx_EVTGEN.BGN.

The break circuit will be disable after reset. And the MOEN bit will be low. User can set TIMx_BKDT.BKEN to enable the break function. The polarity of break input signal can be selected by setting TIMx_BKDT.BKP. User can modify the TIMx_BKDT.BKEN and TIMx_BKDT.BKP at the same time. After user set the TIMx_BKDT.BKEN and TIMx_BKDT.BKEN there is 1 APB clock cycle delay before the option take effect. Therefore, user need to wait 1 APB clock cycle to read back the value of the written bit.

The falling edge of MOEN can be asynchronous, so between the actual signal and the synchronous control bit, there set a resynchronization circuit. This circuit will cause a delay between the asynchronous and the synchronous signal. When user set TIMx_BKDT.MOEN while it is low, user need to insert a delay before reading the value. Because an asynchronous signal was written but user read the synchronous signal.

The behaviors that after a break occurs are as follow:

- TIMx_BKDT.MOEN will be cleared asynchronously, and then the outputs will be put in inactive state, idle state or reset state. The state of output is selected by setting TIMx_BKDT.OSSI. This will take effect even if the MCU oscillator is off.
- Once TIMx_BKDT.MOEN=0, the output of each output channel will be driven with the level programmed in TIMx_CTRL2.OIx. Timer will release the enable outputs(taken over by GPIO controller) if TIMx_BKDT.OSSI=0, otherwise it will remains high.
- If user choose to use complementary outputs, the behaviors of TIM are as follow
 - ◆ Depends on the polarity, the outputs will be set in reset state first. It is an asynchronous option so it still works even if there is no clock provided to the timer.
 - ◆ The dead-time generator will reactivated if the timer clock is still provided, and drive the outputs according to the value of TIMx_CTRL2.OIx and TIMx_CTRL2.OIxN after the dead-time when (CCxP ^ OIx) ^ (CCxNP^OIxN)! = 0, that is, the OCx and OCxN still cannot be driven to active level at the same time. Note that the dead-time will be longer than usual because of the resynchronization on MOEN (almost 2 cycles of ck_tim).
 - ◆ Timer will release the output control if TIMx_BKDT.OSSI=0. Otherwise, if the enable output was high, it

will remain high. If it was low, it will become high when TIMx_CCEN.CCxEN or TIMx_CCEN.CCxNEN is high.

- If TIMx_DINTEN.BIEN=1, when TIMx_STS.BITF=1, an interrupt will be generated.
- If user set TIMx_BKDT.AOEN, the TIMx_BKDT.MOEN will be set automatically when the next UEV happened. User can use this to regulate. If user did not set TIMx_BKDT.AOEN, the TIMx_BKDT.MOEN will remain low until been set 1 again. At this situation, user can use this for security. User can connect the break input to thermal sensors, alarm for power drivers, or other security components.
- When the break input is active, TIMx_BKDT.MOEN cannot be set automatically or by software at the same time, and the TIMx_STS.BITF cannot be cleared. Because the break inputs are active on level.

To insure the security of application, the break circuit has the write protection function, and there is break input and output management too. It allow user to freeze some parameters, such as dead-time duration, OCx/OCxN polarities and state when disabled, OCxMD configurations, break enable and polarity. User can choose one of the 3 levels of protection to use by setting TIMx_BKDT.LCKCFG. However, the TIMx_BKDT.LCKCFG can only be written once after an MCU reset.

An example for output behavior in response to a break is as follow

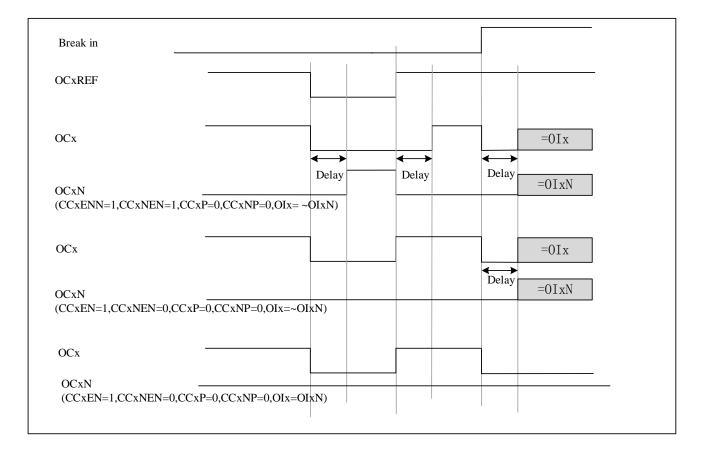


Figure 11-26 Output behavior in response to a break

11.3.15 Debug mode

When the microcontroller is in debug mode (the Cortex-M4 core halted), depending on the DBG_CTRL.TIMx_STOP

configuration in the DBG module, the TIMx counter can either continue to work normally or stop. For more details, see 26.4.3.

11.3.16 TIMx and external trigger synchronization

TIMx timers can be synchronized by a trigger in slave modes (reset, trigger and gated).

11.3.16.1 Slave mode: Reset mode

In reset mode, the trigger event can reset the counter and the prescaler updates the preload registers TIMx_AR, TIMx_CCDATx, and generates the update event UEV (TIMx_CTRL1.UPRS=0).

The following is an example of a reset mode:

- 1. Channel 1 is configured as input to detect the rising edge of TI1 (TIMx_CCMOD1.CC1SEL=01, TIMx_CCEN.CC1P=0);
- 2. The slave mode is selected as reset mode (TIMx_SMCTRL.SMSEL=100), and the trigger input is selected as TI1 (TIMx_SMCTRL.TSEL=101);
- 3. Start counter (TIMx_CTRL1.CNTEN = 1)

After starting the timer, when TI1 detects a rising edge, the counter resets and restarts counting, and the trigger flag is set (TIMx_STS.TITF=1);

The delay between the rising edge on TI1 and the actual reset of the counter is due to the resynchronization circuit on TI1 input.

Figure 11-27 Control circuit in reset mode

11.3.16.2 Slave mode: Trigger mode

In trigger mode, the trigger event (rising edge/falling edge) of the input port can trigger the counter to start counting.

The following is an example of a trigger pattern:

- 1. Channel 2 is configured as input to detect the rising edge of TI2 (TIMx_CCMOD1.CC2SEL=01, TIMx CCEN.CC2P=0);
- 2. Select from mode to trigger mode (TIMx_SMCTRL.SMSEL=110), select TI2 for trigger input (TIMx_SMCTRL.TSEL=110);

When TI2 detects a rising edge, the counter starts counting, and the trigger flag is set (TIMx_STS.TITF=1);

The delay between the rising edge on TI2 and the actual start of the counter is due to the resynchronization circuit on TI2 input.

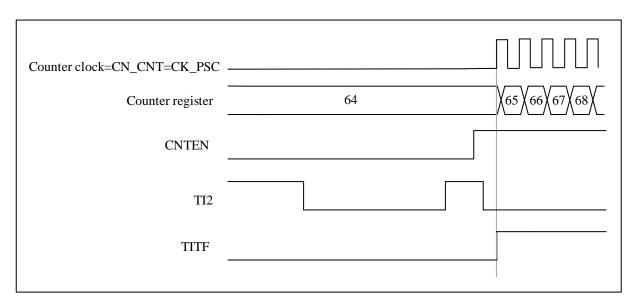
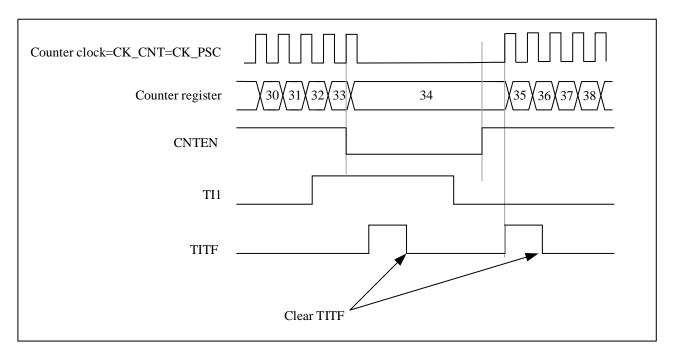


Figure 11-28 Control circuit in Trigger mode

11.3.16.3 Slave mode: Gated mode

In gate control mode, the level polarity of the input port can control whether the counter counts.

The following is an example of a gated pattern:


- 1. Channel 1 is configured as input detection active low on TI1 (TIMx_CCMOD1.CC1SEL=01, TIMx_CCEN.CC1P=1);
- 2. Select the slave mode as the gated mode ($TIMx_SMCTRL.SMSEL=101$), and select TI1 as the trigger input ($TIMx_SMCTRL.TSEL=101$);
- 3. Start counter (TIMx_CTRL1.CNTEN = 1)

When TI1 detects that the level changes from low to high, the counter stops counting, and when TI1 detects that the level changes from high to low, the counter starts counting, and the trigger flag will be set when it starts or stops counting (TIMx_STS.TITF=1);

The delay between the rising edge on TI1 and the actual stop of the counter is due to the resynchronization circuit on TI1 input.

Figure 11-29 Control circuit in Gated mode

11.3.16.4 Slave mode: Trigger Mode + External Clock Mode 2

In reset mode, trigger mode and gate control mode, the counter clock can be selected as external clock mode 2, and the ETR signal is used as the external clock source input. At this time, the trigger selection needs to select non-ETRF (TIMx_SMCTRL.TSEL=111).

Here is an example:

- 1. Channel 1 is configured as input to detect the rising edge of TI1 (TIMx_CCMOD1.CC1SEL=01, TIMx_CCEN.CC1P=0);
- 2. Enable external clock mode 2 (TIMx_SMCTRL.EXCEN=1), select rising edge for external trigger polarity (TIMx_SMCTRL.EXTP=0), select slave mode as trigger mode (TIMx_SMCTRL.SMSEL=110), select TI1 for trigger input (TIMx_SMCTRL.TSEL=101);

When TI1 detects a rising edge, the counter starts counting on the rising edge of ETR, and the trigger flag is set (TIMx_STS.TITF=1);

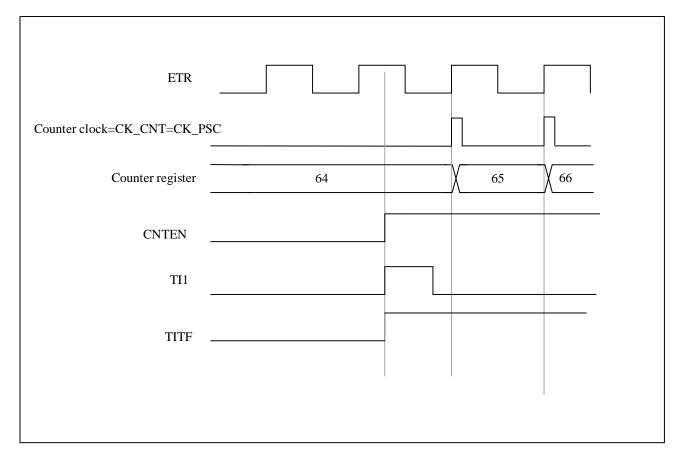


Figure 11-30 Control circuit in Trigger Mode + External Clock Mode2

11.3.17 Timer synchronization

All TIM timers are internally connected for timer synchronization or chaining. For more details, see 12.3.14.

11.3.18 6-step PWM generation

In order to modify the configuration of all channels at the same time, the configuration of the next step can be set in advance (the preloaded bits are OCxMD, CCxEN and CCxNEN). When a COM commutation event occurs, the OCxMD, CCxEN, and CCxNEN preload bits are transferred to the shadow register bits.

COM commutation event generation method:

- 1. The software sets TIMx_EVTGEN.CCUDGN;
- 2. Generated by hardware on the rising edge of TRGI;

When a COM commutation event occurs, the TIMx_STS.COMITF flag will be set, enabling interrupts (TIMx_DINTEN.COMIEN) will generate interrupts, and enabling DMA requests (TIMx_DINTEN.COMDEN) will generate DMA requests.

The following figure shows the output timing diagram of OCx and OCxN when a COM commutation event occurs in three different configurations:

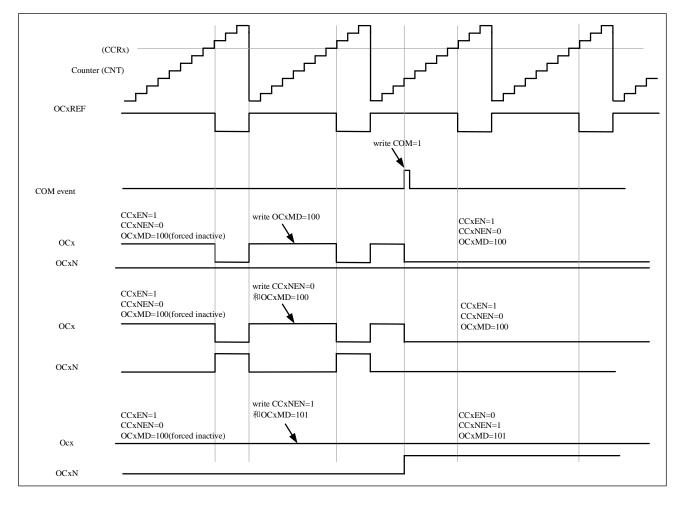


Figure 11-31 6-step PWM generation, COM example (OSSR=1)

11.3.19 Encoder interface mode

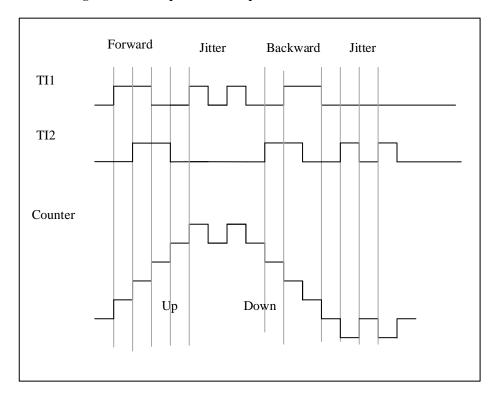
The encoder uses two inputs TI1 and TI2 as an interface and the counter counts on every edge change on TI1FP1 or TI2FP2. The counting direction is automatically controlled by hardware TIMx_CTRL1.DIR. There are three types of encoder counting modes:

- 1. The counter only counts on the edge of TI1, TIMx SMCTRL.SMSEL = '001';
- 2. The counter only counts on the edge of TI2, TIMx SMCTRL.SMSEL ='010';
- 3. The counter counts on the edges of TI1 and TI2 at the same time, TIMx SMCTRL.SMSEL = '011';

The encoder interface is equivalent to using an external clock with direction selection, and the counter only counts continuously between 0 and the auto-reload value (TIMx_AR.AR [15:0]). Therefore, it is necessary to configure the auto-reload register TIMx_AR in advance.

Note: Encoder mode and external clock mode 2 are not compatible and must not be selected together.

The relationship between the counting direction and the encoder signal is shown in **Table 11-1 Counting direction versus** encoder signals:


Table 11-1 Counting direction	versus encoder signals
-------------------------------	------------------------

	Level on opposite signals	TI1FP:	l signal	TI2FP2	2 signal
Active edge	(TI1FP1 forTI2,	Rising	Falling	Rising	Falling
	TI2FP2 for TI1)				
Counting only at TI1	High	Counting down	Counting up	Don't count	Don't count
	Low	Counting up	Counting down	Don't count	Don't count
Counting only at TI2	High	Don't count	Don't count	Counting up	Counting down
	Low	Don't count	Don't count	Counting down	Counting up
Counting on	High	Counting down	Counting up	Counting up	Counting down
TI1 and TI2	Low	Counting up	Counting down	Counting down	Counting up

Here is an example of an encoder with dual edge triggering selected to suppress input jitter:

- 1. IC1FP1 is mapped to TI1 (TIMx_CCMOD1.CC1SEL= '01'), IC1FP1 is not inverted (TIMx_CCEN.CC1P= '0');
- 2. IC1FP2 is mapped to TI2 (TIMx_CCMOD2.CC2SEL= '01'), IC2FP2 is not inverted (TIMx_CCEN.CC2P= '0');
- 3. The input is valid on both rising and falling edges (TIMx_SMCTRL.SMSEL = '011');
- 4. Enable counter TIMx_CTRL1.CNTEN= '1';

Figure 11-32 Example of counter operation in encoder interface mode

The following figure shows the example of counter behavior when IC1FP1 polarity is inverted (CC1P= '1', other configurations are the same as above)

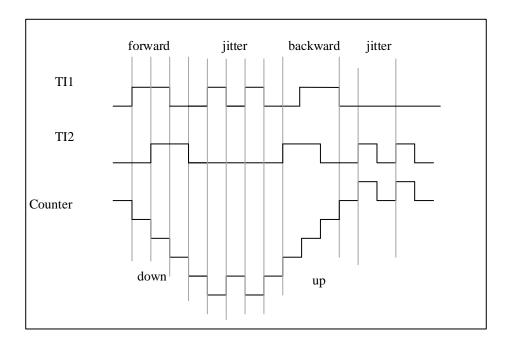
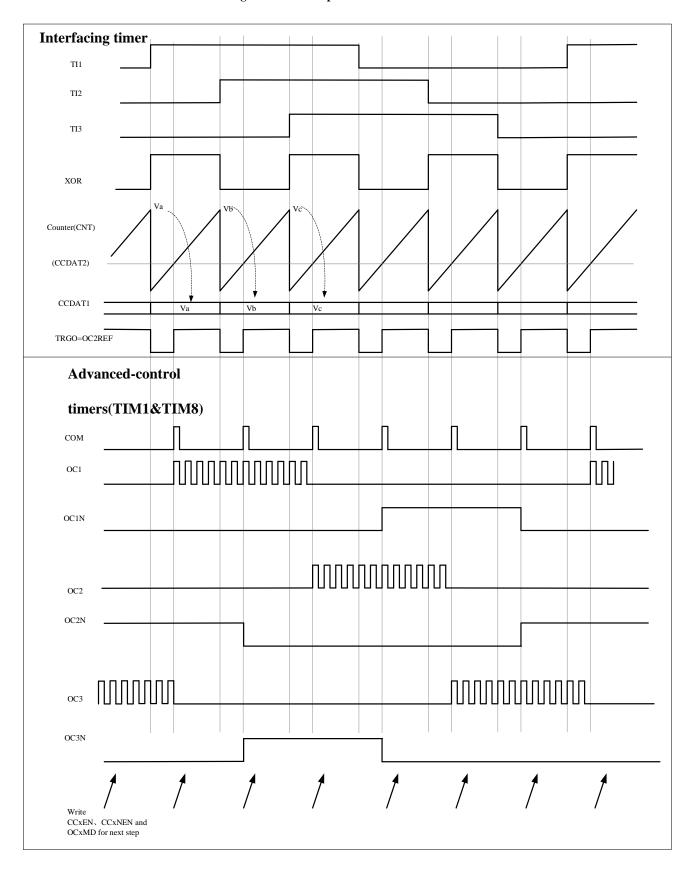


Figure 11-33 Encoder interface mode example with IC1FP1 polarity inverted

11.3.20 Interfacing with Hall sensor

Connect the Hall sensor to the three input pins (CC1, CC2 and CC3) of the timer, and then select the XOR function to pass the inputs of TIMx_CH1, TIMx_CH2 and TIMx_CH3 through the XOR gate as the output of TI1 to channel 1 for capture signal.


The timer needs to be configured as the reset mode in slave mode (TIMx_SMCTRL.SMSEL= '100'); the edge of the trigger select TI1 triggers TI1F_ED (TIMx_SMCTRL.TSEL= '100'), any change in the Hall 3 inputs will trigger the counter to recount, so it is used as a time reference; the capture/compare channel 1 is configured to capture the TRC signal in capture mode (TIMx_CCMOD1.CC1SEL= '11'), which is used to calculate the two input time intervals, thereby reflecting the motor speed.

Select timer channel 2 to output pulses to the advanced timer to trigger the COM event of the advanced timer to update the control bits of the output PWM. The trigger selection of the advanced timer needs to select the corresponding internal trigger signal (TIMx_SMCTRL.TSEL="ITRx"), the capture/compare preload control bit needs to be configured to support preload (TIMx_CTRL2.CCPCTL=1) and support the rising edge of TRGI Trigger an update (TIMx_CTRL2.CCUSEL=1).

This example is shown in the following figure.

Figure 11-34 Example of Hall sensor interface

11.4 TIMx register description(x=1, 8)

For abbreviations used in registers, see section 1.1.

These peripheral registers can be operated as half word (16-bits) or one word (32-bits).

11.4.1 Register Overview

Table 11-2 Register map and reset value

Offset	Register	31 30 30 22 23 24 24 25 25 27 27 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
000h	TIMx_CTRL1	Reserved		PBKPEN	LBKPEN	CLRSEL	Reserved	Reserved	Reserved	CISEL	IOMBKPEN	[0:1]Q.X.D.	CEASE LO	ARPEN	CAMSEL[1:0]	DIR	ONEPM	UPRS	UPDIS	CNTEN
	Reset Value			0	0	0			1	0	0	0	0	0	0	0	0	0	0	0	0
004h	TIMx_CTRL2	Reserved	9IO	Reserved OI5		OI4	OI3N	OI3N OI3		OI2	OIIN		TIISEL MMSEL[2:0]		Ĩ	CCDSET	CCUSEL	Reserved	CCPCTL		
	Reset Value	<u> </u>	0	Re	0	Re	0	0	0	0	0	0	0	0	0	0	0	0	0		0
008h	TIMx_SMCTRL	Reserved				EXTP	EXCEN EXTPS[1:0]			EXTF[3: 0]				MSMD TSEL[2: 0]			7	Reserved		SMSEL[2:0]	
	Reset Value	<u> </u>				0	0	0	0	0	0	0	0	0	0	0	0	Re	0	0	0
00Ch	TIMx_DINTEN	Reserved					TDEN	COMDEN	CC4DEN	CC3DEN	CC2DEN	CCIDEN	UDEN	BIEN	TIEN	COMIEN	CC4IEN	CC3IEN	CC2IEN	CCIIEN	UIEN
	Reset Value	~					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
010h	TIMx_STS	Reserved		CC6ITF	CCSITF		Reserved		CC40CF	CC30CF	CC20CF	CC10CF	Reserved	BITF	TITF	COMITF	CC4ITF	CC3ITF	CC2ITF	CCIITF	UDITF
	Reset Value	జ్ఞ		0	0		Re		0	0	0	0	Re	0	0	0	0	0	0	0	0
014h	TIMx_EVTGEN	Reserved												BGN	LGN	CCUDGN	CC4GN	CC3GN	CC2GN	CCIGN	UDGN
	Reset Value	Res												0	0	0	0	0	0	0	0
	ГIMx_CCMOD1	Reserved				OC2CEN		OC2MD[2 :0]	?	OC2PEN	OC2FEN	CC2SEL[1:0]	OCICEN		OC1MD[2 :0]	?	OCIPEN	OCIFEN		CC1SEL[1:0]
	Reset Value	≈				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
018h	TIMx_CCMOD1	Reserved IC2F[3:0] IC2PSC[1:0] CC2SSEL[1:0]					ICIF(3:0)				ICIPSC[1:0]		CCISEL[1:0]								
	Reset Value					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01Ch	ГIMx_CCMOD2	Reserved				OC4CEN		OC4MD[2 :0]	?	OC4PEN	OC4FEN	CC4SEL[1:0]	OC3CEN		OC3MD[2 :0]	?	OC3PEN	OC3FEN		CC3SEL[1:0]
	Reset Value	2				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01Ch	TIMx_CCMOD2	Reserved					10,010,01	IC4F[3:0]		[0,17030101	1C4F3C[1:0]	10-11 14-01J	[0:1]2755		103563:01	[0:0].[0:0]		[0:13D3q2J1	1C3F3C[1.0]		CC3SEL[1:0]
	Reset Value					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
020h	TIMx_CCEN	Reserved CC6P	Reserved	CC5P	CCSEN	Document	Keserved	CC4P	CC4EN	CC3NP	CC3NEN	CC3P	CC3EN	CC2NP	CC2NEN	CC2P	CC2EN	CCINP	CCINEN	CC1P	CCIEN

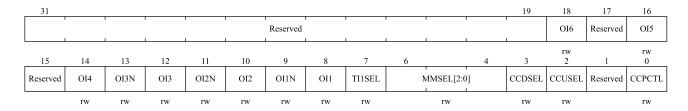
Offset	Register	31 31 32 32 33 30 31 31 31 31 31 31 31 31 31 31 31 31 31	15	14	13	12	Ξ	10	6	8	7	9	5	4	3	2	-	0
	Reset Value	0 0 0 0		•	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	TIMx_CNT		CNT[15:0]															
024h	Reset Value	Reserved	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	TIMx_PSC									P	SC[1:	5:0]						
028h	Reset Value	Reserved	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	TIMx_AR		AR[15:0]															
02Ch	Reset Value	Reserved	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	TIMx_REPCNT										REPCNT[7:0]							
030h	Reset Value	Reserved									0	0	0	0	0	0	0	0
	TIMx_CCDAT1		CCDAT1[15:0]															
034h	Reset Value	Reserved	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0201	TIMx_CCDAT2		CCDAT2[15:0]															
038h	Reset Value	Reserved	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02.01	TIMx_CCDAT3		CCDAT3[15:0]															
03Ch	Reset Value	Reserved	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.401	TIMx_CCDAT4									CCI	CDAT4[15:0]							
040h	Reset Value	Reserved	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
044h	TIMx_BKDT	Reserved	MOEN	AOEN	BKP	BKEN	OSSR	ISSO	LCKCF	G[1:0]				D'	rgn[7:0]		
	Reset Value		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
048h	TIMx_DCTRL	Reserved					DBI	LEN[4:0]			Reserved			D	BAD	DR[4	:0]
04011	Reset Value	Resc				0	0	0	0	0		Rese		0	0	0	0	0
04Ch	TIMx_DADDR	Reserved								BU	RST[[15:0]						
0.0	Reset Value	10001100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
050h	ГIMx_CCMOD3	Reserved			OC6MD[2	?	OC6PEN	OC6FEN		Reserved	OCSCEN		OCSMD[2		OCSPEN	OCSFEN		Reserved
	Reset Value		0			2	0 0 0			0	0	0 0		Ä				
054h	TIMx_CCDAT5				CCDAT5[15:0]													
03411	Reset Value	Reserved	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
058h	TIMx_CCDAT6	Reserved	CCDAT6[15:0]															
03811	Reset Value		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

11.4.2 Control register 1 (TIMx_CTRL1)

Offset address: 0x00

Reset value: 0x0000 0000

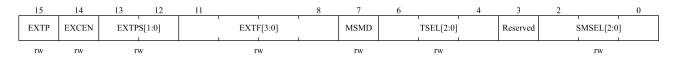
Bit field	Name	Description
31:18	Reserved	Reserved, the reset value must be maintained
17	PBKPEN	PVD as BKP enable
		0: Disable
		1: Enable
		Note: Before operating this bit, the extended mode of the chip must be turned on (set
		PWR_CTRL3.EXMODE)
16	LBKPEN	LockUp as BKP enable
		0: Disable
		1: Enable
		Note: Before operating this bit, the extended mode of the chip must be turned on (set
		PWR_CTRL3.EXMODE)
15	CLRSEL	OCxREF clear selection
		0: Select the external OCxREF clear from ETR
		1: Reserved
		Note: Before operating this bit, the extended mode of the chip must be turned on (set
		PWR_CTRL3.EXMODE)
14:12	Reserved	Reserved, the reset value must be maintained
11	C1SEL	Channel 1 selection
		0: Select external CH1 signal from IOM
		1: Reserved
		Note: Before operating this bit, the extended mode of the chip must be turned on (set
		PWR_CTRL3.EXMODE)
10	IOMBKPEN	Enabling IOM as BKP
		0: Enable. Select external break (from IOM) signal.
		1: Disable.
		Note: Before operating this bit, the extended mode of the chip must be turned on (set
		PWR_CTRL3.EXMODE)
9:8	CLKD[1:0]	Clock division
		CLKD[1:0] indicates the division ratio between CK_INT (timer clock) and DTS (clock used for
		dead-time generator and digital filters (ETR, TIx))
		$00: t_{DTS} = t_{CK_INT}$
		$01: t_{DTS} = 2 \times t_{CK_INT}$
		$10: t_{DTS} = 4 \times t_{CK_INT}$
		11: Reserved, do not use this configuration
7	ARPEN	ARPEN: Auto-reload preload enable
		0: Shadow register disable for TIMx_AR register
		1: Shadow register enable for TIMx_AR register
6:5	CAMSEL[1:0]	Center-aligned mode selection
		00: Edge-aligned mode. TIMx_CTRL1.DIR specifies up-counting or down-counting.
		01: Center-aligned mode 1. The counter counts in center-aligned mode, and the output compare
		interrupt flag bit is set to 1 when down-counting.
	1	1


Bit field	Name	Description
		10: Center-aligned mode 2. The counter counts in center-aligned mode, and the output compare
		interrupt flag bit is set to 1 when up-counting.
		11: Center-aligned mode 3. The counter counts in center-aligned mode, and the output compare
		interrupt flag bit is set to 1 when up-counting or down-counting.
		Note: Switching from edge-aligned mode to center-aligned mode is not allowed when the
		counter is still enabled (TIMx_CTRL1.CNTEN = 1).
4	DIR	Direction
		0: Up-counting
		1: Down-counting
		Note: This bit is read-only when the counter is configured in center-aligned mode or encoder
		mode.
3	ONEPM	One-pulse mode
		0: Disable one-pulse mode, the counter counts are not affected when an update event occurs.
		1: Enable one-pulse mode, the counter stops counting when the next update event occurs
		(clearing TIMx_CTRL1.CNTEN bit)
2	UPRS	Update request source
		This bit is used to select the UEV event sources by software.
		0: If update interrupt or DMA request is enabled, any of the following events will generate an
		update interrupt or DMA request:
		- Counter overflow/underflow
		- The TIMx_EVTGEN.UDGN bit is set
		 Update generation from the slave mode controller
		1: If update interrupt or DMA request is enabled, only counter overflow/underflow will generate
		update interrupt or DMA request
1	UPDIS	Update disable
		This bit is used to enable/disable the Update event (UEV) events generation by software.
		0: Enable UEV. UEV will be generated if one of following condition been fulfilled:
		- Counter overflow/underflow
		- The TIMx_EVTGEN.UDGN bit is set
		 Update generation from the slave mode controller
		Shadow registers will update with preload value.
		1: UEV disabled. No update event is generated, and the shadow registers (AR, PSC, and
		CCDATx) keep their values. If the TIMx_EVTGEN.UDGN bit is set or a hardware reset is
		issued by the slave mode controller, the counter and prescaler are reinitialized.
0	CNTEN	Counter Enable
		0: Disable counter
		1: Enable counter
		Note: external clock, gating mode and encoder mode can only work after TIMx_CTRL1.CNTEN
		bit is set in the software. Trigger mode can automatically set TIMx_CTRL1.CNTEN bit by
		hardware.

11.4.3 Control register 2 (TIMx_CTRL2)

Offset address: 0x04

Reset value: 0x0000 0000


Bit field	Name	Description
31:19	Reserved	Reserved, the reset value must be maintained
18	OI6	Output idle state 6 (OC6 output). See TIMx_CTRL2.OI1 bit.
17	Reserved	Reserved, the reset value must be maintained
16	OI5	Output idle state 5 (OC5 output). See TIMx_CTRL2.OI1 bit.
15	Reserved	Reserved, the reset value must be maintained
14	OI4	Output idle state 4 (OC4 output). See TIMx_CTRL2.OI1 bit.
13	OI3N	Output idle state 3 (OC3N output). See TIMx_CTRL2.OI1N bits.
12	OI3	Output idle state 3 (OC3 output). See TIMx_CTRL2.OI1 bit.
11	OI2N	Output idle state 2 (OC2N output). See TIMx_CTRL2.OI1N bits.
10	OI2	Output idle state 2 (OC2 output). See TIMx_CTRL2.OI1 bit.
9	OI1N	Output Idle state 1 (OC1N Output)
		0: When $TIMx_BKDT.MOEN = 0$, after dead-time $OC1N = 0$
		1: When TIMx_BKDT.MOEN = 0, after dead-time OC1N = 1
8	OI1	Output Idle state 1
		0: When TIMx_BKDT.MOEN = 0, if OC1N is implemented, after dead-time OC1 = 0
		1: When TIMx_BKDT.MOEN = 0, if OC1N is implemented, after dead-time OC1 = 1
7	TI1SEL	TI1 selection
		0: TIMx_CH1 pin connected to TI1 input.
		1: TIMx_CH1, TIMx_CH2, and TIMx_CH3 pins are XOR connected to the TI1 input.
6:4	MMSEL[2:0]	Master Mode Selection
		These 3 bits (TIMx_CTRL2. MMSEL [2:0]) are used to select the synchronization information
		(TRGO) sent to the slave timer in the master mode. Possible combinations are as follows:
		000: Reset –When the TIMx_EVTGEN.UDGN is set or a reset is generated by the slave mode
		controller, a TRGO pulse occurs. And in the latter case, the signal on TRGO is delayed
		compared to the actual reset.
		001: Enable - The TIMx_CTRL1.CNTEN bit is used as the trigger output (TRGO). Sometimes
		you need to start multiple timers at the same time or enable slave timer for a period of time.
		The counter enable signal is set when TIMx_CTRL1.CNTEN bit is set or the trigger input in
		gated mode is high.

Bit field	Name	Description						
		When the counter enable signal is controlled by the trigger input, there is a delay on TRGO						
		except if the master/slave mode is selected (see the description of the TIMx_SMCTRL.MSMD						
		bit).						
		010: Update - The update event is selected as the trigger output (TRGO). For example, a master						
		timer clock can be used as a slave timer prescaler.						
		011: Compare pulse - Triggers the output to send a positive pulse (TRGO) when the						
		TIMx_STS.CC1ITF is to be set (even if it is already high), when a capture or a comparison						
		succeeds.						
		100: Compare - OC1REF signal is used as the trigger output (TRGO).						
		101: Compare - OC2REF signal is used as the trigger output (TRGO).						
		110: Compare - OC3REF signal is used as the trigger output (TRGO).						
		111: Compare - OC4REF signal is used as the trigger output (TRGO).						
3	CCDSEL	Capture/compare DMA selection						
		0: When a CCx event occurs, a DMA request for CCx is sent.						
		1: When an update event occurs, a DMA request for CCx is sent.						
2	CCUSEL	Capture/compare control update selection						
		0: If TIMx_CTRL2.CCPCTL = 1, they can only be updated by setting CCUDGN bits						
		1: If TIMx_CTRL2.CCPCTL = 1, they can be updated by setting CCUDGN bits or a rising edge						
		on TRGI.						
		Note: This bit only applied to channels with complementary outputs.						
1	Reserved	Reserved, the reset value must be maintained						
0	CCPCTL	Capture/ Compare preloaded control						
		0: No preloading of CCxEN, CCxNEN and OCxMD bits occurs.						
		1: Preloading of CCxEN, CCxNEN and OCxMD bits occurs. they are updated only when a						
		commutation event COM occurs (CCUDGN bit set or rising edge on TRGI depending on						
		CCUSEL bit)						
		Note: This bit only applied to channels with complementary outputs.						

11.4.4 Slave mode control register (TIMx_SMCTRL)

Offset address: 0x08 Reset value: 0x0000

Bit field	Name	Description
15	EXTP	External trigger polarity
		This bit is used to select whether the trigger operation is to use ETR or the inversion of ETR.
		0: ETR active at high level or rising edge.
		1: ETR active at low level or falling edge.

Bit field	Name	Description
14	EXCEN	External clock enable
		This bit is used to enable external clock mode 2, and the counter is driven by any active edge on
		the ETRF signal in this mode.
		0: External clock mode 2 disable.
		1: External clock mode 2 enable.
		Note 1: When external clock mode 1 and external clock mode 2 are enabled at the same time, the
		input of the external clock is ETRF.
		Note 2: The following slave modes can be used simultaneously with external clock mode 2: reset
		mode, gated mode and trigger mode; However, TRGI cannot connect to ETRF
		$(TIMx_SMCTRL.TSEL \neq '111').$
		Note 3: Setting the TIMx_SMCTRL.EXCEN bit has the same effect as selecting external clock
		mode 1 and connecting TRGI to ETRF (TIMx_SMCTRL.SMSEL = 111 and TIMx_SMCTRL.TSEL
		= 111).
10.10		
13:12	EXTPS[1:0]	External trigger prescaler
		The frequency of the external trigger signal ETRP must be at most 1/4 of TIMxCLK frequency.
		When a faster external clock is input, a prescaler can be used to reduce the frequency of ETRP.
		00: Prescaler disable
		01: ETRP frequency divided by 2
		10: ETRP frequency divided by 4
		11: ETRP frequency divided by 8
11:8	EXTF[3:0]	External trigger filter
		These bits are used to define the frequency at which the ETRP signal is sampled and the
		bandwidth of the ETRP digital filtering. In effect, the digital filter is an event counter that
		generates a validate output after consecutive N events are recorded.
		0000: No filter, sampling at f _{DTS}
		0001: $f_{SAMPLING} = f_{CK_INT}$, $N = 2$
		0010: $f_{SAMPLING} = f_{CK_INT}$, $N = 4$
		0011: $f_{SAMPLING} = f_{CK_INT}$, $N = 8$
		0100: $f_{SAMPLING} = f_{DTS}/2$, $N = 6$
		0101: $f_{SAMPLING} = f_{DTS}/2$, $N = 8$
		$0110: f_{SAMPLING} = f_{DTS}/4, N = 6$
		$0111: f_{SAMPLING} = f_{DTS}/4, N = 8$
		1000: $f_{SAMPLING} = f_{DTS}/8$, $N = 6$
		1001: $f_{SAMPLING} = f_{DTS}/8$, $N = 8$
		1010: $f_{SAMPLING} = f_{DTS}/16$, $N = 5$
		1011: $f_{SAMPLING} = f_{DTS}/16$, $N = 6$
		1100: $f_{SAMPLING} = f_{DTS}/16$, $N = 8$
		1101: $f_{SAMPLING} = f_{DTS}/32$, $N = 5$
		1110: $f_{SAMPLING} = f_{DTS}/32$, $N = 6$
		1111: $f_{SAMPLING} = f_{DTS}/32$, $N = 8$

Bit field	Name	Description
7	MSMD	Master/ Slave mode
		0: No action
		1: Events on the trigger input (TRGI) are delayed to allow a perfect synchronization between the
		current timer (via TRGO) and its slaves. This is useful when several timers are required to be
		synchronized to a single external event.
6:4	TSEL[2:0]	Trigger selection
		These 3 bits are used to select the trigger input of the synchronous counter.
		000: Internal trigger 0 (ITR0) 100: TI1 edge detector (TI1F_ED)
		001: Internal trigger 1 (ITR1) 101: Filtered timer input 1(TI1FP1)
		010: Internal trigger 2 (ITR2) 110: Filtered timer input 2 (TI2FP2)
		011: Internal trigger 3 (ITR3) 111: External triggered Input (ETRF)
		For more details on ITRx, see Table 11-3 below.
		Note: These bits must be changed only when not in use (e. g. TIMx_SMCTRL.SMSEL=000) to
		avoid false edge detection at the transition.
3	Reserved	Reserved, the reset value must be maintained
2:0	SMSEL[2:0]	Slave mode selection
		When an external signal is selected, the active edge of the trigger signal (TRGI) is linked to the
		selected external input polarity (see input control register and control register description)
		000: Disable slave mode. If TIMx_CTRL1.CNTEN = 1, the prescaler is driven directly by the
		internal clock.
		001: Encoder mode 1. According to the level of TI2FP2, the counter up-counting or down-
		counting on the edge of TI1FP1.
		010: Encoder mode 2. According to the level of TI1FP1, the counter up-counting or down-
		counting on the edge of TI2FP2.
		011: Encoder mode 3. According to the input level of another signal, the counter up-counting or
		down-counting on the edges of TI2FP1 and TI2FP2.
		100: Reset mode. On the rising edge of the selected trigger input (TRGI), the counter is
		reinitialized and the shadow register is updated.
		101: Gated mode. When the trigger input (TRGI) is high, the clock of the counter is enabled. Once
		the trigger input becomes low, the counter stops counting, but is not reset. In this mode, the start
		and stop of the counter are controlled.
		110: Trigger mode. When a rising edge occurs on the trigger input (TRGI), the counter is started
		but not reset. In this mode, only the start of the counter is controlled.
		111: External clock mode 1. The counter is clocked by the rising edge of the selected trigger input
		(TRGI).
		Note: Do not use gated mode if TIIF_ED is selected as the trigger input
		(TIMx_SMCTRL.TSEL=100). This is because TIIF_ED outputs a pulse for each TIIF transition,
		whereas gated mode checks the level of the triggered input.

Table 11-3 TIMx internal trigger connection

Slave timer	ITR0 (TSEL = 000)	ITR1 (TSEL = 001)	ITR2 (TSEL = 010)	ITR3 (TSEL = 011)
TIM1	TIM5	TIM2	TIM3	TIM4

TIM8 TIM1	TIM2	TIM4	TIM5
-----------	------	------	------

11.4.5 DMA/Interrupt enable registers (TIMx_DINTEN)

Offset address: 0x0C Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	TDEN	COMDEN	CC4DEN	CC3DEN	CC2DEN	CC1DEN	UDEN	BIEN	TIEN	COMIEN	CC4IEN	CC3IEN	CC2IEN	CC1IEN	UIEN
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit field	Name	Description
15	Reserved	Reserved, the reset value must be maintained
14	TDEN	Trigger DMA request enable
		0: Disable trigger DMA request
		1: Enable trigger DMA request
13	COMDEN	COM DMA request enable
		0: Disable COM DMA request
		1: Enable COM DMA request
12	CC4DEN	Capture/Compare 4 DMA request enable
		0: Disable capture/compare 4 DMA request
		1: Enable capture/compare 4 DMA request
11	CC3DEN	Capture/Compare 3 DMA request enable
		0: Disable capture/compare 3 DMA request
		1: Enable capture/compare 3 DMA request
10	CC2DEN	Capture/Compare 2 DMA request enable
		0: Disable capture/compare 2 DMA request
		1: Enable capture/compare 2 DMA request
9	CC1DEN	Capture/Compare 1 DMA request enable
		0: Disable capture/compare 1 DMA request
		1: Enable capture/compare 1 DMA request
8	UDEN	Update DMA request enable
		0: Disable update DMA request
		1: Enable update DMA request
7	BIEN	Break interrupt enable
		0: Disable break interrupt
		1: Enable break interrupt
6	TIEN	Trigger interrupt enable
		0: Disable trigger interrupt
		1: Enable trigger interrupt
5	COMIEN	COM interrupt enable
		0: Disable COM interrupt
		1: Enable COM interrupt

Bit field	Name	Description
4	CC4IEN	Capture/Compare 4 interrupt enable
		0: Disable capture/compare 4 interrupt
		1: Enable capture/compare 4 interrupt
3	CC3IEN	Capture/Compare 3 interrupt enable
		0: Disable capture/compare 3 interrupt
		1: Enable capture/compare 3 interrupts
2	CC2IEN	Capture/Compare 2 interrupt enable
		0: Disable capture/compare 2 interrupt
		1: Enables capture/compare 2 interrupts
1	CC1IEN	Capture/Compare 1 interrupt enable
		0: Disable capture/compare 1 interrupt
		1: Enables capture/comparing 1 interrupt
0	UIEN	Update interrupt enable
		0: Disable update interrupt
		1: Enables update interrupt

11.4.6 Status registers (TIMx_STS)

Offset address: 0x10

Reset value: 0x0000 0000

31													18	17	16
	Reserved									1	CC6ITF	CC5ITF			
15	·	13	12	11	10	9	8	7	6	5	4	3	2	rc_w0	rc_w0
	Reserved		CC4OCF	CC3OCF	CC2OCF	CC1OCF	Reserved	BITF	TITF	COMITF	CC4ITF	CC3ITF	CC2ITF	CC1ITF	UDITF
			rc_w0	rc_w0	rc_w0	rc_w0		rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0

Bit field	Name	Description			
31: 18	Reserved	Reserved, the reset value must be maintained			
17	CC6ITF	Capture/Compare 6 interrupt flag			
		See TIMx_STS.CC1ITF description.			
16	CC5ITF	Capture/Compare 5 interrupt flag			
		See TIMx_STS.CC1ITF description.			
15: 13	Reserved	Reserved, the reset value must be maintained			
12	CC4OCF	Capture/Compare 4 overcapture flag			
		See TIMx_STS.CC1OCF description.			
11	CC3OCF	Capture/Compare 3 overcapture flag			
		See TIMx_STS.CC1OCF description.			
10	CC2OCF	Capture/Compare 2 overcapture flags			
		See TIMx_STS.CC1OCF description.			

Bit field	Name	Description
9	CC10CF	Capture/Compare 1 overcapture flag
		This bit is set by hardware only when the corresponding channel is configured in input capture
		mode. Cleared by software writing 0.
		0: No overcapture occurred
		1: TIMx_STS.CC1ITF was already set when the value of the counter has been captured in the
		TIMx_CCDAT1 register.
8	Reserved	Reserved, the reset value must be maintained
7	BITF	Break interrupt flag
		This bit is set by hardware once the brake input is active. This bit is cleared by software when
		the brake input becomes inactive.
		0: No break event occurred
		1: An active level has been detected
6	TITF	Trigger interrupt flag
		This bit is set by hardware when an active edge is detected on the TRGI input when the slave
		mode controller is in a mode other than gated. This bit is set by hardware when any edge in
		gated mode is detected. This bit is cleared by software.
		0: No trigger event occurred
		1: Trigger interrupt occurred
5	COMITF	COM interrupt flag
		This bit is set by hardware once a COM event is generated (when TIMx_CCEN.CCxEN,
		TIMx_CCEN.CCxNEN, TIMx_CCMOD1.OCxMD have been updated). This bit is cleared by
		software.
		0: No COM event occurred
		1: COM interrupt pending
4	CC4ITF	Capture/Compare 4 interrupt flag
		See TIMx_STS.CC1ITF description.
3	CC3ITF	Capture/Compare 3 interrupt flag
		See TIMx_STS.CC11TF description.
2	CC2ITF	Capture/Compare 2 interrupt flag
		See TIMx_STS.CC1ITF description.
1	CC1ITF	Capture/Compare 1 interrupt flag
		When the corresponding channel of CC1 is in output mode:
		Except in center-aligned mode, this bit is set by hardware when the counter value is the same as
		the compare value (see TIMx_CTRL1.CAMSEL bit description). This bit is cleared by
		software.
		0: No match occurred.
		1: The value of TIMx_CNT is the same as the value of TIMx_CCDAT1.
		When the value of TIMx_CCDAT1 is greater than the value of TIMx_AR, the
		TIMx_STS.CC11TF bit will go high if the counter overflows (in up-counting and up/down-
		counting modes) and underflows in down-counting mode.
		When the corresponding channel of CC1 is in input mode:

Bit field	Name	Description					
		This bit is set by hardware when the capture event occurs. This bit is cleared by software or by					
		reading TIMx_CCDAT1.					
		0: No input capture occurred.					
		1: Input capture occurred. Counter value has captured in the TIMx_CCDAT1. An edge with the					
		same polarity as selected has been detected on IC1.					
0	UDITF	Update interrupt flag					
		This bit is set by hardware when an update event occurs under the following conditions:					
		- When TIMx_CTRL1.UPDIS = 0, and repeat counter value overflow or underflow (An					
		update event is generated when the repeat counter equals 0).					
		- When TIMx_CTRL1.UPRS = 0, TIMx_CTRL1.UPDIS = 0, and set the					
		TIMx_EVTGEN.UDGN bit by software to reinitialize the CNT.					
		- When TIMx_CTRL1.UPRS = 0, TIMx_CTRL1.UPDIS = 0, and the counter CNT is					
		reinitialized by the trigger event. (See TIMx_SMCTRL Register description)					
		This bit is cleared by software.					
		0: No update event occurred					
		1: Update interrupt occurred					

11.4.7 Event generation registers (TIMx_EVTGEN)

Offset address: 0x14 Reset values: 0x0000

Bit field	Name	Description
15: 8	Reserved	Reserved, the reset value must be maintained
7	BGN	Break generation
		This bit can generate a brake event when set by software. And at this time TIMx_BKDT.MOEN
		= 0, TIMx_STS.BITF = 1, if the corresponding interrupt and DMA are enabled, the
		corresponding interrupt and DMA will be generated. This bit is automatically cleared by
		hardware.
		0: No action
		1: Generated a break event
6	TGN	Trigger generation
		This bit can generate a trigger event when set by software. And at this time TIMx_STS.TITF =
		1, if the corresponding interrupt and DMA are enabled, the corresponding interrupt and DMA
		will be generated. This bit is automatically cleared by hardware.
		0: No action
		1: Generated a trigger event

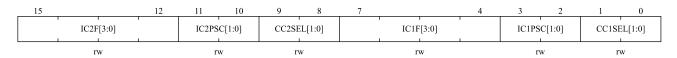
Bit field	Name	Description
5	CCUDGN	Capture/Compare control update generation
		This bit is set by software. And if TIMx_CTRL2.CCPCTL = 1 at this time, the CCxEN,
		CCxNEN and OCxMD bits are allowed to be updated. This bit is automatically cleared by
		hardware.
		0: No action
		1: Generated a COM event
		Note: This bit is only valid for channels with complementary outputs.
4	CC4GN	Capture/Compare 4 generation
		See TIMx_EVTGEN.CC1GN description.
3	CC3GN	Capture/Compare 3 generation
		See TIMx_EVTGEN.CC1GN description.
2	CC2GN	Capture/Compare 2 generation
		See TIMx_EVTGEN.CC1GN description.
1	CC1GN	Capture/Compare 1 generation
		This bit can generate a capture/compare event when set by software. This bit is automatically
		cleared by hardware.
		When the corresponding channel of CC1 is in output mode:
		The TIMx_STS.CC1ITF flag will be pulled high, if the corresponding interrupt and DMA are
		enabled, the corresponding interrupt and DMA will be generated.
		When the corresponding channel of CC1 is in input mode:
		TIMx_CCDAT1 will capture the current counter value, and the TIMx_STS.CC1ITF flag will be
		pulled high, if the corresponding interrupt and DMA are enabled, the corresponding interrupt
		and DMA will be generated. If The TIMx_STS.CC1ITF is already pulled high, pull
		TIMx_STS.CC1OCF high.
		0: No action
		1: Generated a CC1 capture/compare event
0	UDGN	Update generation
		This bit can generate an update event when set by software. And at this time the counter will be
		reinitialized, the prescaler counter will be cleared, the counter will be cleared in center-aligned or up-
		counting mode, but take TIMx_AR in down-counting mode the value of the register. This bit is
		automatically cleared by hardware.
		0: No action
		1: Generated an update event

11.4.8 Capture/compare mode register 1 (TIMx_CCMOD1)

Offset address: 0x18
Reset value: 0x0000

Channels can be used for input (capture mode) or output (compare mode), and the direction of the channel is defined by the corresponding CCxSEL bit. The other bits of the register act differently in input and output modes. OCx describes the function of a channel in output mode, ICx describes the function of a channel in input mode. Hence, please note that the same bit can have different meanings for output mode and for input mode.

Output compare mode:


15	14		12	11	10	9	8	7	6		4	3	2	1	0
OC2CEN		OC2M[2:0]		OC2PEN	OC2FEN	CC2SI	EL[1:0]	OC1CEN		OC1M[2:0]		OC1PEN	OC1FEN	CC1S	EL[1:0]
rw		rw		rw	rw	r	w	rw		rw		rw	rw	r	w

Bit field	Name	Description
15	OC2CEN	Output Compare 2 clear enable
14:12	OC2MD[2:0]	Output Compare 2 mode
11	OC2PEN	Output Compare 2 preload enable
10	OC2FEN	Output Compare 2 fast enable
9:8	CC2SEL[1:0]	Capture/compare 2 selection
		These bits are used to select the input/output and input mapping of the channel
		00: CC2 channel is configured as output
		01: CC2 channel is configured as input, IC2 is mapped on TI2
		10: CC2 channel is configured as input, IC2 is mapped on TI1
		11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is only active
		when the internal trigger input is selected by TIMx_SMCTRL.TSEL.
		Note: CC2SEL is writable only when the channel is off ($TIMx_CCEN.CC2EN = 0$).
7	OC1CEN	Output Compare 1 clear enable
		0: OC1REF is not affected by ETRF input level
		1: OC1REF is cleared immediately when the ETRF input level is detected as high
6:4	OC1MD[2:0]	Output Compare 1 mode
		These bits are used to manage the output reference signal OC1REF, which determines the
		values of OC1 and OC1N, and is valid at high levels, while the active levels of OC1 and
		OC1N depend on the TIMx_CCEN.CC1P and TIMx_CCEN.CC1NP bits.
		000: Frozen. Comparison between TIMx_CCDAT1 register and counter TIMx_CNT has no
		effect on OC1REF signal.
		001: Set channel 1 to the active level on match. When TIMx_CCDAT1 = TIMx_CNT,
		OC1REF signal will be forced high.
		010: Set channel 1 as inactive level on match. When TIMx_CCDAT1 = TIMx_CNT,
		OC1REF signal will be forced low.
		011: Toggle. When TIMx_CCDAT1 = TIMx_CNT, OC1REF signal will be toggled.
		100: Force to inactive level. OC1REF signal is forced low.
		101: Force to active level. OC1REF signal is forced high.
		110: PWM mode 1 - In up-counting mode, if TIMx_CNT < TIMx_CCDAT1, OC1REF signal
		of channel 1 is high, otherwise it is low. In down-counting mode, if TIMx_CNT >
		TIMx_CCDAT1, OC1REF signal of channel 1 is low, otherwise it is high.
		111: PWM mode 2 - In up-counting mode, if TIMx_CNT < TIMx_CCDAT1, OC1REF signal
		of channel 1 is low, otherwise it is high. In down-counting mode, if TIMx_CNT >
		TIMx_CCDAT1, OC1REF signal of channel 1 is high, otherwise it is low.
		Note 1: In PWM mode 1 or PWM mode 2, the OCIREF level changes only when the
		comparison result changes or when the output compare mode is switched from frozen mode to
		PWM mode.

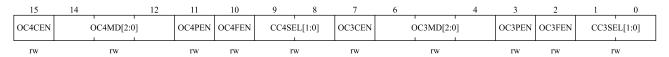
Bit field	Name	Description
3	OC1PEN	Output Compare 1 preload enable
		0: Disable preload function of TIMx_CCDAT1 register. Supports write operations to
		TIMx_CCDAT1 register at any time, and the written value is effective immediately.
		1: Enable preload function of TIMx_CCDAT1 register. Only read and write operations to
		preload registers. When an update event occurs, the value of TIMx_CCDAT1 is loaded into
		the active register.
		Note 1: Only when TIMx_CTRL1.ONEPM = 1(In one-pulse mode), PWM mode can be used
		without verifying the preload register, otherwise no other behavior can be predicted.
2	OC1FEN	Output Compare 1 fast enable
		This bit is used to speed up the response of the CC output to the trigger input event.
		0: CC1 behaves normally depending on the counter and CCDAT1 values, even if the trigger is
		ON. The minimum delay for activating CC1 output when an edge occurs on the trigger input
		is 5 clock cycles.
		1: An active edge of the trigger input acts like a comparison match on CC1 output. Therefore,
		OC is set to the comparison level regardless of the comparison result. The delay time for
		sampling the trigger input and activating the CC1 output is reduced to 3 clock cycles.
		OCxFEN only works if the channel is configured in PWM1 or PWM2 mode.
1: 0	CC1SEL[1:0]	Capture/compare 1 selection
		These bits are used to select the input/output and input mapping of the channel
		00: CC1 channel is configured as output
		01: CC1 channel is configured as input, IC1 is mapped on TI1
		10: CC1 channel is configured as input, IC1 is mapped on TI2
		11: CC1 channels are configured as inputs and IC1 is mapped to TRC. This mode is only
		active when the internal trigger input is selected by TIMx_SMCTRL.TSEL.
		Note: CC1SEL is writable only when the channel is off ($TIMx_CCEN.CC1EN = 0$).

Input capture mode:

Bit field	Name	Description			
15:12	IC2F[3:0]	Input Capture 2 Filter			
11:10	IC2PSC[1:0]	Input Capture 2 Prescaler			
9:8	CC2SEL[1:0]	Capture/Compare 2 selection			
		These bits are used to select the input/output and input mapping of the channel			
		00: CC2 channel is configured as output			
		01: CC2 channel is configured as input, IC2 is mapped on TI2			
		10: CC2 channel is configured as input, IC2 is mapped on TI1			
		11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is only active when			
		the internal trigger input is selected by TIMx_SMCTRL.TSEL.			
		Note: CC2SEL is writable only when the channel is off ($TIMx_CCEN.CC2EN = 0$).			

Bit field	Name	Description
7:4	IC1F[3:0]	Input Capture 1 filter
		These bits are used to define sampling frequency of TI1 input and the length of digital filter. The
		digital filter is an event counter that generates an output transition after N events are recorded.
		0000: No filter, sampling at f _{DTS} frequency
		0001: $f_{SAMPLING} = f_{CK_INT}$, $N = 2$
		0010: $f_{SAMPLING} = f_{CK_INT}$, $N = 4$
		0011: $f_{SAMPLING} = f_{CK_INT}$, $N = 8$
		0100: $f_{SAMPLING} = f_{DTS}/2$, $N = 6$
		0101: $f_{SAMPLING} = f_{DTS}/2$, $N = 8$
		0110: $f_{SAMPLING} = f_{DTS}/4$, $N = 6$
		0111: $f_{SAMPLING} = f_{DTS}/4$, $N = 8$
		1000: $f_{SAMPLING} = f_{DTS}/8$, $N = 6$
		1001: $f_{SAMPLING} = f_{DTS}/8$, $N = 8$
		1010: $f_{SAMPLING} = f_{DTS}/16$, $N = 5$
		1011: $f_{SAMPLING} = f_{DTS}/16$, $N = 6$
		1100: $f_{SAMPLING} = f_{DTS}/16$, $N = 8$
		1101: $f_{SAMPLING} = f_{DTS}/32$, $N = 5$
		1110: $f_{SAMPLING} = f_{DTS}/32$, $N = 6$
		1111: $f_{SAMPLING} = f_{DTS}/32$, $N = 8$
3:2	IC1PSC[1:0]	Input Capture 1 prescaler
		These bits are used to select the ratio of the prescaler for IC1 (CC1 input).
		When $TIMx_CCEN.CC1EN = 0$, the prescaler will be reset.
		00: No prescaler, capture is done each time an edge is detected on the capture input
		01: Capture is done once every 2 events
		10: Capture is done once every 4 events
		11: Capture is done once every 8 events
1:0	CC1SEL[1:0]	Capture/Compare 1 selection
		These bits are used to select the input/output and input mapping of the channel
		00: CC1 channel is configured as output
		01: CC1 channel is configured as input, IC1 is mapped on TI1
		10: CC1 channel is configured as input, IC1 is mapped on TI2
		11: CC1 channel is configured as input, IC1 is mapped to TRC. This mode is only active when
		the internal trigger input is selected by TIMx_SMCTRL.TSEL.
		Note: CC1SEL is writable only when the channel is off ($TIMx_CCEN.CC1EN = 0$).

274


11.4.9 Capture/compare mode register 2 (TIMx_CCMOD2)

Offset address: 0x1C Reset value: 0x0000

See the description of the CCMOD1 register above

Output comparison mode:

Bit field	Name	Description				
15	OC4CEN	Output compare 4 clear enable				
14:12	OC4MD[2:0]	Output compare 4 mode				
11	OC4PEN	Output compare 4 preload enable				
10	OC4FEN	Output compare 4 fast enable				
9:8	CC4SEL[1:0]	Capture/Compare 4 selection				
		These bits are used to select the input/output and input mapping of the channel				
		00: CC4 channel is configured as output				
		01: CC4 channel is configured as input, IC4 is mapped on TI4				
		10: CC4 channel is configured as input, IC4 is mapped on TI3				
		11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is only active when				
		the internal trigger input is selected by TIMx_SMCTRL.TSEL.				
		Note: $CC4SEL$ is writable only when the channel is off $(TIMx_CCEN.CC4EN = 0)$.				
7	OC3CEN	Output compare 3 clear enable				
6:4	OC3MD[2:0]	Output compare 3 mode				
3	OC3PEN	Output compare 3 preload enable				
2	OC3FEN	Output compare 3 fast enable				
1:0	CC3SEL[1:0]	Capture/Compare 3 selection				
		These bits are used to select the input/output and input mapping of the channel				
		00: CC3 channel is configured as output				
		01: CC3 channel is configured as input, IC3 is mapped to TI3				
		10: CC3 channel is configured as input, IC3 is mapped on TI4				
		11: CC3 channel is configured as input, IC3 is mapped to TRC. This mode is only active when				
		the internal trigger input is selected by TIMx_SMCTRL.TSEL.				
		Note: CC3SEL is writable only when the channel is off ($TIMx_CCEN.CC3EN = 0$).				

Input capture mode:

Bit field	Name	Description			
15:12	IC4F[3:0]	Input Capture 4 filter			
11:10	IC4PSC[1:0]	Input Capture 4 Prescaler			
9:8	CC4SEL[1:0]	Capture/Compare 4 selection			
		These bits are used to select the input/output and input mapping of the channel			
		00: CC4 channel is configured as output			
		01: CC4 channel is configured as input, IC4 is mapped on TI4			
		10: CC4 channel is configured as input, IC4 is mapped on TI3			
İ		11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is only active when			

		the internal trigger input is selected by TIMx_SMCTRL.TSEL.
		Note: CC4SEL is writable only when the channel is off (TIMx_CCEN.CC4EN = 0).
7:4	IC3F[3:0]	Input Capture 3 filter
3:2	IC3PSC[1:0]	Input Capture 3 Prescaler
1:0	CC3SEL[1:0]	Capture/compare 3 selection
		These bits are used to select the input/output and input mapping of the channel
		00: CC3 channel is configured as output
		01: CC3 channel is configured as input, IC3 is mapped to TI3
		10: CC3 channel is configured as input, IC3 is mapped on TI4
		11: CC3 channel is configured as input, IC3 is mapped to TRC. This mode is only active when
		the internal trigger input is selected by TIMx_SMCTRL.TSEL.
		Note: CC3SEL is writable only when the channel is off (TIMx_CCEN.CC3EN = 0).

11.4.10 Capture/compare enable registers (TIMx_CCEN)

Offset address: 0x20

Reset value: 0x0000 0000

31									22	21	20	19	18	17	16
		1	1	Rese	erved		1		<u>'</u>	CC6P	CC6EN	Rese	erved	CC5P	CC5EN
15	14	13	12	11	10	9	8	7	6	rw 5	rw 4	3	2	rw 1	rw 0
Rese	erved	CC4P	CC4EN	CC3NP	CC3NEN	СС3Р	CC3EN	CC2NP	CC2NEN	CC2P	CC2EN	CC1NP	CC1NEN	CC1P	CC1EN
	•	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit field	Name	Description
31:22	Reserved	Reserved, the reset value must be maintained
21	CC6P	Capture/Compare 6 output polarity
		See TIMx_CCEN.CC1P description.
20	CC6EN	Capture/Compare 6 output enable
		See TIMx_CCEN.CC1EN description.
19: 18	Reserved	Reserved, the reset value must be maintained
17	CC5P	Capture/Compare 5 output polarity
		See TIMx_CCEN.CC1P description.
16	CC5EN	Capture/Compare 5 output enable
		See TIMx_CCEN.CC1EN description.
15:14	Reserved	Reserved, the reset value must be maintained
13	CC4P	Capture/Compare 4 output polarity
		See TIMx_CCEN.CC1P description.
12	CC4EN	Capture/Compare 4 output enable
		See TIMx_CCEN.CC1EN description.
11	CC3NP	Capture/Compare 3 Complementary output polarity
		See TIMx_CCEN.CC1NP description.
10	CC3NEN	Capture/Compare 3 complementary output enable

Bit field	Name	Description
		See TIMx_CCEN.CC1NEN description.
9	CC3P	Capture/Compare 3 output polarity
		See TIMx_CCEN.CC1P description.
8	CC3EN	Capture/Compare 3 output enable
		See TIMx_CCEN.CC1EN description.
7	CC2NP	Capture/Compare 2 complementary output polarity
		See TIMx_CCEN.CC1NP description.
6	CC2NEN	Capture/Compare 2 complementary output enable
		See TIMx_CCEN.CC1NEN description.
5	CC2P	Capture/Compare 2 output polarity
		See TIMx_CCEN.CC1P description.
4	CC2EN	Capture/Compare 2 output enable
		See TIMx_CCEN.CC1EN description.
3	CC1NP	Capture/Compare 1 complementary output polarity
		0: OC1N active high
		1: OC1N active low
2	CC1NEN	Capture/Compare 1 complementary output enable
		0: Disable - Disable output OC1N signal. The level of OC1N depends on the value of these bits
		TIMx_BKDT.MOEN, TIMx_BKDT.OSSI, TIMx_BKDT.OSSR, TIMx_CTRL2.OI1,
		TIMx_CTRL2.OI1N and TIMx_CCEN.CC1EN.
		1: Enable - Enable output OC1N signal. The level of OC1N depends on the value of these bits
		TIMx_BKDT.MOEN, TIMx_BKDT.OSSI, TIMx_BKDT.OSSR, TIMx_CTRL2.OI1,
		TIMx_CTRL2.OI1N and TIMx_CCEN.CC1EN.
1	CC1P	Capture/Compare 1 output polarity
		When the corresponding channel of CC1 is in output mode:
		0: OC1 active high
		1: OC1 active low
		When the corresponding channel of CC1 is in input mode:
		At this time, this bit is used to select whether IC1 or the inverse signal of IC1 is used as the trigger
		or capture signal.
		0: non-inverted: Capture action occurs when IC1 generates a rising edge. When used as external
		trigger, IC1 is non-inverted.
		1: inverted: Capture action occurs when IC1 generates a falling edge. When used as external
		trigger, IC1 is inverted.
0	CC1EN	Capture/Compare 1 output enable
		When the corresponding channel of CC1 is in output mode:
		0: Disable - Disable output OC1 signal. The level of OC1 depends on the value of these bits
		TIMx_BKDT.MOEN, TIMx_BKDT.OSSI, TIMx_BKDT.OSSR, TIMx_CTRL2.OI1,
		TIMx_CTRL2.OI1N and TIMx_CCEN.CC1NEN.
		1: Enable - Enable output OC1 signal. The level of OC1N depends on the value of these bits
		TIMx_BKDT.MOEN, TIMx_BKDT.OSSI, TIMx_BKDT.OSSR, TIMx_CTRL2.OI1,
		TIMx_CTRL2.OI1N and TIMx_CCEN.CC1NEN.

Bit field	Name	Description
		When the corresponding channel of CC1 is in input mode:
		At this time, this bit is used to disable/enable the capture function.
		0: Disable capture
		1: Enable capture

Table 11-4 Output control bits of complementary OCx and OCxN channels with break function

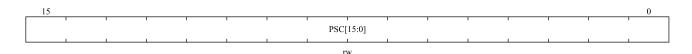
Control	Control bits				Output state ¹⁾			
MOEN	OSSI	OSSR	CCxEN	CCxNEN	OCx Output state	OCxN Output state		
		0	0	0	Output disabled (not driven by timer)	Output disabled (not driven by timer)		
		0	U	0	OCx=0, OCx_EN=0	OCxN=0, OCxN_EN=0		
		0	0	1	Output disabled (not driven by timer)	OCxREF + polarity,		
		U	U	1	OCx=0, OCx_EN=0	OCxN= OCxREF xor CCxNP,OCxN_EN=1		
		0	1	0	OCxREF + polarity,	Output disabled (not driven by timer)		
		0	1	O	OCx= OCxREF xor CCxP, OCx_EN=1	OCxN=0, OCxN_EN=0		
		0	1	1	OCxREF + polarity + dead-time,	Complementary to OCxREF + polarity + dead-		
		U	1	1	OCx_EN=1	time, OCxN_EN=1		
		1	0	0	Output disabled (not driven by timer)	Output disabled (not driven by timer)		
1	X	1	U		OCx=CCxP, OCx_EN=0	OCxN=CCxNP, OCxN_EN=0		
		1	0	1	Off-state (Output enabled with inactive state)	OCxREF + polarity, OCxN= OCxREF xor CCxNP, OCxN_EN=1		
		1	1	0	OCx=CCxP, OCx_EN=1			
					OCxREF + polarity,	Off-state (Output enabled with inactive state)		
					OCx= OCxREF xor CCxP, OCx_EN=1	OCxN=CCxNP, OCxN_EN=1		
			1	1	OCxREF + polarity + dead-time, OCx_EN=1	Complementary to OCxREF + polarity + dead-		
		1				time,		
					OCA_EN=1	OCxN_EN=1		
	0		0	0	Output disabled (not driven by timer)			
	0		0	1	Asynchronously: OCx=CCxP, OCx_	EN=0, OCxN=CCxNP, OCxN_EN=0;		
	0		1	0	Then if the clock is present: OCx=OIx ar	nd OCxN=OIxN after a dead-time, when (CCxP		
0	0	X	1	1	$^{\land}$ OIx) $^{\land}$ (CCxNP $^{\land}$ OIxN)! = 0.			
3	1		0	0	Off-state (Output enabled with inactive sta	ate)		
	1		0	1	Asynchronously: OCx=CCxP, OCx_	EN=1, OCxN=CCxNP, OCxN_EN=1;		
	1		1	0	Then if the clock is present: OCx=OIx ar	nd OCxN=OIxN after a dead-time, when (CCxP		
	1		1	1	$^{\land}$ OIx) $^{\land}$ (CCxNP $^{\land}$ OIxN)! = 0			

 $^{1. \} If both \ outputs \ of \ a \ channel \ are \ not \ used \ (CCxEN = CCxNEN = 0), \ OIx, \ OIxN, \ CCxP \ and \ CCxNP \ must \ all \ be \ cleared.$

Note: The status of external I/O pins connected to complementary OCx and OCxN channels depends on the OCx and OCxN channel states and GPIO and AFIO registers.

278

11.4.11 Counters (TIMx_CNT)


Offset address: 0x24 Reset value: 0x0000

Bit field	Name	Description
15:0	CNT[15:0]	Counter value

11.4.12 Prescaler (TIMx_PSC)

Offset address: 0x28 Reset value: 0x0000

Bit field	Name	Description
15:0	PSC[15:0]	Prescaler value
		Counter clock $f_{CK_CNT} = f_{CK_PSC} / (PSC [15:0] + 1)$.
		Each time an update event occurs, the PSC value is loaded into the active prescaler register.

11.4.13 Auto-reload register (TIMx_AR)

Offset address: 0x2C

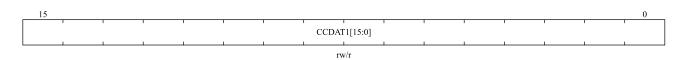
Reset values: 0xFFFF

Bit field	Name	Description
15:0	AR[15:0]	Auto-reload value
		These bits define the value that will be loaded into the actual auto-reload register.
		See Section 11.3.1 for more details.
		When the TIMx_AR.AR [15:0] value is null, the counter does not work.

279

11.4.14 Repeat count registers (TIMx_REPCNT)

Offset address: 0x30


Reset value: 0x0000

Bit field	Name	Description
15:8	Reserved	Reserved, the reset value must be maintained
7:0	REPCNT[7:0]	Repetition counter value
		Repetition counter is used to generate the update event or update the timer registers only after a
		given number (N+1) cycles of the counter, where N is the value of TIMx_REPCNT.REPCNT .
		The repetition counter is decremented at each counter overflow in up-counting mode, at each
		counter underflow in down-counting mode or at each counter overflow and at each counter
		underflow in center-aligned mode. Setting the TIMx_EVTGEN.UDGN bit will reload the content
		of TIMx_REPCNT.REPCNT and generate an update event.

11.4.15 Capture/compare register 1 (TIMx_CCDAT1)

Offset address: 0x34 Reset value: 0x0000

Bit field	Name	Description
15:0	CCDAT1[15:0]	Capture/Compare 1 value
		■ CC1 channel is configured as output:
		CCDAT1 contains the value to be compared to the counter TIMx_CNT, signaling on the OC1
		output.
		If the preload feature is not selected in TIMx_CCMOD1.OC1PEN bit, the written value is
		immediately transferred to the active register. Otherwise, this preloaded value is transferred to the
		active register only when an update event occurs.
		■ CC1 channel is configured as input:
		CCDAT1 contains the counter value transferred by the last input capture 1 event (IC1).
		When configured as input mode, register CCDAT1 and CCDDAT1 are only readable.
		When configured as output mode, register CCDAT1 and CCDDAT1 are readable and writable.

280

11.4.16 Capture/compare register 2 (TIMx_CCDAT2)

Offset address: 0x38

Reset value: 0x0000

Bit field	Name	Description
15:0	CCDAT2[15:0]	Capture/Compare 2 values
		■ CC2 channel is configured as output:
		CCDAT2 contains the value to be compared to the counter TIMx_CNT, signaling on the OC2
		output.
		If the preload feature is not selected in TIMx_CCMOD1.OC2PEN bit, the written value is
		immediately transferred to the active register. Otherwise, this preloaded value is transferred to the
		active register only when an update event occurs.
		■ CC2 channel is configured as input:
		CCDAT2 contains the counter value transferred by the last input capture 2 event (IC2).
		When configured as input mode, register CCDAT2 and CCDDAT2 are only readable.
		When configured as output mode, register CCDAT2 and CCDDAT2 are readable and writable.

11.4.17 Capture/compare register 3 (TIMx_CCDAT3)

Offset address: 0x3C Reset value: 0x0000

Bit field	Name	Description
15:0	CCDAT3[15:0]	Capture/Compare 3 value
		■ CC3 channel is configured as output:
		CCDAT3 contains the value to be compared to the counter TIMx_CNT, signaling on the OC3
		output.
		If the preload feature is not selected in TIMx_CCMOD2.OC3PEN bit, the written value is
		immediately transferred to the active register. Otherwise, this preloaded value is transferred to
		the active register only when an update event occurs.
		■ CC3 channel is configured as input:
		CCDAT3 contains the counter value transferred by the last input capture 3 event (IC3).
		When configured as input mode, register CCDAT3 and CCDDAT3 are only readable.
		When configured as output mode, register CCDAT3 and CCDDAT3 are readable and writable.


281

11.4.18 Capture/compare register 4 (TIMx_CCDAT4)

Offset address: 0x40

Reset value: 0x0000

rw/r

Bit field	Name	Description
15:0	CCDAT4[15:0]	Capture/Compare 4 value
		■ CC4 channel is configured as output:
		CCDAT4 contains the value to be compared to the counter TIMx_CNT, signaling on the OC4
		output.
		If the preload feature is not selected in TIMx_CCMOD2.OC4PEN bit, the written value is
		immediately transferred to the active register. Otherwise, this preloaded value is transferred to
		the active register only when an update event occurs.
		■ CC4 channel is configured as input:
		CCDAT4 contains the counter value transferred by the last input capture 4 event (IC4).
		When configured as input mode, register CCDAT4 and CCDDAT4 are only readable.
		When configured as output mode, register CCDAT4 and CCDDAT4 are readable and writable.

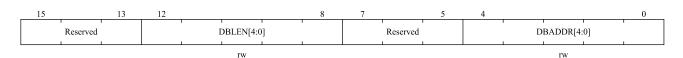
11.4.19 Break and Dead-time registers (TIMx_BKDT)

Offset address: 0x44 Reset value: 0x0000

15	14	13	12	11	10	9	8	7					0
MOEN	AOEN	BKP	BKEN	OSSR	OSSI	LCKCI	FG[1:0]			DTG	N[7:0]		
rw	rw	rw	rw	rw	rw	r	W			rv	N		

Note: AOEN, BKP, BKEN, OSSI, OSSR, and DTGN [7:0] bits can all be write protected depending on the LOCK configuration, and it is necessary to configure all of them on the first write to the TIMx_BKDT register.

Bit field	Name	Description
15	MOEN	Main Output enable
		This bit can be set by software or hardware depending on the TIMx_BKDT.AOEN bit, and is
		asynchronously cleared to '0' by hardware once the brake input is active. It is only valid for
		channels configured as outputs.
		0: OC and OCN outputs are disabled or forced to idle state.
		1: OC and OCN outputs are enabled if TIMx_CCEN.CCxEN or TIMx_CCEN.CCxNEN bits are
		set. For more details, see Section 11.4.10 Capture/Compare enable registers (TIMx_CCEN).
14	AOEN	Automatic output enable
		0: Only software can set TIMx_BKDT.MOEN;
		1: Software sets TIMx_BKDT.MOEN; or if the break input is not active, when the next update
		event occurs, hardware automatically sets TIMx_BKDT.MOEN.
13	ВКР	Break input polarity
		0: Low level of the brake input is valid
		1: High level of the brake input is valid


		Note: Any write to this bit requires an APB clock delay to take effect.
12	BKEN	Break enable
	J.L.	0: Disable brake input (BRK and CCS clock failure events)
		1: Enable brake input (BRK and CCS clock failure events)
		Note: Any write to this bit requires an APB clock delay to take effect.
11	OSSR	Off-state Selection for Run Mode
	ossit .	This bit is used when TIMx_BKDT.MOEN=1 and the channel is a complementary output.
		The OSSR bit does not exist in timer without complementary outputs.
		0: When inactive, OCx/OCxN outputs are disabled (OCx/OCxN enable output signal=0).
		1: When inactive, OCx/OCxN outputs are enabled with their inactive level as soon as CCxEN=1
		or CCxNEN=1. Then, OCx/OCxN enable output signal=1
		For more details, See Section 11.4.10, capture/compare enablement registers (TIMx_CCEN).
10	OSSI	Off-state Selection for Idle Mode
		This bit is used when TIMx_BKDT.MOEN=0 and the channels configured as outputs.
		0: When inactive, OCx/OCxN outputs are disabled (OCx/OCxN enable output signal=0).
		1: When inactive, OCx/OCxN outputs are enabled with their idle level as soon as CCxEN=1
		or CCxNEN=1. Then, OCx/OCxN enable output signal=1
		For more details, See Section 11.4.10, capture/compare enablement registers (TIMx_CCEN).
9:8	LCKCFG[1:0]	Lock Configuration
		These bits offer a write protection against software errors.
		00:
		 No write protected.
		01:
		- LOCK Level 1
		TIMx_BKDT.DTGN, TIMx_BKDT.BKEN, TIMx_BKDT.BKP, TIMx_BKDT.AOEN,
		TIMx_CTRL2.OIx, TIMx_CTRL2.OIxN bits enable write protection.
		10:
		- LOCK Level 2
		Except for register write protection in LOCK Level 1 mode, TIMx_CCEN.CCxP and
		TIMx_CCEN.CCxNP (If the corresponding channel is configured in output mode),
		TIMx_BKDT.OSSR and TIMx_BKDT.OSSI bits also enable write protection.
		11:
		- LOCK Level 3
		Except for register write protection in LOCK Level 2, TIMx_CCMODx.OCxMD and
		TIMx_CCMODx.OCxPEN bits (If the corresponding channel is configured in output mode) also
		enable write protection.
		Note: After the system reset, the LCKCFG bit can only be written once. Once written to the
		TIMx_BKDT register, LCKCFG will be protected until the next reset.
7:0	DTGN [7:0]	Dead-time Generator
		These bits define the dead-time duration between inserted complementary outputs. The
		relationship between the DTGN value and the dead time is as follows::
		DTGN[7:5] = 0xx:
		dead time = DTGN[7:0] \times (t _{DTS})

DTGN[7:5] = 10x:
dead time =(64+DTGN[5:0]) \times (2 \times t _{DTS})
DTGN[7:5]=110:
dead time =(32+DTGN[4:0]) \times (8 \times t _{DTS})
DTGN [then] = 111:
dead time = $(32 + DTGN [4:0]) \times (16 \times t_{DTS})$
t _{DTS} value see TIMx_CTRL1.CLKD [1:0].

11.4.20 DMA Control register (TIMx_DCTRL)

Offset address: 0x48 Reset value: 0x0000

Bit field	Name	Description
15:9	Reserved	Reserved, the reset value must be maintained, kept at 0.
12:8	DBLEN[4:0]	DMA Burst Length
		This bit field defines the number DMA will accesses (write/read) TIMx_DADDR register.
		00000:1 time transfer
		00001: 2 times transfers
		00010: 3 times transfers
		10001: 18 times transfers
7:5	Reserved	Reserved, the reset value must be maintained.
4:0	DBADDR[4:0]	DMA Base Address
		This bit field defines the first address where the DMA accesses the TIMx_DADDR register.
		When access is done through the TIMx_DADDR first time, this bit-field specifies the address
		you just access. And then the second access to the TIMx_DADDR, you will access the address
		of "DMA Base Address + 4"
		00000: TIMx_CTRL1,
		00001: TIMx_CTRL2,
		00010: TIMx_SMCTRL,
		10001: TIMx_BKDT
		10010: TIMx_DCTRL

284

11.4.21 DMA transfer buffer register (TIMx_DADDR)

Offset address: 0x4C Reset value: 0x0000

15										0
	1	1		1	ı	1	1	1		
				BURS	Γ[15:0]					
	 			1		 1		1	1	

rw

Bit field	Name	Description
15:0	BURST[15:0]	DMA access buffer.
		When a read or write operation is assigned to this register, the register located at the address
		range (DMA base address + DMA burst length ×4) will be accessed.
		DMA base address = The address of TIM_CTRL1 + TIMx_DCTRL. DBADDR * 4;
		DMA burst len = $TIMx_DCTRL.DBLEN + 1$.
		Example:
		If TIMx_DCTRL.DBLEN = 0x3(4 transfers), TIMx_DCTRL.DBADDR = 0xD
		(TIMx_CCDAT1), DMA data length = half word, DMA memory address = buffer address in
		SRAM, DMA peripheral address = TIMx_DADDR address.
		When an event occurs, TIMx will send requests to the DMA, and transfer data 4 times.
		For the first time, DMA access to the TIMx_ DADDR register will be mapped to access
		TIMx_CCDAT1 register;
		For the second time, DMA access to the TIMx_ DADDR register will be mapped to access
		TIMx_CCDAT2 register;
		For the fourth time, DMA access to the TIMx_ DADDR register will be mapped to access
		TIMx_CCDAT4 register;

11.4.22 Capture/compare mode registers 3(TIMx_CCMOD3)

Offset address: 0x54

Reset value: 0x0000

15	14	12	11	10	9	8	7	6		4	3	2	1	0
OC6CEN	OC6MD[2:0]	OC	6PEN	OC6FEN	Rese	rved	OC5CEN	(DC5MD[2:0]		OC5PEN	OC5FEN	Rese	rved
rw	rw		ru.	rw.			rw		rw		rw.	PW		

Bit field	Name	Description
15	OC6CEN	Output compare 6 clear enable
14:12	OC6MD[2:0]	Output compare 6 mode
11	OC6PEN	Output compare 6 preload enable
10	OC6FEN	Output compare 6 fast enable
9:8	Reserved	Reserved, the reset value must be maintained
7	OC5CEN	Output compare 5 clear enable
6:4	OC5MD[2:0]	Output compare 5 mode
3	OC5PEN	Output compare 5 Preload enable
2	OC5FEN	Output compare 5 fast enable
1: 0	Reserved	Reserved, the reset value must be maintained

11.4.23 Capture/compare register 5 (TIMx_CCDAT5)

Offset address: 0x58 Reset value: 0x0000

Bit field	Name	Description
15:0	CCDAT5[15:0]	Capture/Compare 5 value
		■ CC5 channel can only configured as output:
		CCDAT5 contains the value to be compared to the counter TIMx_CNT, signaling on the OC5
		output.
		If the preload feature is not selected in TIMx_CCMOD3.OC5PEN bit, the written value is
		immediately transferred to the active register. Otherwise, this preloaded value is transferred to
		the active register only when an update event occurs.

11.4.24 Capture/compare register 6 (TIMx_CCDAT6)

Offset address: 0x5C Reset value: 0x0000

Bit field	Name	Description
15:0	CCDAT6[15:0]	Capture/Compare 6 value
		■ CC6 channel can only configured as output:
		CCDAT6 contains the value to be compared to the counter TIMx_CNT, signaling on the OC6
		output.
		If the preload feature is not selected in TIMx_CCMOD3.OC6PEN bit, the written value is
		immediately transferred to the active register. Otherwise, this preloaded value is transferred to
		the active register only when an update event occurs.

12 General-purpose timers (TIM2, TIM3, TIM4 and TIM5)

12.1 General-purpose timers introduction

The general-purpose timers (TIM2, TIM3, TIM4 and TIM5) is mainly used in the following occasions: counting the input signal, measuring the pulse width of the input signal and generating the output waveform, etc.

12.2 Main features of General-purpose timers

- 16-bit auto-reload counters. (It can realize up-counting, down-counting, up/down counting)
- 16-bit programmable prescaler. (The frequency division factor can be configured with any value between 1 and 65536)
- TIM2, TIM3, TIM4 and TIM5 up to 4 channels.
- Channel's working modes: PWM output, ouput compare, one-pulse mode output, input capture.
- The events that generate the interrupt/DMA are as follows:
 - ◆ Update event
 - ◆ Trigger event
 - ♦ Input capture
 - Output compare
- Timer can be controlled by external signal
- Timers can be linked together internally for timer synchronization or chaining
- Incremental (quadrature) encoder interface: used for tracking motion and resolving rotation direction and position;

287

■ Hall sensor interface: used to do three-phase motor control;

TIMxCLK from RCC Internal clock(CK_INT) To another timer, ADC, DAC Polarity selection TRGO Edge detector Trigger controller Prescaler Input filter Reset, enable Slave mode ITRx(x = 0, 1,2, TRGI CK_PSC Encoder mode Psc Prescaler TIxFPx CK_CNT CNT Counter Auto-reload CCxIT (Input) CCxIT —OC1→ TIMx_CH1 Input filter & Output) edge detecto CCx Event Capture/Compare TRC Output Control (x = 1, 2, 3, 4)TIMx CH2 (Input) OCxREF Input filter & register TIMx CH2 edge detector TIMx CH3 TI3FP3 Input filter & TIMx CH3 TIMx_CH4 TIMx_CH4 TI4FP4 edge detector Interrupt and DMA output

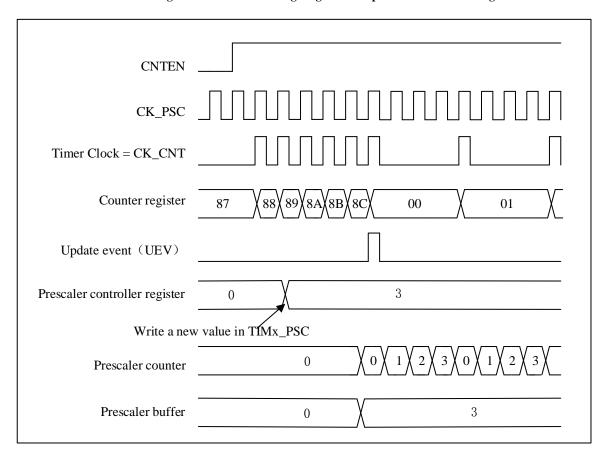
Figure 12-1 Block diagram of TIMx (x=2, 3, 4 and 5)

12.3 General-purpose timers description

12.3.1 Time-base unit

The time-base unit mainly includes: prescaler, counter and auto-reload. When the time base unit is working, the software can read and write the corresponding registers (TIMx_PSC, TIMx_CNT and TIMx_AR) at any time.

Depending on the setting of the auto-reload preload enable bit (TIMx_CTRL1.ARPEN), the value of the preload register is transferred to the shadow register immediately or at each update event UEV. An update event is generated when the counter reaches the overflow/underflow condition and it can be generated by software when TIMx_CTRL1.UPDIS=0. The counter CK_CNT is valid only when the TIMx_CTRL1.CNTEN bit is set. The counter starts counting one clock cycle after the TIMx_CTRL1.CNTEN bit is set.


12.3.1.1 Prescaler description

The TIMx_PSC register consists of a 16-bit counter that can be used to divide the counter clock frequency by any factor between 1 and 65536. It can be changed on the fly as it is buffered. The prescaler value is only taken into

account at the next update event.

Figure 12-2 Counter timing diagram with prescaler division change from 1 to 4

12.3.2 Counter mode

12.3.2.1 Up-counting mode

In up-counting mode, the counter will count from 0 to the value of the register TIMx_AR, then it resets to 0. And a counter overflow event is generated.

If the TIMx_CTRL1.UPRS bit (select update request) and the TIMx_EVTGEN.UDGN bit are set, an update event (UEV) will generate And TIMx_STS.UDITF will not be set by hardware, therefore, no update interrupts or update DMA requests are generated. This setting is used in scenarios where you want to clear the counter but do not want to generate an update interrupt.

Depending on the update request source is configured in the TIMx_CTRL1.UPRS. When an update event occurs, TIMx_STS.UDITF is set, all registers are updated:

- Update auto-reload shadow registers with preload value(TIMx_AR), when TIMx_CTRL1.ARPEN = 1.
- The prescaler shadow register is reloaded with the preload value(TIMx PSC).

To avoid updating the shadow registers when new values are written to the preload registers, you can disable the update by setting TIMx_CTRL1.UPDIS=1.

When an update event occurs, the counter will still be cleared and the prescaler counter will also be set to 0 (but the

prescaler value will remain unchanged).

The figure below shows some examples of the counter behavior and the update flags for different division factors in the up-counting mode.

Figure 12-3 Timing diagram of up-counting. The internal clock divider factor = 2/N

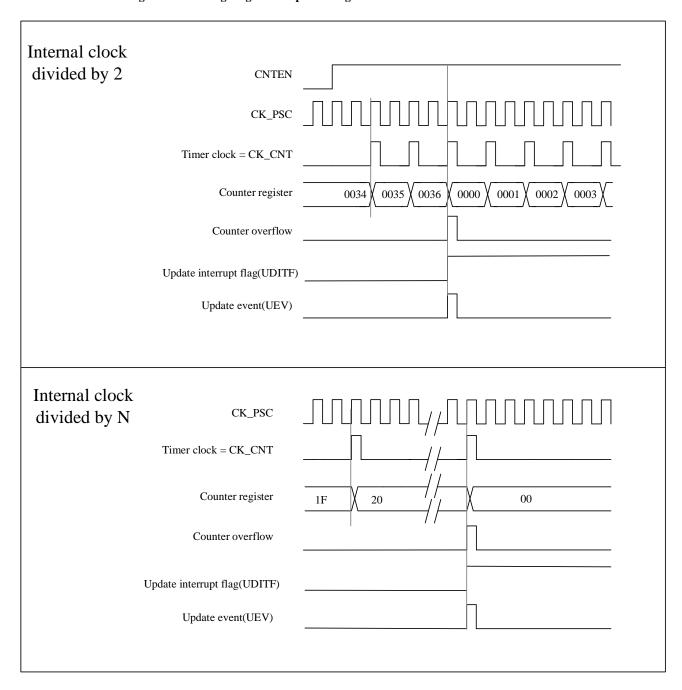
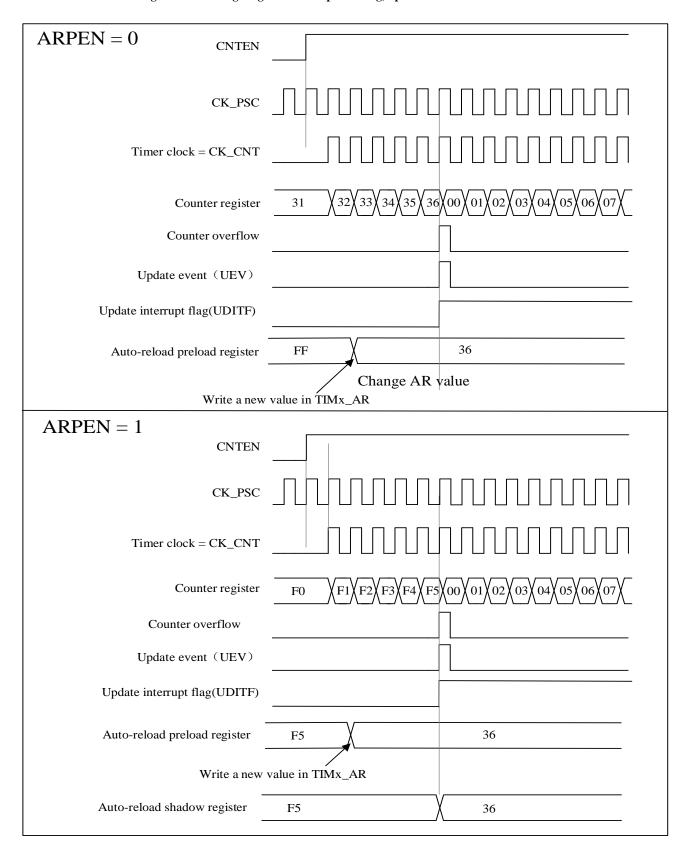



Figure 12-4 Timing diagram of the up-counting, update event when ARPEN=0/1

291

12.3.2.2 Down-counting mode

In down-counting mode, the counter will decrement from the value of the register TIMx_AR to 0, then restart from the auto-reload value and generate a counter underflow event.

The process of configuring update events and updating registers in down-counting mode is the same as in up-counting mode, see 12.3.2.1.

The figure below shows some examples of the counter behavior and the update flags for different division factors in the down-counting mode.

Internal clock divided by 2 **CNTEN** Timer clock = CK_CNT Counter register 0002 0000 Counter underflow Update event (UEV) Update interrupt flag(UDITF) Internal clock divided by CK PSC Timer clock = CK_CNT 36 Counter register Counter underflow Update event (UEV) Update interrupt flag(UDITF)

Figure 12-5 Timing diagram of the down-counting, internal clock divided factor = 2/N

12.3.2.3 Center-aligned mode

In center-aligned mode, the counter increments from 0 to the value ($TIMx_AR$) – 1, a counter overflow event is generated. It then counts down from the auto-reload value ($TIMx_AR$) to 1 and generates a counter underflow event. Then the counter resets to 0 and starts counting up again.

In this mode, the TIMx_CTRL1.DIR direction bits have no effect and the count direction is updated and specified by hardware. Center-aligned mode is valid when the TIMx_CTRL1. CAMSEL bit is not equal to "00".

The update events can be generated each time the counter overflows and each time the counter underflows.

Alternatively, an update event can also be generated by setting the TIMx_EVTGEN. UDGN bit (either by software or using a slave mode controller). In this case, the counter restarts from 0, as does the prescaler's counter.

Please note: if the update source is a counter overflow, auto-reload update before reloading the counter.

Figure 12-6 Timing diagram of the Center-aligned, internal clock divided factor =2/N

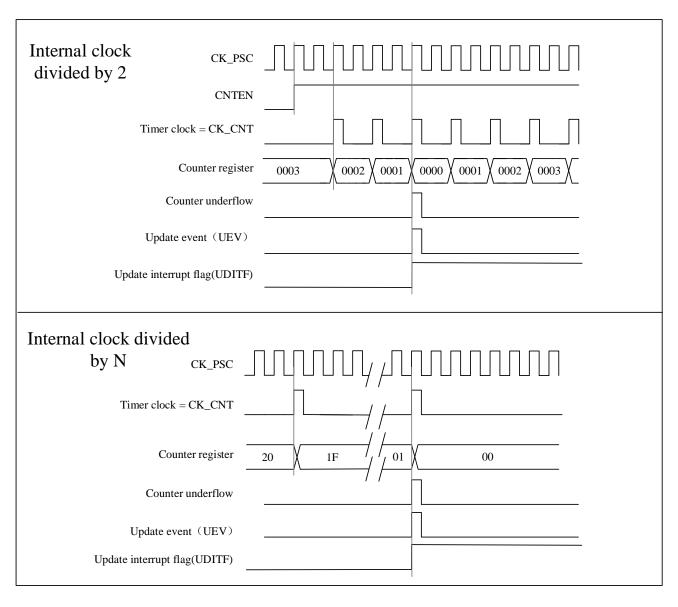
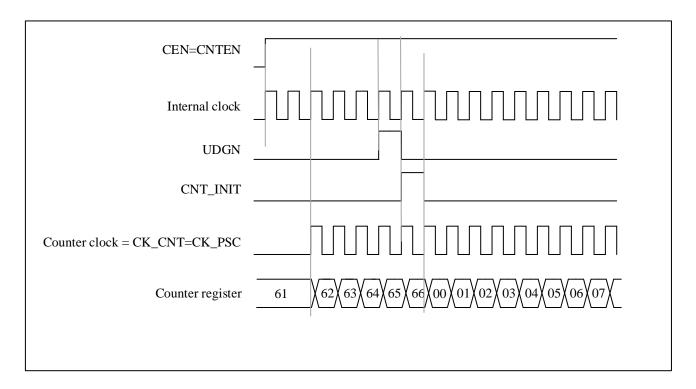


Figure 12-7 A center-aligned sequence diagram that includes counter overflows and underflows (ARPEN=1)

294

12.3.3 Clock selection

- The internal clock of timers: CK INT
- Two kinds of external clock mode :

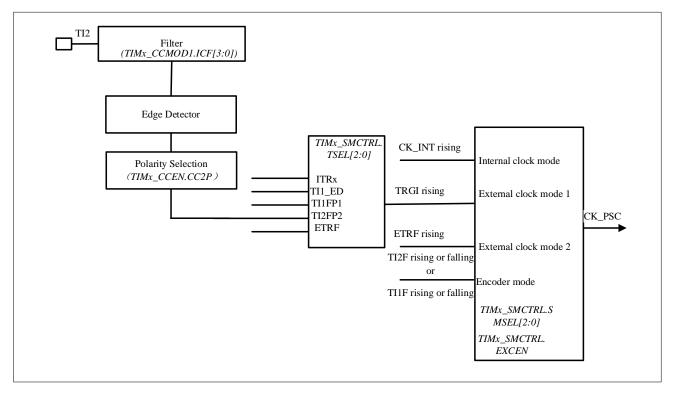


- external input pin
- external trigger input ETR
- Internal trigger input (ITRx): one timer is used as a prescaler for another timer.

12.3.3.1 Internal clock source (CK_INT)

When the TIMx_SMCTRL.SMSEL is equal to "000", the slave mode controller is disabled. The three control bits (TIMx_CTRL1.CNTEN、TIMx_CTRL1.DIR、TIMx_EVTGEN. UDGN) can only be changed by software (except TIMx_EVTGEN. UDGN, which remains cleared automatically). It is provided that the TIMx_CTRL1.CNTEN bit is written as '1' by soft, the clock source of the prescaler is provided by the internal clock CK_INT.

Figure 12-8 Control circuit in normal mode, internal clock divided by 1



295

12.3.3.2 External clock source mode 1

Figure 12-9 TI2 external clock connection example

This mode is selected by configuring TIMx_SMCTRL.SMSEL=111. The counter can be configured to count on the rising or falling edge of the clock at the selected input.

For example, to configure up-counting mode to count on the rising edge of the clock at the TI2 input, the configuration steps are as follows:

- Configure TIMx CCMOD1.CC2SEL equal to '01', CC2 channel is configured as input, IC2 is mapped to TI2
- Configure TIMx_CCEN.CC2P equal to '0', select clock rising edge polarity
- To select input filter bandwidth by configuring TIMx_CCMOD1.IC2F[3:0] (if filter is not needed, keep IC2F bit at '0000')
- Configure TIMx_SMCTRL.SMSEL equal to '111', select timer external clock mode 1
- Configure TIMx_SMCTRL.TSEL equal to '110', select TI2 as the trigger input source
- Configure TIMx CTRL1.CNTEN equal to '1' to start the counter

Note: The capture prescaler is not used for triggering, so it does not need to be configured

When the rising edge of the timer clock occurs at TI2=1, the counter counts once and the TIMx_STS .TITF flag is pulled high.

The delay between the rising edge of TI2 and the actual clock of the counter depends on the resynchronization circuit at the input of TI2.

Timer clock = CK_CNT=CK_PSC
Counter register
TITF

Write TITF=0

Figure 12-10 Control circuit in external clock mode 1

12.3.3.3 External clock source mode 2

This mode is selected by TIMx_SMCTRL .EXCEN equal to 1. The counter can count on every rising or falling edge of the external trigger input ETR.

The following figure is a schematic diagram of the external trigger input module in External clock source mode 2

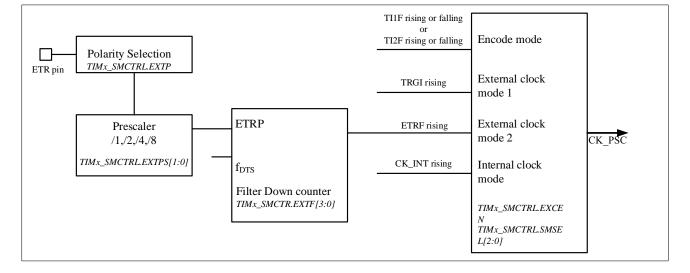


Figure 12-11 External trigger input block diagram

For example, use the following configuration steps to make the up counter count every 2 rising edges on ETR.

- Since no filter is needed in this case, make TIMx SMCTRL .EXTF[3:0] equal to '0000'
- Configure the prescaler by making TIMx SMCTRL.EXTPS[1:0] equal to '01'
- Select the polarity on ETR pin by setting TIMx SMCTRL.EXTP equal to '0', The rising edge of ETR is valid

297

■ External clock mode 2 is selected by setting TIMx_SMCTRL .EXCEN equal to '1'

■ Turn on the counter by setting TIMx_CTRL1. CNTEN equal to '1'

The counter counts every 2 rising edges of ETR. The delay between the rising edge of ETR and the actual clock to the counter is due to a resynchronization circuit on the ETRP signal.

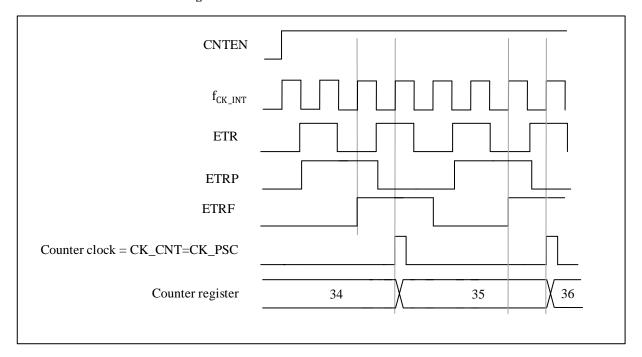
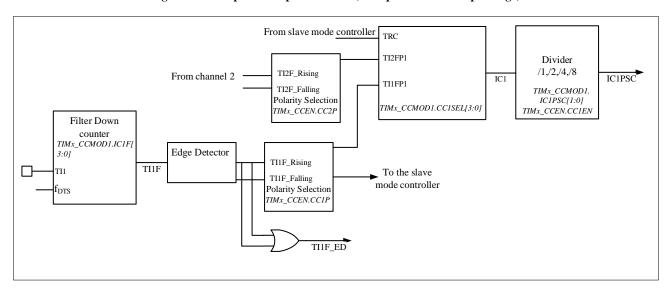


Figure 12-12 Control circuit in external clock mode 2


12.3.4 Capture/compare channels

Capture/compare channels include capture/compare registers and shadow registers. The input section consists of digital filters, multiplexers and prescalers. The output section includes comparators and output controls.

The input signal TIx is sampled and filtered to generate the signal TIxF. A signal (TIxF_rising or TIxF_falling) is then generated by the edge detector of the polarity select function, the polarity of which is selected by the TIMx_CCEN.CCxP bits. This signal can be used as a trigger input for the slave mode controller. At the same time, the signal ICx is sent to the capture register after frequency division. The following figure shows a block diagram of a capture/compare channel.

Figure 12-13 Capture/compare channel (example: channel 1 input stage)

The output part generates an intermediate waveform OCxRef (active high) as reference. The polarity acts at the end of the chain.

Nanshan District, Shenzhen, 518057, P.R.China

Figure 12-14 Capture/compare channel 1 main circuit

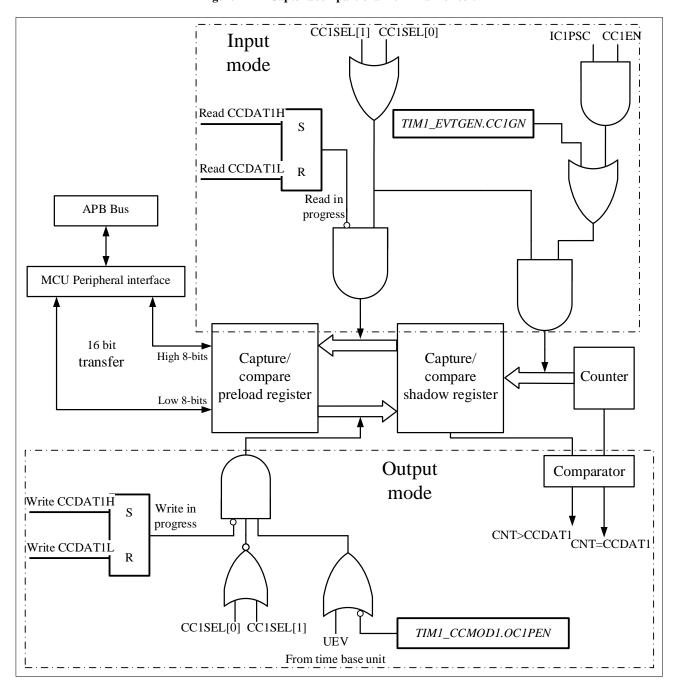
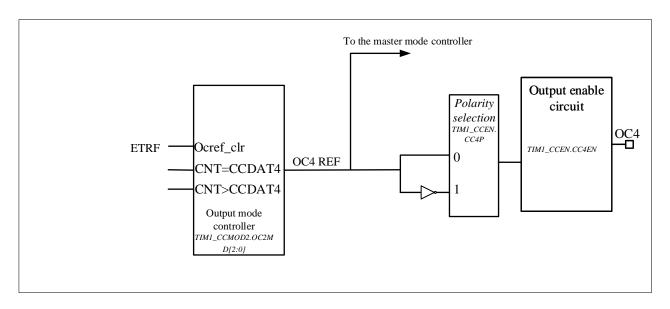



Figure 12-15 Output part of channels (x = 1,2,3,4;take channel 4 as an example)

Reads and writes always access preloaded registers when capturing/comparing. The two specific working processes are as follows:

In capture mode, the capture is actually done in the shadow register, and then the value in the shadow register is copied into the preload register.

In compare mode, as opposed to capture mode, the value of the preload register is copied into the shadow register, which is compared with the counter.

12.3.5 Input capture mode

In capture mode, the TIMx_CCDATx registers are used to latch the counter value after the ICx signal detects.

There is a capture interrupt flag TIMx_STS.CCxITF, which can issue an interrupt or DMA request if the corresponding interrupt enable is pulled high.

The TIMx_STS. CCxITF bit is set by hardware when a capture event occurs and is cleared by software or by reading the TIMx_CCDATx register.

The overcapture flag TIMx_STS.CCxOCF is set equal to 1 when the counter value is captured in the TIMx_CCDATx register and TIMx_STS.CC1ITF is already pulled high. Unlike the former, TIMx_STS.CCxOCF is cleared by writing 0 to it.

To achieve a rising edge of the TI1 input to capture the counter value into the TIMx_CCDAT1 register, the configuration flow is as follows:

■ To select a valid input:

Configure TIMx_CCMOD1.CC1SEL to '01'. At this time, the input is the CC1 channel, and IC1 is mapped to TI1.

■ Program the desired input filter duration:

Define the sampling frequency of the TI1 input and the length of the digital filter by configuring the

TIMx_CCMODx.ICxF bits. Example: If the input signal jitters up to 5 internal clock cycles, we must choose a filter duration longer than these 5 clock cycles. When 8 consecutive samples (sampled at f_{DTS} frequency) with the new level are detected, we can validate the transition on TI1. Then configure TIMx_CCMOD1. IC1F to '0011'.

- By configuring TIMx_CCEN .CC1P=0, select the rising edge as the valid transition polarity on the TI1 channel.
- Configure the input prescaler. In this example, configure TIMx_CCMOD1.IC1PSC= '00' to disable the prescaler because we want to capture every valid transition.
- Enable capture by configuring TIMx CCEN. CC1EN = '1'.

If you want to enable DMA request, you can configure TIMx_DINTEN.CC1DEN=1.If you want enable related interrupt request, you can configureTIMx_DINTEN.CC1IEN bit=1

12.3.6 PWM input mode

There are some differences between PWM input mode and normal input capture mode, including:

- Two ICx signals are mapped to the same TIx input.
- The two ICx signals are active on edges of opposite polarity.
- Select one of two TIxFP signals as trigger input.
- The slave mode controller is configured in reset mode.

For example, the following configuration flow can be used to know the period and duty cycle of the PWM signal on TI1 (It depends on the frequency of CK_INT and the value of the prescaler).

- Configure TIMx_CCMOD1.CC1SEL equal to '01' to select TI1 as valid input for TIMx_CCDAT1.
- Configure TIMx_CCEN.CC1P equal to '0' to select the active polarity of filtered timer input 1(TI1FP1), valid on the rising edge.
- Configure TIMx_CCMOD1.CC2SEL equal to '10' select TI1 as valid input for TIMx_CCDAT2.
- Configure TIMx_CCEN.CC2P equal to 1 to select the valid polarity of filtered timer input 2(TI1FP2), valid on the falling edge.

- Configure TIMx SMCTRL.TSEL=101 to select Filtered timer input 1 (TI1FP1) as valid trigger input.
- Configure TIMx_SMCTRL.SMSEL=100 to configure the slave mode controller to reset mode.
- Configure TIMx_CCEN. CC1EN=1 and TIMx_CCEN.CC2EN=1 to enable capture.

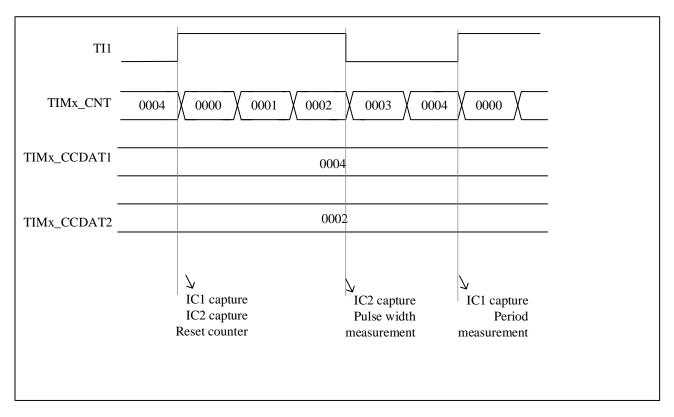


Figure 12-16 PWM input mode timing

Because of only filter timer input 1 (TI1FP1) and filter timer input 2 (TI2FP2) are connected to the slave mode controller, the PWM input mode can only be used with the TIMx_CH1/TIMx_CH2 signals.

12.3.7 Forced output mode

Software can force output compare signals to active or inactive level directly, in output mode (TIMx_CCMODx.CCxSEL=00).

User can set TIMx_CCMODx. OCxMD=101 to force the output compare signal to active level. And the OCxREF will be forced high, OCx get opposite value to CCxP polarity bit. On the other hand, user can set TIMx_CCMODx. OCxMD=100 to force the output compare signal to inactive level.

The values of the TIMx_CCDATx shadow register and the counter still comparing with each other in this mode. And the flag still can be set. Therefore, the interrupt and DMA requests still can be sent.

The comparison between the output compare register TIMx_CCDATx and the counter TIMx_CNT has no effect on OCxREF. And the flag still can be set. Therefore, the interrupt and DMA requests still can be sent.

12.3.8 Output compare mode

User can use this mode to control the output waveform, or to indicate that a period of time has elapsed.

When the capture/compare register and the counter have the same value, the output compare function's operations are as follow:

■ TIMx_CCMODx.OCxMD is for output compare mode, and TIMx_CCEN.CCxP is for output polarity. When

the compare matches, if set TIMx_CCMODx.OCxMD=000, the output pin will keep its level; if set TIMx_CCMODx.OCxMD=001, the output pin will be set active; if set TIMx_CCMODx.OCxMD=010, the output pin will be set inactive; if set TIMx_CCMODx.OCxMD=011, the output pin will be set to toggle.

- Set TIMx_STS.CCxITF.
- If user set TIMx_DINTEN.CCxIEN, a corresponding interrupt will be generated.
- If user set TIMx_DINTEN.CCxDEN and set TIMx_CTRL2.CCDSEL to select DMA request, and DMA request will be sent.

User can set TIMx_CCMODx.OCxPEN to choose capture/compare shawdow regisete using capture/compare preload registers(TIMx_CCDATx) or not.

The time resolution is one count of the counter.

In one pulse mode, the output compare mode can also be used to output a single pulse.

Here are the configuration steps for output compare mode:

- First of all, user should select the counter clock.
- Secondly, set TIMx_AR and TIMx_CCDATx with desired data.
- If user need to generate an interrupt, set TIMx_DINTEN.CCxIEN.
- Then select the output mode by set TIMx_CCEN.CCxP, TIMx_CCMODx.OCxMD, TIMx_CCEN.CCxEN, etc.
- At last, set TIMx_CTRL1.CNTEN to enable the counter.

User can update the output waveform by setting TIMx_CCDATx at any time, as long as the preload register is not enabled. Otherwise the TIMx_CCDATx shadow register will be updated at the next update event.

304

Here is an example.

TIM1 CNT 0069 006A 006B 8800 8801 TIM1 CCDAT1 006A 8801 Write 8801h in CCDAT1 register OC1REF=OC1 Match detected on CCDAT1 Interrupt generated if enabled

Figure 12-17 Output compare mode, toggle on OC1

12.3.9 PWM mode

User can use PWM mode to generate a signal whose duty cycle is determined by the value of the TIMx_CCDATx register and whose frequency is determined by the value of the TIMx AR register. And depends on the value of TIMx_CTRL1.CAMSEL, the TIM can generate PWM signal in edge-aligned mode or center-aligned mode.

User can set PWM mode 1 or PWM mode 2 by setting TIMx_CCMODx. OCxMD=110 or setting TIMx_CCMODx. OCxMD=111. To enable preload register, user must set corresponding TIMx_CCMODx.OCxPEN. And then set TIMx_CTRL1.ARPEN to auto-reload preload register eventually.

User can set polarity of OCx by setting TIMx CCEN.CCxP. To enable the output of OCx, user need to set the combination of the value of CCxEN.

The values of TIMx_CNT and TIMx_CCDATx are always compared with each other when the TIM is under PWM mode.

Only if an update event occurs, the preload register will transfer to the shadow register. Therefore user must reset all the registers by setting TIMx_EVTGEN.UDGN before the counter starts counting.

12.3.9.1 PWM center-aligned mode

If user set TIMx_CTRL1.CAMSEL equal 01, 10 or 11, the PWM center-aligned mode will be active. The setting of the compare flag depends on the value of TIMx_CTRL1.CAMSEL. There are three kinds of situation that the compare flag is set, only when the counter counts up, only when the counter counts down, or when the counter counts up and counts down. User should not modified TIMx_CTRL1.DIR by software, it is updated by hardware.

Examples of center-aligned PWM waveforms is as follow, and the setting of the waveform are: TIMx_AR=8, PWM 305

mode 1, the compare flag is set when the counter counts down corresponding to TIMx_CTRL1. CAMSEL=01.

Counter register OCXREF CCDATx=0 CAMSEL=01 **CCxITF** CAMSEL=10 CAMSEL=11 **OCXREF** CCDATx=4 CAMSEL=01 CAMSEL=10 **CCxITF** CAMSEL=11 **OCXREF** CCDATx=7 CAMSEL=10或11 **CCxITF** OCXREF '1' CCDATx=8 CAMSEL=01 CAMSEL=10 **CCxITF** CAMSEL=11 **OCXREF** CCDATx>8 CAMSEL=01 **CCxITF** CAMSEL=10 CAMSEL=11

Figure 12-18 Center-aligned PWM waveform (AR=8)

Notes that user should know when using center-aligned mode are as follow:

- It depends on the value of TIMx_CTRL1.DIR that the counter counts up or down. Cautions that the DIR and CAMSEL bits should not be changed at the same time.
- User should not write the counter while running in center-aligned mode, otherwise it will cause unexpected results. Here are some example:
 - ◆ If the value written into the counter is 0 or is the value of TIMx_AR, the direction will be updated but the update event will not be generated.
 - If the value written into the counter is greater than the value of auto-reload, the direction will not be updated.
- To be on the safe side, user is suggested setting TIMx_EVTGEN.UDGN to generate an update by software before starting the counter, and not writing the counter while it is running.

12.3.9.2 PWM edge-aligned mode

There are two kinds of configuration in edge-aligned mode, up-counting and down-counting.

Up-counting

User can set TIMx_CTRL1.DIR=0 to make counter counts up.

Here is an example for PWM mode1.

When TIMx_CNT < TIMx_CCDATx, the reference PWM signal OCxREF is high. Otherwise it will be low. If the compare value in TIMx_CCDATx is greater than the auto-reload value, the OCxREF will remains 1. Conversely, if the compare value is 0, the OCxREF will remains 0.

When TIMx_AR=8, the PWM waveforms are as follow.

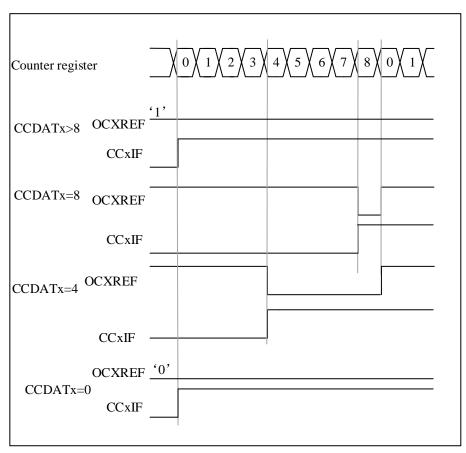


Figure 12-19 Edge-aligned PWM waveform (APR=8)

Down-counting

User can set TIMx_CTRL1.DIR=1 to make counter counts down.

Here is an example for PWM mode1.

When TIMx_CNT > TIMx_CCDATx, the reference PWM signal OCxREF is low. Otherwise it will be high. If the compare value in TIMx_CCDATx is greater than the auto-reload value, the OCxREF will remains 1.

Note: If the nth PWM cycle CCDATx shadow register >= AR value, the shadow register value of CCDATx in the (n+1)th PWM cycle is 0. At the moment when the counter is 0 in the (n+1)th PWM cycle, although the value of the counter = CCDATx shadow register = 0 and OCxREF = '0', no compare event will be generated.

12.3.10 One-pulse mode

In the one-pulse mode (ONEPM), a trigger signal is received, and a pulse t_{PULSE} with a controllable pulse width is generated after a controllable delay t_{DELAY}. The output mode needs to be configured as output compare mode or PWM mode. After selecting one-pulse mode, the counter will stop counting after the update event UEV is generated.

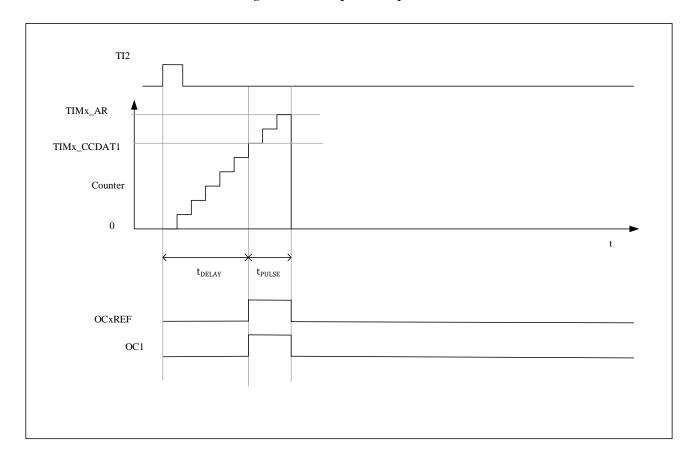


Figure 12-20 Example of One-pulse mode

The following is an example of a one-pulse mode:

A rising edge trigger is detected from the TI2 input, and a pulse with a width of t_{PULSE} is generated on OC1 after a delay of t_{DELAY}.

- 1. Counter configuration: count up, counter TIMx_CNT < TIMx_CCDAT1 ≤ TIMx_AR;
- 2. TI2FP2 is mapped to TI2, TIMx_CCMOD1.CC2SEL= '01'; TI2FP2 is configured for rising edge detection, TIMx_CCEN.CC2P= '0';
- 3. TI2FP2 acts as the trigger (TRGI) of the slave mode controller and starts the counter, TIMx_SMCTRL.TSEL= '110', TIMx_SMCTRL.SMSEL= '110' (trigger mode);
- 4. TIMx_CCDAT1 writes the count value to be delayed (t_{DELAY}), TIMx_AR TIMx_CCDAT1 is the count value of the pulse width t_{PULSE};

- 5. Configure TIMx_CTRL1.ONEPM=1 to enable single pulse mode, configure TIMx_CCMOD1.OC1MD = '111' to select PWM2 mode:
- 6. Wait for an external trigger event on TI2, and a one pulse waveform will be output on OC1;

12.3.10.1 Special case: OCx fast enable:

In one-pulse mode, an edge is detected through the TIx input, and triggers the start of the counter to count to the comparison value and then output a pulse. These operations limit the minimum delay t_{DELAY} that can be achieved.

You can set TIMx_CCMODx.OCxFEN=1 to turn on OCx fast enable, after triggering the rising edge, the OCxREF signal will be forced to be converted to the same level as the comparison match occurs immediately, regardless of the comparison result. OCxFEN fast enable only takes effect when the channel mode is configured for PWM1 and PWM2 modes.

12.3.11 Clearing the OCxREF signal on an external event

If user set TIMx_CCMODx.OCxCEN=1, high level of ETRF input can be used to driven the OCxREF signal to low, and the OCxREF signal will remains low, until the next UEV happens. Only output compare and PWM modes can use this function. This cannot be used when it is in forced mode.

Here is an example for it. The operation for ETR should be as follow:

- Set TIMx_SMCTRL.EXTPS=00 to disable the external trigger prescaler.
- Set TIMx_SMCTRL.EXCEN=0 to disable the external clock mode 2.
- Set TIMx_SMCTRL.EXTP and TIMx_SMCTRL.EXTF to configure the external trigger polarity and external trigger filter according to the need.

Here is an example for the case that when ETRF input becomes high, the behavior of OCxREF signal for different value of OCxCEN. Timer is set to be in PWM mode in this case.

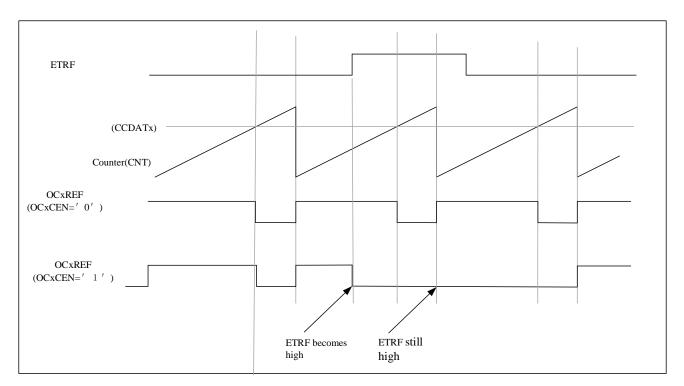


Figure 12-21 Control circuit in reset mode

12.3.12 Debug mode

When the microcontroller is in debug mode (the Cortex-M4 core halted), depending on the DBG_CTRL.TIMx_STOP configuration in the DBG module, the TIMx counter can either continue to work normally or stop. For more details, see 26.4.3.

12.3.13 TIMx and external trigger synchronization

Same as advanced timer. See 11.3.16.

12.3.14 Timer synchronization

All TIMx timers are internally connected to each other. This implementation allows any master timer to provide trigger to reset, start, stop or provide a clock for the other slave timers. The master clock is used for internal counter and can be prescaled. Below figure shows a Block diagram of timer interconnection.

The synchronization function does not support dynamic change of the connection. User should configure and enable the slave timer before enable the master timer's trigger or clock.

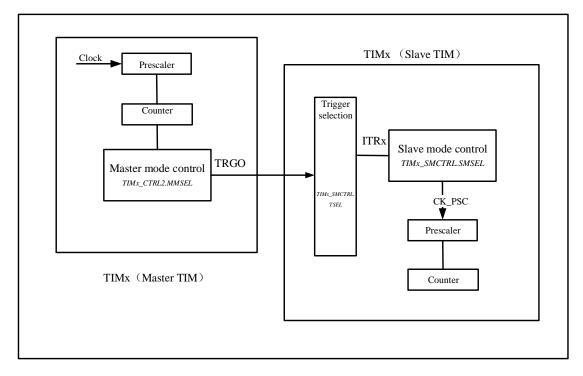


Figure 12-22 Block diagram of timer interconnection

12.3.14.1 Master timer as a prescaler for another timer

TIM1 as a prescaler for TIM2. TIM1 is maser, TIM2 is slave.

User need to do the following steps for this configuration.

- Setting TIM1 CTRL2.MMSEL='010' to use the update event of TIM1 as trigger output.
- Configure TIM2 SMCTRL. TSEL= '000', connect the TRGO of TIM1 to TIM2.
- Configure TIM2_SMCTRL.SMSEL = '111', the slave mode controller will be configured in external clock mode 1.
- Start TIM2 by setting TIM2_CTRL1. CNTEN = '1'.
- Start TIM1 by setting TIM1_CTRL1. CNTEN = '1'.

Note: If user select OCx as the trigger output of TIM1 by configuring MMSEL = '1xx', OCx rising edge will be used to drive timer2.

12.3.14.2 Master timer to enable another timer

In this example, TIM2 is enabled by the output compare of TIM1. TIM2 counter will start to count after the OC1REF output from TIM1 is high. Both counters are clocked based on CK_INT via a prescaler divide by 3 is performed $(f_{CK_CNT} = f_{CK_INT}/3)$.

The configuration steps are shown as below.

- Setting TIM1 CTRL2.MMSEL='100' to use the OC1REF of TIM1 as trigger output.
- Configure TIM1_CCMOD1 register to configure the OC1REF output waveform.
- Setting TIM2_SMCTRL.TSEL = '000' to connect TIM1 trigger output to TIM2.

- Setting TIM2_SMCTRL.SMSEL= '101' to set TIM2 to gated mode.
- Setting TIM2_CTRL1.CNTEN= '1' to start TIM2.
- Setting TIM1 CTRL1.CNTEN= '1' to start TIM1.

Note: The TIM2 clock is not synchronized with the TIM1 clock, this mode only affects the TIM2 counter enable signal.

TIM1

CK_INT

CNT

63

64

65

66

00

01

OCIREF

TIM2

TITF

Clear TIF = 0

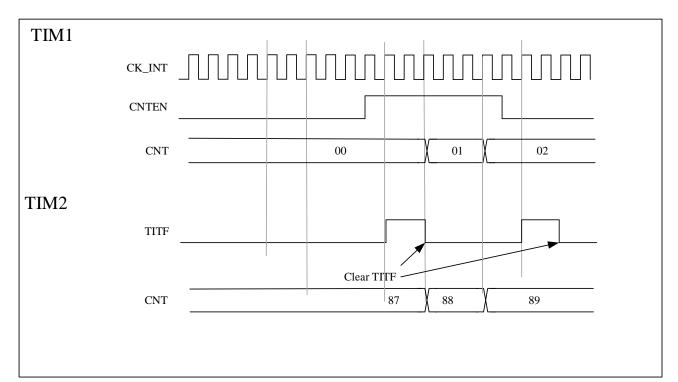
CNT

85

86

87

88


Figure 12-23 TIM2 gated by OC1REF of TIM1

In the next example, Gated TIM2 with enable signal of TIM1, Setting TIM1.CTRL1.CNTEN = '0' to stop TIM1. TIM2 counts on the divided internal clock only when TIM1 is enable. Both counters are clocked based on CK_INT via a prescaler divide by 3 is performed ($f_{CK_CNT} = f_{CK_INT}/3$).

The configuration steps are shown as below

- Setting TIM1_CTRL2.MMSEL='001' to use the enable signal of TIM1 as trigger output
- Setting TIM2_SMCTRL.TSEL = '000' to configure TIM2 to get the trigger input from TIM1
- Setting TIM2 SMCTRL.SMSEL = '101' to configure TIM2 in gated mode.
- Setting TIM2_CTRL1.CNTEN= '1' to start TIM2.
- Setting TIM1_CTRL1.CNTEN= '1' to start TIM1.
- Setting TIM1_CTRL1.CNTEN= '0' to stop TIM1.

313

Figure 12-24 TIM2 gated by enable signal of TIM1

12.3.14.3 Master timer to start another timer

In this example, we can use update event as trigger source.TIM1 is master, TIM2 is slave.

The configuration steps are shown as below:

- Setting TIM1_CTRL2.MMSEL='010' to use the update event of TIM1 as trigger output
- Configure TIM1_AR register to set the output period.
- Setting TIM2_SMCTRL .TSEL= '000' to connect TIM1 trigger output to TIM2.
- Setting TIM2_SMCTRL. SMSEL = '110' to set TIM2 to trigger mode.
- Setting TIM1_CTRL1.CNTEN=1 to start TIM1.

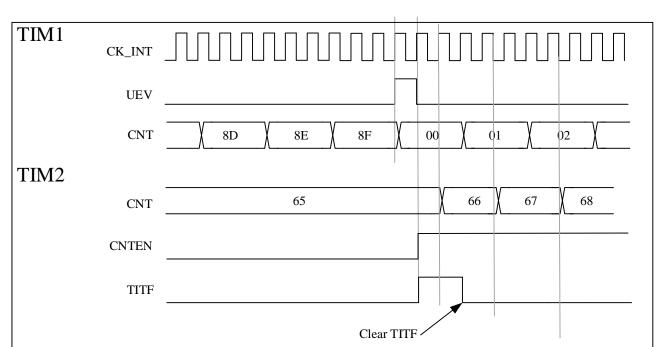


Figure 12-25 Trigger TIM2 with an update of TIM1

12.3.14.4 Start 2 timers synchronously using an external trigger

In this example, TIM1 is enabled when TIM1's TI1 input rises, and TIM2 is enabled when TIM1 is enabled. To ensure the alignment of counters, TIM1 must be configured in master/slave mode. For TI1, TIM1 is the slave; for TIM2, TIM1 is the master.

The configuration steps are shown as below:

- Setting TIM1.MMSEL = '001' to use the enable signal as trigger output
- Setting TIM1 SMCTRL.TSEL = '100' to configure the TIM1 to slave mode and receive the trigger input of TI1.
- Setting TIM1_SMCTRL .SMSEL = '110' to configure TIM1 to trigger mode.
- Setting TIM1_SMCTRL .MSMD = '1' to configure TIM1 to master/slave mode.
- Setting TIM2_SMCTRL .TSEL = '000' to connect TIM1 trigger output to TIM2.
- Setting TIM2 SMCTRL.SMSEL = '110' to configure TIM2 to trigger mode.

When TI1 rising edge arrives, both timers start counting synchronously according to the internal clock, and both TITF flags are set simultaneously.

314

The following figure shows a delay between CNTEN and CK_PSC of TIM1 in master/slave mode.

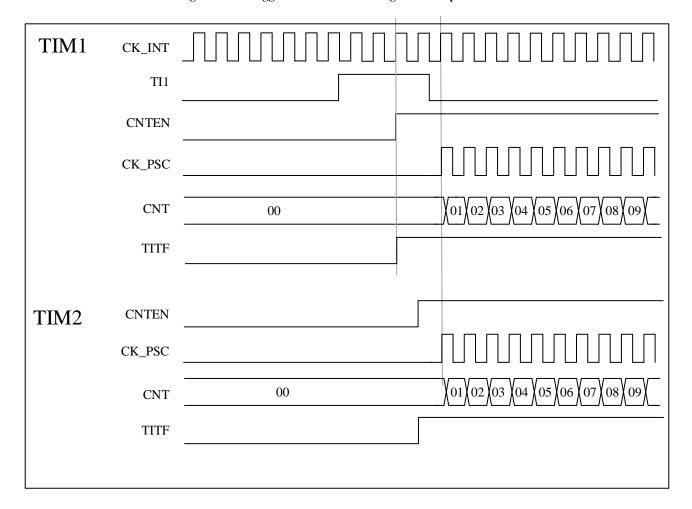


Figure 12-26 Triggers timers 1 and 2 using the TI1 input of TIM1

12.3.15 Encoder interface mode

The encoder uses two inputs TI1 and TI2 as an interface and the counter counts on every edge change on TI1FP1 or TI2FP2. The counting direction is automatically controlled by hardware TIMx_CTRL1.DIR. There are three types of encoder counting modes:

- 1. The counter only counts on the edge of TI1, TIMx SMCTRL.SMSEL = '001';
- 2. The counter only counts on the edge of TI2, TIMx SMCTRL.SMSEL ='010';
- 3. The counter counts on the edges of TI1 and TI2 at the same time, TIMx_SMCTRL.SMSEL = '011';

The encoder interface is equivalent to using an external clock with direction selection, and the counter only counts continuously between 0 and the auto-reload value (TIMx_AR.AR [15:0]). Therefore, it is necessary to configure the auto-reload register TIMx_AR in advance.

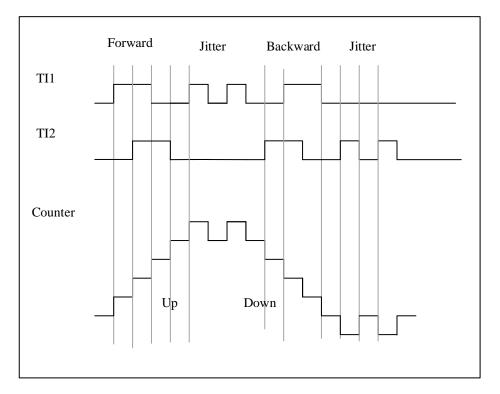
Note: Encoder mode and external clock mode 2 are not compatible and must not be selected together.

The relationship between the counting direction and the encoder signal is shown in Table 12-1:

Table 12-1 Counting direction versus encoder signals

Level on opposite signals	TI1FP1 signal	TI2FP2 signal
---------------------------	---------------	---------------

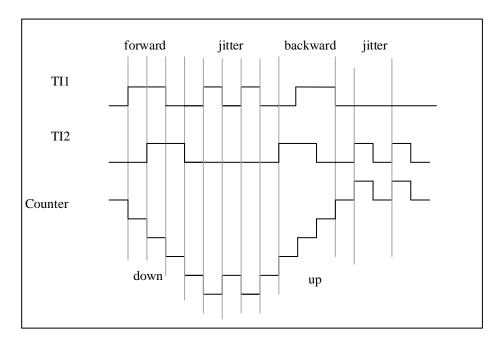
Nations Technologies Inc.



Active edge	(TI1FP1 forTI2,	Rising	Falling	Rising	Falling
	TI2FP2 for TI1)				
Counting only at TI1	High	Counting down	Counting up	Don't count	Don't count
	Low	Counting up	Counting down	Don't count	Don't count
Counting only at TI2	High	Don't count	Don't count	Counting up	Counting down
	Low	Don't count	Don't count	Counting down	Counting up
Counting on	High	Counting down	Counting up	Counting up	Counting down
TI1 and TI2	Low	Counting up	Counting down	Counting down	Counting up

Here is an example of an encoder with dual edge triggering selected to suppress input jitter:

- 1. IC1FP1 is mapped to TI1 (TIMx_CCMOD1.CC1SEL= '01'), IC1FP1 is not inverted (TIMx_CCEN.CC1P= '0');
- 2. IC1FP2 is mapped to TI2 (TIMx CCMOD2.CC2SEL= '01'), IC2FP2 is not inverted (TIMx CCEN.CC2P= '0');
- 3. The input is valid on both rising and falling edges (TIMx SMCTRL.SMSEL = '011');
- 4. Enable counter TIMx_CTRL1.CNTEN= '1';


Figure 12-27 Example of counter operation in encoder interface mode

The following figure shows the example of counter behavior when IC1FP1 polarity is inverted (CC1P= '1', other configurations are the same as above)

Figure 12-28 Encoder interface mode example with IC1FP1 polarity inverted

12.3.16 Interfacing with Hall sensor

Please refer to 11.3.20

12.4 TIMx register description(x=2, 3, 4 and 5)

For abbreviations used in registers, see section 1.1.

These peripheral registers can be operated as half word (16-bits) or one word (32-bits).

12.4.1 Register Overview

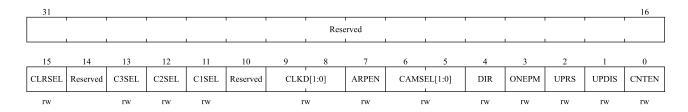
Table 12-2 Register map and reset value

Offset	Register	31	30	29	28	27	26	25	24	23	ιι	21	i	20	19	18	17	16	15	14	13	12	11	10	6	~	7	9	5	4	3	2	1	0
000h	TIMx_CTRL1								-	Reserved									CLRSEL	C4SEL	C3SEL	C2SEL	CISEL	Reserved	100 110000	CLKD[1:0]	ARPEN	CAMSEI [1:0]	Cambrellio	DIR	ONEPM	UPRS	UPDIS	CNTEN
	Reset Value																		0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
004h	TIMx_CTRL2													Reserved												ETRSEL	THSEL		MMSEL[2:0]		CCDSET		Reserved	
	Reset Value																									0	0	0	0	0	0			
008h	TIMx_SMCTRL									Reserved									EXTP	EXCEN	10.113drava	EAIFS[1.0]		M.CJathya	EAIF[3:0]		MSMD		TSEL[2:0]		Reserved		SMSELEL[2:0]	
	Reset Value																		0	0	0	0	0	0	0	0	0	0	0	0		0	0	0

Tel: +86-755-86309900 Email: info@nationstech.com

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

Nanshan District, Shenzhen, 518057, P.R.China

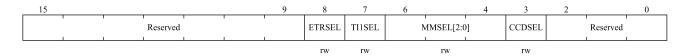

Offset	Register	31 30 30 30 30 30 30 30 30 30 30 30 30 30	15	113	12	71	Ξ	10	6	0	7	9	5	4	3	2	1	0
		<u>_</u>		7 -	N.	SIN.	N.	3N	NS.		_	1		N	Z	N	N	-
00Ch	TIMx_DINTEN	Reserved		TDEN	CCAPEN	142	CC3DEN	CC2DEN	CCIDEN	ODEN	Reserved	TIEN	Reserved	CC4IEN	CC3IEN	CC2IEN	CCIIEN	UIEN
		∞ ∞		Re	L						Re		Re					
	Reset Value			0	(0	0)		0		0	0	0	0	0
010h	TIMx_STS	Reserved			E CONTRACTOR DE LA CONT	3	CC30CF	CC20CF	CC1OCF	Reserved		TITF	Reserved	CC4ITF	CC3ITF	CC2ITF	CCIITF	UDITF
OTOII		Rese			_					Rese			Rese					
	Reset Value				0)	0	0	0			0		0	0	0	0	0
014h	TIMx_EVTGEN	Reserved										TGN	Reserved	CC4GN	CC3GN	CC2GN	CCIGN	UDGN
	Reset Value	Re es									-	0	Res	0	0	0	0	0
			7					7	:0]		-		[0:		7	7	Ę	
	TIMx_CCMOD1	Reserved	OC2CEN	OC2MD[2:0]			OC2PEN	OC2FEN	CC2SEL[1:0]		OCICEN		OC1MD[2:0]		OCIPEN	OCIFEN	[O-11481]	, hai
		Rese	00	0C2			ŏ	O	CC2		ŏ		0C1		ŏ	00	1,00	3
018h	Reset Value		0	0 0	0)	0	0	0 ()	0	0	0	0	0	0	0	
	TIMx_CCMOD1	ps		3:0]			11.0	[a]	CC2SEL[1:0]			5	0.0		2	11.0]	[U-1] [EE]	2.1
		Reserved		IC2F[3:0]			[C2PSCT1-0]		C2SEI			10.1513:01	l'CIL		10-11030101	LIFBU	18E	1010
	Reset Value	∞	0	0 0	0)	0	0	0 ()	0	0	0	0	0	0	0	0
01Ch	TIMx_CCMOD2	Reserved	OC4CEN	OC4MD[2:0]			OC4PEN	OC4FEN	CC4SEL[1:0]		OC3CEN		OC3MD[2:0]		OC3PEN	OC3FEN	CC38EI [11:0]	المتاو
		Ress	ŏ	000			Ō	Ō	CC4		ŏ		OC		Ō	Ō	7	3
	Reset Value		0	0 0	0)	0	0	0 ()	0	0	0	0	0	0	0	0
	TIMx_CCMOD2	P		3:0]		(11:0)		[a]	[1:0]			5	<u></u>		17	11.0]	CC38EI [11:0]	forth.
01Ch		Reserved		IC4F[3:0]			IC4PSC[1:0]		CC4SEL[1:0]		1100		IC3F[3:0]		IC3PSC[1:0]		C3CE	700
	Daget Volus	∞	0	0 0	1 0	_	0	0			0	0	0	0	0	0	0	
	Reset Value		U	CC4P 0	() Z									EN 0				0 EN
020h	TIMx_CCEN	Reserved			_		Recerved	1000		CCSEIN	Recerved	TOSON A	CC2P	CC2EN		nesei veu	CC1P	CCIEN
	Reset Value TIMx_CNT	<u> </u>		0	0)		•) [T[15		4	0	0	-	•	0	0
024h	Reset Value	Reserved	0	0 0	0)	0	0			0	0	0	0	0	0	0	0
028h	TIMx_PSC	Reserved								C[15								
	Reset Value		0	0 0	0)	0	0	0 ()	0	0	0	0	0	0	0	0
02Ch	TIMx_AR	Reserved							A	R[15	:0]							
	Reset Value		1	1 1	1		1	1	1		1	1	1	1	1	1	1	1
030h		Reserved																
034h	TIMx_CCDAT1 Reset Value	Reserved	0	0 0	0	, T	0	0	CCD 0 ([15:0 0	0	0	0	0	0	0	0
038h	TIMx_CCDAT2	Reserved							CCD	AT2	[15:0)]						
	Reset Value TIMx_CCDAT3		0	0 0	0)	0	0	0 CCD		0 [15:0	0)]	0	0	0	0	0	0
03Ch	Reset Value	Reserved	0	0 0	0)	0	0	0 ()	0	0	0	0	0	0	0	0
040h	TIMx_CCDAT4 Reset Value	Reserved	0	0 0	0)	0	0	CCD 0 (_	[15:0 0	0] 0	0	0	0	0	0	0
044h		Reserved																
					Π													
048h	TIMx_DCTRL	Reserved					DBL	EN[4	4:0]			Reserved			DBA	DDR	[4:0]	
	Reset Value	Re			0)	0	0	0 ()		Res		0	0	0	0	0
04Ch	TIMx_DADDR	Danamad								RST[15:0]						
04Cn	Reset Value	Reserved	0	0 0	0)	0	0			0	0	0	0	0	0	0	0
					_	_												_

12.4.2 Control register 1 (TIMx_CTRL1)

Offset address: 0x00

Reset value: 0x0000 0000

Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained
15	CLRSEL	OCxREF clear selection
		0: Select the external OCxREF clear from ETR
		1: Reserved
		Note: Before operating this bit, the extended mode of the chip must be turned on (set
		PWR_CTRL3.EXMODE)
14	C4SEL	Channel 4 Selection
		0: Select external CH4 (from IOM) signal
		1: Reserved
		Note: Before operating this bit, the extended mode of the chip must be turned on (set
		PWR_CTRL3.EXMODE)
13	C3SEL	Channel 3 Selection
		0: Select external CH3 (from IOM) signal
		1: Reserved
		Note: Before operating this bit, the extended mode of the chip must be turned on (set
		PWR_CTRL3.EXMODE)
12	C2SEL	Channel 2 Selection
		0: Select external CH2 (from IOM) signal
		1: Reserved
		Note: Before operating this bit, the extended mode of the chip must be turned on (set
		PWR_CTRL3.EXMODE)
11	C1SEL	Channel 1 selection
		0: Select external CH1 (from IOM) signal
		1: Reserved
		Note: Before operating this bit, the extended mode of the chip must be turned on (set
		PWR_CTRL3.EXMODE)
10	Reserved	Reserved, the reset value must be maintained

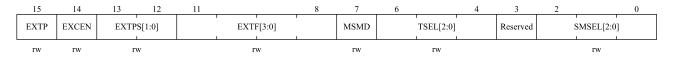

Bit field	Name	Description
9:8	CLKD[1:0]	Clock division
		CLKD[1:0] indicates the division ratio between CK_INT (timer clock) and t _{DTS} (clock used
		for dead-time generator and digital filters (ETR, TIx))
		$00: t_{DTS} = t_{CK_INT}$
		$01: t_{DTS} = 2 \times t_{CK_INT}$
		10: $t_{DTS} = 4 \times t_{CK_INT}$
		11: Reserved, do not use this configuration
7	ARPEN	ARPEN: Auto-reload preload enable
		0: Shadow register disable for TIMx_AR register
		1: Shadow register enable for TIMx_AR register
6:5	CAMSEL[1:0]	Center-aligned mode selection
		00: Edge-aligned mode. TIMx_CTRL1.DIR specifies up-counting or down-counting.
		01: Center-aligned mode 1. The counter counts in center-aligned mode, and the output
		compare interrupt flag bit is set to 1 when down-counting.
		10: Center-aligned mode 2. The counter counts in center-aligned mode, and the output
		compare interrupt flag bit is set to 1 when up-counting.
		11: Center-aligned mode 3. The counter counts in center-aligned mode, and the output
		compare interrupt flag bit is set to 1 when up-counting or down-counting.
		Note: Switching from edge-aligned mode to center-aligned mode is not allowed when the
		counter is still enabled ($TIMx_CTRL1.CNTEN = 1$).
4	DIR	Direction
		0: Up-counting
		1: Down-counting
		Note: This bit is read-only when the counter is configured in center-aligned mode or encoder
		mode.
3	ONEPM	One-pulse mode
		0: Disable one-pulse mode, the counter counts are not affected when an update event occurs.
		1: Enable one-pulse mode, the counter stops counting when the next update event occurs
		(clearing TIMx_CTRL1.CNTEN bit)
2	UPRS	Update request source
		This bit is used to select the UEV event sources by software.
		0: If update interrupt or DMA request is enabled, any of the following events will generate an
		update interrupt or DMA request:
		- Counter overflow/underflow
		- The TIMx_EVTGEN.UDGN bit is set
		Update generation from the slave mode controller
		1: If update interrupt or DMA request is enabled, only counter overflow/underflow will
		generate update interrupt or DMA request

Bit field	Name	Description
1	UPDIS	Update disable
		This bit is used to enable/disable the Update event (UEV) events generation by software.
		0: Enable UEV. And UEV will be generated if one of following condition been fulfilled:
		 Counter overflow/underflow
		 The TIMx_EVTGEN.UDGN bit is set
		 Update generation from the slave mode controller
		Shadow registers will update with preload value.
		1: UEV disabled. No update event is generated, and the shadow registers (AR, PSC, and
		CCDATx) keep their values. If the TIMx_EVTGEN.UDGN bit is set or a hardware reset is
		issued by the slave mode controller, the counter and prescaler are reinitialized.
0	CNTEN	Counter Enable
		0: Disable counter
		1: Enable counter
		Note: external clock, gating mode and encoder mode can only work after
		TIMx_CTRL1.CNTEN bit is set in the software. Trigger mode can automatically set
		TIMx_CTRL1.CNTEN bit by hardware.

12.4.3 Control register 2 (TIMx_CTRL2)

Offset address: 0x04 Reset value: 0x0000

Bit field	Name	Description
15:9	Reserved	Reserved, the reset value must be maintained
8	ETRSEL	External Triggered Selection storage (ETR Selection)
		0: Select external ETR (from IOM) signal;
		1: Reserved
		For the mapping of ETR input to IOM, see 6.2.5.7
		Note: Before operating this bit, the extended mode of the chip must be turned on (set
		PWR_CTRL3.EXMODE)
7	TI1SEL	TI1 selection
		0: TIMx_CH1 pin connected to TI1 input.
		1: TIMx_CH1, TIMx_CH2, and TIMx_CH3 pins are XOR connected to the TI1 input.



Bit field	Name	Description
6:4	MMSEL[2:0]	Master Mode Selection
		These 3 bits (TIMx_CTRL2. MMSEL [2:0]) are used to select the synchronization information
		(TRGO) sent to the slave timer in the master mode. Possible combinations are as follows:
		000: Reset –When the TIMx_EVTGEN.UDGN is set or a reset is generated by the slave mode
		controller, a TRGO pulse occurs. And in the latter case, the signal on TRGO is delayed
		compared to the actual reset.
		001: Enable - The TIMx_CTRL1.CNTEN bit is used as the trigger output (TRGO). Sometimes
		you need to start multiple timers at the same time or enable slave timer for a period of time.
		The counter enable signal is set when TIMx_CTRL1.CNTEN bit is set or the trigger input in
		gated mode is high.
		When the counter enable signal is controlled by the trigger input, there is a delay on TRGO
		except if the master/slave mode is selected (see the description of the TIMx_SMCTRL.MSMD
		bit).
		010: Update - The update event is selected as the trigger output (TRGO). For example, a master
		timer clock can be used as a slave timer prescaler.
		011: Compare pulse - Triggers the output to send a positive pulse (TRGO) when the
		TIMx_STS.CC1ITF is to be set (even if it is already high), when a capture or a comparison
		succeeds.
		100: Compare - OC1REF signal is used as the trigger output (TRGO).
		101: Compare - OC2REF signal is used as the trigger output (TRGO).
		110: Compare - OC3REF signal is used as the trigger output (TRGO).
		111: Compare - OC4REF signal is used as the trigger output (TRGO).
3	CCDSEL	Capture/compare DMA selection
		0: When a CCx event occurs, a DMA request for CCx is sent.
		1: When an update event occurs, a DMA request for CCx is sent.
2:0	Reserved	Reserved, the reset value must be maintained

12.4.4 Slave mode control register (TIMx_SMCTRL)

Offset address: 0x08

Reset value: 0x0000

Bit field	Name	Description
15	EXTP	External trigger polarity
		This bit is used to select whether the trigger operation is to use ETR or the inversion of ETR.
		0: ETR active at high level or rising edge.
		1: ETR active at low level or falling edge.
14	EXCEN	External clock enable

Bit field	Name	Description
		This bit is used to enable external clock mode 2, and the counter is driven by any active edge on
		the ETRF signal in this mode.
		0: External clock mode 2 disable.
		1: External clock mode 2 enable.
		Note 1: When external clock mode 1 and external clock mode 2 are enabled at the same time, the
		input of the external clock is ETRF.
		Note 2: The following slave modes can be used simultaneously with external clock mode 2: reset
		mode, gated mode and trigger mode; However, TRGI cannot connect to ETRF
		$(TIMx_SMCTRL.TSEL \neq '111').$
		Note 3: Setting the TIMx_SMCTRL.EXCEN bit has the same effect as selecting external clock
		mode 1 and connecting TRGI to ETRF (TIMx_SMCTRL.SMSEL = 111 and TIMx_SMCTRL.TSEL
		= 111).
13:12	EXTPS[1:0]	External trigger prescaler
		The frequency of the external trigger signal ETRP must be at most 1/4 of TIMxCLK frequency.
		When a faster external clock is input, a prescaler can be used to reduce the frequency of ETRP.
		00: Prescaler disable
		01: ETRP frequency divided by 2
		10: ETRP frequency divided by 4
		11: ETRP frequency divided by 8
11:8	EXTF[3:0]	External trigger filter
		These bits are used to define the frequency at which the ETRP signal is sampled and the
		bandwidth of the ETRP digital filtering. In effect, the digital filter is an event counter that
		generates a validate output after consecutive N events are recorded.
		0000: No filter, sampling at f _{DTS}
		0001: $f_{SAMPLING} = f_{CK_INT}$, $N = 2$
		0010: $f_{SAMPLING} = f_{CK_INT}$, $N = 4$
		0011: $f_{SAMPLING} = f_{CK_INT}$, $N = 8$
		0100: $f_{SAMPLING} = f_{DTS}/2$, $N = 6$
		0101: $f_{SAMPLING} = f_{DTS}/2$, $N = 8$
		0110: $f_{SAMPLING} = f_{DTS}/4$, $N = 6$
		0111: $f_{SAMPLING} = f_{DTS}/4$, $N = 8$
		1000: $f_{SAMPLING} = f_{DTS}/8$, $N = 6$
		1001: $f_{SAMPLING} = f_{DTS}/8$, $N = 8$
		1010: $f_{SAMPLING} = f_{DTS}/16$, $N = 5$
		1011: $f_{SAMPLING} = f_{DTS}/16$, $N = 6$
		1100: $f_{SAMPLING} = f_{DTS}/16$, $N = 8$
		1101: $f_{SAMPLING} = f_{DTS}/32$, $N = 5$
		1110: $f_{SAMPLING} = f_{DTS}/32$, $N = 6$
		1111: $f_{SAMPLING} = f_{DTS}/32$, $N = 8$
7	MSMD	Master/ Slave mode
		0: No action
		1: Events on the trigger input (TRGI) are delayed to allow a perfect synchronization between the

Bit field	Name	Description
		current timer (via TRGO) and its slaves. This is useful when several timers are required to be
		synchronized to a single external event.
6:4	TSEL[2:0]	Trigger selection
		These 3 bits are used to select the trigger input of the synchronous counter.
		000: Internal trigger 0 (ITR0) 100: TI1 edge detector (TI1F_ED)
		001: Internal trigger 1 (ITR1) 101: Filtered timer input 1 (TI1FP1)
		010: Internal trigger 2 (ITR2) 110: Filtered timer input 2 (TI2FP2)
		011: Internal trigger 3 (ITR3) 111: External triggered Input (ETRF)
		For more details on ITRx, see Table 12-3 below.
		Note: These bits must be changed only when not in use (e. g. TIMx_SMCTRL.SMSEL=000) to
		avoid false edge detection at the transition.
3	Reserved	Reserved, the reset value must be maintained
2:0	SMSEL[2:0]	Slave mode selection
		When an external signal is selected, the active edge of the trigger signal (TRGI) is linked to the
		selected external input polarity (see input control register and control register description)
		000: Disable slave mode. If TIMx_CTRL1.CNTEN = 1, the prescaler is driven directly by the
		internal clock.
		001: Encoder mode 1. According to the level of TI2FP2, the counter up-counting or down-
		counting on the edge of TI1FP1.
		010: Encoder mode 2. According to the level of TI1FP1, the counter up-counting or down-
		counting on the edge of TI2FP2.
		011: Encoder mode 3. According to the input level of another signal, the counter up-counting or
		down-counting on the edges of TI2FP1 and TI2FP2.
		100: Reset mode. On the rising edge of the selected trigger input (TRGI), the counter is
		reinitialized and the shadow register is updated.
		101: Gated mode. When the trigger input (TRGI) is high, the clock of the counter is enabled. Once
		the trigger input becomes low, the counter stops counting, but is not reset. In this mode, the start
		and stop of the counter are controlled.
		110: Trigger mode. When a rising edge occurs on the trigger input (TRGI), the counter is started
		but not reset. In this mode, only the start of the counter is controlled.
		111: External clock mode 1. The counter is clocked by the rising edge of the selected trigger input
		(TRGI).
		Note: Do not use gated mode if TIIF_ED is selected as the trigger input
		(TIMx_SMCTRL.TSEL=100). This is because TI1F_ED outputs a pulse for each TI1F transition,
		whereas gated mode checks the level of the triggered input.

Table 12-3 TIMx internal trigger connection

Slave timer	ITR0 (TSEL = 000)	ITR1 (TSEL = 001)	ITR2 (TSEL = 010)	ITR3 (TSEL = 011)
TIM2	TIM1	TIM8	TIM3	TIM4
TIM3	TIM1	TIM2	TIM5	TIM4
TIM4	TIM1	TIM2	TIM3	TIM8

TIM5	TIM2	TIM3	TIM4	TIM8
------	------	------	------	------

12.4.5 DMA/Interrupt enable registers (TIMx_DINTEN)

Offset address: 0x0C Reset value: 0x0000

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	eserved	TDEN	Reserved	CC4DEN	CC3DEN	CC2DEN	CCIDEN	UDEN	Reserved	TIEN	Reserved	CC4IEN	CC3IEN	CC2IEN	CCHEN	UIEN
		****		****	****	****	****	*****		#33 7		****	****	****	+337	****

Bit field	Name	Description
15	Reserved	Reserved, the reset value must be maintained
14	TDEN	Trigger DMA request enable
		0: Disable trigger DMA request
		1: Enable trigger DMA request
13	Reserved	Reserved, the reset value must be maintained
12	CC4DEN	Capture/Compare 4 DMA request enable
		0: Disable capture/compare 4 DMA request
		1: Enable capture/compare 4 DMA request
11	CC3DEN	Capture/Compare 3 DMA request enable
		0: Disable capture/compare 3 DMA request
		1: Enable capture/compare 3 DMA request
10	CC2DEN	Capture/Compare 2 DMA request enable
		0: Disable capture/compare 2 DMA request
		1: Enable capture/compare 2 DMA request
9	CC1DEN	Capture/Compare 1 DMA request enable
		0: Disable capture/compare 1 DMA request
		1: Enable capture/compare 1 DMA request
8	UDEN	Update DMA request enable
		0: Disable update DMA request
		1: Enable update DMA request
7	Reserved	Reserved, the reset value must be maintained
6	TIEN	Trigger interrupt enable
		0: Disable trigger interrupt
		1: Enable trigger interrupt
5	Reserved	Reserved, the reset value must be maintained
4	CC4IEN	Capture/Compare 4 interrupt enable
		0: Disable capture/compare 4 interrupt
		1: Enable capture/compare 4 interrupt
3	CC3IEN	Capture/Compare 3 interrupt enable
		0: Disable capture/compare 3 interrupt
		1: Enable capture/compare 3 interrupts

Bit field	Name	Description
2	CC2IEN	Capture/Compare 2 interrupt enable
		0: Disable capture/compare 2 interrupt
		1: Enables capture/compare 2 interrupts
1	CC1IEN	Capture/Compare 1 interrupt enable
		0: Disable capture/compare 1 interrupt
		1: Enables capture/comparing 1 interrupt
0	UIEN	Update interrupt enable
		0: Disable update interrupt
		1: Enables update interrupt

12.4.6 Status registers (TIMx_STS)

Offset address: 0x10 Reset value: 0x0000

15		13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	Reserved		CC4OCF	CC3OCF	CC2OCF	CC1OCF	Rese	erved	TITF	Reserved	CC4ITF	CC3ITF	CC2ITF	CC1ITF	UDITF	
			rc_w0	rc_w0	rc_w0	rc_w0			rc_w0		rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	

Bit field	Name	Description
15:13	Reserved	Reserved, the reset value must be maintained
12	CC4OCF	Capture/Compare 4 overcapture flag
		See TIMx_STS.CC1OCF description.
11	CC3OCF	Capture/Compare 3 overcapture flag
		See TIMx_STS.CC1OCF description.
10	CC2OCF	Capture/Compare 2 overcapture flags
		See TIMx_STS.CC1OCF description.
9	CC10CF	Capture/Compare 1 overcapture flag
		This bit is set by hardware only when the corresponding channel is configured in input capture
		mode. Cleared by software writing 0.
		0: No overcapture occurred
		1: TIMx_STS.CC1ITF was already set when the value of the counter has been captured in the
		TIMx_CCDAT1 register.
8:7	Reserved	Reserved, the reset value must be maintained
6	TITF	Trigger interrupt flag
		This bit is set by hardware when an active edge is detected on the TRGI input when the slave
		mode controller is in a mode other than gated. This bit is set by hardware when any edge in
		gated mode is detected. This bit is cleared by software.
		0: No trigger event occurred
		1: Trigger interrupt occurred
5	Reserved	Reserved, the reset value must be maintained

Bit field	Name	Description
4	CC4ITF	Capture/Compare 4 interrupt flag
		See TIMx_STS.CC1ITF description.
3	CC3ITF	Capture/Compare 3 interrupt flag
		See TIMx_STS.CC1ITF description.
2	CC2ITF	Capture/Compare 2 interrupt flag
		See TIMx_STS.CC1ITF description.
1	CC1ITF	Capture/Compare 1 interrupt flag
		When the corresponding channel of CC1 is in output mode:
		Except in center-aligned mode, this bit is set by hardware when the counter value is the same as
		the compare value (see TIMx_CTRL1.CAMSEL bit description). This bit is cleared by
		software.
		0: No match occurred.
		1: The value of TIMx_CNT is the same as the value of TIMx_CCDAT1.
		When the value of TIMx_CCDAT1 is greater than the value of TIMx_AR, the
		TIMx_STS.CC1ITF bit will go high if the counter overflows (in up-counting and up/down-
		counting modes) and underflows in down-counting mode.
		When the corresponding channel of CC1 is in input mode:
		This bit is set by hardware when the capture event occurs. This bit is cleared by software or by
		reading TIMx_CCDAT1.
		0: No input capture occurred.
		1: Input capture occurred. Counter value has captured in the TIMx_CCDAT1. An edge with the
		same polarity as selected has been detected on IC1.
0	UDITF	Update interrupt flag
		This bit is set by hardware when an update event occurs under the following conditions:
		- When TIMx_CTRL1.UPDIS = 0, overflow or underflow (An update event is generated).
		- When TIMx_CTRL1.UPRS = 0, TIMx_CTRL1.UPDIS = 0, and set the
		TIMx_EVTGEN.UDGN bit by software to reinitialize the CNT.
		- When TIMx_CTRL1.UPRS = 0, TIMx_CTRL1.UPDIS = 0, and the counter CNT is
		reinitialized by the trigger event. (See TIMx_SMCTRL Register description)
		This bit is cleared by software.
		0: No update event occurred
		1: Update interrupt occurred

12.4.7 Event generation registers (TIMx_EVTGEN)

Offset address: 0x14 Reset values: 0 x0000

Bit field	Name	Description
15: 7	Reserved	Reserved, the reset value must be maintained.
6	TGN	Trigger generation
		This bit can generate a trigger event when set by software. And at this time TIMx_STS.TITF =
		1, if the corresponding interrupt and DMA are enabled, the corresponding interrupt and DMA
		will be generated. This bit is automatically cleared by hardware.
		0: No action
		1: Generated a trigger event
5	Reserved	Reserved, the reset value must be maintained
4	CC4GN	Capture/Compare 4 generation
		See TIMx_EVTGEN.CC1GN description.
3	CC3GN	Capture/Compare 3 generation
		See TIMx_EVTGEN.CC1GN description.
2	CC2GN	Capture/Compare 2 generation
		See TIMx_EVTGEN.CC1GN description.
1	CC1GN	Capture/Compare 1 generation
		This bit can generate a capture/compare event when set by software. This bit is automatically
		cleared by hardware.
		When the corresponding channel of CC1 is in output mode:
		The TIMx_STS.CC1ITF flag will be pulled high, if the corresponding interrupt and DMA are
		enabled, the corresponding interrupt and DMA will be generated.
		When the corresponding channel of CC1 is in input mode:
		TIMx_CCDAT1 will capture the current counter value, and the TIMx_STS.CC1ITF flag will be
		pulled high, if the corresponding interrupt and DMA are enabled, the corresponding interrupt
		and DMA will be generated. If The IMx_STS.CC1ITF is already pulled high, pull
		TIMx_STS.CC1OCF high.
		0: No action
		1: Generated a CC1 capture/compare event
0	UDGN	Update generation
		This bit can generate an update event when set by software. And at this time the counter will be
		reinitialized, the prescaler counter will be cleared, the counter will be cleared in center-aligned or up-
		counting mode, but take TIMx_AR in down-counting mode the value of the register. This bit is
		automatically cleared by hardware.
		0: No action
		1: Generated an update event

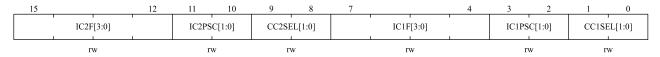
12.4.8 Capture/compare mode register 1 (TIMx_CCMOD1)

Offset address: 0x18 Reset value: 0x0000

Channels can be used for input (capture mode) or output (compare mode), and the direction of the channel is defined by the corresponding CCxSEL bit. The other bits of the register act differently in input and output modes. OCx

describes the function of a channel in output mode, ICx describes the function of a channel in input mode. Hence, please note that the same bit can have different meanings for output mode and for input mode.

Output compare mode:



Bit field	Name	Description
15	OC2CEN	Output Compare 2 clear enable
14:12	OC2MD[2:0]	Output Compare 2 mode
11	OC2PEN	Output Compare 2 preload enable
10	OC2FEN	Output Compare 2 fast enable
9:8	CC2SEL[1:0]	Capture/compare 2 selection
		These bits are used to select the input/output and input mapping of the channel
		00: CC2 channel is configured as output
		01: CC2 channel is configured as input, IC2 is mapped on TI2
		10: CC2 channel is configured as input, IC2 is mapped on TI1
		11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is only active
		when the internal trigger input is selected by TIMx_SMCTRL.TSEL.
		Note: CC2SEL is writable only when the channel is off ($TIMx_CCEN.CC2EN = 0$).
7	OC1CEN	Output Compare 1 clear enable
		0: OC1REF is not affected by ETRF input level
		1: OC1REF is cleared immediately when the ETRF input level is detected as high
6:4	OC1MD[2:0]	Output Compare 1 mode
		These bits are used to manage the output reference signal OC1REF, which determines the
		values of OC1 and OC1N, and is valid at high levels, while the active levels of OC1 and
		OC1N depend on the TIMx_CCEN.CC1P and TIMx_CCEN.CC1NP bits.
		000: Frozen. Comparison between TIMx_CCDAT1 register and counter TIMx_CNT has no
		effect on OC1REF signal.
		001: Set channel 1 to the active level on match. When TIMx_CCDAT1 = TIMx_CNT,
		OC1REF signal will be forced high.
		010: Set channel 1 as inactive level on match. When TIMx_CCDAT1 = TIMx_CNT,
		OC1REF signal will be forced low.
		011: Toggle. When TIMx_CCDAT1 = TIMx_CNT, OC1REF signal will be toggled.
		100: Force to inactive level. OC1REF signal is forced low.
		101: Force to active level. OC1REF signal is forced high.
		110: PWM mode 1 - In up-counting mode, if TIMx_CNT < TIMx_CCDAT1, OC1REF signal
		of channel 1 is high, otherwise it is low. In down-counting mode, if TIMx_CNT >
		TIMx_CCDAT1, OC1REF signal of channel 1 is low, otherwise it is high.
		111: PWM mode 2 - In up-counting mode, if TIMx_CNT < TIMx_CCDAT1, OC1REF signal
		of channel 1 is low, otherwise it is high. In down-counting mode, if TIMx_CNT >
		TIMx_CCDAT1, OC1REF signal of channel 1 is high, otherwise it is low.
		Note 1: In PWM mode 1 or PWM mode 2, the OCIREF level changes only when the

		comparison result changes or when the output compare mode is switched from frozen mode to
		PWM mode.
3	OC1PEN	Output Compare 1 preload enable
		0: Disable preload function of TIMx_CCDAT1 register. Supports write operations to
		TIMx_CCDAT1 register at any time, and the written value is effective immediately.
		1: Enable preload function of TIMx_CCDAT1 register. Only read and write operations to
		preload registers. When an update event occurs, the value of TIMx_CCDAT1 is loaded into
		the active register.
		Note 1: Only when TIMx_CTRL1.ONEPM = 1(In one-pulse mode), PWM mode can be used
		without verifying the preload register, otherwise no other behavior can be predicted.
2	OC1FEN	Output Compare 1 fast enable
		This bit is used to speed up the response of the CC output to the trigger input event.
		0: CC1 behaves normally depending on the counter and CCDAT1 values, even if the trigger is
		ON. The minimum delay for activating CC1 output when an edge occurs on the trigger input
		is 5 clock cycles.
		1: An active edge of the trigger input acts like a comparison match on CC1 output. Therefore,
		OC is set to the comparison level regardless of the comparison result. The delay time for
		sampling the trigger input and activating the CC1 output is reduced to 3 clock cycles.
		OCxFEN only works if the channel is configured in PWM1 or PWM2 mode.
1: 0	CC1SEL[1:0]	Capture/compare 1 selection
		These bits are used to select the input/output and input mapping of the channel
		00: CC1 channel is configured as output
		01: CC1 channel is configured as input, IC1 is mapped on TI1
		10: CC1 channel is configured as input, IC1 is mapped on TI2
		11: CC1 channels are configured as inputs and IC1 is mapped to TRC. This mode is only
		active when the internal trigger input is selected by TIMx_SMCTRL.TSEL.
		Note: CC1SEL is writable only when the channel is off ($TIMx_CCEN.CC1EN = 0$).

Input capture mode:

Bit field	Name	Description
15:12	IC2F[3:0]	Input Capture 2 Filter
11:10	IC2PSC[1:0]	Input Capture 2 Prescaler
9:8	CC2SEL[1:0]	Capture/Compare 2 selection
		These bits are used to select the input/output and input mapping of the channel
		00: CC2 channel is configured as output
		01: CC2 channel is configured as input, IC2 is mapped on TI2
		10: CC2 channel is configured as input, IC2 is mapped on TI1
		11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is only active when
		the internal trigger input is selected by TIMx_SMCTRL.TSEL.
		Note: CC2SEL is writable only when the channel is off ($TIMx_CCEN.CC2EN = 0$).

Bit field	Name	Description					
7:4	IC1F[3:0]	Input Capture 1 filter					
		These bits are used to define sampling frequency of TI1 input and the length of digital filter. The					
		digital filter is an event counter that generates an output transition after N events are recorded.					
		0000: No filter, sampling at f _{DTS} frequency					
		0001: $f_{SAMPLING} = f_{CK_INT}$, $N = 2$					
		0010: $f_{SAMPLING} = f_{CK_INT}$, $N = 4$					
		0011: $f_{SAMPLING} = f_{CK_INT}$, $N = 8$					
		0100: $f_{SAMPLING} = f_{DTS}/2$, $N = 6$					
		0101: $f_{SAMPLING} = f_{DTS}/2$, $N = 8$					
		0110: $f_{SAMPLING} = f_{DTS}/4$, $N = 6$					
		0111: $f_{SAMPLING} = f_{DTS}/4$, $N = 8$					
		1000: $f_{SAMPLING} = f_{DTS}/8$, $N = 6$					
		1001: $f_{SAMPLING} = f_{DTS}/8$, $N = 8$					
		1010: $f_{SAMPLING} = f_{DTS}/16$, $N = 5$					
		1011: $f_{SAMPLING} = f_{DTS}/16$, $N = 6$					
		1100: $f_{SAMPLING} = f_{DTS}/16$, $N = 8$					
		1101: $f_{SAMPLING} = f_{DTS}/32$, $N = 5$					
		1110: $f_{SAMPLING} = f_{DTS}/32$, $N = 6$					
		1111: $f_{SAMPLING} = f_{DTS}/32$, $N = 8$					
3:2	IC1PSC[1:0]	Input Capture 1 prescaler					
		These bits are used to select the ratio of the prescaler for IC1 (CC1 input).					
		When $TIMx_CCEN.CC1EN = 0$, the prescaler will be reset.					
		00: No prescaler, capture is done each time an edge is detected on the capture input					
		01: Capture is done once every 2 events					
		10: Capture is done once every 4 events					
		11: Capture is done once every 8 events					
1:0	CC1SEL[1:0]	Capture/Compare 1 selection					
		These bits are used to select the input/output and input mapping of the channel					
		00: CC1 channel is configured as output					
		01: CC1 channel is configured as input, IC1 is mapped on TI1					
		10: CC1 channel is configured as input, IC1 is mapped on TI2					
		11: CC1 channel is configured as input, IC1 is mapped to TRC. This mode is only active when					
		the internal trigger input is selected by TIMx_SMCTRL.TSEL.					
		Note: CC1SEL is writable only when the channel is off (TIMx_CCEN.CC1EN = 0).					

331

12.4.9 Capture/compare mode register 2 (TIMx_CCMOD2)

Offset address: 0x1C Reset value: 0x0000

See the description of the CCMOD1 register above

Output comparison mode:

Bit field	Name	Description								
15	OC4CEN	Output compare 4 clear enable								
14:12	OC4MD[2:0]	Output compare 4 mode								
11	OC4PEN	Output compare 4 preload enable								
10	OC4FEN	Output compare 4 fast enable								
9:8	CC4SEL[1:0]	Capture/Compare 4 selection								
		These bits are used to select the input/output and input mapping of the channel								
		00: CC4 channel is configured as output								
		01: CC4 channel is configured as input, IC4 is mapped on TI4								
		10: CC4 channel is configured as input, IC4 is mapped on TI3								
		11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is only active when								
		the internal trigger input is selected by TIMx_SMCTRL.TSEL.								
		Note: $CC4SEL$ is writable only when the channel is off $(TIMx_CCEN.CC4EN = 0)$.								
7	OC3CEN	Output compare 3 clear enable								
6:4	OC3MD[2:0]	Output compare 3 mode								
3	OC3PEN	Output compare 3 preload enable								
2	OC3FEN	Output compare 3 fast enable								
1:0	CC3SEL[1:0]	Capture/Compare 3 selection								
		These bits are used to select the input/output and input mapping of the channel								
		00: CC3 channel is configured as output								
		01: CC3 channel is configured as input, IC3 is mapped to TI3								
		10: CC3 channel is configured as input, IC3 is mapped on TI4								
		11: CC3 channel is configured as input, IC3 is mapped to TRC. This mode is only active when								
		the internal trigger input is selected by TIMx_SMCTRL.TSEL.								
		Note: CC3SEL is writable only when the channel is off (TIMx_CCEN.CC3EN = 0).								

Input capture mode:

Bit field	Name	Description						
15:12	IC4F[3:0]	put Capture 4 filter						
11:10	IC4PSC[1:0]	put Capture 4 Prescaler						
9:8	CC4SEL[1:0]	Capture/Compare 4 selection						
		These bits are used to select the input/output and input mapping of the channel						
		00: CC4 channel is configured as output						
		01: CC4 channel is configured as input, IC4 is mapped on TI4						
		10: CC4 channel is configured as input, IC4 is mapped on TI3						
		11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is only active when						

Bit field	Name	Description							
		e internal trigger input is selected by TIMx_SMCTRL.TSEL.							
		Note: $CC4SEL$ is writable only when the channel is off $(TIMx_CCEN.CC4EN = 0)$.							
7:4	IC3F[3:0]	Input Capture 3 filter							
3:2	IC3PSC[1:0]	Input Capture 3 Prescaler							
1:0	CC3SEL[1:0]	Capture/compare 3 selection							
		These bits are used to select the input/output and input mapping of the channel							
		00: CC3 channel is configured as output							
		01: CC3 channel is configured as input, IC3 is mapped to TI3							
		10: CC3 channel is configured as input, IC3 is mapped on TI4							
		11: CC3 channel is configured as input, IC3 is mapped to TRC. This mode is only active when							
		the internal trigger input is selected by TIMx_SMCTRL.TSEL.							
		Note: CC3SEL is writable only when the channel is off (TIMx_CCEN.CC3EN = 0).							

12.4.10 Capture/compare enable registers (TIMx_CCEN)

Offset address: 0x20 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved	CC4P	CC4EN	Rese	erved	CC3P	CC3EN	Rese	erved	CC2P	CC2EN	Rese	erved	CC1OP	CC1EN
			****							****					

Bit field	Name	Description						
15:14	Reserved	Reserved, the reset value must be maintained.						
13	CC4P	Capture/Compare 4 output polarity						
		See TIMx_CCEN.CC1P description.						
12	CC4EN	Capture/Compare 4 output enable						
		See TIMx_CCEN.CC1EN description.						
11:10	Reserved	Reserved, the reset value must be maintained						
9 CC3P Capture/Compar		Capture/Compare 3 output polarity						
		See TIMx_CCEN.CC1P description.						
8 CC3EN Capture/Compare 3 output enable		Capture/Compare 3 output enable						
		See TIMx_CCEN.CC1EN description.						
7:6	Reserved	Reserved, the reset value must be maintained						
5 CC2P Capture/Compare 2 output polarity		Capture/Compare 2 output polarity						
See TIMx_CCEN		See TIMx_CCEN.CC1P description.						
4	CC2EN	Capture/Compare 2 output enable						
		See TIMx_CCEN.CC1EN description.						

3:2	Reserved	Reserved, the reset value must be maintained
1	CC1P	Capture/Compare 1 output polarity
		When the corresponding channel of CC1 is in output mode:
		0: OC1 active high
		1: OC1 active low
		When the corresponding channel of CC1 is in input mode:
		At this time, this bit is used to select whether IC1 or the inverse signal of IC1 is used as the trigger
		or capture signal.
		0: non-inverted: Capture action occurs when IC1 generates a rising edge. When used as external
		trigger, IC1 is non-inverted.
		1: inverted: Capture action occurs when IC1 generates a falling edge. When used as external
		trigger, IC1 is inverted.
		Note: If TIMx_BKDT.LCKCFG = 3 or 2, these bits cannot be modified.
0	CC1EN	Capture/Compare 1 output enable
		When the corresponding channel of CC1 is in output mode:
		0: Disable - Disable output OC1 signal.
		1: Enable - Enable output OC1 signal.
		When the corresponding channel of CC1 is in input mode:
		At this time, this bit is used to disable/enable the capture function.
		0: Disable capture
		1: Enable capture

Table 12-4 Output control bits of standard OCx channel

CCxEN	OCx output status
0	Disable output (OCx=0)
1	OCx = OCxREF + polarity

Note: The state of external I/O pins connected to standard OCx channels depends on the OCx channel state and GPIO and AFIO registers.

12.4.11 Counters (TIMx_CNT)

Offset address: 0x24 Reset value: 0x0000

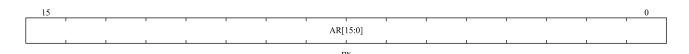
Bit field	Name	Description
15:0	CNT[15:0]	Counter value

334

12.4.12 Prescaler (TIMx_PSC)

Offset address: 0x28

Reset value: 0x0000



Bit field	Name	Description
15:0	PSC[15:0]	Prescaler value
		Counter clock $f_{CK_CNT} = f_{CK_PSC} / (PSC [15:0] +1)$.
		Each time an update event occurs, the PSC value is loaded into the active prescaler register.

12.4.13 Auto-reload register (TIMx_AR)

Offset address: 0x2C

Reset values: 0xFFFF

Bit field	Name	Description
15:0	AR[15:0]	Auto-reload value
		These bits define the value that will be loaded into the actual auto-reload register.
		See Section 12.3.1 for more details.
		When the TIMx_AR.AR [15:0] value is null, the counter does not work.

12.4.14 Capture/compare register 1 (TIMx_CCDAT1)

Offset address: 0x34

Reset value: 0x0000

Bit field	Name	Description
15:0	CCDAT1[15:0]	Capture/Compare 1 value
		■ CC1 channel is configured as output:
		CCDAT1 contains the value to be compared to the counter TIMx_CNT, signaling on the OC1
		output.
		If the preload feature is not selected in TIMx_CCMOD1.OC1PEN bit, the written value is
		immediately transferred to the active register. Otherwise, this preloaded value is transferred to the
		active register only when an update event occurs.
		■ CC1 channel is configured as input:

Bit field	Name	Description
		CCDAT1 contains the counter value transferred by the last input capture 1 event (IC1).
		When configured as input mode, register CCDAT1 is only readable.
		When configured as output mode, register CCDAT1 is readable and writable.

12.4.15 Capture/compare register 2 (TIMx_CCDAT2)

Offset address: 0x38 Reset value: 0x0000

Bit field	Name	Description
15:0	CCDAT2[15:0]	Capture/Compare 2 values
		■ CC2 channel is configured as output:
		CCDAT2 contains the value to be compared to the counter TIMx_CNT, signaling on the OC2
		output.
		If the preload feature is not selected in TIMx_CCMOD1.OC2PEN bit, the written value is
		immediately transferred to the active register. Otherwise, this preloaded value is transferred to the
		active register only when an update event occurs.
		■ CC2 channel is configured as input:
		CCDAT2 contains the counter value transferred by the last input capture 2 event (IC2).
		When configured as input mode, register CCDAT2 is only readable.
		When configured as output mode, register CCDAT2 is readable and writable.

12.4.16 Capture/compare register 3 (TIMx_CCDAT3)

Offset address: 0x3C Reset value: 0x0000

Bit field	Name	Description
15:0	CCDAT3[15:0]	Capture/Compare 3 value
		■ CC3 channel is configured as output:
		CCDAT3 contains the value to be compared to the counter TIMx_CNT, signaling on the OC3
		output.

	If the preload feature is not selected in TIMx_CCMOD2.OC3PEN bit, the written value is
	immediately transferred to the active register. Otherwise, this preloaded value is transferred to
	the active register only when an update event occurs.
	■ CC3 channel is configured as input:
	CCDAT3 contains the counter value transferred by the last input capture 3 event (IC3).
	When configured as input mode, register CCDAT3 is only readable.
	When configured as output mode, register CCDAT3 is readable and writable.

12.4.17 Capture/compare register 4 (TIMx_CCDAT4)

Offset address: 0x40 Reset value: 0x0000

Bit field	Name	Description
15:0	CCDAT4[15:0]	Capture/Compare 4 value
		■ CC4 channel is configured as output:
		CCDAT4 contains the value to be compared to the counter TIMx_CNT, signaling on the OC4
		output.
		If the preload feature is not selected in TIMx_CCMOD2.OC4PEN bit, the written value is
		immediately transferred to the active register. Otherwise, this preloaded value is transferred to
		the active register only when an update event occurs.
		■ CC4 channel is configured as input:
		CCDAT4 contains the counter value transferred by the last input capture 4 event (IC4).
		When configured as input mode, register CCDAT4 is only readable.
		When configured as output mode, register CCDAT4 is readable and writable.

12.4.18 DMA Control register (TIMx_DCTRL)

Offset address: 0x48 Reset value: 0x0000

Bit field	Name	Description
15:13	Reserved	Reserved, the reset value must be maintained
12:8	DBLEN[4:0]	DMA Burst Length
		This bit field defines the number DMA will accesses (write/read) TIMx_DADDR register.
		00000:1 time transfer
		00001: 2 times transfers

Bit field	Name	Description
		00010: 3 times transfers
		10001: 18 times transfers
7:5	Reserved	Reserved, the reset value must be maintained.
4:0	DBADDR[4:0]	DMA Base Address
		This bit field defines the first address where the DMA accesses the TIMx_DADDR register.
		When access is done through the TIMx_DADDR first time, this bit-field specifies the address
		you just access. And then the second access to the TIMx_DADDR, you will access the address
		of "DMA Base Address + 4"
		00000: TIMx_CTRL1,
		00001: TIMx_CTRL2,
		00010: TIMx_SMCTRL,
		01011: TIMx_AR
		01100: Reserved
		01101: TIMx_CCDAT1
		10000: TIMx_CCDAT4
		10001: Reserved
		10010: TIMx_DCTRL

12.4.19 DMA transfer buffer register (TIMx_DADDR)

Offset address: 0x4C Reset value: 0x0000

Bit field	Name	Description
15:0	BURST[15:0]	DMA access buffer.
		When a read or write operation is assigned to this register, the register located at the address
		range (DMA base address + DMA burst length ×4) will be accessed.
		DMA base address = The address of TIM_CTRL1 + TIMx_DCTRL. DBADDR * 4;
		DMA burst len = TIMx_DCTRL.DBLEN + 1.
		Example:
		If TIMx_DCTRL.DBLEN = $0x3(4 \text{ transfers})$, TIMx_DCTRL.DBADDR = $0xD$
		(TIMx_CCDAT1), DMA data length = half word, DMA memory address = buffer address in
		SRAM, DMA peripheral address = TIMx_DADDR address.
		When an event occurs, TIMx will send requests to the DMA, and transfer data 4 times.
		For the first time, DMA access to the TIMx_ DADDR register will be mapped to access
		TIMx_CCDAT1 register;

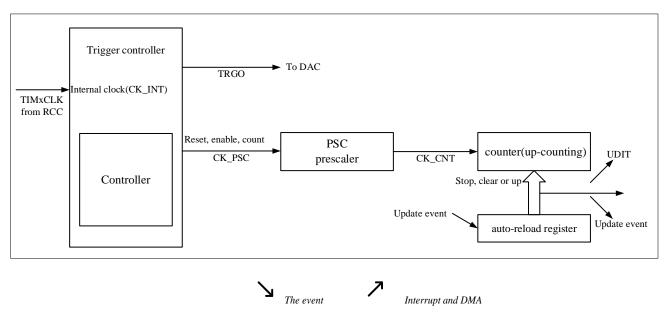
Bit field	Name	Description
		For the second time, DMA access to the TIMx_ DADDR register will be mapped to access
		TIMx_CCDAT2 register;
		For the fourth time, DMA access to the TIMx_ DADDR register will be mapped to access
		TIMx_CCDAT4 register;

13 Basic timers (TIM6 and TIM7)

13.1 Basic timers introduction

Basic timers TIM6 and TIM7 each contain a 16-bit auto-reload counter.

These two timers are independent of each other and do not share any resources.


The basic timer can provide a time reference for general purpose timers.

The basic timer is directly connected to the DAC inside the chip and drives the DAC directly through the trigger output.

13.2 Main features of Basic timers

- 16-bit auto-reload up-counting counters.
- 16-bit programmable prescaler. (The frequency division factor can be configured with any value between 1 and 65536)
- Synchronization circuit for triggering DAC
- The events that generate the interrupt/DMA are as follows:
 - Update event

Figure 13-1 Block diagram of TIMx (x = 6 and 7)

13.3 Basic timers description

13.3.1 Time-base unit

The time-base unit mainly includes: prescaler, counter and auto-reload. When the time base unit is working, the

software can read and write the corresponding registers (TIMx_PSC, TIMx_CNT and TIMx_AR) at any time.

Depending on the setting of the auto-reload preload enable bit (TIMx_CTRL1.ARPEN), the value of the preload register is transferred to the shadow register immediately or at each update event UEV. An update event is generated when the counter reaches the overflow condition and it can be generated by software when TIMx_CTRL1.UPDIS=0. The counter CK_CNT is valid only when the TIMx_CTRL1.CNTEN bit is set. The counter starts counting one clock cycle after the TIMx_CTRL1.CNTEN bit is set.

13.3.1.1 Prescaler description

The TIMx_PSC register consists of a 16-bit counter that can be used to divide the counter clock frequency by any factor between 1 and 65536. It can be changed on the fly as it is buffered. The prescaler value is only taken into account at the next update event.

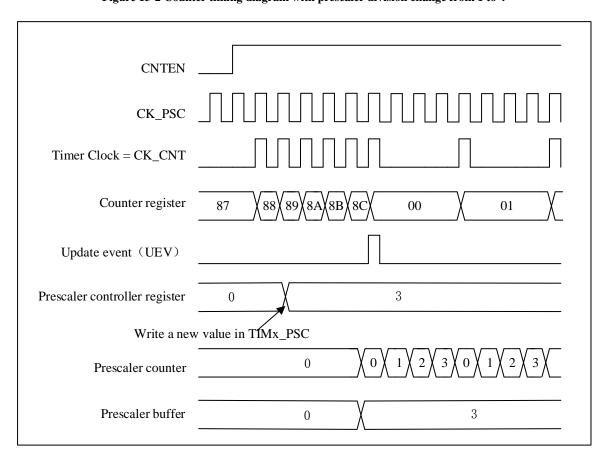


Figure 13-2 Counter timing diagram with prescaler division change from 1 to 4

13.3.2 Counter mode

13.3.2.1 Up-counting mode

In up-counting mode, the counter will count from 0 to the value of the register TIMx_AR, then it resets to 0. And a counter overflow event is generated.

If the TIMx_CTRL1.UPRS bit (select update request) and the TIMx_EVTGEN.UDGN bit are set, an update event (UEV) will generate, and TIMx_STS.UDITF will not be set by hardware. Therefore, no update interrupts or update DMA requests are generated. This setting is used in scenarios where you want to clear the counter but do not want to

generate an update interrupt.

Depending on the update request source is configured in TIMx_CTRL1.UPRS, When an update event occurs, TIMx_STS.UDITF is set, all registers are updated:

- Update auto-reload shadow registers with preload value(TIMx_AR), when TIMx_CTRL1.ARPEN = 1.
- The prescaler shadow register is reloaded with the preload value(TIMx_PSC)

To avoid updating the shadow registers when new values are written to the preload registers, you can disable the update by setting TIMx_CTRL1.UPDIS=1.

When an update event occurs, the counter will still be cleared and the prescaler counter will also be set to 0 (but the prescaler value will remain unchanged).

The figure below shows some examples of the counter behavior and the update flags for different division factors in the up-counting mode.

Figure 13-3 Timing diagram of up-counting. The internal clock divider factor = 2/N

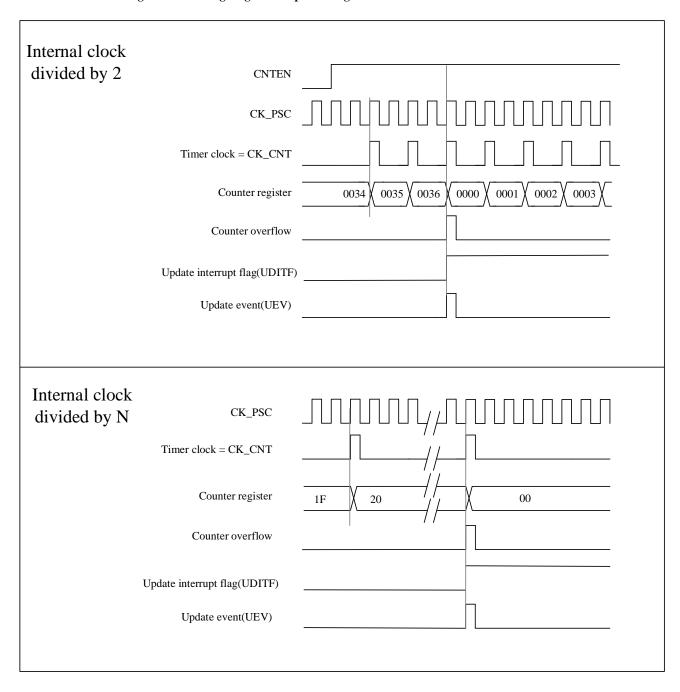
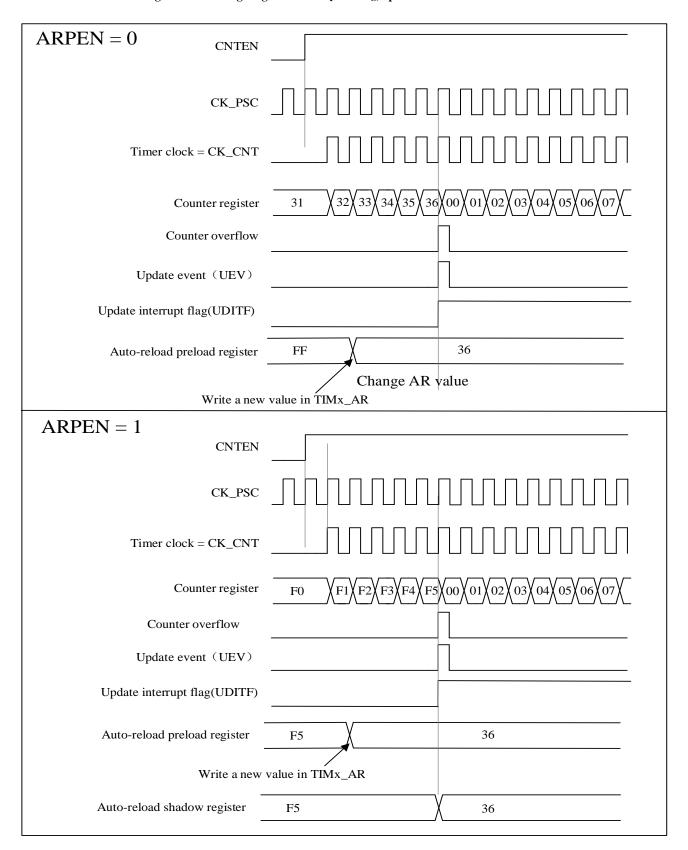



Figure 13-4 Timing diagram of the up-counting, update event when ARPEN=0/1

344

13.3.3 Clock selection

■ The internal clock of timers: CK_INT

13.3.3.1 Internal clock source (CK_INT)

It is provided that the TIMx_CTRL1.CNTEN bit is written as' 1 ' by software, the clock source of the prescaler is provided by the internal clock CK_INT.

CEN=CNTEN

Internal clock

UDGN

CNT_INIT

Counter clock = CK_CNT=CK_PSC

Counter register

61

62

63

64

65

66

00

01

02

03

04

05

06

07

Figure 13-5 Control circuit in normal mode, internal clock divided by 1

13.3.4 Debug mode

When the microcontroller is in debug mode (the Cortex-M4 core halted), depending on the DBG_CTRL.TIMx_STOP configuration in the DBG module, the TIMx counter can either continue to work normally or stop. For more details, see 26.4.3.

345

13.4 TIMx register description(x = 6 and 7)

For abbreviations used in registers, see section 1.1.

These peripheral registers can be operated as half word (16-bits) or one word (32-bits).

13.4.1 Register overview

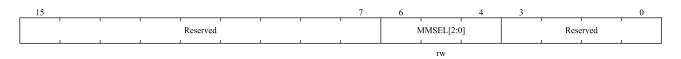
Table 13-1 Register overview

Offset	Register	33 31 32 33 34 35 36 37 38 39 30 30 30 31 31 32 33 34 36 36 37 38 48 40 <th>5 6 7</th> <th>4 w 2</th> <th>0 1</th>	5 6 7	4 w 2	0 1
000h	TIMx_CTRL1	Reserved	O ARPEN Reserved		O CNTEN
004h	Reset Value TIMx_CTRL2	Reserved	MMSEL[2:0]	Reserved 0 0	
	Reset Value	Я		0	
008h		Reserved			
00Ch	TIMx_DINTEN	Reserved		Reserved	UIEN
	Reset Value	0			0
010h	TIMx_STS	Reserved			UDITF
	Reset Value				0
014h	TIMx_EVTGEN	Reserved			UDGN
	Reset Value				0
018h		Reserved			
01Ch		Reserved			
020h		Reserved			
024h	TIMx_CNT Reset Value	Reserved 0 0 0 0 0 0 0 0 0 0 0		0 0 0	0 0
028h	TIMx_PSC Reset Value	Reserved 0 0 0 0 0 0 0 0 0 0 0		0 0 0	0 0
02Ch	TIMx_AR Reset Value	Reserved AR[1: 1 1 1 1 1 1 1 1 1	5:0]	1 1 1	1 1

13.4.2 Control Register 1 (TIMx_CTRL1)

Offset address: 0x00

Reset value: 0x0000


Bit field	Name	Description
15:8	Reserved	Reserved, the reset value must be maintained
7	ARPEN	ARPEN: Auto-reload preload enable
		0: Shadow register disable for TIMx_AR register

Bit field	Name	Description
		1: Shadow register enable for TIMx_AR register
6:4	Reserved	Reserved, the reset value must be maintained
3	ONEPM	One-pulse mode
		0: Disable one-pulse mode, the counter counts are not affected when an update event occurs.
		1: Enable one-pulse mode, the counter stops counting when the next update event occurs
		(clearing TIMx_CTRL1.CNTEN bit)
2	UPRS	Update request source
		This bit is used to select the UEV event sources by software.
		0: If update interrupt or DMA request is enabled, any of the following events will generate an
		update interrupt or DMA request:
		- Counter overflow
		- The TIMx_EVTGEN.UDGN bit is set
		1: If update interrupt or DMA request is enabled, only counter overflow will generate update
		interrupt or DMA request
1	UPDIS	Update disable
		This bit is used to enable/disable the Update event (UEV) events generation by software.
		0: Enable UEV. UEV will be generated if one of following condition been fulfilled:
		- Counter overflow
		- The TIMx_EVTGEN.UDGN bit is set
		Shadow registers will update with preload value.
		1: UEV disabled. No update event is generated, and the shadow registers (AR, PSC) keep their
		values. If the TIMx_EVTGEN.UDGN bit is set, the counter and prescaler are reinitialized.
0	CNTEN	Counter Enable
		0: Disable counter
		1: Enable counter

13.4.3 Control Register 2 (TIMx_CTRL2)

Offset address: 0x04 Reset value: 0x0000

Bit field	Name	Description
15:7	Reserved	Reserved, the reset value must be maintained
6:4	MMSEL[2:0]	Master Mode Selection
		These 3 bits (TIMx_CTRL2. MMSEL [2:0]) are used to select the synchronization information
		(TRGO) sent to the slave timer in the master mode. Possible combinations are as follows:
		000: Reset –When the TIMx_EVTGEN.UDGN is set or a reset is generated by the slave mode
		controller, a TRGO pulse occurs. And in the latter case, the signal on TRGO is delayed
		compared to the actual reset.

Bit field	Name	Description
		001: Enable - The TIMx_CTRL1.CNTEN bit is used as the trigger output (TRGO). Sometimes
		you need to start multiple timers at the same time or enable slave timer for a period of time.
		The counter enable signal is set when TIMx_CTRL1.CNTEN bit is set or the trigger input in
		gated mode is high.
		010: Update - The update event is selected as the trigger output (TRGO). For example, a master
		timer clock can be used as a slave timer prescaler.
		011: Compare pulse - Triggers the output to send a positive pulse (TRGO) when the
		TIMx_STS.CC1ITF is to be set (even if it is already high), when a capture or a comparison
		succeeds.
15: 1	Reserved	Reserved, the reset value must be maintained.

13.4.4 DMA/Interrupt Enable Registers (TIMx_DINTEN)

Offset address: 0x0C Reset value: 0x0000

Bit field	Name	Description
15:9	Reserved	Reserved, the reset value must be maintained
8	UDEN	Update DMA Request enable
		0: Disable update DMA request
		1: Enable update DMA request
7:1	Reserved	Reserved, the reset value must be maintained
0	UIEN	Update interrupt enable
		0: Disable update interrupt
		1: Enables update interrupt

13.4.5 Status Registers (TIMx_STS)

Offset address: 0x10 Reset value: 0x0000

Bit field	Name	Description
15:1	Reserved	Reserved, the reset value must be maintained
0	UDITF	Update interrupt flag
		This bit is set by hardware when an update event occurs under the following conditions:
		- When TIMx_CTRL1.UPDIS = 0, and counter value overflow.

Bit field	Name	Description
		- When TIMx_CTRL1.UPRS = 0, TIMx_CTRL1.UPDIS = 0, and set the
		TIMx_EVTGEN.UDGN bit by software to reinitialize the CNT.
		This bit is cleared by software.
		0: No update event occurred
		1: Update interrupt occurred

13.4.6 Event Generation registers (TIMx_EVTGEN)

counter also.

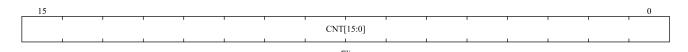
Offset address: 0x14

Reset values: 0 x0000

 Bit field
 Name
 Description

 15: 1
 Reserved
 Reserved, the reset value must be maintained.

 0
 UDGN
 UDGN: Update generation


 Software can set this bit to update configuration register value and hardware will clear it automatically.
 o: No effect.

 1: Timer counter will restart and all shadow register will be updated. It will restart prescaler

13.4.7 Counters (TIMx_CNT)

Offset address: 0x24

Reset value: 0x0000

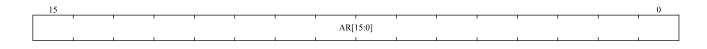
Bit field	Name	Description
15:0	CNT[15:0]	Counter value

13.4.8 Prescaler (TIMx_PSC)

Offset address: 0x28

Reset value: 0x0000

rw


349

Bit field	Name	Description
15:0	PSC[15:0]	Prescaler value
		PSC register value will be updated to prescaler register at update event. Counter clock frequency
		is input clock frequency divide PSC + 1.

13.4.9 Automatic reload register (TIMx_AR)

Offset address: 0x2C Reset values: 0xFFFF

Bit field	Name	Description
15:0	AR[15:0]	Auto-reload value
		These bits define the value that will be loaded into the actual auto-reload register.
		See 13.3.1 for more details.
		When the TIMx_AR.AR [15:0] value is null, the counter does not work.

14 Real-time clock (RTC)

14.1 Description

- The real-time clock (RTC) is an independent BCD timer/counter.
- Daylight saving time compensation supported by software.
- A periodic automatic programmable wakeup timer.
- Two 32-bit registers contain the seconds, minutes, hours, day (day of week), date (day of month), month, and year.
- Independent 32-bit register contain sub-seconds value.
- Two programmable alarms.
- Two 32-bit registers contain two programmable alarms seconds, minutes, hours, day (day of week), and date (day of month).
- Two 32-bit registers contain two programmable alarms sub-seconds.
- Digital calibration function.
- Time-Stamp function.
- After Backup domain reset, all RTC registers are protected against possible parasitic write accesses.
- Multiple Wakeup sources of Interrupt/Event. These include Alarm A, Alarm B, Wakeup Timer, Time-Stamp.
- After RTC is enabled by the RCC register and voltage remains in the operating range, RTC will not stop timing in any mode (include RUN mode, SLEEP mode, STOP0 mode, STOP2 mode and STANDBY mode).
- RTC provides a variety of ways to wakeup from all low-power modes (SLEEP mode, STOP0 mode, STOP2 mode and STANDBY mode.

14.1.1 Specification

Table 14-1 RTC feature support

Main function	Description
Clock	RTC clock can be selected from LSI, LSE and HSE, which are 40KHz, 32.768KHz and HSE / 128
Clock	respectively
	The APB interface is reset by the system. Some register reset from RTC module is synchronized
Reset	with APB reset.
	RTC core is reset by backup domain reset.
Calendar	Calendar consists of sub second, second, minute, hour (12 or 24 format), day (day of the week),
Calendar	date, month and year. These data are stored in the shadow register of APB module.
Wolsow Timor	Output "RTC_OUT" can be configured to send wakeup events to GPIO. At the same time, it also
Wakeup Timer	can be configured as an interrupt/event to wake up the system from SLEEP, STOP0 ,STOP2 modes.
	Programmable alarm clock and interrupt function. The alarm can be triggered by any combination of
Alarm	the calendar fields. When the alarm event occurs the alarm flag can be sent to GPIO through
Alarm	"RTC_OUT", and it also can be used to wake up the CPU or exit from the low power status such as
	SLEEP, STOP0, STOP2 and STANDBY modes.
Timestamp	Time-stamp function for GPIO event saving.
	Alarm A/Alarm B interrupt/event
Interrupts/events	Wakeup interrupt/event
	Timestamp interrupt/event

14.2 RTC function description

14.2.1 RTC block diagram

LSI EXTI1 Shadow register HSE/128 EXTI15 RTCCLE ck_spre ck_apre Default value Asynchronous Default value 7 Bits prescaler 256Hz Synchronous 1Hz BCD RTC_TSH Timestamp RTC_SUBS TISF 15 Bits prescaler register Calibration Calendar RTC_DATE 20bits counter RTC ALARMX WKUPSEL[2:0] Prescale 2, 4, 8, 16 ALAF Alarm A Alarm B ALBF Output - RTC_OUT RTC CALIB RTC_WKUPT

Figure 14-1 RTC Block Diagram

RTC includes the following functions:

- Alarm A and Alarm B event/interrupt
- Timestamp event/interrupt
- RTC output functions
 - ◆ 256 Hz or 1Hz clock output (LSE frequency is 32.768 kHz).
 - ◆ Alarm clock output (polarity configurable), Alarm A and Alarm B are optional.
 - ◆ Auto wakeup output (polarity configurable).

16 bits wakeup automatic reload timer

- RTC input functions:
 - Timestamp event detection
- Control PC13 by configuring output register:
 - ◆ Set RTC_OPT.TYPE bit to configure open-drain/push-pull output of PC13

353

14.2.2 GPIOs of RTC

Timestamp input come from IOM (mapped to PC13) or EXTI module, if EXTI module is needed to start, please refer to the timestamp trigger source selection register (EXTI_TS_SEL) for details.

RTC_OUT (Alarm, Wakeup event or calibration output (256Hz or 1Hz)) is mapped to PC13. Regardless of the PC13 GPIO configuration, the PC13 pin configuration is controlled by the RTC as an output.

14.2.3 RTC register write protection

PWR_CTRL.DBKP bit (see the Power Control section) is cleared in default, so the PWR_CTRL.DBKP bit must set to "1" to enable write access to the RTC register. Once the backup domain is reset, all write protection RTC registers are write protected. All write protection RTC registers require the following steps to unlock write protection:

- Write "0xCA" into RTC WRP register.
- Write "0x53" into RTC WRP register.

The unlocking mechanism only checks the write operation to the RTC_WRP register. During or before and after the unlocking process, the write operation to other registers does not affect the unlocking result.

14.2.4 RTC clock and prescaler

RTC clock source:

- LSE clock
- LSI clock
- HSE/128 clock

For the purpose of reduction of power consumption, the prescaler is divided into 2 programmable prescalers, they are asynchronous prescaler and synchronous prescaler. If both prescaler are used, it is recommended that the value of the asynchronous divider be as large as possible.

- A 7-bit asynchronous prescaler which is given by RTC_PRE.DIVA[6:0] bits
- A 15-bit synchronous prescaler which is given by RTC_PRE.DIVS[14:0] bits

The formula for f_{ck_apre} and f_{ck_spre} are given below:

$$f_{\text{ck_apre}} = \frac{f_{RTCCLK}}{RTC_PRE.DIVA[6:0]+1}$$

$$f_{\text{ck_spre}} = \frac{f_{RTCCLK}}{(RTC_PRE.DIVS[14:0]+1)*(RTC_PRE.DIVA[6:0]+1)}$$

The ck_apre clock is used to driven RTC_SUBS sub-second down counter. When it reaches 0, reload RTC_SUBS with the value of RTC_PRE.DIVS[14:0].

14.2.5 RTC calendar

There are three shadow registers, they are RTC_DATE, RTC_TSH and RTC_SUBS. The RTC time and date registers can be accessed through the shadow registers. It is also possible to access them directly to avoid the synchronization waiting time. The three shadow registers are as follow:

■ RTC_DATE: set and read date

■ RTC_TSH: set and read time

■ RTC_SUBS: read sub-second

After every two RTCCLK cycles, the current calendar value is copied to the shadow register, and RTC_INITSTS.RSYF bit is set to 1. This process is not performed in low power (stop & standby) modes. While exiting these modes, the shadow register updates the values after 2 RTCCLK cycles.

By default, when user try to access the calendar register, it accesses the contents of the shadow register instead. User can access the calendar register directly by setting the RTC_CTRL.BYPS bit.

When RTC_CTRL.BYPS=0, calendar values are from shadow registers, when reading RTC_SUBS, RTC_TSH or RTC_DATE register, it is necessary to make ensure the frequency of APB1 clock (f_{APB1}) is at least 7 times the frequency of RTC clock (f_{RTCCLK}), and APB1 clock frequency lower than RTC clock frequency is not allowed in any case. System reset will reset shadow registers.

14.2.6 Calendar initialization and configuration

The value of prescaler and calendar can be initialized by the following steps:

- Enter initialization mode by setting "1" to RTC_INITSTS.INITM bit, then wait for RTC_INITSTS.INITF flag to be set 1.
- Set RTC_PRE.DIVS[14:0] and RTC_PRE.DIVA[6:0] value.
- Write the initial calendar values include time and date into the shadow registers (RTC_TSH and RTC_DATE) and configure the time format (12 or 24 hours) by the RTC_CTRL.HFMT bit.
- Exit initialization mode by clearing the RTC_INITSTS.INITM bit.

The values of calendar counter will automatically loaded from shadow registers after 4 RTCCLK clock cycles, then the calendar counter restarts.

14.2.7 Calendar reading

1. Reading calendar value when RTC_CTRL.BYPS=0

Calendar value is read from shadow registers if RTC_CTRL.BYPS=0. In order to read RTC calendar registers (RTC_SUBS, RTC_TSH and RTC_DATE) correctly, APB1 clock frequency must be set equal to or greater than 7 times of RTC clock frequency. In any case, APB1 clock frequency must not be less than RTC clock frequency.

If APB1 clock frequency is not equal to or greater than 7 times of RTC clock frequency, refer to the following process to read calendar value.

- Read the data of RTC_SUBS, RTC_TSH and RTC_DATE twice.
- Compare the data read twice, if they are equal, the read data can be considered correct; if they are not equal, read the data for the third time.
- The third time read data can be considered correct.

Shadow registers (RTC_SUBS, RTC_TSH and RTC_DATE) are updated every two RTCCLK cycles. If user want to read calendar value in a short time(less than two RTCCLK cycles), RTC_INITSTS.RSYF bit must be cleared by software after the first time read.

In some cases, it is necessary to wait until RTC_INITSTS.RSYF bit is set 1 before read calendar value.

- After waking up from the low power modes (STOP mode, STANDBY mode), clear RTC_INITSTS.RSYF bit, then wait RTC_INITSTS.RSYF bit is set again.
- System reset.
- Calendar complete initialization.
- Calendar complete synchronization.

2. Reading calendar value when RTC CTRL.BYPS=1

Reading the calendar value directly from the calendar counter if RTC_CTRL.BYPS=1. The advantage of this configuration is that read calendar value without delay after wakeup from the low power mode, the disadvantage is that these data of RTC_SUBS, RTC_TSH and RTC_DATE may not be at a time.

To ensure the correctness of read calendar value, it is necessary to read RTC_SUBS, RTC_TSH and RTC_DATE twice, then compare the data read twice, if they are equal, the read data can be considered correct;

14.2.8 Calibration clock output

When RTC_CTRL.COEN set to 1, PC13 pin will output calibration clock. If RTC_CTRL.CALOSEL=0 and RTC_PRE.DIVA[6:0] = 0x7F, the RTC_CALIB frequency results is $f_{RTCCLK}/RTC_PRE.DIVA[6:0]$. This is equivalent to a calibration output of 256 Hz when the RTCCLK frequency is 32.768 kHz. The rising edge is recommended for there is slight jitter on the falling edge.

When RTC_CTRL.CALOSEL=1 and "RTC_PRE.DIVS[14:0]+1" is a non-zero integer multiple of 256, the RTC_CALIB frequency is given by the formula $f_{RTCCLK}/(256 * (DIVA+1))$. This is equivalent to 1Hz calibration output when the RTCCLK frequency is 32.768 kHz and RTC_PRE.DIVA[6:0] = 0x7F.

Note: When the RTC_CALIB or RTC_ALARM output is selected, the RTC_OUT pin (PC13) is automatically configured as output.

14.2.9 Programmable alarms

RTC has 2 programmable alarms: Alarm A and Alarm B.

RTC alarm can be enabled or disabled by RTC_CTRL.ALxEN bit. If the alarm value match the calendar values, the RTC_INITSTS.ALxF flag will be set 1. Each calendar field can be selected to trigger alarm interrupt if RTC_CTRL.ALxIEN bit is enabled.

Alarm output: Alarm A or Alarm B can be mapped to RTC_ALxRM output when RTC_CTRL.OUTSEL[1:0] is selected, and output polarity can be configured by RTC_CTRL.OPOL bit.

Note: If the seconds field is selected (RTC_ALARMx.MASK1 bit reset), RTC_PRE.DIVS[14:0] must be larger than 3 to ensure correct operation.

14.2.10 Alarm configuration

Alarm A and Alarm B should be configured in the following below:

- Disable Alarm A/Alarm B by clearing RTC_CTRL.ALAEN/RTC_CTRL.ALBEN bit.
- Configure the Alarm X registers (RTC_ALRMxSS/RTC_ALARMx)
- Enable Alarm A/Alarm B interrupt by set RTC_CTRL.ALAIEN/RTC_CTRL.ALBIEN bit(this step can be selected as needed)
- Enable Alarm A/Alarm B by setting RTC_CTRL.ALAEN/ RTC_CTRL.ALBEN bit.

14.2.11 Alarm output

When RTC_CTRL.OUTSEL[1:0] !=0, RTC_ALARM alternate function output is enable. There are Alarm A output, Alarm B output and Wakeup output to choose by the value of RTC_CTRL.OUTSEL[1:0] bits.

RTC_CTRL.OPOL bit control the polarity of the Alarm A, Alarm B or Wakeup output.

RTC_OPT.TYPE bit control the RTC_ALARM pin to output open drain or output pull-up.

When RTC_CALIB or RTC_ALARM output is selected, the RTC_OUT pin (PC13) is automatically configured as output.

14.2.12 Periodic automatic wakeup

A 16-bit programmable auto-load down counter can generate periodic wakeup flag if reaches 0. It is also can be extend the range of wakeup timer to 17 bits. Periodic automatic wakeup can be enabled by setting RTC_CTRL.WTEN.

There are two wake-up input clock sources can be selected:

■ RTC clock (RTCCLK) divided by 2/4/8/16.

Assume RTCCLK comes from LSE (32.768KHz), wake-up interrupt period can be configured range from 122us to 32s under the resolution down to 61us.

Internal clock ck_spre.

Assume ck_spre frequency is 1Hz, the available wake-up time range from 2s to 18h, and the resolution is 1 second.

 \bullet When RTC CTRL.WKUPSEL [2:0] = 10x, the period is range from 2s to 18h.

After RTC_CTRL.WTEN bit is set to 1, the down counter is running and when it reaches 0, RTC_INITSTS.WTF will be set and the device can exit from low power mode(except Standby mode) when the periodic wakeup interrupt is enabled by setting the RTC_CTRL.WTIEN bit.

Periodic wakeup output: periodic wakeup can be mapped to RTC_ALxRM output when RTC_CTRL.OUTSEL[1:0] is selected, the RTC_OUT pin(PC13) is automatically configured as output, and output polarity can be configured by RTC_CTRL.OPOL bit.

14.2.13 Wakeup timer configuration

The wakeup timer automatic reload value should be configured in the following below:

- Disable wakeup timer by clearing RTC_CTRL.WTEN bit, then wait for RTC_INITSTS. WTWF flag to be set 1.
- Select wake up timer clock by set RTC_CTRL.WKUPSEL[2:0] bits.
- Configure the wake-up automatic reload value by set RTC_WKUPT.WKUPT[15:0] bits.
- Enable Wakeup interrupt by set RTC_CTRL.WTIEN bit(this step can be selected as needed)
- Enable wakeup timer by setting RTC_CTRL.WTEN bit

14.2.14 Timestamp function

Timestamp can be enabled by setting RTC_CTRL.TSEN bit to 1. When a timestamp event is detected on the RTC_TS pin, the calendar values of the event will be stored in the timestamp register (RTC_TSSS, RTC_TST, RTC_TSD), and RTC_INITSTS.TISF is set to 1. If a new timestamp event is detected when RTC_INITSTS.TISF has been set to 1 already, the hardware sets RTC_INITSTS.TISOVF flag to 1, and the timestamp registers (RTC_TST and RTC_TSD) will continue to hold the value of the previous event, which means timestamp registers(RTC_TST and RTC_TSD) data will not change when RTC_INITSTS.TISF=1.

After the timestamp event caused by the synchronization process occurs again, RTC_INITSTS.TISF is set to 1 in 2 RTC_CLK cycles. There is no delay in the generation of RTC_INITSTS.TISOVF. This means that if two timestamp events are very close, this can cause RTC_INITSTS.TISOVF to be "1" and RTC_INITSTS.TISF to be "0". Therefore, after detecting that RTC_INITSTS.TISF is "1", then detect RTC_INITSTS.TISOVF bit.

If timestamp events are enabled, the timestamp will capture the calendar read in the timestamp register. Timestamp events can be generated on any of the 16 GPIO ports selected by EXTI. The GPIO pins in each port are selected by setting the corresponding EXTI_TS_SEL.TSSEL[3:0] bits.

14.2.15 Daylight saving time configuration

Daylight saving time function can be controlled by RTC_CTRL.SU1H, RTC_CTRL.AD1H, and RTC_CTRL.BAKP bits. Calendar will subtract one hour when set RTC_CTRL.SU1H bit to 1, and add one hour when set RTC_CTRL.AD1H to 1. RTC_CTRL.BAKP can be used to remember this adjustment or not.

14.2.16 RTC sub-second register shift

When the value of calendar has a sub-second deviation compared to the external precision clock, the shift function can be used to improve the precision of calendar.

Calendar can use RTC_SCTRL.SUB1S and RTC_SCTRL.ADFS[14:0] bits to control maximum delay or advance

1s. The resolution of the adjustment is 1/(RTC_PRE.DIVS[14:0]+1) second, it means the higher value of RTC PRE.DIVS[14:0], the higher of the resolution. However, to keep the synchronous prescaler output at 1Hz, the higher RTC_PRE.DIVS[14:0] means the lower RTC_PRE.DIVA[6:0], then more power consuming.

Note: Before starting a shift operation, user must check RTC_SUBS.SS[15] bit is 0.

Whenever write RTC_SCTRL register, the RTC_INITSTS.SHOPF flag will be set by hardware, which indicate a shift operation is pending. Once this shift operation is complete, the bit is cleared by hardware.

14.2.17 RTC digital clock precision calibration

Digital precision calibration is achieved by adjusting the number of RTC clock pulses in the calibration period. Digital precision calibration resolution is 0.954 PPM with the range from -487.1 PPM to +488.5 PPM.

When the input frequency is 32768 Hz, calibration period can be configured as 2²⁰ RTCCLK cycles or 32 seconds. The precision calibration register (RTC_CALIB) indicates that there has RTC_CALIB.CM[8:0] RTCCLK clock cycles will be reduced during the specified period.

The value of RTC_CALIB.CM[8:0] represents the number of RTCCLK pulses to be reduced during specified period. While RTC CALIB.CP can be used to increase 488.5 PPM, every 2¹¹ RTCCLK cycles will inserts a RTCCLK pulse.

When using RTC_CALIB.CM[8:0] and RTC_CALIB.CP in combination, it can increase cycles range from -511 to +512 RTCCLK cycles, and the calibration range from -487.1 ppm to +488.5 ppm, with the resolution is about 0.954 ppm.

The effective calibrated frequency (f_{CAL}) can be calculated by using the formula given below:

$$f_{CAL} = f_{RTCCLK} * \left(1 + \frac{RTC_CALIB.CP*512 - RTC_CALIB.CM[8:0]}{2^{20} + RTC_CALIB.CM[8:0] - RTC_CALIB.CP*512}\right)$$

Calibrated when RTC_PRE .DIVA[6:0]<3

When the asynchronous prescaler value (RTC_PRE.DIVA[6:0]) is less than 3, the RTC_CALIB.CP cannot be programmed to 1, and RTC CALIB.CP value will be ignored if the it has been set to 1.

When RTC_PRE .DIVA[6:0]<3, the value of RTC_PRE.DIVS[14:0] should be decrease. Assume RTCCLK frequency is 32768Hz:

- When RTC_PRE .DIVA[6:0] =2, RTC_PRE.DIVS[14:0]=8189.
- When RTC_PRE .DIVA[6:0] =1, RTC_PRE.DIVS[14:0]=16379.
- When RTC_PRE .DIVA[6:0] =0, RTC_PRE.DIVS[14:0]=32759.

The effective calibrated frequency (f_{CAL}) can be calculated by using the formula given below:

$$f_{CAL} = f_{RTCCLK} * \left(1 + \frac{256 - RTC_CALIB.CM[8:0]}{2^{20} + RTC_CALIB.CM[8:0] - 265}\right)$$

Verify RTC calibration

RTC output 1Hz waveform for measuring and verifying RTC precision.

Up to 2 RTCCLK cycles measurement error may occur when measure the RTC frequency in a limit measurement period. If the measurement period is the same as calibration period, the error can be eliminated.

■ The calibration period is 32 seconds (default).

Using an accurate 32-second period to measure the 1Hz calibration output can ensure that the measurement error is within 0.447ppm (0.5 RTCCLK cycles within 32 seconds).

■ The calibration period is 16 seconds.

Using an accurate 16-second period to measure the 1Hz calibration output can ensure that the measurement error is within 0.954ppm (0.5 RTCCLK cycles within 16 seconds).

■ The calibration period is 8 seconds.

Using an accurate 8-second period to measure the 1Hz calibration output can ensure that the measurement error is within 1.907ppm (0.5 RTCCLK cycles within 8 seconds).

Dynamic recalibration

When RTC_INITSTS.INITF=0, RTC_CALIB register can update by using following steps:

- Wait RTC_INITSTS.RECPF=0.
- A new value is written to the RTC_CALIB, then RTC_INITSTS.RECPF is automatically set to 1.
- The new calibration settings will take effect within 3 ck_apre cycles after a data write to the RTC_CALIB.

14.2.18 RTC low power mode

The working state of RTC in low power mode.

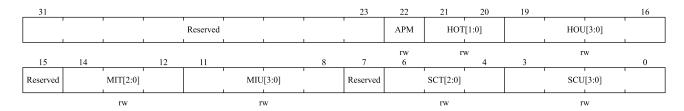
Lower Power Mode	RTC Working State	Exit Low Power Mode					
SLEEP	Normal work	RTC interrupt					
STOP0	Normal work when the clock source of RTC is LSE	Alarm A, Alarm B, Periodic Wakeup and					
310F0	or LSI	Timestamp event					
STOP2	Normal work when the clock source of RTC is	Alarm A, Alarm B, Periodic Wakeup and					
S10P2	LSE or LSI	Timestamp event					
STANDBY	Normal work when the clock source of RTC is LSE	Alama A Alama D and Timestoma ayant					
STANDET	or LSI	Alarm A, Alarm B and Timestamp event					

14.3 RTC Registers

14.3.1 RTC Register overview

Table 14-2 RTC register overview

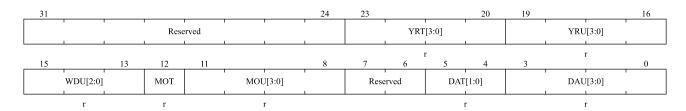
Offset	Register	31 30 29	28	27	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0										
000h	RTC_TSH		Rese	erved				APM	٤	H O1[1:0]		HOU	[3:0]		Reserved	М	IT[2:	0]		MIU	[3:0]		Reserved	SC	T[2:	0]		SCU[3:0]											
	Reset Value							0	0	0	0	0	0	0	F	0	0	0	0	0	0	0	F	0	0	0	0	0	0	0										
004h	RTC_DATE		Reserved		Reserved		Reserved		Reserved		Reserved		eserved				YRT		[3:0]			YRU	[3:0]		WI)U[2:	[0	MOT		MOU	J[3:0]		served		DAT	[1:0]	Ι	DAU[3:0]	
	Reset Value				0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	Re	3	0	0	0	0	0	1												


Offset	Register	31	30	29	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	11	10	6	8	7	9	5	4	3	2	1 0
Offset	Register	60	m	0 0	- 7	- 7	- 2	2	2			- 2		1	1	1	1		1	-	-	1	-		,	_					
008h	RTC_CTRL			Rese	erved	l			COEN		OUTSEL[1:0]	OPOL	CALOSEL	BAKP	нилѕ	ADIH	Reserved	WTIEN	ALBIEN	ALAIEN	TSEN	WTEN	ALBEN	ALAEN	Reserved	HFMT	BYPS	Reserved	TSPOL		WKUPSEL[2:0]
	Reset Value								0	0	0	0	0	0	0	0		0	0	0	0	0	0	0		0	0		0	0	0 0
00Ch	RTC_INITSTS						Re	eserv	ed	RECPF						Reserved		TISOVF	TISF	WTF	ALBF	ALAF	INITM	INITE	RSYF	INITSF	SHOPF	WTWF	ALBWF		
	Reset Value									Г						0		Ι		0	0	0	0	0	0	0	0	0	0	1	1 1
010h	RTC_PRE			R	leserv	ved				DIVA[6:0]							Reserved	DIVS[14:0]													
	Reset Value									1	1	1	1	1	1	1		0	0	0	0	0	0	0	1	1	1	1	1	1	1 1
014h	RTC_WKUPT		Reserved																		WI	(UPI	Γ[15:0]							
	Reset Value			I													1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1
01Ch	RTC_ALARMA	MASK4	WKDSEL	DTT[1:0]		DT	J[3:0]		MASK3	APM	нот	[1:0]		HOU	[3:0]		MASK2	М	IIT[2:	0]		MIU	[3:0]		MASKI	S	ET[2	:0]		SEU[:	3:0]
	Reset Value	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
020h	RTC_ALARMB	MASK4	WKDSEL	DTT[1:0]		DTI	J[3:0]		MASK3	APM	нот	[1:0]		HOU	[3:0]		MASK2	М	IIT[2:	0]		MIU	[3:0]		MASK1	SET[2:0] SEU[3:0]				3:0]	
	Reset Value	0											0	0										0 0							
024h	RTC_WRP											Res	erved					PKEY[7:0]													
	Reset Value																	0 0 0 0 0 0 0								0 0					
028h	RTC_SUBS							Rese	erved															SS[1:	5:0]						
	Reset Value																0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								0 0					
02Ch	RTC_SCTRL	o SUB1S							Res	erved	i							ADFS[14:0]								0 0					
	Reset Value	0								Ę			Π				73									0 0					
030h	RTC_TST			R	leserv	ved				APM	НОТ	[1:0]		HOU	[3:0]		Reserved	MIT[2:0] MIU[3:0] SET[2:0] SEU[3:0]								3:0]					
	Reset Value									0	0	0	0	0	0	0	Re	0	0	0	0	0	0	0	Re	0	0	0	0	0	0 0
034h	RTC_TSD			Rese	erved	I				YRT	Γ[3:0]			YRU	[3:0]		WI	OU[2:	0]	MOT		MOU	[3:0]		Document	nesei ven	DAT	Γ[1:0]	Ι	DAU[3:0]
	Reset Value								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		_	0	0	0	0	0 0
038h	RTC_TSSS							Rese	erved															SE[1					1 1		T
	Reset Value																0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
03Ch	RTC_CALIB		Reserved										CP	cw8	CW16		Rese	rved						M[8:0]							
	Reset Value																0	0	0					U	0	0	0	0	0	0	0 0
044h	RTC_ALRMASS Reset Value		Reserved MASKSSA[3:0] Reserved 0 0 0 0 0											0	0	0	0	0	0		V[14:		0	0	0	0	0 0				
0401	RTC_ALRMBSS		D	1			SSB[3:							. 1				,	U	U	J	U	U		V[14:		U	U	U	J	<u> </u>
048h			Rese	erved								R	eserv	ea				0	Δ.	Λ.	0	0	Λ				Δ	0		<u> </u>	0.10
04Ch	Reset Value RTC_OPT				0	0	0	0							1	Reserv	ved	0	0	0	0	0	0	0	0	0	0	0	0	0	O O
	Reset Value																														0

14.3.2 RTC Calendar Time Register (RTC_TSH)

Address offset: 0x00

Reset value: 0x0000 0000



Bit field	Name	Description
31:23	Reserved	Reserved, the reset value must be maintained
22	APM	AM/PM format.
		0:AM format or 24-hour format
		1:PM format
21:20	HOT[1:0]	Describes the hour tens value in BCD format
19:16	HOU[3:0]	Describes the hour units value in BCD format
15	Reserved	Reserved, the reset value must be maintained
14:12	MIT [2: 0]	Describes the minute tens value in BCD format
11:8	MIU[3:0]	Describes the minute units value in BCD format
7	Reserved	Reserved, the reset value must be maintained
6:4	SCT[2:0]	Describes the second tens value in BCD format
3:0	SCU[3:0]	Describes the second units value in BCD format

14.3.3 RTC Calendar Date Register (RTC_DATE)

Address offset: 0x04

Reset value: 0x0000 2101

Bit field	Name	Description
31:24	Reserved	Reserved, the reset value must be maintained
23:20	YRT[3:0]	Describes the year tens value in BCD format
19:16	YRU[3:0]	Describes the year units value in BCD format
15:13	WDU[2:0]	Describes which Week day
		000: forbidden

Bit field	Name	Description
		001: Monday
		111: Sunday
12	MOT	Describes the month tens value in BCD format
11:8	MOU[3:0]	Describes the month units value in BCD format
7:6	Reserved	Reserved, the reset value must be maintained
5:4	DAT[1:0]	Describes the date tens value in BCD format
3:0	DAU[3:0]	Describes the date units value in BCD format

14.3.4 RTC Control Register (RTC_CTRL)

Address offset: 0x08

Reset value: 0x0000 0000

31							24	23	22	21	20	19	18	17	16
			Rese	rved				COEN	OUTSI	EL[1:0]	OPOL	CALOSEL	BAKP	SU1H	AD1H
15	14	13	12	11	10	9	8	rw 7	6 r	w 5	rw 4	rw 3	rw 2	w	w 0
Reserved	WTIEN	ALBIEN	ALAIEN	TSEN	WTEN	ALBEN	ALAEN	Reserved	HFMT	BYPS	Reserved	TSPOL	W	KUPSEL[2	:0]
	rw	rw	rw	rw	rw	rw	rw		rw	rw		rw		rw	

Bit field	Name	Description
31:24	Reserved	Reserved, the reset value must be maintained
23	COEN	Calibration output enable
		This bit controls RTC_CALIB output
		0: Disable calibration output
		1: Enable calibration output
22:21	OUTSEL[1:0]	Output selection
		These bits are used to select the alarm/wakeup output
		00: Disable output
		01: Enable Alarm A output
		10: Enable Alarm B output
		11: Enable Wakeup output
20	OPOL	Output polarity bit
		This bit is used to configure the polarity of output.
		0: Outputs high level when the selected output triggers(see OUTSEL[1:0])
		1: Outputs low level when the selected output triggers(see OUTSEL[1:0])
19	CALOSEL	Calibration output selection
		When RTC_CTRL.COEN=1, RTCCLK = 32.768KHz and prescale at their default
		value (RTC_PRE.DIVA[6:0]=127 and RTC_PRE.DIVS[14:0]=255).
		0: Calibration output is 256 Hz
		1: Calibration output is 1 Hz
18	BAKP	Daylight saving time record

Bit field	Name	Description
_		This bit is written by the user
		0: Not record daylight saving time
		1: Record daylight saving time
17	SU1H	Subtract 1 hour (winter time change)
		1 hour will be subtracted to the calendar time when the current hour value is not 0. This
		bit is always read as 0.
		0: No effect.
		1: Subtracts 1 hour to the current time.
16	AD1H	Add 1 hour (summer time change)
		When this bit is set, 1 hour can be added to the calendar time. This bit is always read as.
		0: No effect.
		1: Adds 1 hour to the current time.
15	Reserved	Reserved, the reset value must be maintained
14	WTIEN	Wakeup timer interrupt enable
		0: Disable wakeup timer interrupt.
		1: Enable wakeup timer interrupt.
13	ALBIEN	Alarm B interrupt enable
		0: Disable Alarm B interrupt
		1: Enable Alarm B Interrupt
12	ALAIEN	Alarm A interrupt enable
		0: Disable Alarm A interrupt
		1: Enable Alarm A interrupt
11	TSEN	Timestamp enable
		0: Disable timestamp
		1: Enable timestamp
10	WTEN	Wakeup timer enable
		0: Disable wakeup timer
		1: Enable wakeup timer
9	ALBEN	Alarm B enable
		0: Disable Alarm B
		1: Enable Alarm B
8	ALAEN	Alarm A enable
		0: Disable Alarm A
		1: Enable Alarm A
7	Reserved	Reserved, the reset value must be maintained
6	HFMT	Hour format bit
		0:24 hour format
		1: Am/PM format
5	BYPS	Bypass values from the shadow registers
		0: Calendar values are copied from the shadow registers, which are refreshed every two
		RTCCLK cycles.
		1: Calendar values are copied directly from the calendar counters.

Bit field	Name	Description
		Note: If the frequency of the APB1 clock falls below seven times the frequency of
		RTCCLK, RTC_CTRL.BYPS bit must be set to '1'
4	Reserved	Reserved, the reset value must be maintained
3	TSPOL	Time-stamp event active edge
		0:Input rising edge creates a timestamp event
		1:Input falling edge creates a timestamp event
		TSE need to be reset when TSPOL is changed to avoid unwanted RTC_INITSTS.TISF
		setting.
2:0	WKUPSEL[2:0]	Wakeup clock selection
		000: RTC clock is divided by 16
		001: RTC clock is divided by 8
		010: RTC clock is divided by 4
		011: RTC clock is divided by 2
		10x: ck_spre (usually 1Hz) clock is selected

14.3.5 RTC Initial Status Register (RTC_INITSTS)

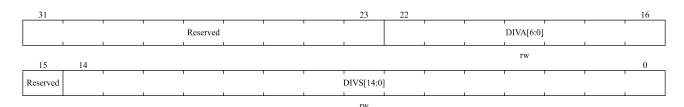
Address offset: 0x0C

Reset value: 0x0000 0007

31														17	16
	' '		'		'	'	Reserved			!	'	l	ļ	,	RECPF
			l			·	l .			l .	1		l .	l .	r
15		13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		TISOVF	TISF	WTF	ALBF	ALAF	INITM	INITF	RSYF	INITSF	SHOPF	WTWF	ALBWF	ALAWF
			rc w0	rc w0	rc w0	rc w0	rc w0	rw	r	rc w0	r	r	r	r	r

Bit field	Name	Description
31:17	Reserved	Reserved, the reset value must be maintained
16	RECPF	Recalibration pending flag
		The RECPF status flag is automatically set to '1' when software writes to the
		RTC_CALIB register, indicating that the RTC_CALIB register is blocked. After the
		new calibration settings are processed, this bit returns to '0'.
15:13	Reserved	Reserved, the reset value must be maintained
12	TISOVF	The time-stamp overflow flag
		This flag is set to '1'by hardware when a time-stamp event happens when TISF bit is
		set.
		This flag can be cleared by software writing 0. It is advised to check and clear
		TISOVF only after clearing the TISF bit. Otherwise, an overflow might not be noticed
		if a timestamp event occurs immediately before the TISF bit is being cleared.
11	TISF	Time-stamp flag
		This flag is set to '1' by hardware when a time-stamp event happens.
		This flag can be cleared by software writing 0

Bit field	Name	Description
10	WTF	Wake up timer flag
		This flag is set by hardware when the value of wakeup auto-reload counter reaches 0.
		This flag is cleared by software by writing 0.
		This flag must be cleared by software at least 1.5 RTCCLK periods before WTF is set
		again.
9	ALBF	Alarm B flag
		This flag is set to '1' by hardware when the time/date registers value match the Alarm
		B register values.
		This flag can be cleared by software writing 0
8	ALAF	Alarm A flag
		This flag is set to '1' by hardware when the time/date registers value match the Alarm
		A register values.
		This flag can be cleared by software writing 0
7	INITM	Enter Initialization mode
		0: Free running mode
		1: Enter initialization mode and set calendar time value, date value, and prescale
		value.
6	INITF	Initialization flag
		RTC is in initialization state when this bit is '1', and calendar time, date and prescale
		value can be updated.
		0: Calendar time, date and prescale value can not be updated
		1: Calendar time, date and prescale value can be updated
5	RSYF	Register synchronization flag
		This flag is set to '1' by hardware when the calendar value are copied into the shadow
		registers. This bit is cleared by hardware when in initialization mode, while a shift
		operation is pending (SHOPF=1), or when in bypass shadow register mode
		(RTC_CTRL.BYPS=1). This bit can also be cleared by software.
		It is cleared either by software or by hardware in initialization mode.
		0: Calendar shadow register not yet synchronized
		1: Calendar shadow register synchronized
4	INITSF	Initialization status flag
		This flag is set to '1' by hardware when the calendar year field is different from 0 (which
		is the RTC domain reset state).
		0: Calendar has not been initialized
		1: Calendar has been initialized
3	SHOPF	Shift operation pending flag
		This flag is set to '1' by hardware as soon as a shift operation is initiated by a write to
		the RTC_SCTRL register. It is cleared by hardware when the corresponding shift
		operation has been completed, note that writing to the SHOPF bit has no effect.
		0: No shift operation is pending
		1: A shift operation is pending
2	WTWF	Wakeup timer write flag

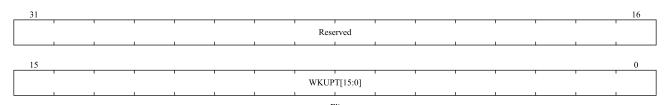


Bit field	Name	Description
		0: Wakeup timer configuration update is not allowed
		1: Wakeup timer configuration update is allowed
1	ALBWF	Alarm B write flag
		This flag is set to '1' by hardware when Alarm B values can be changed, after the
		RTC_CTRL.ALBEN bit has been set to 0.
		0: Alarm B update is not allowed
		1: Alarm B update is allowed
0	ALAWF	Alarm A write flag.
		This flag is set to '1' by hardware when Alarm A values can be changed, after the
		RTC_CTRL.ALAEN bit has been set to 0.
		0: Alarm A update is not allowed
		1: Alarm A update is allowed

14.3.6 RTC Prescaler Register (RTC_PRE)

Address offset: 0x10

Reset value: 0x007F 00FF



Bit field Name **Description** 31:23 Reserved Reserved, the reset value must be maintained 22:16 DIVA[6:0] Asynchronous prescaler factor $f_{ck_apre} = \text{RTCCLK}/(\text{DIVA}[6:0]+1)$ 15 Reserved Reserved, the reset value must be maintained 14:0 DIVS[14:0] Synchronous prescaler factor $f_{ck_spre} = f_{ck_apre}/(DIVS[14:0]+1)$

14.3.7 RTC Wakeup Timer Register (RTC_WKUPT)

Address offset: 0x14

Reset value: 0x0000 FFFF

367

Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained
15:0	WKUPT[15:0]	Wake up auto-reload value bits
		The RTC_INITSTS.WTF flag is set every (WKUPT[15:0] + 1) ck_wut cycles when
		the RTC_CTRL.WTEN=1. The wakeup timer becomes 17-bits When
		RTC_CTRL.WKUPSEL[2]=1.
		Note:
		This register change (such as the second setting or later Settings) needs to be
		changed in the wakeup interrupt, otherwise the changed settings will not take effect
		immediately, but will take effect after the next wakeup;
		In particular, when RTC_CTRL .WKUPSEL[2:0] is set to 010, the modified setting
		does not take effect immediately, but will take effect after wake up in the next cycle.;

14.3.8 RTC Alarm A Register (RTC_ALARMA)

Address offset: 0x1C

Reset value: 0x0000 0000

31	30	29	28	27			24	23	22	21	20	19			16
MASK4	WKDSEL	DTT	[1:0]		DTU	[3:0]	1	MASK3	APM	НОТ	[1:0]		HOU	J[3:0]	'
							1								
rw	rw	r	W		r	N		rw	rw	rv	N		r	w	
15	14		12	11			8	7	6		4	3			0
MASK2		MIT[2:0]	1		MIU	[3:0]	1	MASK1		SET[2:0]			SEU	[[3:0]	
rw		rw		•	r	N	•	rw		rw			r	w	•

Bit field	Name	Description
31	MASK4	Alarm date mask
		0: Date/day match
		1: Date/day not match
30	WKDSEL	Week day selection
		0: DTU[3:0] represents the date units
		1: DTU[3:0] represents week day only. DTT[1:0] is not considered
29:28	DTT[1:0]	Describes the date tens value in BCD format
27:24	DTU[3:0]	Describes the date units value in BCD format
23	MASK3	Alarm hours mask
		0: Hours match
		1: Hours not match
22	APM	AM/PM notation
		0: AM or 24 hours format
		1: PM format
21:20	HOT[1:0]	Describes the hour tens value in BCD format
19:16	HOU[3:0]	Describes the hour units value in BCD format
15	MASK2	Alarm minutes mask
		0: Minutes match

368

Bit field	Name	Description					
		1: Minutes not match					
14:12	MIT[2:0]	Describes the minute tens value in BCD format					
11:8	MIU[3:0]	Describes the minute units value in BCD format					
7	MASK1	Alarm seconds mask					
		0: Seconds match					
		1: Seconds not match					
6:4	SET[2:0]	Describes the second tens value in BCD format					
3:0	SEU[3:0]	Describes the second units value in BCD format					

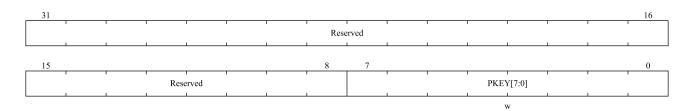
14.3.9 RTC Alarm B Register (RTC_ALARMB)

Address offset: 0x20

Reset value: 0x0000 0000

31	30	29	28	27			24	23	22	21	20	19			16
MASK4	WKDSEL	DTT	[1:0]		DTU	[[3:0]		MASK3	APM	НОТ	[1:0]		HOU	[[3:0]	
rw 15	rw 14	r	w 12	11	r	w	8	rw 7	rw 6	r	w 4	3	r	w	0
MASK2		MIT[2:0]			MIU	[3:0]		MASK1		SET[2:0]			SEU	[3:0]	
rw		rw	•		r	w		rw		rw			r	w	

Bit field	Name	Description
31	MASK4	Alarm date mask
		0: Date/day match
		1: Date/day not match
30	WKDSEL	Week day selection
		0: DTU[3:0] represents the date units
		1: DTU[3:0] represents week day only. DTT[1:0] is not considered
29:28	DTT[1:0]	Describes the date tens value in BCD format
27:24	DTU[3:0]	Describes the date units value in BCD format
23	MASK3	Alarm hours mask
		0: Hours match
		1: Hours not match
22	APM	AM/PM notation
		0: AM or 24 hours format
		1: PM format
21:20	HOT[1:0]	Describes the hour tens value in BCD format
19:16	HOU[3:0]	Describes the hour units value in BCD format
15	MASK2	Alarm minutes mask
		0: Minutes match
		1: Minutes not match
14:12	MIT[2:0]	Describes the minute tens value in BCD format



Bit field	Name	Description
11:8	MIU[3:0]	Describes the minute units value in BCD format
7	MASK1	Alarm seconds mask
		0: Seconds match
		1: Seconds not match
6:4	SET[2:0]	Describes the second tens value in BCD format
3:0	SEU[3:0]	Describes the second units value in BCD format

14.3.10 RTC Write Protection register (RTC_WRP)

Address offset: 0x24

Reset value: 0x0000 0000

Bit field	Name	Description
31:8	Reserved	Reserved, the reset value must be maintained
7:0	PKEY[7:0]	Write protection key
		Reading this byte always returns 0x00.
		For detail on how to unlock RTC register write protection, see chapter RTC write
		protection register.

14.3.11 RTC Sub-second Register (RTC_SUBS)

Address offset: 0x28

Reset value: 0x0000 0000

31									 					16
'	'		ı	•	'	ı	Rese	erved		'		'	'	
			I	1			l .			1		l		
15														0
		1	1			1	SS[1	15:0]	•		1	1		
	•				•			r		•		•		

Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained
15:0	SS[15:0]	Sub-second value.
		The value is the counter value of synchronous prescaler. This sub-second value is
		calculated by the below formula:

Bit field	Name	Description
		Sub-second value = (RTC_PRE.DIVS[14:0]-SS)/(RTC_PRE.DIVS[14:0]+1)
		Note: SS[15:0] can be larger than RTC_PRE.DIVS[14:0] only after the shift
		operation is finished. In this case, the correct time/date is one second slower than the
		time/date indicated by RTC_TSH/RTC_DATE.

14.3.12 RTC Shift Control Register (RTC_SCTRL)

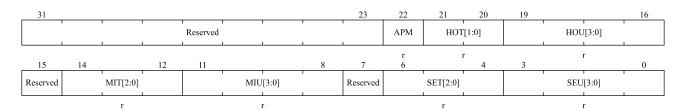
Address offset: 0x2C

Reset value: 0x0000 0000

31	30	_				 					16
SUB1S						Reserved					
w 15	14	•	•		1	•		•	•		0
Reserved			1	1	1	ADFS[14:0	i		1	1	

W

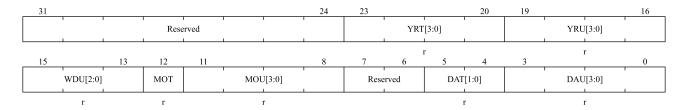
Bit field	Name	Description
31	SUB1S	Add one second
		0: No impact.
		1: Subtract one second to the clock/calendar
		This bit can only be written and read as zero. Writing to this bit does not have an impact
		when RTC_INITSTS.SHOPF=1.
30:15	Reserved	Reserved, the reset value must be maintained
14:0	ADFS[14:0]	Add a fraction of a second
		This bit is a write-only bit and is always read as 0. The value written to ADFS[14:0]
		will be subtracted by the synchronous prescaler counter. As the counter counts down,
		this operation can effectively speed up the following time from the clock:
		Acceleration (seconds) = ADFS [14:0]/ (DIVS[14:0] + 1)
		SUB1S bit can be used together with the ADFS[14:0]bits:
		Delay (seconds) = $1-(ADFS[14:0] / (DIVS[14:0] + 1))$.
		Note: Before writing ADFS[14:0], need to read the RTC_SUBS register to ensure that
		ADFS[14:0] < RTC_SUBS.SS[15:0];


371

14.3.13 RTC Timestamp Time Register (RTC_TST)

Address offset: 0x30

Reset value: 0x0000 0000



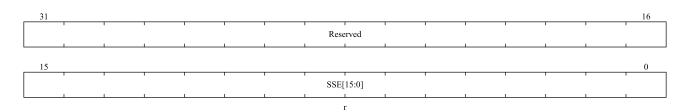
Bit field	Name	Description
31:23	Reserved	Reserved, the reset value must be maintained
22	APM	AM/PM notation
		0: AM or 24-hour clock
		1: PM
21:20	HOT[1:0]	Describes the hour tens value in BCD format
19:16	HOU[3:0]	Describes the hour units value in BCD format
15	Reserved	Reserved, the reset value must be maintained
14:12	MIT[2:0]	Describes the minute tens value in BCD format
11:8	MIU[3:0]	Describes the minute units value in BCD format
7	Reserved	Reserved, the reset value must be maintained
6:4	SET[2:0]	Describes the second tens value in BCD format
3:0	SEU[3:0]	Describes the second units value in BCD format

14.3.14 RTC Timestamp Date Register (RTC_TSD)

Address offset: 0x34

Reset value: 0x0000 0000

Bit field	Name	Description
31:24	Reserved	Reserved, the reset value must be maintained
23:20	YRT[3:0]	Describes the year tens value in BCD format
19:16	YRU[3:0]	Describes the year units value in BCD format
15:13	WDU[2:0]	Describes which Week day
		000: forbidden
		001: Monday
		111: Sunday
12	MOT	Describes the month tens value in BCD format
11:8	MOU[3:0]	Describes the month units value in BCD format



Bit field	Name	Description
7:6	Reserved	Reserved, the reset value must be maintained
5:4	DAT[1:0]	Describes the date tens value in BCD format
3:0	DAU[3:0]	Describes the date units value in BCD format

14.3.15 RTC Timestamp Sub-second Register (RTC_TSSS)

Address offset: 0x38

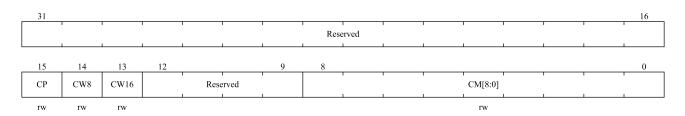
Reset value: 0x0000 0000

Bit field Name Description

31:16 Reserved Reserved, the reset value must be maintained

15:0 SSE[15:0] Sub second value

SSE[15:0] is the value in the synchronous prescaler counter. The fraction of a second is provided by the formula below:


Second fraction = (RTC_PRE.DIVS[14:0] - SSE[15:0]) / (RTC_PRE.DIVS[14:0] + 1)

Note: SSE[15:0] can be larger than RTC_PRE.DIVS[14:0] only after a shift operation. In that case, the correct time/date is one second less than as indicated by RTC_TSH/RTC_DATE.

14.3.16 RTC Calibration Register (RTC_CALIB)

Address offset: 0x3C

Reset value: 0x0000 0000

Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained
15	СР	Increase frequency of RTC by 488.5 ppm
		This feature is intended to be used along with CM[8:0]. When RTCCLK frequency is
		32768 Hz, the number of RTCCLK pulses added during a 32-second window is ((512

Bit field	Name	Description
		* CP) – CM[8:0]).
		0: No add pulse.
		1: One RTCCLK pulse is inserted every 2 ¹¹ pulses.
14	CW8	Select an 8-second calibration cycle period
		0: Not effect.
		1: Select an 8-second calibration period.
		When CW8 is set to '1', the 8-second calibration cycle period is selected.
		Note: when CW8 = 1, CM[1:0] will always be' 00'
13	CW16	To select a 16-second calibration cycle period
		0: Not effect.
		1: Select a calibration period of 16 seconds. If CW8 = 1, this bit cannot be set to 1.
		Note: when CW16 = 1, CM[0] will always be '0'
12:9	Reserved	Reserved, the reset value must be maintained
8:0	CM[8:0]	Negative calibration bits
		The number of mask pulse out of 220 RTCCLK pulses. This effectively decreases the
		frequency of the calendar with a resolution of 0.9537 ppm.

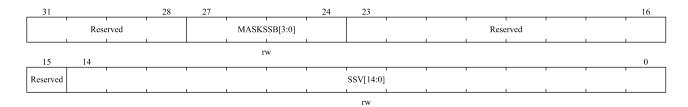
14.3.17 RTC Alarm A sub-second register (RTC_ALRMASS)

Address offset: 0x44

Reset value: 0x0000 0000

31			28	27			24	23						16
	Rese	erved			MASKS	SSB[3:0]	1			1	Rese	erved	1	
15	14				r	w		•						0
Reserved						1	1	SSV[14:0]	1	1	1		1	
								rw					•	

Bit field	Name	Description
31:28	Reserved	Reserved, the reset value must be maintained
27:24	MASKSSB[3:0]	Mask the most significant bit from this bits.
		0x0: No comparison on sub seconds for Alarm. The alarm is set when the seconds
		unit is incremented (assuming that the rest of the fields match).
		0x1: Only SSV[0] is compared and other bits are not compared.
0x2: Only SSV[1:0] are compared and other bits		0x2: Only SSV[1:0] are compared and other bits are not compared.
		0x3: Only SSV[2:0] are compared and other bits are not compared.
0xD: Only SSV[12:0] are compared and other bits a		
		0xC: Only SSV[11:0] are compared and other bits are not compared.
		0xD: Only SSV[12:0] are compared and other bits are not compared.
		0xE: Only SSV[13:0] are compared and other bits are not compared.
		0xF: SSV[14:0] are compared
		Synchronization counter RTC_SUBS.SS[15] bit is never compared.



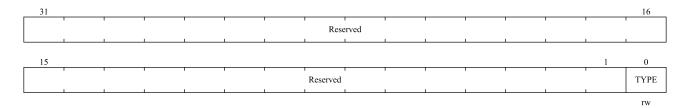
Bit field	Name	Description
23:15	Reserved	Reserved, the reset value must be maintained
14:0	SSV[14:0]	Sub seconds value
		This value is compared with the synchronous prescaler counter RTC_SUBS.SS[14:0],
		and bit number of compared is controlled by MASKSSB[3:0].

14.3.18 RTC Alarm B sub-second register (RTC_ALRMBSS)

Address offset: 0x48

Reset value: 0x0000 0000

Bit field Name **Description** 31:28 Reserved Reserved, the reset value must be maintained 27:24 MASKSSB[3:0] Mask the most significant bit from this bits. 0x0: No comparison on sub seconds for Alarm. The alarm is set when the seconds unit is incremented (assuming that the rest of the fields match). 0x1: Only SSV[0] is compared and other bits are not compared. 0x2: Only SSV[1:0] are compared and other bits are not compared. 0x3: Only SSV[2:0] are compared and other bits are not compared. 0xC: Only SSV[11:0] are compared and other bits are not compared. 0xD: Only SSV[12:0] are compared and other bits are not compared. 0xE: Only SSV[13:0] are compared and other bits are not compared. 0xF: SSV[14:0] are compared Synchronization counter RTC_SUBS.SS[15] bit is never compared. 23:15 Reserved Reserved, the reset value must be maintained 14:0 SSV[14:0] Sub seconds value This value is compared with the synchronous prescaler counter RTC_SUBS.SS[14:0], and bit number of compared is controlled by MASKSSB[3:0].


375

14.3.19 RTC Option Register (RTC_OPT)

Address offset: 0x4C

Reset value: 0x0000 0000

Bit field	Name	Description	
31:1	Reserved	Reserved, the reset value must be maintained	
0	TYPE	RTC_ALARM output type on PC13	
		0: Open-drain output	
		1: Push-pull output	

15 CRC calculation unit

15.1 Introduction

This module integrates the functions of CRC32 and CRC16, and the cyclic redundancy check (CRC) calculation unit obtains any CRC calculation result according to a fixed generator polynomial. In other applications, CRC technology is mainly used to verify the correctness and integrity of data transmission or data storage. EN/IEC 60335-1 provides a method to verify the integrity of flash memory. CRC calculation unit can calculate the identifier of the software when the program is running, then compare it with the reference identifier generated during connection, and then store it in the specified memory space.

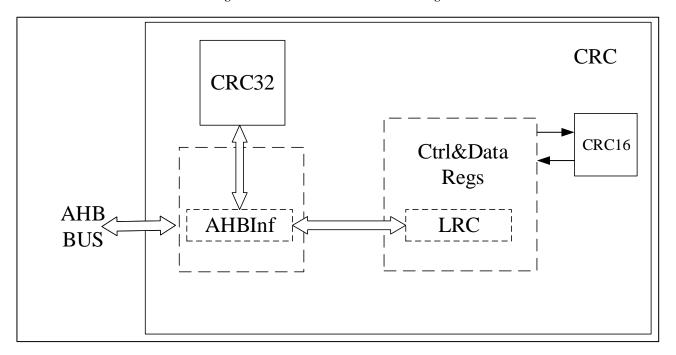
15.2 Main features

15.2.1 CRC32

- $\blacksquare \quad \text{CRC32}(X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1)$
- 32 bits of data to be checked and 32 bits of output check code.
- CRC calculation time: 1 AHB clock cycles (HCLK)
- General-purpose 8-bit register (can be used to store temporary data)

15.2.2 CRC16

- \blacksquare CRC16($X^{16} + X^{15} + X^2 + 1$)
- There are 8 bits of data to be checked and 16 bits of output check code.
- CRC calculation time: 1 AHB clock cycle (HCLK)
- The verification initial value can be configured, and the size end of the data to be verified can be configured.


377

■ Support 8bit LRC check value generation

The following figure is the block diagram of CRC unit.

Figure 15-1 CRC calculation unit block diagram

15.3 Function description

15.3.1 CRC32

CRC unit contains one 32-bit data register:

- Writing this register to input CRC data.
- Reading this register to get the calculated CRC result.

Every writing operation of this data register triggers the calculation of this new data with the previous calculation result (CRC calculation is performed on the whole 32-bit word rather than byte by byte).

Supports back-to-back writes or sequential write-read operations.

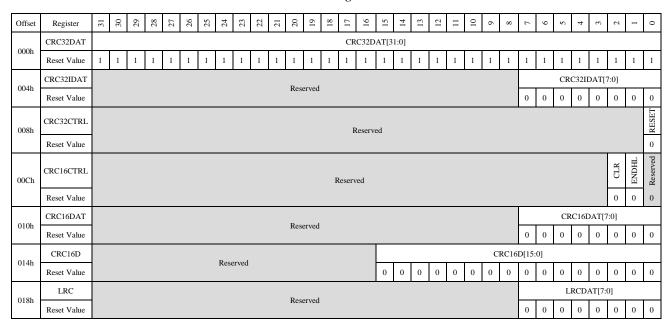
CRC_CRC32DAT can be re-initialized to 0xFFFFFFF by setting CRC_CRC32CTRL.RESET. This operation does not affect the data in register CRC_CRC32IDAT.

15.3.2 CRC16

The LSB or MSB of the check data is controlled by the CRC_CRC16CTRL.ENDHL bit.

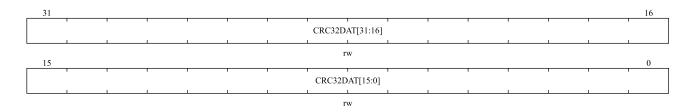
To clear the result of the last CRC operation, set CRC_CRC16CTRL.CLR to 1 or CRC_CRC16D to 0.

The initial value of CRC calculation can be configured by writing the CRC_CRC16D register. By default, the initial value is the result of the last calculation.


LRC calculation is the same as CRC calculation. Both are carried out at the same time. CRC or LRC can be read out depending on needs. If the initial value needs to be set, the LRC register should be configured first.

15.4 CRC registers

15.4.1 CRC register overview

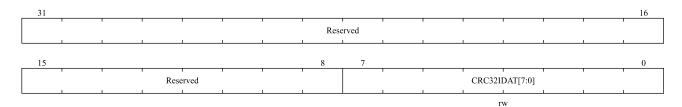

Table 15-1 CRC register overview

15.4.2 CRC32 data register (CRC_CRC32DAT)

Address offset: 0x00

Reset value: 0xFFFF FFFF

Bit field	Name	Description
31:0	CRC32DAT[31:0]	The written data is the CRC value to be checked. The read data is the CRC calculation
		result. Only 32-bit operations are supported.


379

15.4.3 CRC32 independent data register (CRC_CRC32IDAT)

Address offset: 0x04

Reset value: 0x0000 0000

Bit field	Name	Description
31:8	Reserved	Reserved, the reset value must be maintained.
7:0	CRC32IDAT[7:0]	Independent 8-bit data register.
		General 8 bits data register. It is for temporary stored 1-byte data.
		CRC_CRC32CTRL.RESET reset signal will not impact this register.

Note: This register is not a part of CRC calculation and can be used to store any data.

15.4.4 CRC32 control register (CRC_CRC32CTRL)

Address offset: 0x08

Reset value: 0x0000 0000

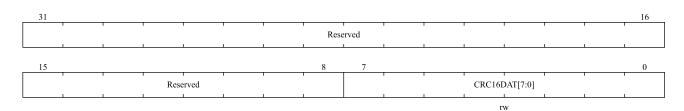
Bit field	Name	Description
31:1	Reserved	Reserved, the reset value must be maintained.
0	RESET	RESET signal.
		It can reset CRC32 module and set data register to be 0xFFFF_FFFF. This reset can only
		write 1, and hardware will clear to 0 automatically.

15.4.5 CRC16 control register (CRC_CRC16CTRL)

Address offset: 0x0C

Reset value: 0x0000 0000

380

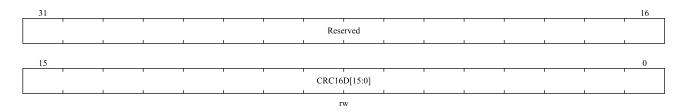

Bit field	Name	Description	
31:3	Reserved	Reserved, the reset value must be maintained.	
2	CLR	Clear CRC16 results.	
		0: Not clear.	
		1: Clear to default value 0x0000. Set this bit to 1 will only maintain 1 clock cycle,	
		hardware will clear automatically. (Software read always 0).	
1	ENDHL	Data to be verified start to calculate from MSB or LSB(configured endian).	
		0: From MSB to LSB	
		1: From LSB to MSB	
		This bit is only for data to be verified.	
0	Reserved	Reserved, the reset value must be maintained.	

Note: 8-bits, 16-bits and 32-bits operations are supported.

15.4.6 CRC16 input data register (CRC_CRC16DAT)

Address offset: 0x10

Reset value: 0x0000 0000


Bit field	Name	Description
31:8	Reserved	Reserved, the reset value must be maintained.
7:0	CRC16DAT[7:0]	Data to be verified.

Note: 8-bits, 16-bits and 32-bits operations are supported.

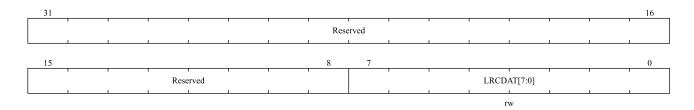
15.4.7 CRC cyclic redundancy check code register (CRC_CRC16D)

Address offset: 0x14

Reset value: 0x0000 0000

Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained.

381


Bit field	Name	Description
15:0	CRC16D[15:0]	16-bit value of cyclic redundancy result data.
		Every time the software writes the CRC16DAT register, the 16-bit calculated data from
		CRC16 is updated in this register.

Note: 8-bits, 16-bits and 32-bits operations are supported (8-bit operations must be performed twice in a row to ensure that 16-bit initial values are configured properly)

15.4.8 LRC result register (CRC_LRC)

Address offset: 0x18

Reset value: 0x0000 0000

 Bit field
 Name
 Description

 31:8
 Reserved
 Reserved, the reset value must be maintained.

 7:0
 LRCDAT[7:0]
 LRC check value register.

 Software need to write initial value before use. And then each writing data to CRC_CRC16DAT will be XOR with CRC_LCR register value. The result will be stored in CRC_LRC. Software read the result. It should be cleared before next use.

16 Independent watchdog (IWDG)

16.1 Introduction

The N32G4FR has built-in independent watchdog (IWDG) and window watchdog (WWDG) timers to solve the problems caused by software errors. Watchdog timer is very flexible to use, which improves the security of the system and the accuracy of timing control.

Independent Watchdog (IWDG) is driving by Low-speed internal clock (LSI clock) running at 40 KHz, which will still running event dead loop or MCU stuck is happening. This can provide higher safety level, timing accuracy and flexibility of watchdog. It can reset and resolve system malfunctions due to software failure. The IWDG is best suited for applications that require the watchdog to run as a totally independent process outside the main application, but have lower timing accuracy constraints.

When the power control register PWR_CTRL2.IWDGRSTEN bit is '1' and the IWDG counter reaches 0, a system reset will be generated (if this bit is '0', the IWDG will count but not reset). When the PWR_CTRL2.IWDGRSTEN bit is '1' and the IWDG counter reaches 0, it can wake up low power consumption (if this bit is '0', IWDG will count and reset but can only wake up SLEEP/STOP0, not STOP2/STANDBY).

Note: This chapter is based on the system default IWDGRSTEN=1, IWDGWPEN=1 discussion..

16.2 Main features

- Independent 12-bit down-counter
- RC oscillator provides independent clock source, which can also operate in SLEEP, STOP0, STOP2 and STANDBY mode.
- Reset and low-power wake-up can be matched.
- A system reset occurs when the down counter reaches 0x0000 (if watchdog activated).

16.3 Functional description

LSI User Program 40KHz $IWDG_KEY.KEYV == 0x5555$ IWDG_PREDIV.PD IWDG_STS.PVU 4/8/16/32/64/128/256 Counter == 0IWDG_RELV.REL 12 Bit IWDG Reset 12-bit reload value Down Counter IWDG_STS.CRVU Reload Enable IWDG_KEY.KEYV

Figure 16-1 Functional block diagram of the independent watchdog module

Note: Watchdog function is in V_{DD} power supply area, and it can still work normally in SLEEP, STOP0, STOP2 and STANDBY modes.

To enable IWDG, we need to write 0xCCCC to IWDG_KEY.KEYV[15:0] bits. Counter starts counting down from reset value (0xFFF). When counter count to 0x000, it generates a reset signal (IWDG_RESET) to MCU. Other than that, as long as 0xAAAA (reload request) is write to IWDG_KEY.KEYV[15:0] bits before reset, the counter value is set to the reload value in the IWDG_RELV.REL[11:0] bits and prevents the watchdog from resetting the entire device.

If the "hardware watchdog timer" function is enabled through the selection byte, the watchdog will automatically start running after the system is powered on and will generate a system reset, unless the software reloads the counter before it reaches '0'.

16.3.1 Register access protection

IWDG_PREDIV and IWDG_RELV register are write protected. To modify the value of those two register, user needs to write 0x5555 to IWDG_KEY.KEYV[15:0] bits. Writing other value enables write protections again. IWDG_STS.PVU indicates whether the pre-scaler value update is on going. IWDG_STS.CRVU indicates whether the IWDG is updating the reload value. The hardware sets the IWDG_STS.PVU bit and/or IWDG_STS.CRVU bit when the pre-scaler value and/or reload value is updating. After the pre-scaler value and/or reload value update is complete, the hardware clears the IWDG_STS.PVU bit and/or IWDG_STS.CRVU bit.

The reload operation (IWDG_KEY.KEYV[15:0] configured with value of 0xAAAA) will also cause the registers to become write protected again.

16.3.2 Debug mode

In debug mode (Cortex-M4 core stops), IWDG counter will either continue to work normally or stops, depending on DBG_CTRL.IWDG_STOP bit in debug module. If this bit is set to '1', the counter stops. The counter works normally when the bit is '0'. See the chapter on debugging module for details 26.3.2.

16.4 User interface

IWDG module user interface contains 4 registers: Key Register (IWDG_KEY), Pre-scale Register (IWDG_PREDIV), Reload Register (IWDG_RELV) and Status Register (IWDG_STS).

16.4.1 Operate flow

When IWDG is enable from reset from software (write 0xAAAA to IWDG_KEY.KEYV[15:0] bits) or hardware (clear WDG_SW bit). It starts counting down from 0xFFF. Down counting gap is determined by pre-scale LSI clock. Once the counter is reloaded, each new round will start from the value in IWDG_RELV.REL[11:0] instead of 0xFFF.

When program is running normally, software needs to feed IWDG before counter reaches 0 and start a new round of down counting. When counter reach 0, this indicates program malfunction. IWDG generates reset signal under this circumstance.

If user wants to configure IWDG pre-scale and reload value register, it needs to write 0x5555 to IWDG_KEY.KEYV[15:0] first. Then confirm IWDG_STS.CRVU bit and IWDG_STS.PVU bit. IWDG_STS.CRVU bit indicates reload value update is ongoing, IWDG_STS.PVU indicates Pre-scale divider ratio is updating. Only when those two bit are 0 then user can update corresponding value. When update is on-going, hardware sets corresponding bit to 1. At this time, reading IWDG_PREDIV.PD[2:0] or IWDG_RELV.REL[11:0] is invalid since data needs sync to LSI clock domain. The value read from IWDG_PREDIV.PD[2:0] or IWDG_RELV.REL[11:0] will be valid after hardware clears the IWDG_STS.PVU bit or IWDG_STS.CRVU bit.

If the application uses more than one reload value or pre-scaler value, it must wait until the IWDG_STS.CRVU bit is reset before changing the reload value, the same as changing the pre-scaler value. However, after updating the pre-scale and/or the reload value, it is not necessary to wait until IWDG_STS.CRVU bit or IWDG_STS.PVU bit are reset before continuing code execution (even in case of low-power mode entry, the write operation is taken into account and will complete).

Pre-scale register and reload register controls the time that generates reset, as shown in Table 16-1.

Table 16-1 IWDG counting maximum and minimum reset time

Pre-scale factor	PD[2:0]	Minimum (ms) RL[11:0]=0	Maximum (ms) RL[11:0]=0xFFF
/4	000	0.1	409.6
/8	001	0.2	819.2
/16	010	0.4	1638.4
/32	011	0.8	3276.8
/64	100	1.6	6553.6
/128	101	3.2	13107.2
/256	11x	6.4	26214.4

16.4.2 IWDG configuration flow

Software flow:

 Write 0x5555 to IWDG_KEY.KEYV[15:0] bits to enable write access of IWDG_PREDIV and IWDG_RELV registers.

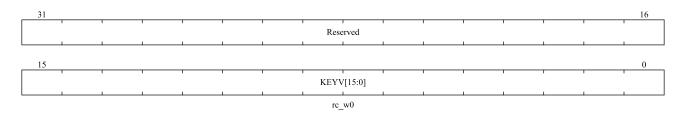
386

- 2. Check IWDG_STS.PVU bit or IWDG_STS.CRVU bit, if they are 0, continue next step.
- 3. Configure IWDG_PREDIV.PD[2:0] bits to select pre-scale value.
- 4. Configure IWDG_RELV.REL[11:0] bits reload value.
- 5. Writing 0xAAAA to IWDG_KEY.KEYV[15:0] bits to upload counter with reload value.
- 6. Enable watchdog by software or hardware writing 0xCCCC to IWDG_KEY.KEYV[15:0] bits.

If user wants change pre-scale and reload value, repeat step 1~5. If not, just feed the dog with step 5.

16.5 IWDG registers

16.5.1 IWDG register overview


Table 16-2 IWDG register overview

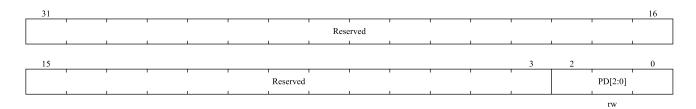
Offset	Register	31	30	29	28	27	26	25	24	23	22	;	21 20	19	18	17	10	15	7	13	12	11	10	0	~ ∞	ı	, 9	ų	S 4	. ,	3	7.	1	0
0x00	IWDG_KEY								Rese		a d														KEY	V[1:	5:0]							
0x00	Reset value								Rese	erve	eu							0	(0	0	0	0	0	0	(0	(0		0	0	0	0
0x04	IWDG_PREDIV														R	leserv	ed															PD	[2:0]	
	Reset value																															0	0	0
	IWDG_RELV																										REL	[11	:0]					
0x08	Reset value										Res	erv	ved									1	1	1	1	1	1 1	1	1 1		1	1	1	1
0x0C	IWDG_STS															Rese	erv	red															CRVU	PVU
	Reset value														0	0																		

16.5.2 IWDG key register (IWDG_KEY)

Address offset: 0x00

Reset value: 0x00000000

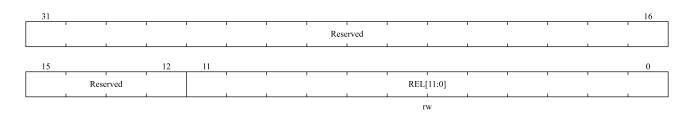
Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained.
15:0	KEYV[15:0]	Key value register: only certain value will serve particular function
		0xCCCC: Start watch dog counter, does not have any effect if hardware watchdog is enable, (if
		hardware watchdog is selected, it is not limited by this command word)
		0xAAAA: Reload counter with REL value in IWDG_RELV register to prevent reset.
		0x5555: Disable write protection of IWDG_PREDIV and IWDG_RELV register


387

16.5.3 IWDG pre-scaler register (IWDG_PREDIV)

Address offset: 0x04

Reset value: 0x00000000



Bit field	Name	Description
31:3	Reserved	Reserved, the reset value must be maintained.
2:0	PD[2:0]	Pre-frequency division factor
		Pre-scaler divider: with write access protection when IWDG_KEY.KEYV[15:0] is not 0x5555. The
		IWDG_STS.PVU bit must be 0 otherwise PD [2:0] value cannot be changed. Divide number is as
		follow:
		000: divider /4
		001: divider /8
		010: divider /16
		011: divider /32
		100: divider /64
		101: divider /128
		Other: divider /256
		Note: Reading this register will return the pre-divided value from the VDD voltage domain. If a write
		operation is in progress, the read-back value may be invalid. Therefore, the read value is valid only
		when the IWDG_STS.PVU bit is '0'.

16.5.4 IWDG reload register (IWDG_RELV)

Address offset: 0x08

Reset value: 0x00000FFF

Bit field	Name	Description
31:12	Reserved	Reserved, the reset value must be maintained.

Bit field	Name	Description
11:0	REL[11:0]	Watchdog counter reload value.
		With write protection. Defines the reload value of the watchdog counter, which is loaded to the
		counter every time 0xAAAA is written to IWDG_KEY.KEYV[15:0] bits. The counter then starts to
		count down from this value. The watchdog timeout period can be calculated from this reloading value
		and the clock pre-scaler value, refer to Table 16-1.
		This register can only be modified when the IWDG_STS.CRVU bit is '0'.
		Note: Reading this register will return the reload value from the VDD voltage domain. If a write
		operation is in progress, the read-back value may be invalid. Therefore, the read value is valid only
		when the IWDG_STS.CRVU bit is '0'.

16.5.5 IWDG status register (IWDG_STS)

Address offset: 0x0C

Reset value: 0x00000000

Bit field	Name	Description
31:2	Reserved	Reserved, the reset value must be maintained.
1	CRVU	Watchdog reload value update
		Reload Value Update: this bit indicates an update of reload value is ongoing. Set by hardware and
		clear by hardware. Software can only try to change IWDG_RELV.REL[11:0] value when
		IWDG_KEY.KEYV[15:0] bits' value is 0x5555 and this bit is 0.
0	PVU	Watchdog pre-scaler value update
		Pre-scaler Value Update: this bit indicates an update of pre-scaler value is ongoing. Set by hardware
		and clear by hardware. Software can only try to change IWDG_PREDIV.PD[2:0] value when
		IWDG_KEY.KEYV[15:0] bits' value is 0x5555 and this bit is 0.

17 Window watchdog (WWDG)

17.1 Introduction

The clock of the window watchdog (WWDG) is obtained by dividing the APB1 clock frequency by 4096, and whether the program operation is abnormal is detected through the configuration of the time window. Therefore, WWDG is suitable for precise timing, and is often used to monitor software failures caused by external disturbances or unforeseen logic conditions that cause an application to deviate from its normal operating sequence. A system reset occurs when the WWDG down counter is refreshed before reaching the window register value or after the WWDG_CTRL.T6 bit becomes 0.

17.2 Main features

- 7-bit independent running down counter programmable
- After WWDG is enabled, a reset occurs under the following conditions
 - The value of the decremented counter is less than 0x40.
 - When the decremented counter value is greater than the value of the window register, it is reloaded.
- Early wake-up interrupt: If the watchdog is started and the interrupt is enabled, wake-up interrupt (WWDG_CFG.EWINT) will be generated when the count value reaches 0x40.

17.3 Function description

If the watchdog is activated (the WWDG_CTRL.ACTB bit), when the 7-bit (WWDG_CTRL.T[6:0]) down-counter reaches 0x3F(WWDG_CTRL.T6 bit is cleared), or the software reloads the counter when the counter value is greater than the value of the window register, a system reset will be generated. In order to avoid system reset, the software must periodically refresh the counter value in the window during normal operation.

Figure 17-1 Watchdog block diagram

Set the WWDG_CTRL.ACTB bit to enable the watchdog, and thereafter, the WWDG will remain on until reset occurs. The 7-bit down-counter runs independently, and the counter keeps counting down whether WWDG is enabled or not. Therefore, before enabling the watchdog, you need to set WWDG_CTRL.T [6] bit to 1, preventing reset right after enable. The pre-scaler value set by the clock APB1 and WWDG_CFG.TIMERB[1:0] bits determine the

decrement speed of the counter. WWDG_CFG.W[6:0] bits set the upper limit of the window.

When the down-counter is refreshed before reaching the window register value or after WWDG_CTRL.T6 bit becomes 0, a system reset will be generated. Figure 17-2 describes the working process of the window register.

Set the WWDG_CFG.EWINT bit to enable early wake-up interrupt. When the count-down counter reaches 0x40, an interrupt will be generated. You can analyze the cause of software failure or save important data in the corresponding interrupt service routine (ISR), and reload the counter to prevent WWDG from resetting. Write '0' to the WWDG_STS.EWINTF bit to clear the interrupt.

17.4 Timing for refresh watchdog and interrupt generation

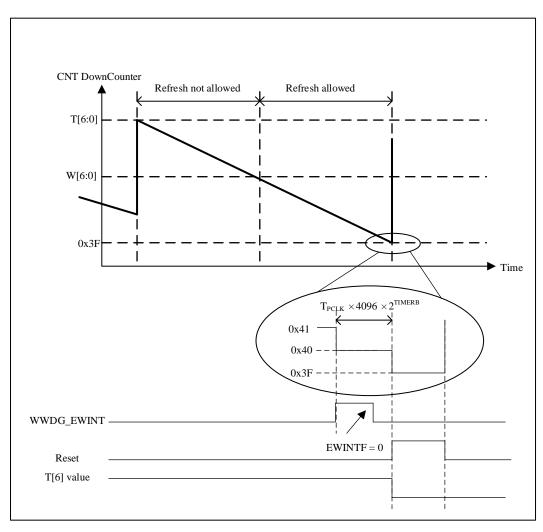


Figure 17-2 Refresh window and interrupt timing of WWDG

Watchdog refreshing window is between WWDG_CFG.W[6:0] value (maximum value 0x7F) and 0x3F, refresh outside this window will generates reset request to MCU. Counter count down from 0x7F to 0x3F using scaled APB1 clock, the maximum counting time and minimum counting time is shown in Table 17-1 (assuming APB1 clock 36 MHz) with calculate equation:

 $T_{WWDG} = T_{PCLK1} \times 4096 \times 2^{TIMERB} \times (T[5:0] + 1)$

In which:

TwwDG: WWDG timeout

T_{PCLK1}:APB1 clock interval in ms

Minimum-maximum timeout value at PCLK1 = 36MHz

Table 17-1 Maximum and minimum counting time of WWDG

TIMERB	Maximum counting (ms)	Minimum counting (ms)
0	7.28	0.113
1	14.56	0.227
2	29.12	0.455
3	58.25	0.910

17.5 Debug mode

In debug mode (Cortex-M4 core stops), WWDG counter will either continue to work normally or stops, depending on DBG_CTRL.WWDG_STOP bit in debug module. If this bit is set to '1', the counter stops. The counter works normally when the bit is '0'. See the chapter on debugging module for details 26.3.2.

17.6 User interface

17.6.1 WWDG configuration flow

- 1) Configure RCC_APB1PCLKEN.WWDGEN[11] bit to enable the clock of WWDG module;
- 2) Software setting WWDG_CFG.TIMERB[8:7] bits to configure pre-scale factor for WWDG.
- 3) Software configure WWDG_CTRL.T[6:0] bits, setting starting value of counter. Need to set WWDG_CTRL.T[6] bit to 1, preventing reset right after enable.

392

- 4) Configure WWDG_CFG.W[6:0] bits to configure upper boundary window value;
- 5) Setting WWDG_CTRL.ACTB[7] bit to enable WWDG;
- 6) Software operates WWDG_STS.EWINTF[0] bit to clear wake-up interrupt flag;
- 7) Configure WWDG_CFG.EWINT[9] bit to enable early wake-up interrupt.

17.7 WWDG registers

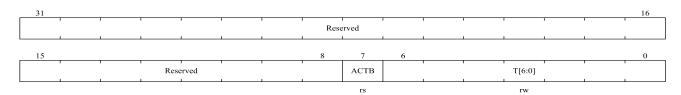
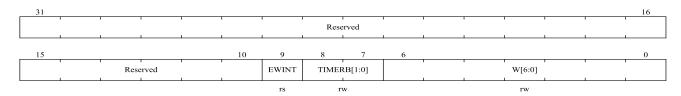

17.7.1 WWDG register overview

Table 17-2 WWDG register overview

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
000h	WWDG_CTRL												Res	erved												ACTB			,	T[6:0]		
	Reset Value																									0	1	1	1	1	1	1	1
004h	WWDG_CFG											Rese	erved											EWINT	TIM [1:				,	W[6:0]		
	Reset Value																							0	0	0	1	1	1	1	1	1	1
008h	WWDG_STS															F	teserv	ed															EWINTF
	Reset Value																																0

17.7.2 WWDG control register (WWDG_CTRL)

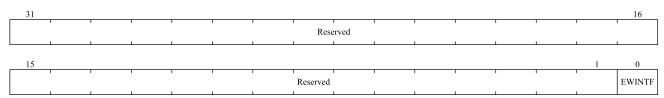
Address offset : 0x00 Reset value : 0x0000007F


Bit field	Name	Description
31:8	Reserved	Reserved, the reset value must be maintained.
7	ACTB	Activation bit
		When ACTB=1, the watchdog can generate a reset. This bit is set by software and only cleared by
		hardware after a reset. When ACTB = 1, the watchdog can generate a reset.
		0: Disable watchdog
		1: Enable watchdog
6:0	T[13:0]	These bits contain the value of the watchdog counter. It is decremented every (4096x2 ^{TIMERB}) PCLK1
		cycles. A reset is produced when it rolls over from 0x40 to 0x3F (T6 becomes cleared).

393

17.7.3 WWDG config register (WWDG_CFG)

Address offset: 0x04 Reset value : 0x0000007F



Bit field	Name	Description
31:10	Reserved	Reserved, the reset value must be maintained.
9	EWINT	Early wake-up interrupt
		When set, an interrupt occurs whenever the counter reaches the value 0x40. This interrupt is only
		cleared by hardware after a reset.
8:7	TIMERB[1:0]	Timer base.
		The time base of the pre-scaler can be modified as follows:
		00: CK Counter Clock (PCLK1 div 4096) div 1
		01: CK Counter Clock (PCLK1 div 4096) div 2
		10: CK Counter Clock (PCLK1 div 4096) div 4
		11: CK Counter Clock (PCLK1 div 4096) div 8
6:0	W[6:0]	7-bit window value
		These bits contain the window value to be compared to the down counter.

17.7.4 WWDG status register (WWDG_STS)

Address offset: 0x08 Reset value : 0x0000

rc_w0

Bit field	Name	Description
31:1	Reserved	Reserved, the reset value must be maintained.
0	EWINTF	Early wake-up interrupt flag
		This bit is set by hardware when the counter has reached the value 0x40. It must be cleared by
		software by writing '0'. A write of '1' has no effect. This bit is also set if the interrupt is not enabled.

www.nationstech.com

Nation 😵

18 SDIO Interface (SDIO)

18.1 Main features of SDIO

SDIO interface defines SD card, SD I/O card, Multimedia Card (MMC) host interface. It provides data transfer between AHB peripheral bus and SD memory card, SDIO card, Multimedia Card (MMC) and CE-ATA devices. Among them, the supported multimedia card system specifications are published by the MMCA technical committee and can be obtained on the website of the Multimedia Card Association (www.mmca.org), and the supported CE-ATA system specifications can be found in the CE-ATA working group. Available on the website (www.ce-ata.org), supported SD memory cards and SD I/O card system specifications are available through the SD Card Association website (www.sdcard.org).

Main features of SDIO are as follows:

- SD card: fully compatible with SD memory card specification version 2.0.
- SD I/O: Fully compatible with SD I/O card specification version 2.0, there are two different data bus modes: 1-bit (default) and 4-bit.
- MMC: Fully compatible with Multimedia Card System Specification Version 4.2 and earlier versions. There are three different data bus modes: 1-bit (default), 4-bit and 8-bit.
- CE-ATA: fully compatible with CE-ATA digital protocol version 1.1, fully supports CE-ATA function.
- Up to 48MHz data transfer rate in 8-bit data bus mode.
- Support interrupt and DMA request.
- Supports data and command output enable signals for controlling external bidirectional drivers.

Notice:

1. SDIO has no SPI compatible communication mode.

2. In version 2.11 of the Multimedia Card System Specification, it is defined that the SD memory card protocol only supports the I/O part of the SD card or composite card in I/O mode, and does not support many required commands in the SD storage device, such as erasing etc. some commands don't work in SDI/O devices, so SDIO doesn't support these commands either. In addition, some commands are different in SD memory card and SD I/O card, and SDIO does not support these commands.

SDIO supports only one SD/SDIO/MMC 4.2 card or CE-ATA device at a time, but can support multiple MMC version 4.1 or earlier cards.

395

Nations Technologies Inc.

www.nationstech.com

Nation 😵

18.2 SDIO bus topology

Communication on the SDIO bus is achieved by transferring commands and data. After power-on reset, the host must

initialize the card through a special message-based bus protocol. Each message is a command/response structure,

additionally, some messages have data tokens. Each part of the message is described in detail as follows:

Command: The command is serially transmitted on the CMD line and is a token to initiate an operation, sent

from the host to the card

Response: A response is serially transmitted on the CMD line, sent from the card to the host in response to a

previously received command.

Data: Data is transmitted through the data line. Data can be transferred from the card to the host or from the host

to the card. The number of data lines used for data transfer can be 1 (SDIO_DAT0), 4 (SDIO_DAT[3:0]) or 8

(SDIO_DAT[7:0]).

The structure of commands, responses and data blocks is described in the card functional description chapter. A data

transfer is a bus operation. A normal operation always consists of a command and response. Additionally, some

operations have a data token. There are other operations that include their information directly in the command or

response structure. In this case, the operation has no data token.

There are two types of data transfer commands: block and stream. Data transmitted on SD/SDIO memory cards and

CE-ATA devices is transmitted in the form of data blocks; data transmitted on MMC is transmitted in the form of

data blocks or data streams;

Data streams and data block transfers are defined as follows:

Data flow: The command initiates a continuous data flow, and the data transmission is terminated only when a

stop command appears on the CMD signal line. This mode minimizes command overhead (only MMC is

supported).

Data block: The command successfully sends a data block followed by a CRC check. Read and write operations

allow single or multiple block transfers. As with continuous read, a multi-block transfer is terminated when a

stop command appears on the CMD signal line.

The basic operations on the SDIO bus are command/response operations, and this type of bus transaction passes their

information directly in a command or response structure. In addition, some operations have data tokens. Data transfer

396

between the card and the device is done through blocks. Each transmission type is shown in the following figure:

Nations Technologies Inc.

Figure 18-1 SDIO "No Response" and "No Data" operations

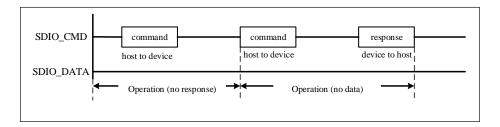


Figure 18-2 SDIO (multi) data block read operation

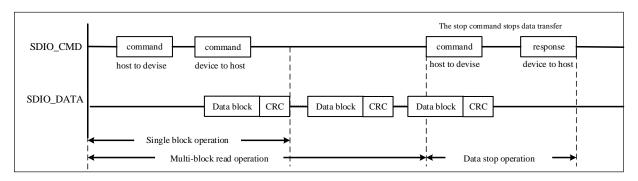
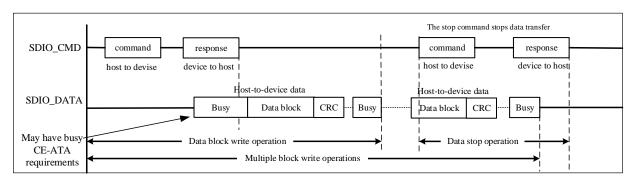



Figure 18-3 SDIO (multiple) data block write operation

Note: When there is a Busy signal, SDIO (SDIO_DAT0 is pulled low) will not send any data.

Figure 18-4 SDIO continuous read operation

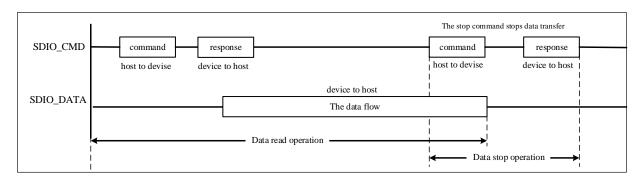
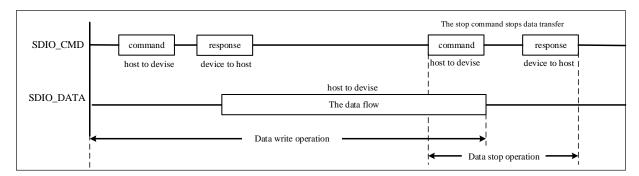



Figure 18-5 SDIO continuous write operation

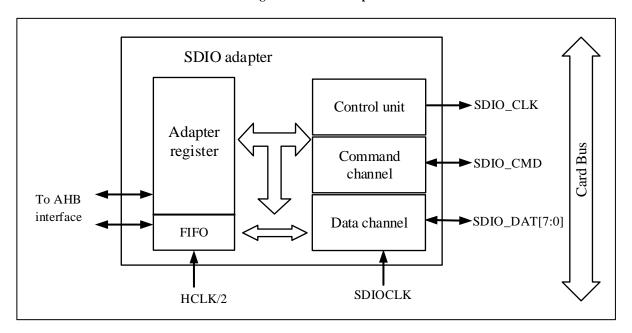
18.3 SDIO function description

Figure 18-6 is a block diagram of SDIO structure:

- SDIO adapter: It consists of control unit, command unit and data unit. The control unit generates a clock signal, and the command unit and data unit manage the transmission of commands and data respectively, thereby realizing the related functions of the MMC/SD/SD I/O card. .
- AHB bus interface: used to operate the FIFO unit of the register control data transmission in the SDIO adapter module, and generate interrupt and DMA request signals.

SDIO SDIO ► SDIO_CLK Interrupt and adapter DMA requests ► SDIO_CMD Control unit AHB bus ➤ SDIO_DAT[7:0] Register Command interface channel AHB bus FIFO Data channel **SDIOCLK** HCLK/2

398


Figure 18-6 SDIO block diagram

18.3.1 SDIO adapter

The following figure is a simplified block diagram of the SDIO adapter:

Figure 18-7 SDIO adapter

The HCLK/2 of the AHB bus is used as the clock of the adapter register and FIFO, and the SDIOCLK(equal to HCLK) is used as the clock of the control unit, command channel and data channel.

The SDIO adapter includes five parts: control unit, adapter register module, command unit, data unit and data FIFO. The signals output to the card bus are as follows:

- SDIO_DAT[7:0]: The data signal line uses push-pull mode. By default, only SDIO_DAT0 is used for data transfer after power-on or reset. The SDIO adapter can configure a wider data bus for data transfer after initializing the host, using DAT0-DAT3 or DAT0-DAT7 (only for MMC V4.2). Note that the protocol of MMC version V3.31 and previous versions only supports 1-bit data line (only SDIO_DAT0 can be used). When an SD or SD I/O card is connected to the bus, SDIO_DAT0 or SDIO_DAT[3:0] can be used by the host to configure data transfers.
- SDIO_CMD, two operating modes:
 - ◆ Open-drain mode for initialization (only for MMC version V3.31 or earlier)
 - ◆ Push-pull mode for command transfer (SD/SD I/O cards and MMC V4.2 also use push-pull drive during initialization)
- SDIO_CLK: The clock provided to the card by the SDIO controller. One bit of command or data is sent directly on the command line (SDIO_CMD) and all data lines per clock cycle. The variation range of the clock frequency of different cards is different, as follows:
 - ◆ MMC V3.31 protocol, optional clock frequency between 0MHz and 20MHz;
 - ◆ MMC V4.0/4.2 protocol, optional clock frequency between 0MHz and 48MHz;
 - ◆ SD or SD I/O card, optional clock frequency between 0MHz and 25MHz.

The following table is the MMC/SD/SD I/O card bus pin definition:

Table 18-1 MMC/SD/SD I/O Card bus pin definition

Pin	Direction	Description
SDIO_CLK	Output	MMC/SD/SDIO card clock, clock line from host to card
SDIO_CMD	Bidirectional	MMC/SD/SDIO card command, bidirectional command/response signal line
SDIO_DAT[7:0]	Bidirectional	MMC/SD/SDIO card data, bidirectional data bus

18.3.1.1 Adapter register block

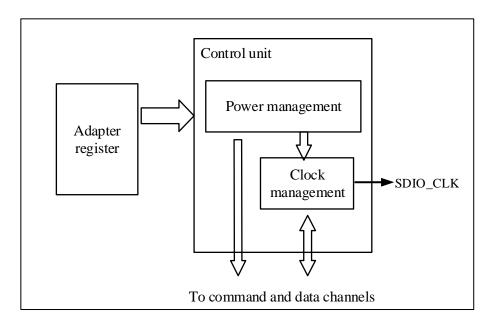
The adapter register block contains all SDIO related registers.

18.3.1.2 Control unit

The control unit contains power management functions and clock management functions, which are used for the memory card identification, initialization, clock control etc..

Power management is controlled by the SDIO_PWRCTRL register to achieve power down and power up. There are three power phases: power off, power up, and power on.

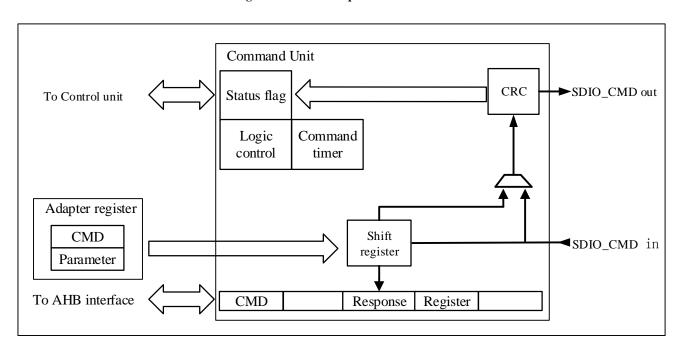
Configure the power saving mode by setting SDIO_CLKCTRL.PWRCFG bit to turn off SDIO_CLK when the bus is idle.When SDIO_CLKCTRL.CLKBYP bit is 0, SDIO_CLK is obtained by dividing the frequency of SDIOCLK; when SDIO_CLKCTRL.CLKBYP bit is 1, SDIO_CLK is directly SDIOCLK.


Hardware clock control is enabled by setting the HWCLKEN bit in the SDIO_CLKCTRL register. This function is used to avoid FIFO underflow and overflow errors. The hardware controls the switch of SDIO_CLK according to whether the system bus is busy. When the FIFO cannot receive or transmit data, the host will turn off SDIO_CLK and freeze the SDIO state machine to avoid related errors. Only the state machine can be frozen, but the AHB interface is still working. Therefore, the FIFO can be accessed through the AHB bus.

The clock management subunit generates and controls the SDIO_CLK signal. SDIO_CLK output supports: clock divider or clock bypass mode.

SDIO_CLK clock not output in these three cases after reset, during power-off and power-on phases, or when power-saving mode is enabled and the card bus is idle (8 clock cycles after the command channel and data channel subunits enter the idle phase).

Figure 18-8 Control unit



18.3.1.3 Command unit

The command unit and the card send and receive commands. The data transfer flow of the command channel is controlled by the command state machine (CPSM). The command transfer begins after setting SDIO_CMDCTRL.CPSMEN bit to 1 and writing it once. First send a 48-bit command to the card through the SDIO_CMD line, one bit of data per SDIO_CLK. The 48-bit command contains 1 start bit, 1 transmit bit, 6-bit command index (defined SDIO_CMDCTRL.CMDIDX bits), 32-bit parameters (defined by SDIO_CMDARG), 7-bit CRC, and 1-bit stop bit. Then receive the response from the card when SDIO_CMDCTRL.CMDIDX bits is not 0b00 or 0b10. The response is divided into a 48-bit short response and a 136-bit long response, and the responses are stored in the SDIO_RESPONSE0~SDIO_RESPONSE 3 registers. The command unit can also generate command status flags, which are defined in the SDIO_STS register.

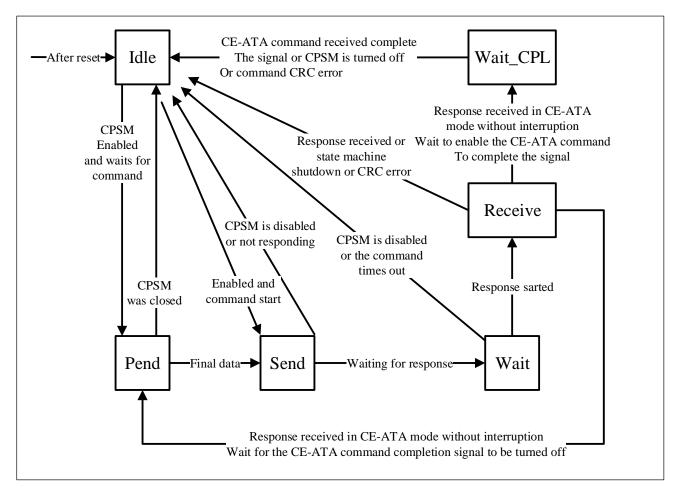


Figure 18-9 SDIO adapter command unit

■ Command Path State Machine (CPSM)

Figure 18-10 Command Path State Machine (CPSM)

◆ Idle

This state is an idle state. After the system is reset, the state is ready to send a command or the command state machine (CPSM) is turned off. All belong to the Idle state. When the command state machine (CPSM) is enabled, wait for the end of data transmission bit (SDIO_CMDCTRL.WDATEND) Enable or disable can enter the Pend state.

Note: The command state machine remains idle for at least 8 SDIO_CLK cycles to meet NCC and NRC timing constraints. NCC is the minimum time interval between two host commands, and NRC is the minimum time interval between a host command and a card response.

Pend

This state is a pending state, waiting for the end of data transfer. When the data transmission is completed, the command state machine enters the Send state from the Pend state; when the command state machine (CPSM) is turned off, the CPSM enters the Idle state.

Send

This state is the sending state, indicating that the command is being sent. If there is a response after the command is sent, the command state machine enters the Wait state, and if there is no response after the command is sent, the command state machine enters the Idle state.

♦ Wait

This state is a wait state, waiting for the response start bit. When entering the wait (Wait) state, the command timer starts to run; if a response is received, that is, the start bit is detected, the command state machine (CPSM) enters the Receive state, and when the command state machine (CPSM) enters the receiving (Receive) state Before a timeout occurred, set the timeout flag and enter the Idle state.

Note: The command timeout period is fixed at 64 SDIO_CLK clock cycles.

◆ Receive

This state is the receiving state, the response is received and the CRC is checked.

Receive a response in CE-ATA mode, disable the CE-ATA interrupt and wait for the CE-ATA device command completion signal to be enabled and then enter the Wait_CPL state.

Receive a response in CE-ATA mode, disable the CE-ATA interrupt and wait for the CE-ATA device command completion signal to be disable and then enter the Pend state.

The Idle state is entered when the CPSM is closed, a response is received, or the command CRC detection fails.

◆ Wait_CPL

In this state, wait for the CE-ATA device command completion signal, and enter the Idle state after receiving the CE-ATA command completion signal. It will also enter the Idle state when the CPSM is turned off or the command CRC check fails.

If the interrupt bit is set in the command register, the timer is turned off and the CPSM waits for an interrupt request from a certain card. If the pending bit is set in the command register, the CPSM enters the pending (Pend) state and waits for the CmdPend signal sent by the data channel subunit. When the CmdPend signal is detected, the CPSM enters the sending (Send) state, which will trigger the data counter to stop sending function of the command.

Figure 18-11 SDIO command transmission

Command register

The 6-bit command index and command type sent to the card are stored in the command register; the command type (see Section 18.7.4) determines whether and what type of response (48-bit or 136-bit).

Table 18-2 Command Channel Status Flags

Flag	Description
SDIO_STS.CMDRESPRECV	CRC correct response
SDIO_STS.CCRCERR	CRC error response
SDIO_STS.CMDSEND	Command (command that does not require a response) has been sent
SDIO_STS.CMDTIMEOUT	Response timeout
SDIO_STS.CMDRUN	Command transfer in progress

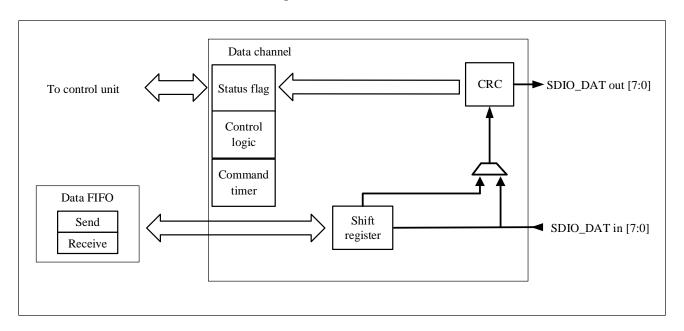
The CRC generator calculates the CRC checksum of all bits preceding the CRC code, including start bits, transmit bits, command index, and command parameters (or card status). For the long response format, the CRC checksum is calculated from the first 120 bits of the CID or CSD; note that the start bit, transmission bits and 6 reserved bits in the long response format do not participate in the CRC calculation.

The CRC checksum is a 7-bit value:

$$CRC[6:0] = remainder [(M(x) * x7) / G(x)]$$

$$G(x) = x7 + x3 + 1$$

$$M(x) = (\text{start bit}) * x39 + ... + (\text{last bit before CRC}) * x0, \text{ or}$$


$$M(x) = (\text{start bit}) * x119 + ... + (\text{last bit before CRC}) * x0.$$

18.3.1.4 Data channel

The data between the host and the card is transmitted through the data channel.

Figure 18-12 Data Channel

The data bus width of the card can be configured in the clock control register (SDIO_CLKCTRL). When the data width is 4 bits (SDIO_CLKCTRL.BUSMODE bit is 0b01), 4 bits of data will be transmitted on the four data signal lines SDIO_DAT[3:0] in each clock cycle; when the data width is 8 bits (SDIO_CLKCTRL.BUSMODE bit is 0b10), 8-bit data will be transmitted on the eight data signal lines SDIO_DAT[7:0] per clock cycle; when the data width is 1 bit (SDIO_CLKCTRL.BUSMODE bit is 0b00) or the bus mode is not selected, only 1 bit of data is transmitted on SDIO_DAT0 per clock cycle.

The data transmission flow is controlled by the Data Channel State Machine (DPSM). Data transfer begins after a write to the SDIO_DATCTRL register and setting the SDIO_DATCTRL.DATEN bit to 1. When the SDIO_DATCTRL.DATDIR bit is 0, the data is from the controller to the card, and the DPSM enters the Wait_S state. If there is data in the transmit FIFO, the DPSM enters the transmit state, and the data channel subunit starts to send data to the card; when the DATDIR bit is When 1, the data is from the card to the controller, the DPSM enters the Wait_R state, when the start bit is received, the DPSM enters the receiving state and waits for the start bit, and the data channel subunit starts to receive data from the card. Data units can also generate data status flags (defined in the SDIO_STS register).

18.3.1.5 Data path state machine (DPSM)

The data channel state machine (DPSM) operates at the SDIO_CLK frequency, and the card bus signal is synchronized with the rising edge of SDIO_CLK. DPSM has 6 states, as shown in the following figure:

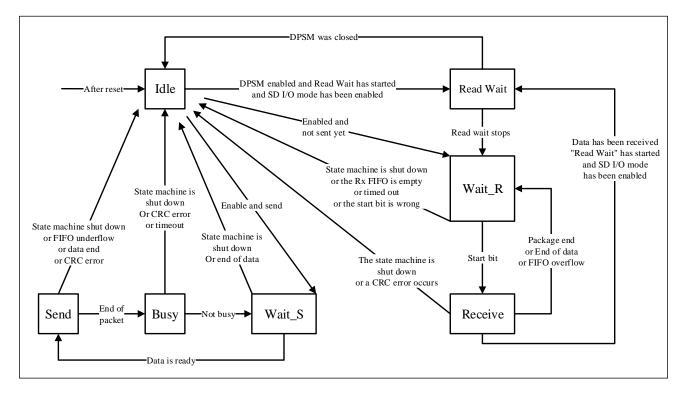


Figure 18-13 Data Path State Machine (DPSM)

Idle:

In this state, the data channel does not work, waiting to transmit and receive data, and the SDIO_DAT[7:0] output is in a high-impedance state. When the data control register is written and the enable bit is set, the DPSM loads a new value for the data counter, enters the Wait_S state when the data transfer direction is from the host to the card, and enters the Wait R state when the data transfer direction is from the card to the host. The Read Wait state is entered when DPSM is enabled and a read wait has started and SD I/O mode is enabled.

Wait_R:

In this state, the DPSM waits for the start bit of the received data. If the data times out (counter equals 0, when the receive FIFO is empty) the DPSM enters the Idle state. If the data counter is not equal to 0, the DPSM waits for a start bit on SDIO DAT; if the DPSM receives a start bit before the timeout, it enters the Receive state and loads the data block counter. If the DPSM times out before detecting a start bit, or if a start bit error occurs, the DPSM will go into the idle state and set the time-out status flag.

Receive:

In this state the DPSM receives the card's data and writes it to the data FIFO. Depending on the setting of the transfer mode bits in the data control register, the data transfer mode can be block transfer or stream transfer.

- In block mode, when the data block counter reaches 0, the DPSM waits to receive the CRC code, if the received code matches the internally generated CRC code, the DPSM enters the Wait R state, otherwise the CRC failure state flag is set and the DPSM enters the idle state state.
- In streaming mode, when the data counter is not 0, the DPSM receives data; when the counter is 0, the remaining data in the shift register is written into the data FIFO, and the DPSM enters the Wait_R state. If a FIFO overflow error occurs, the DPSM sets the FIFO error flag and enters the idle state.

■ Wait_S:

In this state, the DPSM waits for the data FIFO empty flag to be invalid or the end of the data transfer. If the data counter is 0, the DPSM enters the idle state; otherwise, the DPSM waits for the data FIFO empty flag to disappear before entering the sending state.

Note: DPSM will remain in Wait_S state for at least 2 clock cycles to meet the timing requirements of NWR. NWR is the interval from receiving the response from the card to when the host starts data transmission.

Send:

In this state, the DPSM starts sending data to the card device. Depending on the setting of the transfer mode bits in the data control register, the data transfer mode can be block transfer or stream transfer:

- ♦ In block mode, when the data block counter reaches 0, the DPSM sends the internally generated CRC code, followed by the end bit, and enters the busy state.
- ◆ In streaming mode, when the enable bit is high and the data counter is not 0, the DPSM sends data to the card device, and then enters the idle state.
- ◆ If a FIFO underflow error occurs, the DPSM sets the FIFO error flag and enters the idle state.

■ Busy:

In this state, the DPSM waits for the CRC status flag:

- ◆ If the correct CRC status is not received, the DPSM enters the idle state and sets the CRC failure status flag.
- ◆ If the correct CRC status is received, and the card is not busy (SDIO_DAT0 is not low), the DPSM enters the Wait S state.
- ♦ If the correct CRC status is not received, the DPSM enters the idle state and sets the CRC failure status flag.
- ♦ If the data timeout DPSM sets the data timeout flag and enters the idle state.
- ♦ When the DPSM is in Wait_R or busy state, the data timer is enabled and can generate a data timeout error:
- ♦ When sending data, if the DPSM is in a busy state and exceeds the timeout interval set by the program, a timeout will occur.
- ♦ When receiving data, if all data is not received and DPSM is in Wait_R state for more than the timeout interval set by the program, a timeout will occur

18.3.1.6 Data

Data can be transferred from the host to the card and vice versa.

Data is transmitted over the data line. Data is stored in a 32-word depth FIFO, each word is 32 bits wide.

Table 18-3 Data Token Format

Description	Start bit	Data	CRC16	End bit
Block Data	0	-	Yes	1
Stream Data	0	-	No	1

18.3.1.7 Data FIFO

The data FIFO unit has a data buffer for sending and receiving data buffers. The FIFO contains a data buffer and transmit and receive circuits, where the buffer size is 32 bits wide per word, 32 words in total (32 words deep). The data FIFO operates in the AHB clock region (HCLK/2), and all signals connected to the SDIO clock region (SDIOCLK) are resynchronized.

Depending on the SDIO_STS.TXRUN and SDIO_STS.RXRUN flags, the FIFO can be turned off, transmit enabled, or receive enabled. SDIO_STS.TXRUN and SDIO_STS.RXRUN are set by the data channel subunit and are mutually exclusive:

- When SDIO_STS.TXRUN is valid, the transmit FIFO represents the transmit circuit and data buffer
- When SDIO_STS.RXRUN is valid, the receive FIFO represents the receive circuit and data buffer

Transmit FIFO: When the SDIO transmit function is enabled, data can be written to the transmit FIFO through the AHB interface. The transmit FIFO has 32 consecutive addresses. There is a data output register in the transmit FIFO that contains the data word pointed to by the read pointer. When the data channel subunit fills the shift register, it moves the read pointer to the next data and transfers the data out. If the transmit FIFO is not enabled, all status flags are inactive. When sending data, the data channel subunit sets SDIO_STS.TXRUN to be valid.

Flag

Description

SDIO_STS.TFIFOF

This flag is set high when all 32 transmit FIFO words have valid data.

SDIO_STS.TFIFOE

This flag is set high when all 32 transmit FIFO words have no valid data.

SDIO_STS.TFIFOHE

This flag is set high when 8 or more transmit FIFO words are empty. This flag can be used as a DMA request.

SDIO_STS.TDATVALID

This flag is set high when the transmit FIFO contains valid data. The meaning of this flag is just the opposite of TFIFOE.

SDIO_STS.TXURERR

This flag is set high when an underflow error occurs. This flag is cleared when writing to the SDIO clear register.

Table 18-4 Transmit FIFO Status Flags

Receive FIFO: When the data channel subunit receives a data word, it will write the data into the FIFO. After the write operation is completed, the write pointer will automatically increase by one; at the other end, there is a read pointer that always points to the current data in the FIFO. If the receive FIFO is closed, all status flags are cleared and the read and write pointers are reset. The data channel subunit sets SDIO_STS.RXRUN when data is received. The following table lists the status flags of the receive FIFO. The receive FIFO can be accessed through 32 consecutive addresses.

Table 18-5 Receive FIFO Status Flags

Flag	Description
SDIO_STS.RFIFOF	This flag is set high when all 32 transmit FIFO words have valid data.
SDIO_STS.RFIFOE	This flag is set high when all 32 transmit FIFO words have no valid data.
SDIO_STS.RFIFOHF	This flag is set high when 8 or more transmit FIFO words are empty. This flag can be used as a DMA
	request.
SDIO_STS.RDATVALID	This flag is set high when the transmit FIFO contains valid data. The meaning of this flag is just the
	opposite of TFIFOE.

Flag	Description
SDIO_STS.RXORERR	This flag is set high when an underflow error occurs. This flag is cleared when writing to the SDIO
	clear register.

18.3.2 SDIO AHB Interface

The AHB interface implements access to SDIO registers, data FIFOs, and generation of interrupts and DMA requests. Includes data channel, register decoder, and interrupt/DMA control logic.

18.3.2.1 SDIO interrupt

When at least one of the selected status flags is high, the interrupt control logic generates an interrupt request. The interrupt enable register allows the interrupt logic to generate the corresponding interrupt.

18.3.2.2 SDIO/DMA Interface

The DMA interface provides a way to quickly transfer data directly between the SDIO data FIFO and memory.

The following example details how to implement this method. The host controller uses CMD24 (WRITE_BLOCK) to transfer 512 bytes from the host to the MMC card, and the DMA controller is used to fill the SDIO FIFO with data from the memory.

- 1. Complete the card identification process
- 2. Increase SDIO_CLK clock frequency
- 3. Send CMD7 command to select card and configure bus width
- 4. The configuration process of DMA1 is as follows:
 - a) Enable DMA1 controller and clear all interrupt flags
 - b) Use the base address of the memory buffer to set the source address register of DMA1 channel 3, and use the address of the SDIO_FIFO register to configure the destination address register of DMA1 channel 3.
 - c) Set the control register of DMA1 channel 3 (the memory address pointer is incremented, the peripheral address pointer is fixed, and the data width of memory and peripherals is word width)
 - d) Enable DMA1 channel 3
- 5. The process of writing a data block (CMD24) is as follows:
 - a) Set the SDIO data length register, write the data size in bytes into the SDIO_DATLEN register, write the block size in bytes into the SDIO_DATCTRL register, and then the host sends data in each block size (BLKSIZE).
 - b) Write the address of the data to the SDIO parameter register SDIO_CMDARG, which is the address of the card that needs to transmit data
 - c) Set the SDIO command control register (SDIO_CMDCTRL): SDIO_CMDCTRL.CMDIDX is set to 24 (WRITE_BLOCK); SDIO_CMDCTRL.CMDRESP[1:0] is set to 1 (SDIO card host waits for a response); SDIO_CMDCTRL.CMDRESP is set to 1 (SDIO card host waits for a short response); SDIO_CMDCTRL.CPSMEN is set to 1 (enable SDIO card host sends commands), other fields are their reset values.

- d) Wait for SDIO_STS.CMDRESPRECV bit is set, and then configure the SDIO data control register: SDIO_DATCTRL.DATEN is set to 1 (the SDIO card host is enabled to send data); SDIO_DATCTRL.DATDIR is set to 0 (the transmission direction is from the controller to the card); SDIO_DATCTRL.TRANSMOD is set to 0 (block data transfer); SDIO_DATCTRL.DMAEN is set to 1 (DMA enabled); SDIO_DATCTRL.BLKSIZE is set to 9 (512 bytes); other fields do not need to be set.
- e) Bit10 DATBLKEND flag bit of wait status register SDIO_STS is set.
- 6. Query the enable status register of the DMA channel to confirm that no channel is still enabled.

18.4 Card function description

18.4.1 Confirmation of working voltage range

All cards can use any voltage within the specified range to communicate with the SDIO card host, the minimum and maximum voltage VDD values that can be supported are defined by the operating condition register (OCR) on the card. When communication between the host and the card is initiated, the host may not know the voltages supported by the card, and the card may not know whether the host can provide the voltages it supports. In order to verify the voltage, a series of special commands are required, which are defined in the relevant specifications.

The commands defined in the protocol specification include: CMD1 (SEND_OP_COND, for MMC), ACMD41 (SD_APP_OP_COND, for SD memory cards) and CMD5 (IO_SEND_OP_COND, for SD I/O cards). These commands provide a mechanism for the host to identify and reject cards that do not match the VDD range required by the host. This is because a card whose internal memory stores the Card Identification Number (CID) and Card Specific Data (CSD) can only transmit these information under the condition of data transfer VDD. When the SDIO card host module is inconsistent with the VDD range of the card, the card will not be able to complete the identification cycle and cannot send CSD data; therefore, when the VDD range does not match, the SDIO card host can use these special commands to identify and reject the card. The SDIO card host will generate the required VDD voltage when executing these commands. Cards that cannot transmit data within the specified voltage range are disconnected from the bus and become inactive.

If the card cannot operate at the supplied voltage, it does not return a response and remains in an idle state. It is mandatory to send CMD8 before ACMD41 command when initializing SD card. Receiving CMD8 is to let the card know that the host supports the physical layer 2.00 protocol and the card supports higher version functions. If the card can operate at the supplied voltage, the response will return the supply voltage and the check mode set in the command parameter.

18.4.2 Card reset

The CMD0 command (GO_IDLE_STATE) is a software reset command, which sets the multimedia card (MMC) and SD memory card into the idle state (Idle State). Regardless of the current card state. The reset command (CMD0) is only used for the memory part of the memory or combination card. The CMD52 command (IO_RW_DIRECT) resets the SD I/O card. Cards in the Inactive State are not affected by this command.

After the host is powered on, all cards are in the idle state (Idle State), including the cards that were previously in the inactive state (Inactive State). After power-on or after executing CMD0, the outputs of all cards are in a high-impedance state. The CMD lines of all cards are in input mode, waiting for the start bit of the next command, while

all cards are initialized to a default relative card address (RCA=0x0001) and driven with a default clock frequency of 400kHz (lowest speed, maximum current drive capability).

18.4.3 Card identification mode

After the host resets, it enters the card identification mode to search for a new card on the bus. In card identification mode, the host resets all cards, verifies the operating voltage range, identifies the cards and asks each card for the relative card address (RCA). This operation is done separately on each card's own command signal line CMD. All data communication in card identification mode uses only the command line (CMD). During card identification, the card should operate at clock rate F_{OD} (400 kHz).

18.4.4 Card identification process

The identification process of different cards is different; for multimedia cards, the card identification process starts with the clock frequency Fod, and all SDIO_CMD outputs are driven open, allowing parallel connection of cards during this process.

The identification process of the multimedia card is as follows:

- The bus is enabled
- The SDIO card host broadcasts the CMD1 (SEND_OP_COND) command, receives the operating conditions, 2. and obtains the "wire AND" of the contents of the operating condition registers of all cards
- If the card is not compatible, it will be placed in an inactive state 3.
- The SDIO card host broadcasts a CMD2 command (ALL_SEND_CID) to all active cards. All active cards simultaneously send their CID numbers serially. Those cards that detect that the output CID bits do not match the data on the command line must Stop sending and wait for the next recognition cycle. In the end, only one card can successfully transmit the complete CID to the SDIO card host and enter the identification state.
- The SDIO card host sends a CMD3 command (SET RELATIVE ADDR) to the card. This new address is called the relative card address (RCA), which is shorter than the CID and is used to address the card. At this point, the card goes into a standby state and no longer responds to the new identification process, and at the same time its output drive changes from open circuit to push-pull mode.
- The SDIO card host repeats steps 4 and 5 above until a timeout condition is received.

The SD card identification process starts with the clock frequency Fod, and all SDIO_CMD outputs are push-pull drivers instead of open-circuit drivers. The identification process is as follows:

- The bus is enabled 1.
- 2. The SDIO card host broadcasts the ACMD41 (SEND_APP_OP_COND) command to get the contents of the operating condition registers of all cards
- If the card is not compatible, it will be placed in an inactive state 3.
- The SDIO card host broadcasts CMD2 (ALL SEND CID) to all activated cards, and all activated cards return 4. their unique card identification number (CID) and enter the identification state.
- The SDIO card host sends a CMD3 (SET_RELATIVE_ADDR) command and an address to an activated card,

this new address is called relative card address (RCA), which is shorter than CID and is used to address the card. At this point, the card goes into the standby state. The host of the SDIO card can send this command again to change the RCA, and the RCA of the card will be the last assignment.

6. The SDIO card host repeats steps 4 and 5 above for all activated cards until a timeout condition is received.

The SD I/O card identification process is as follows:

- 1. The bus is enabled
- 2. The SDIO card host sends the CMD5 (IO_SEND_OP_COND) command to get the contents of the card's operating condition register
- 3. If the card is not compatible, it will be placed in an inactive state
- 4. The SDIO card host sends a CMD3 (SET_RELATIVE_ADDR) command and an address to an activated card, this new address is called relative card address (RCA), which is shorter than CID and is used to address the card. At this point, the card goes into the standby state. The host of the SDIO card can send this command again to change the RCA, and the RCA of the card will be the last assignment.

18.4.5 Write data block

When the write data block command (CMD24-27) is executed, one or more data blocks are transferred from the host to the card(1-bit or 4-bit high level). If the CRC check is wrong, the card indicates a transfer failure via the SDIO_DAT signal line, the transferred data is discarded without being written, and all subsequent (in multi-block write mode) transferred data blocks will be ignored.

If the host transmits partial data and the accumulated data length is not aligned with the data block, and block misalignment is not allowed (parameter WRITE_BLK_MISALIGN for CSD is not set), the card will detect block misalignment errors before the start of the first unaligned block (set the ADDRESS_ERROR error bit in the status register) and ignore subsequent data transfers at the same time. The write operation is also aborted when the host attempts to write to a write-protected area, in which case the card will set the WP_VIOLATION bit in the status register.

Setting the CID and CSD registers does not require setting the block length in advance, and the transmitted data is also protected by CRC. If part of the CSD or CID register is stored in ROM, then this unchangeable part must match the corresponding part of the receive buffer. If there is an inconsistency, the card will report an error without modifying the contents of any register.

Some cards may take a long or unpredictable time to complete the writing of a data block. After receiving a data block and completing the CRC check, the card will start the write operation. If the write buffer is full and cannot be re-issued with a new WRITE_BLOCK command When receiving new data, it will pull the SDIO_DAT signal line low. The host can use SEND_STATUS (CMD13) to query the status of the card at any time, and the card will return the current status. The status bit READY_FOR_DATA indicates whether the card can accept new data or whether a write operation is still in progress. The host can unselect the card (select another card) by sending the CMD7 command, and put the card in the disconnected state, which can release the SDIO_DAT signal line without interrupting the outstanding write operation; when a card is reselected, if The write operation is still in progress and the write buffer is still unavailable, it will again indicate the busy state by pulling the SDIO_DAT signal line low.

18.4.6 Read data block

The read data block is a block-based data transfer. The basic unit of data transfer is a data block. The size of the block is defined in CSD (READ_BL_LEN). If READ_BL_PARTIAL is set, smaller blocks of data can also be transferred, whose start and end addresses are fully contained within the 512-byte boundary, and READ_BL_LEN defines the size of the physical block.

CMD17 (READ_SINGLE_BLOCK) means to start reading a data block, and the card returns to the sending state after the transmission is over. CMD18 (READ_MULTIPLE_BLOCK) starts to read multiple consecutive data blocks. In order to ensure the integrity of data transmission, there is a CRC check code after each data block.

The block length is set by CMD16 and can be set to 512 bytes regardless of the setting of READ_BL_LEN.

The host can abort a multi-block read operation at any time, regardless of the type of operation. Send a stop transfer command (CMD12) to abort the operation. The stop command has a delay in execution due to serial command transmission. Data transfer is stopped after the end bit of the stop command.

When using CMD18 to read the last block of userland, the host should ignore possible OUT_OF_RANGE errors, even if the sequence is correct.

If the card detects an error (for example: out-of-bounds, address misplacement, or internal error) during a multi-block read operation (of either type), it stops the data transfer and remains in the data state; at this point the host must send a stop transfer command to abort operate. Read errors are reported in response to the stop transfer command. If the host sends the stop transmission command, the card has already transmitted the last data block in a certain number of multiple data block operations, because the card is no longer in the data state at this time, the host will get an illegal command response. If the cumulative length of the partial blocks transferred by the host is not block aligned and block misalignment is not allowed, the card will detect block misalignment at the beginning of the first unaligned block, set the ADDRESS_ERROR error flag in the status register, interrupt the transfer and wait for the data Status of the stop command.

18.4.7 Data Streaming Operation (Only for Multimedia Card)

Data stream operations include data stream write and data stream read. In streaming mode, data is transferred in bytes without CRC after each data block.

18.4.7.1 Data stream write

Data stream writing to CMD20 (WRITE_DAT_UNTIL_STOP) starts to transmit data from the host to the card, starting from the starting address and continuing to transmit until the host issues a stop command. If partial data block transfers are allowed (CSD parameter WRITE_BL_PARTIAL is set), data flow can be started and stopped at any address in the card's address space, otherwise data flow should only be started and stopped at data block boundaries. Since the amount of data to be transmitted is not predetermined, the CRC check cannot be used. If the maximum memory address is reached when sending data, subsequent data transfers will be discarded even if the SDIO card host does not send a stop command.

If the host provides an out-of-range address as a parameter to CMD20, the card will reject the command, stay in the transmit state, and set ADDRESS_OUT_OF_RANGE; it should be noted that the data stream write command is only applicable to 1-bit bus configuration (SDIO_DAT0 signal on-line). It is considered an illegal command if CMD20 is

issued in other bus configuration.

The maximum clock frequency for streaming write operations is calculated by the formula given below:

$$Max_Write_Frequence = Min(TRAN_SPEED, \frac{8 \times 2^{WRITE_BL_LEN} - 100 \times NSAC}{TAAC \times R2W\ FACTOR})$$

■ Max_Write_Frequence: maximum write frequency

■ TRAN_SPEED: Maximum bus clock frequency

■ WRITE_BL_LEN: maximum write block length

■ NSAC: Data read operation time in CLK cycles 2

■ TAAC: Data read operation time 1

■ R2W FACTOR: Write speed factor

All parameters are defined in CSD registers. If the host attempts to use a higher frequency, the card may not be able to process the data and stop programming while setting the error bit SDIO_STS.RXORERR in the status register and ignoring all subsequent data transfers, waiting (in the receive data state) for a stop command. If the host attempts to write a value in the write-protected area, the write operation will be aborted and the card will set the WP_VIOLATION bit.

18.4.7.2 Data stream read

Data Streaming Data transfer is controlled by the READ_DAT_UNTIL_STOP (CMD11) command.

This command requires the card to read data from the specified address until the SDIO card host sends a STOP_TRANSMISSION (CMD12) command. Due to the delay of serial command transmission, the execution of the stop command will have a certain delay, so the data transfer will not stop until the end bit of the stop command. If the host provides an out-of-range address as a parameter to pass to CMD11, the card will reject the command and stay in the transfer state, the SDIO card host does not send a stop command, and the subsequently transferred data is also considered invalid data.

Another point to note is that the data stream read command only works in 1-bit bus mode (SDIO_DAT0 signal line). If CMD11 is issued in other bus configurations, the command is considered illegal.

The maximum clock frequency for stream read operations can be calculated as:

$$Max_Read_Frequence = Min(TRAN_SPEED, \frac{8 \times 2^{READ_BL_LEN} - 100 \times NSAC}{TAAC \times R2W_FACTOR})$$

■ Max_Read_Frequence: maximum read frequency

■ TRAN_SPEED: maximum data transfer rate

■ READ BL LEN: maximum read data block length

■ NSAC: Data read operation time in CLK cycles2

■ TAAC: Data read operation time 1

■ R2W_FACTOR: Write speed factor

If the host tries to use a higher frequency, the card will not be able to process the data transfer, at this time the card

sets the SDIO_STS.TXURERR error bit in the status register, aborts the data transfer and waits for a stop command in the data state.

18.4.8 Erase

Erase includes block erase and sector erase. The erasing unit of the multimedia card is the erasing group, the basic writing unit of the card is the writing data block, and the erasing group is calculated by the writing data block. The size of the erase group is a card specific parameter and is defined in the CSD.

The host can erase a contiguous range of erase groups. There are three steps involved in starting the erase operation. First, the host uses the ERASE_GROUP_START (CMD35) command to define the start address in the contiguous range, then uses the ERASE_GROUP_END (CMD36) command to define the end address of the contiguous range, and finally sends the erase command ERASE (CMD38) to start the erase operation. In the erase command, the address field is the erase group address in bytes. The card discards the portion that is not aligned with the size of the erase group and aligns the address boundary to the boundary of the erase group.

If an erase command (CMD35, CMD36, CMD38) is not received as described above, the card should set the ERASE_SEQ_ERROR bit in the status register and restart the erase operation (waiting for the first step).

If a command other than SEND_STATUS and erase command is received, the card should set ERASE_RESET in the status register, reset the erase sequence and execute the new command.

If the erase range includes write-protected data blocks, the write-protected area will not be erased, only non-protected blocks can be erased, and the card should set the WP_ERASE_SKIP status bit in the status register.

If the host supplies an out-of-range address as an argument to CMD35 or CMD36, the card will reject the command, set the ADDRESS_OUT_OF_RANGE bit in the status register, and reset the entire erase sequence.

During the entire erasing process, Kara low SDIO_DAT signal. The actual erase time may be long, and the host can send a CMD7 command to deselect the card.

18.4.9 Wide bus selection and de-selection

The default bus width is 1 bit after the card is powered on or after the GO_IDLE_STATE (CMD0) command. The bus width can be changed after the host has verified the functional pins on the bus and the card is initialized.

The wide bus (4-bit bus width) operation mode can be selected by the SET_BUS_WIDTH (ACMD6) command, it should be noted that the SET_BUS_WIDTH (ACMD6) command is only valid in the transfer state, which means that only after the card is selected using the SELECT/DESELECT CARD (CMD7) command to change the bus width.

18.4.10 Protection management

The host supports three card protection methods to protect data from being erased or rewritten:

- Internal write protection of the card
- 2. Physical write protection switch
- Card lock operation for password management

18.4.10.1 Write protection of internal cards

By permanently or temporarily setting the write-protect bit in the CSD, the user can permanently write-protect the entire card to prevent the card's data from being overwritten or erased. Some cards set the write protection of a group of sectors by setting the WP_GRP_ENABLE bit of the CSD, so that only part of the data can be selected to be protected. Write protection can be changed by program. The basic unit of write protection is the CSD parameter WP_GRP_SIZE sectors. Users can customize the size of the write protection area by configuring the value of WP_GRP_SIZE. The SET_WRITE_PROT command sets the write protection of the specified write protection group, and the CLR_WRITE_PROT command clears the write protection of the specified write protection group. The SEND_WRITE_PROT command requests the device to send the status of the write protection bit. This command is similar to the single data block read command. A data block of write protection bits, which represents 32 write protection groups starting from the specified address, followed by a 16-bit CRC code at the end. The address field of the write protect command is a group address in bytes, the card will truncate all addresses outside the group size.

18.4.10.2 Physical write protection switch

There is a mechanical slide switch on the side of the card, which provides the user with setting whether to write-protect the card. When the sliding switch is placed in the open position of the small window, the card is in write-protected state, and when the sliding switch is placed in the closed position of the small window, the card is not write-protected, and the user can modify the content in the card. There is also a switch on the corresponding part of the slot of the card to indicate whether the card is in the write-protected state. It should be noted that this instruction is for the SDIO card host module, and the internal circuit of the card does not know the position of the write-protect switch.

18.4.10.3 Password protection

Password protection means that the host module can lock or unlock the card with a password. The password is stored in the 128-bit PWD register, and the length of the password is stored in the 8-bit register of PWDS_LEN. These registers are non-volatile, so their contents are not lost after a power loss. The locked card supports all basic commands, such as reset, initialization, and status query commands sent by the SDIO card host module. If the card has previously set a password (that is, the value of PWDS_LEN is not 0), the card will be automatically locked after each power-on.

The same as the CSD and CID register write commands, the lock/unlock command is only valid in the transmission state, which also means that the card must be selected before using the lock/unlock command, and there is no address parameter in this command. of.

The structure and bus operation type of the lock/unlock command of the card are the same as the single data block write command of the card. The data block transmitted by the command contains the information required by the command, such as password setting mode, PWD content and lock/unlock instructions. Before sending the lock/unlock command of the card, the SDIO card host module has defined the length of the command data block. The structure of the command is shown in Table 18-6.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit1 Bit0 Byte Bit2 0 Reserved (Remains at 0) **ERASE** LOCK_UNLOCK CLR PWD SET PWD PWDS LEN 2 Password Data (PWD)

416

Table 18-6 Lock/Unlock Data Structure

PWDS_LEN-1

- ERASE: Setting this bit to 1 will perform a forced erase, all other bits must be 0. In this case only the command byte is sent, all other bytes of the command will be ignored by the card.
- LOCK UNLOCK: When this bit is 1, it means the card is locked, and when it is 0, it means it is unlocked. This bit can be set at the same time as SET_PWD, but not at the same time as CLR_PWD.
- CLR PWD: Set this bit to 1 clear password data.
- SET_PWD: This bit is 1 to save the password data to the memory.
- PWDS_LEN: This parameter defines the length of the password, in bytes.
- PWD: password data, according to different commands, the password data is different. For example, in the case of setting a new password, it contains the new password, and when changing the password, it contains the old password and the new password set.

The following sections list the command sequences to set/clear password, lock/unlock, and force wipe.

18.4.10.4 Set password

- If the card has not been selected before, use the CMD7 (SELECT/DESELECT_CARD) command to select a card.
- Use CMD16 (SET_BLOCKLEN) to define the length of the data block, the 8-bit card lock/unlock mode, the 8-2. bit PWDS_LEN (in bytes), and the number of bytes of the new password. When the password replacement is completed, the size of the data block in which the command is sent must take into account the lengths of both the old and new passwords.
- On the data line, send the CMD42 (LOCK/UNLOCK) command with a suitable data block length and include a 16-bit CRC code. The data block contains the operation mode (SET PWD=1), the password length (PWDS LEN) and the password data itself (PWD). When the password replacement is completed, the password length value (PWDS_LEN) should be the sum of the lengths of the old and new passwords. The password data field (PWD) is preceded by the old password (in use) and followed by the new password.
- When the old password sent is incorrect (size or content does not match the expected value), LOCK UNLOCK FAILED in the status register will be set and the old password will not be changed. If the old password matches, the new password data and length are stored in PWD and PWDS LEN respectively.

The password length field (PWDS_LEN) can indicate whether a password is currently set. If the field is zero, it means that the password is not used. Only when the field is not zero, the card will be automatically locked when powered on. If a password is set, and you want to lock the card immediately without power failure, you can set the LOCK_UNLOCK bit or send an additional lock command.

18.4.10.5 Clear password

- If the card has not been selected before, use the CMD7 (SELECT/DESELECT_CARD) command to select a card.
- Use CMD16 (SET_BLOCKLEN) to define the data block length, 8-bit card lock/unlock mode, 8-bit PWDS_LEN (in bytes), and the number of bytes of the currently used password.
- On the data line, send the CMD42 (LOCK/UNLOCK) command with a suitable data block length and include

a 16-bit CRC code. The data block contains the operating mode (CLR_PWD), the password length (PWDS_LEN) and the password data itself (PWD). If the passwords match, the contents of PWD will be cleared and PWDS_LEN will be set to 0. If the contents of PWD and PWDS_LEN do not match the transmitted password and its size, the LOCK_UNLOCK_FAILED error bit in the status register is set and the password is unchanged.

18.4.10.6 Card lock

- If the card has not been selected before, use the CMD7 (SELECT/DESELECT_CARD) command to select a card.
- 2. Use CMD16 (SET_BLOCKLEN) to define the data block length, 8-bit card lock/unlock mode, 8-bit PWDS_LEN indicates the number of bytes of the currently used password.
- 3. On the data line, send the CMD42 (LOCK/UNLOCK) command with a suitable data block length and include a 16-bit CRC code. The data block contains the operation mode (LOCK_UNLOCK=1), the password length (PWDS_LEN) and the password data itself (PWD).
- 4. If the PWD content is equal to the sent password, the card will be locked and the CARD_IS_LOCKED status bit in the status register will be set. If the sent password does not match the expected password (length or content), the LOCK_UNLOCK_FAILED error bit in the status register is set and the lock operation fails.

Setting the password and locking the card can be performed simultaneously in the same sequence of operations. In this case, the card host module first sets the password according to the above steps. It should be noted that the LOCK_UNLOCK bit should be set in the third step of sending the new password command.

Only the card that has previously set a password (PWDS_LEN is not 0) will be automatically locked when it is powered on and reset. Locking a card that is already locked or a card without a password will fail and set the LOCK_UNLOCK_FAILED error bit in the status register.

18.4.10.7 Card unlock

- If the card has not been selected before, use the CMD7 (SELECT/DESELECT_CARD) command to select a card.
- 2. Use CMD16 (SET_BLOCKLEN) to define the data block length, 8-bit card lock/unlock mode, 8-bit PWDS_LEN (in bytes), and the number of bytes of the currently used password.
- 3. On the data line, send the CMD42 (LOCK/UNLOCK) command with a suitable data block length and include a 16-bit CRC code. The data block contains the operation mode (LOCK_UNLOCK=0), the password length (PWDS_LEN) and the password data itself (PWD).
- 4. If the sent password does not match the expected password (length or content), set the LOCK_UNLOCK_FAILED error bit in the status register to 1, while the card remains locked. When the password is matched, the card lock is released, and the CARD_IS_LOCKED bit in the status register is cleared at the same time.

If the unlocked state is only valid during the current power supply process, as long as the PWD is not cleared, the card will still be automatically locked after the next power-on.

Attempting to unlock an already unlocked card will cause the operation to fail and set the LOCK_UNLOCK_FAILED error bit in the status register.

18.4.10.8 Force erase

A forced erase operation can erase all data and passwords in the card. If the user forgets the password, the card can be made available again through a forced wipe operation.

- 1. If the card has not been selected before, use the CMD7 (SELECT/DESELECT_CARD) command to select a card.
- 2. Use CMD16 (SET_BLOCKLEN) to define the data block length, 8-bit card lock/unlock mode, 8-bit PWDS_LEN indicates the number of bytes of the currently used password.
- 3. Send a CMD42 (LOCK/UNLOCK) command with a suitable data block length on the data line and include a 16-bit CRC code. The data block contains the operating mode (ERASE=1) all other bits are 0.
- 4. If and only if the ERASE bit in the data field is 1, all contents of the card will be erased, including the PWD and PWDS_LEN fields. The card is no longer locked after erasing. If any other bit is not 0, set the LOCK_UNLOCK_FAILED error bit in the status register, the data in the card remains unchanged, and the card remains locked.

NOTE: Attempting to perform an erase operation on an already unlocked card will cause the operation to fail and set the LOCK UNLOCK FAILED error bit in the status register.

18.4.11 Card status register

18.4.11.1 Card status register

Card status refers to the error and status information of the executed command, indicated in the response.

Generally, after receiving a command, the card will return the status information related to the command to the card host. These status information may be stored in the local status register. This status information is called the card's status field, and the response format R1 contains a 32-bit field called the card status.

Table 18-7 defines the different status messages.

Table 18-7 Card Status

Bits	Identifier	Туре	Value	Description	Clear condition
31	ADDRESS_OUT_OF_RAN GE	EXR	'0'=no error '1'=error	The address parameter in the command is out of the allowed range for the card. A multi-block or stream read/write operation (even from a valid address) attempts to read or write beyond the capacity of the card.	С
30	ADDRESS_MISALIGN		'0'=no error '1'=error	The first data block defined by the address parameter in the command (contrasted with the current data block length) is not aligned with the card's physical block. A multi-block or stream read/write operation (even if starting at a legal address) attempts to read or write a block of data that is not aligned with the	С

Bits	Identifier	Туре	Value	Description	Clear
				whereign block	condition
29	BLOCK_LEN_ERROR		'0'=no error '1'=error	physical block. The parameter of the SET_BLOCKLEN command exceeds the maximum allowable range of the card, or the previously defined data block length is illegal for the current command (for example: the host issues a write command, the current block length is less than the minimum length allowed by the card, and at the same time Partial data block	С
28	ERASE_SEQ_ERROR		'0'=no error '1'=error	writing is not allowed). Erase commands were sent in the wrong order.	С
27	ERASE_PARAM	EX	'0'=no error '1'=error	An illegal erase group was selected while erasing.	С
26	WP_VIOLATION	EX	'0'=no error '1'=error	An attempt was made to program a write-protected block of data.	С
25	CARD_IS_LOCKED	SR	'0'=card unlocked '1'=card locked	When this bit is set, it means the card has been locked.	A
24	LOCK_UNLOCK_FAILED	EX	'0'=no error '1'=error	Wrong sequence of commands in lock/unlock or wrong password detected.	С
23	COM_CRC_ERROR	ER	'0'=no error '1'=error	CRC check error in previous command.	В
22	ILLEGAL_COMMAND	ER	'0'=no error '1'=error	The command is illegal for the current card state.	В
21	CARD_ECC_FAILED	EX	'0'=success '1'=failure	The ECC check is implemented inside the card, but it fails to correct the data.	С
20	CC_ERROR	ER	'0'=no error '1'=error	(Not defined in the standard) An error occurred inside the card, independent of a command from the host.	С
19	ERROR	EX	'0'=no error '1'=error	An internal card error (eg: read or write error) related to the execution of the last host command (not defined in the standard) has occurred.	С
18	Reserved				
17	Reserved				
16	CID/CSD_OVERWRITE	EX	'0'=no error '1'=error	Can be any of the following errors: The CID register has been written and cannot be overwritten; The read-only portion of the CSD does not match the contents of the card; An attempt was made to reverse the copy or permanent write protection, i.e. restore or release write protection.	С

Bits	Identifier	Type	Value	Description	Clear condition
15	WP_ERASE_SKIP	EX	'0'= not protected	Encountering an existing write-protected data	С
			'1'= protected	block, only part of the address space is erased.	
14	CARD_ECC_DISABLED	SX	'0'=enabled	No internal ECC is used when executing the	A
			'1'=disabled	command.	
13	ERASE_RESET		'0'=clear	The sequence into the erase process was aborted	С
			'1'=set	because a command outside the erase sequence	
				was received (not a CMD35, CMD36, CMD38, or	
				CMD13 command).	
12:9	CURRENT_STATE	SR	'0'= Idle	The state of the state machine in the card when the	В
			'1'= Ready	command is received. If the execution of a	
			'2'= Ident	command results in a change of state, this change	
			'3'= Standby	will be reflected in the response of the next	
			'4'= Send	command. These four bits are interpreted as	
			'5'= Data	decimal numbers 0 to 15.	
			'6'= Receive		
			'7'= Program		
			'8'= Disconnect		
			'9'= Busy test		
			'10~15'=		
			Reserved		
8	READY_FOR_DATA	SR	'0'= no ready	Corresponds to a buffer empty signal on the bus.	
			'1'= ready		
7	SWITCH_ERROR	ER	'0'=no error	The card did not switch to the desired mode as	В
			'1'=error	required by the SWITCH command.	
6	Reserved				
5	APP_CMD	SR	'0'=enabled	Card expects ACMD, or indicates that the	С
			'1'=disabled	command has been interpreted as an ACMD	
				command.	
4	Reserved for SD I/O Card				
3	AKE_SEQ_ERROR	ER	'0'=no error	The order of validation is wrong.	С
			'1'=error		
2	Reserved for application spec	ific comm	ands		
1,0	Reserved for manufacturer tes	st mode			

The abbreviations in the table for types and clearing condition fields are defined as follows:

Type:

- E: Error bit. Send an error condition to the host. These bits are cleared once a response (reporting an error) is issued.
- S: Status bit. These bits serve only as information fields and do not change in response to commands. These bits are persistent, they are set or cleared depending on the card state.

■ R/X: Both R and X are detection bits, the difference is that R means that the card detects an anomaly in the command interpretation and verification phase (response mode), while X means that the card detects an anomaly in the command execution phase (execution mode).

SDIO card host can read these bits by sending a status command to query the status of the card.

Clear condition:

- A: According to the current state of the card
- B: Always relative to the previous command. Cleared when the correct command is received, this method has a delay of one command.
- C: Read clear

18.4.11.2 SD status register

The SD status contains not only status bits related to specific functions of the SD memory card, but also some status bits related to future applications. The length of the SD state is a 512-bit data block. After receiving the ACMD13 command (CMD55, then CMD13), the content of the SD status register is transferred to the SDIO card host. But it should be noted that ACMD13 commands can only be sent when the card is in the transmitting state (the card has been selected).

Table 18-8 defines the different SD status register information.

Table 18-8 SD Status

Bits	Identifier	Туре	Value	Description	Clear condition
511:510	DAT_BUS_WIDTH	SR	'00'= 1 (Default)	The current data	A
			'01'= Reserved	bus width as	
			'10'= 4 Bit width	defined by the	
			'11'= Reserved	SET_BUS_WIDTH	
				command.	
509	SECURED_MODE	SR	'0'= Not in privacy mode	The card is in	A
			'1'= In privacy mode	secure operation	
				mode (see "SD	
				Security	
				Specification" for	
				details).	
508:496	Reserved				
495:480	SD_CARD_TYPE	SR	'00xxh'= SD memory card in	The lower 8 bits of	A
			physical specification version	this field can define	
			1.01~2.00 ('x' means any	different variants of	
			value). The defined cards are:	SD memory cards	
			'0000'= Regular SD RD/WR	in the future (each	
			Card	bit can be used to	
			'0001'=SD ROM Card	define a different	
				SD type). The	

Bits	Identifier	Type	Value	Description	Clear condition
				upper 8 bits can be	
				used to define SD	
				cards that do not	
				adhere to the	
				current SD physical	
				layer specification.	
479:448	SIZE_OF_PROTECTED_AREA	SR	Protected area size (See below)	(See below)	A
447:440	SPEED_CLASS	SR	The speed type of the card (See	(See below)	A
			below)		
439:432	PERFORMANCE_MOVE	SR	Transfer performance in units of	(See below)	A
			1MB/sec (See below)		
431:428	AU_SIZE	SR	Size of AU (see below)	(See below)	A
427:424	Reserved				
423:408	ERASE_SIZE	SR	Number of AUs that can be	(See below)	A
			erased at one time		
407:402	ERASE_TIMEOUT	SR	Timeout value for the range	(See below)	A
			specified by the ERASE_AU		
			unit		
401:400	ERASE_OFFSET	SR	Fixed offset value to increase	(See below)	A
			when erasing		
399:312	Reserved				
311:0	Reserved for Manufacturer				

The abbreviations in the table for types and clearing condition fields are defined as follows:

Type:

- E: Error bit. Send an error condition to the host. These bits are cleared once a response (reporting an error) is issued.
- S: Status bit. These bits serve only as information fields and do not change in response to commands. These bits are persistent, they are set or cleared depending on the card state.
- R/X: R and X are both detection bits, the difference is that R indicates that the card detects an abnormality in the command interpretation and verification stage (response mode), while X indicates that the card detects an abnormality in the command execution stage (execution mode). The SDIO card host queries the status of the card by sending status commands to read these bits.

Clear condition:

- A: According to the current state of the card
- B: Always relative to the previous command. Cleared when the correct command is received, this method has a delay of one command.

423

C: Read clear

SIZE_OF_PROTECTED_AREA

This bit is set differently for standard-capacity and high-capacity cards.

The capacity of the protected area of a standard capacity card is calculated as follows:

Protected Area=SIZE_OF_PROTECTED_AREA * MULT * BLOCK_LEN

SIZE_OF_PROTECTED_AREA is in units of MULT * BLOCK_LEN.

The capacity of the protected area of the high-capacity card is calculated as follows:

Protected Area = SIZE_OF_PROTECTED_AREA

SIZE_OF_PROTECTED_AREA is in bytes.

SPEED_CLASS

These 8 bits indicate the type of speed and a value that can be calculated by calculating Pw/2 (Pw is the write performance).

Table 18-9 Speed Type Codes

SPEED_CLASS	Value definition
00h	Class 0
01h	Class 2
02h	Class 4
03h	Class 6
04h~FFh	Reserved

PERFORMANCE_MOVE

These 8 bits indicate the mobile performance (Pm) in units of 1MB/sec. If the card does not move data in RU (unit of record), Pm should be considered to be infinity. When this field is FFh, it means Pm is infinite.

Table 18-10 Mobility Performance Codes

PERFORMANCE_MOVE	Value definition
00h	Undefined
01h	1MB/sec
02h	2MB/sec
FEh	254MB/sec
FFh	Infinity

AU_SIZE

These 4 bits indicate the length of the AU, value is (16K bytes) $\times 2^{\text{(AU_SIZE-1)}}$.

Table 18-11 AU_SIZE Codes

AU_SIZE	Value definition
00h	Undefined
01h	16KB

AU_SIZE	Value definition
02h	32KB
03h	64KB
04h	128KB
05h	256KB
06h	512KB
07h	1MB
08h	2MB
09h	4MB
Ah~Fh	Reserved

The maximum AU length is determined by the capacity of the card. The card can set any AU length between the RU length and the maximum AU length.

Table 18-12 Maximum AU Size

Capacity	16MB~64MB	128MB~256MB	512MB	1GB~32GB
Maximum AU Size	512KB	1MB	2MB	4MB

ERASE_SIZE

This 16-bit field represents NERASE. When NERASE AUs are erased, the timeout period is defined by ERASE_TIMEOUT. The host should determine the appropriate number of AUs to be erased in one operation so that the host can display the progress of the erase operation. If this field is 0, the timeout calculation for erasure is not supported.

Table 18-13 ERASE SIZE Codes

ERASE_SIZE	Value definition
0000h	Erase timeout calculation is not supported.
0001h	1 AU
0002h	2 AU
0003h	3 AU
FFFFh	65535 AU

ERASE TIMEOUT

These 6 bits represent TERASE. When multiple AUs indicated by ERASE_SIZE are erased, this value gives the erase timeout time from the offset. The range of ERASE_TIMEOUT can be defined up to 63 seconds. The manufacturer of the card can choose any combination of ERASE_SIZE and ERASE_TIMEOUT according to the specific implementation. Once ERASE_TIMEOUT is determined, then ERASE_SIZE is also determined. If the ERASE_SIZE field is set to 0, then ERASE_TIMEOUT should also be set is 0.

Table 18-14 Erase Timeout Code

ERASE_TIMEOUT	Value definition		
00	Erase timeout calculation is not supported.		
01	1 sec		

Nations Technologies Inc.

ERASE_TIMEOUT	Value definition
02	2 sec
03	3 sec
63	63 sec

ERASE_OFFSET

These 2 bits give TOFFSET, which can select one of the four values shown in the table below. When ERASE_SIZE and ERASE_TIMEOUT are both 0, this value has no meaning.

Table 18-15 Erase Offset Codes

ERASE_OFFSET	Value definition
0	0 sec
1	1 sec
2	2 sec
3	3 sec

18.4.12 SD I/O mode

18.4.12.1 I/O interrupts

There is a pin (pin 8) with interrupt function on the SD interface, which enables the SD I/O card to interrupt the multi-media card/SD module. In 4-bit SD mode, this pin is SDIO_DAT1, through which the card sends the multi-media card to the multi-media card. The /SD module makes an interrupt request. For each card or function within the card, the interrupt function is optional.

The interrupt of SD I/O is level-effective, that is, the interrupt signal line must maintain the active level (low) before it can be recognized and responded by the multimedia card/SD module, and remains inactive level (high) after the interrupt process ends. After the interrupt request has been serviced by the MultiMediaCard/SD module, the interrupt status bits can be cleared by writing the appropriate bits to the SD I/O card's internal registers through an I/O write operation.

The interrupt outputs of the SD I/O card are all active low, and the multimedia card/SD module provides pull-up resistors on all data lines (SDIO/D[3:0]). The multimedia card/SD module samples the 8th pin (SDIO_DAT/IRQ) and performs interrupt detection only in the interrupt stage, and ignores the value on the signal line at other times.

Both I/O operations and memory operations have interrupt stages, and the definition of the interrupt stage for single data block operations and multiple data block transfer operations is different.

18.4.12.2 I/O suspend and resume

In a multifunction SD I/O card, or in a card with both I/O and memory functions, multiple devices (I/O and memory) share the MMC/SD bus. In order to enable multiple devices to share the bus in the MMC/SD module, SD I/O cards and composite cards can selectively implement the concept of suspend/resume; in cards that support suspend/resume, the MMC/SD module can suspend a A data transfer operation of a function or memory to give up the bus to another function or memory with a higher priority, and resume the previously suspended transfer after the transfer of the function or memory with a higher priority is completed.

Whether to support suspend/resume operations is optional. Following are the steps to perform a suspend/resume operation on the MMC/SD bus:

- 1. Determine the current function of the data line (SDIO_DAT[3:0])
- 2. Request to suspend low-priority or slow operations
- 3. Wait for the pause operation to complete and confirm that the device has been paused
- 4. Start the transfer of the high-priority device
- 5. Wait for the high-priority device to complete the transfer
- 6. Resume from a suspend operation

18.4.12.3 I/O ReadWait

The Read Wait operation is optional and only works in 1-bit or 4-bit mode of the SD card. The read wait operation means that when a card is reading multiple registers (IO_RW_EXTENDED, CMD53), the MMC/SD module can ask it to temporarily stop data transmission, and at the same time allow the MMC/SD module to send commands to other functions in the SD I/O device. The MMC/SD module can judge whether a card supports the read waiting protocol by detecting the internal registers of the card. The read wait time is related to the interrupt phase.

18.5 Commands and responses

18.5.1 Application related commands and general commands

The SD card host module system is a standard interface, which is suitable for a variety of application types, while taking into account specific users and applications, so two types of general commands are defined in the standard: application-related commands (ACMD) and general commands (GEN_CMD).

When the card receives the APP_CMD (CMD55) command, the card expects the next command to be an application related command. Application Dependent Commands (ACMD) and normal multimedia card commands have the same format structure, and they can also use the same CMD number. Because it appears after APP_CMD (CMD55), the card recognizes it as an ACMD command. If the APP_CMD(CMD55) command is not followed by a defined application-related command, it is recognized as a standard command; for example: if CMD13 (SD_STATUS(ACMD13) is defined in the application) is received immediately after APP_CMD(CMD55), it will Interpreted as SD_STATUS (ACMD13); but if the card receives CMD7 immediately after APP_CMD (CMD55), and the card does not define ACMD7, it will be interpreted as a standard CMD7 (SELECT/DESELECT_CARD) command.

If you want to use the manufacturer-defined ACMD, the SD card host needs to do the following:

- Send APP_CMD (CMD55) command
- 2. The card returns a response to the multimedia/SD card module, indicating that the APP_CMD bit is set and waiting for the ACMD command.
- 3. Send the specified ACMD
- 4. The card returns a response to the multimedia/SD card module, the response indicates that the APP_CMD bit is set, and the received command has been correctly parsed according to the ACMD command; if the received

command is not an ACMD command, the card will be processed according to the ordinary multimedia card command, At the same time, clear the APP_CMD bit of the status register.

If an illegal command is sent, error handling will be performed according to standard illegal multimedia card commands. The bus operation process of the GEN_CMD command is the same as the single data block read and write command (WRITE_BLOCK, CMD24 or READ_SINGLE_BLOCK, CMD17); at this time, the parameter of the command indicates the direction of data transmission instead of the address, and the data block has a user-defined format and meaning.

Before sending the GEN_CMD (CMD56) command, the state machine must be in the transmission state, that is, the card must be selected, and the length of the data block is defined by SET_BLOCKLEN (CMD16). The response to the GEN_CMD (CMD56) command is in R1b format.

18.5.2 Commands of Multimedia Card/SD Card module

Table 18-16 Write commands for block-based transfers

CMD Index	Туре	Parameter	Response Format	Abbreviation	Description
CMD23	ac	[31:16]=0 [15:0]= Number of blocks	R1		Defines the number of blocks that need to be transferred in a subsequent multi-block read or write command.
CMD24	adtc	[31:0]= Data Address	R1	WRITE BLOCK	Writes a block of the length selected by the SET_BLOCKLEN command.
CMD25	adtc	[31:0]= Data Address	R1		Continuously write data blocks until a STOP_TRANSMISSION command is received or the specified number of blocks is reached.
CMD26	adtc	[31:0]= Stuff bits	R1	PROGRAM CID	Program the identification register of the card. This command can only be sent once per card. There are hardware mechanisms in the card to prevent multiple programming operations. Usually this order is reserved for the manufacturer.
CMD27	adtc	[31:0]= Stuff bits	R1	PROGRAM CSD	Program the programmable bits in the CSD of the card.
CMD28	ac	[31:0]= Data Address	R1b	SET_WRITE_PROT	If the card is write-protected, this command sets the write-protect bit of the specified group. The write protection feature is set in the special data area of the card (WP_GRP_SIZE).
CMD29	ac	[31:0]= Data Address	R1b	CLR_WRITE_PROT	If the card is write-protected, this command clears the write-protect bit of the specified group.
CMD30	adtc	[31:0]= Write Protect Data	R1	SEND_WRITE_PROT	If the card is write-protected, this command

CMD Index	Туре	Parameter	Response Format	Abbreviation	Description
		Addresses			requires the card to send the status of the
					write-protect bit.
CMD31	Reserved	d			

Table 18-17 Block-based write-protect commands

CMD Index	Туре	Parameter	Response Format	Abbreviation	Description
CMD28	ac	[31:0]= Data Address	R1b	SET_WRITE_PROT	If the card is write-protected, this command
					sets the write-protect bit of the specified
					group. The write protection feature is set in
					the special data area of the card
					(WP_GRP_SIZE).
CMD29	ac	[31:0]= Data Address	R1b	CLR_WRITE_PROT	If the card is write-protected, this command
					clears the write-protect bit of the specified
					group.
CMD30	adtc	[31:0]= Write Protect Data	R1	SEND_WRITE_PROT	If the card is write-protected, this command
		Addresses			requires the card to send the status of the
					write-protect bit.
CMD31	Reserve	d			

Table 18-18 Erase command

CMD Index	Туре	Parameter	Response Format	Abbreviation	Description
	Reserve used.	. For backward compatibili	ty with olde	r versions of the media card pr	otocol, these command codes cannot be
CMD35	ac	[31:0]= Data Address	R1		Within the selected erase range, set the address of the first erase group.
CMD36	ac	[31:0]= Data Address	R1		Sets the address of the last erase group within the selected contiguous erase range.
	Reserve used.	. For backward compatibili	ty with olde	r versions of the media card pr	otocol, these command codes cannot be
CMD38	ac	31:0]= Stuff bits	R1	ERASE	Erase the previously selected block of data.

Table 18-19 I/O mode command

CMD Index	Туре	Parameter	Response Format	Abbreviation	Description
CMD39	ac	[31:16] =RCA	R4	FAST_IO	Used to write and read 8-bit (register) data
		[15]= Register Write Flag			fields. This command specifies a card and
		[14:8]= Register Address			register and also provides written data if the
		[7:0]= Register Data			write flag is set. The R4 response contains the

CMD Index	Туре	Parameter	Response Format	Abbreviation	Description	
					data read from the specified register. This command accesses application-related registers not defined in the multimedia card standard.	
CMD40	bcr	[31:0]= Data Address	R5	GO_IRQ_STATE	Put the system in interrupt mode.	
CMD41	Reserved					

Table 18-20 Lock command

CMD Index	Туре	Parameter	Response Format	Abbreviation	Description
CMD42	adtc	[31:0]= Stuff bits	R1b	_	Set/clear password or lock/unlock card. The length of the data block is set by the SET_BLOCKLEN command.
CMD43 CMD54	Reserved				

Table 18-21 Application related commands

CMD Index	Туре	Parameter	Response Format	Abbreviation	Description									
CMD55	ac	[31:16]=RCA	R1	APP_CMD	Indicates that the next command to the card is an									
		[15:0]= Stuff bits			application-related command rather than a standard									
					command.									
CMD56	adtc	[31:1]= Stuff bits			In general or application-related commands, either to									
		[0]=RD/WR			transfer a block of data to the card, or to read a block									
					of data from the card. The length of the data block is									
					set by the SET_BLOCKLEN command.									
CMD57	Reserved													
CMD59														
CMD60	Reserved	for manufacturer.												
CMD63														

18.5.3 Command type

ACMD and GEN_CMD contain four different types:

- 1. Broadcast Command (BC): Sent to all cards, no response.
- 2. Broadcast Command with Response (BCR): sent to all cards and received responses from all cards at the same time;

3. Command (AC) with addressing (point-to-point): sent to the addressed card, there is no data transmission on the SDIO DAT signal line.

Data transfer command (AC) with addressing (point-to-point): sent to the addressed card, SDIO_DAT signal line for data transfer.

18.5.4 Command format

The command format consists of command and response.

Command: A command is used to start an operation. The host sends a command with an address or a broadcast command to a specified card or all cards (the broadcast command is only applicable to MMC V3.31 or earlier versions). All commands have a fixed length of 48 bits and are transmitted serially on the CMD line. The following table gives the general command format on Multimedia Cards, SD Memory Cards and SDIO Cards

The CE-ATA command is an extension of the MMC V4.2 command, so it has the same format.

The command channel operates in half-duplex mode, so that commands and responses can be sent and received separately. If the CPSM is not in the transmit state, the SDIO_CMD output is in a high-impedance state, as shown in Figure 18-11. Data on SDIO_CMD is synchronized with the rising edge of SDIO_CLK.

Bit Width Value **Description** 47 0 1 Start bit 46 1 1 Transmission bit [45:40] 6 Command index [39:8] 32 Parameter 7 CRC7 [7:1] 0 1 End bit

Table 18-22 Command format

Response: The response is a response to the previously received command, which is sent to the host by a card with a specified address. For all cards of MMC V3.31 or earlier, the response is sent simultaneously; the response is serially transmitted on the SDIO_CMD line.

SDIO supports two response types: 48-bit short response and 136-bit long response. Both types have CRC error detection:

Note: If the response does not contain a CRC (such as the response to CMD1), the device driver SHOULD ignore the CRC failure status.

Bit	Width	Value	Description
47	1	0	Start bit
46	1	0	Transmission bit
[45:40]	6	-	Command index
[39:8]	32	-	Parameter
[7:1]	7	-	CRC7 (or 1111111b)
0	1	1	End bit

Table 18-23 Short response format

Table 18-24 Long response format

Bit	Width	Value	Description
135	1	0	Start bit
134	1	0	Transmission bit
[133:128]	6	111111	Reserved
[127:1]	127	-	CID or CSD (including internal CRC7)
0	1	1	End bit

18.5.5 Response format

All responses are sent over the CMD signal line. Response transfers always start with the MSB bit of the corresponding response string. The length of the response string depends on the response type.

Each response contains a start bit (always 0) followed by the direction bit of the transfer (card=0). The x in the table below represents a variable part. All responses are CRC protected except for the R3 response type. Each command codeword has an end bit (always 1).

There are 5 response types, and their formats are defined as follows:

R1 (normal response command)

The code length of the R1 response is 48 bits. Where bits 45:40 indicate the command index to respond to and its value is between 0 and 63. The state of the card is encoded by 32 bits.

Table 18-25 R1 response

Bit	Width	Value	Description
47	1	0	Start bit
46	1	0	Transmission bit
[45:40]	6	X	Command index
[39:8]	32	X	Card status
[7:1]	7	X	CRC7
0	1	1	End bit

R₁b

R1b has the same format as R1, the difference is that R1b can choose to send a busy signal on the data line. After receiving these commands, depending on the state before receiving the command, the card may become busy and the host should check the busy state in the response.

R2 (CID, CSD register)

The R2 code length is 136 bits. The responses of CMD2 and CMD10 are saved in the CID register and sent. The response of CMD9 is saved in the CSD register and sent. The card only responds and transmits bits [127...1] of CID and CSD, on the receiving side, these two register reserved bits [0] are replaced with the end bit of the response. The actual erase operation may take a long time, and the host can send a CMD7 command to deselect the card.

Table 18-26 R2 response

D:4	XX72.341.	X7-1	Daganin4ian
Bit	Width	Value	Description

135	1	0	Start bit
134	1	0	Transmission bit
[133:128]	6	'111111'	Command index
[127:1]	127	X	Card status
0	1	1	End bit

R3 (OCR register)

The R3 code length is 48 bits. The response of CMD1 is saved in the OCR register and sent. The definition of the level code is: the limited voltage window is low and the card is busy.

Table 18-27 R3 response

Bit	Width	Value	Description
47	1	0	Start bit
46	1	0	Transmission bit
[45:40]	6	'111111'	Reserved
[39:8]	32	X	OCR register
[7:1]	7	'1111111'	Reserved
0	1	1	End bit

R4 (Fast I/O)

The R4 code is 48 bits long and is only applicable to MMC cards. The parameter field includes the RCA of the specified card, the address of the register that needs to be read or written, and its content.

Table 18-28 R4 response

Bit		Width	Value	Description						
47		1	0	Start bit						
46		1	0	Transmission bit						
[45:40]		6	'111111'	Reserved						
F20, 01 A	[31:16]	16	X	RCA						
[39:8]Argument field	[15:8]	8	X	Register address						
neid	[7:0]	8	X	Read register contents						
[7:1]		7	'1111111'	CRC7						
0		1		End bit						

R4b

R4b is only available for SD I/O cards, and the code length is 48 bits. The SDIO card will return a unique SDIO response R4 after receiving the CMD5 command.

Table 18-29 R4b response

Bit		Width	Value	Description					
47		1	0	Start bit					
46		1	0	Transmission bit					
[45:40]		6	X	Reserved					
[39:8]Argument	39	1	X	Card is ready					

433

Nations Technologies Inc.

Bit		Width	Value	Description
field	[38:36]	3	X	Number of I/O functions
	35	1	Х	Present memory
	[34:32]	3	X	Stuff bits
	[31:8]	24	Х	I/O ORC
[7:1]		7	x'	Reserved
0		1	1	End bit

When the SD I/O card receives the command CMD5, the I/O part of the card is enabled and can respond to all subsequent commands normally. The enabled state of the I/O card will remain until the next reset, power off, or CMD52 command for I/O reset. Note that the correct response for a memory-only SD card would be 1 for the current memory and 0 for the number of I/O functions. A memory-only SD card designed according to the SD Memory Card Specification Version 1.0 treats the detected CMD5 command as an illegal command and does not respond to it. The host that can handle the I/O card will send a CMD5 command, and if the card returns a response R4, the host will determine the configuration of the card based on the data in the R4 response.

R5 (Interrupt Request)

R5 only works with multimedia cards. The code length is 48 bits. The RCA field in the parameter is 0x0 when this response is generated by the host.

Bit Width Value Description 0 47 1 Start bit 46 1 Transmission bit '111111' [45:40] 6 CMD40 16 [39:8]Argument [31:16] RCA[31:16] of a successful card or host 16 Undefined. Can be used as interrupt data. field [15:0] X 7 [7:1] X CRC7 0 1 End bit

Table 18-30 R5 response

R6 (Interrupt Request)

R6 only works with SD I/O cards. The code length is 48 bits. Bits[45:40] represent the command index to the CMD3 response. The 16 most significant bits of the parameter field are used for the published RCA number. This is the normal response of the memory device to a CMD3 command.

Table 18-31 R6 response

Bit		Width	Value	Description							
47		1	0	Start bit							
46		1	0	Transmission bit							
[45:40]		6	'101000'	CMD40							
[39:8]Argument	[31:16]	16	X	RCA[31:16] of a successful card or host							
field	[15:0]	16	X	Undefined. Can be used as interrupt data.							
[7:1]		7	X	CRC7							
0		1	1	End bit							

434

Nations Technologies Inc.

When sending a CMD3 command to an I/O-only card, the card's status bits[23:8] will change, and bit 16 in the response is the value in the I/O-only SD card, bit 15 is COM_CRC_ERROR, Bit 14 is ILLEGAL_COMMAND, Bit 13 is ERROR, Bits[12:0] are reserved.

18.6 Hardware flow control

Using the hardware flow control function can avoid FIFO underflow (transmit mode) and overflow (receive mode) errors.

The operation process of hardware flow control is to stop SDIO_CLK and freeze the SDIO state machine. When the FIFO cannot send and receive data, the data transmission is suspended. It should be noted that only the state machine driven by SDIO_CLK is frozen, the AHB interface is still working. Even when flow control is in effect, the FIFO can still be read from or written to.

The SDIO_CLKCTRL.HWCLKEN bit must be set to '1' to enable hardware flow control. After reset, the hardware flow control function is automatically turned off.

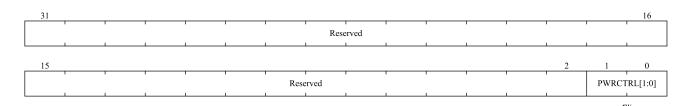
18.7 SDIO register

Devices communicate with the system through control registers. The width of the control registers is 32 bits wide, and these registers can be manipulated on the AHB bus. Note that these peripheral registers must be manipulated in word (32 bits).

18.7.1 SDIO register overview

11 10 **PWR** SDIO PWRCTRL CTRL 0001 Reserved Reset Value 0 0 **IWCLKEN** CLKEDGE BUS CLOCKEN PWRCFG CLKBYP DIV[8] SDIO_CLKCTRL MODE DIV[7:0] 004h [1:0] Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 SDIO CMDARG CMDARC 008h 0 0 0 0 0 0 0 0 0 0 0 Reset Value 0 0 WDATEND SUSPEND WINTREQ ENCMDF CPSMEN CMD CEATAEN INTDIS SDIO_CMDCTRL RESP CMDIDX[5:0] Reserved [1:0] 0 0 0 0 0 0 SDIO_CMDRESP RESPCMDIDX[5:0] 0101 Reserved 0 0 0 0 Reset Value CARDSTS1[31:0] SDIO RESPONSE 0141 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value SDIO_RESPONSE2 CARDSTS2[31:0] 0181 0 Reset Value SDIO_RESPONSE: CARDSTS3[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value SDIO_RESPONSE CARDSTS4[31:0] 0201 0 Reset Value DATTIMEOUT[31:0] SDIO_DTIMER 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value SDIO_DATLEN DATLEN[24:0] 0281 Reserved Reset Value

Table 18-32 SDIO register overview



Offset	Register		31	30	(1	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	Ξ	10	6	∞	7	9	5	4	3	2	1	0
02Ch	SDIO_DATCTRL										R	Reserved Reserved								RWAITMOD	RWAITSTOP	RWAITEN	BLKSIZE[3:0]			DMAEN	TRANSMOD	DATDIR	DATEN					
	Reset Value											0 0										0	0	0	0	0	0	0	0	0	0	0		
030h	SDIO_DATCOUNT	Г	Reserved									DATCOUNT[24:0]												:0]										
03011	Reset Value				Res	CI VCI	u			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
034h	SDIO_STS		Reserved								CEATAF	SDIOINT	RDATVALID	TDATVALID	RFIFOE	TFIFOE	RFIFOF	TFIFOF	RFIFOHF	TFIFOHE	RXRUN	TXRUN	CMDRUN	DATBLKEND	SBERR	DATEND	CMDSEND	CMDRESPRECV	RXORERR	TXURERR	DATTIMEOUT	CMDTIMEOUT	DCRCERR	CCRCERR
	Reset Value										0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
038h	SDIO_INTCLR		Reserved						CEATAFC	SDIOINTC Reserved										DATBLKENDC	SBERRC	DATENDC	CMDSENDC	CMDRESPRECVC	RXORERRC	TXURERRC	DATTIMEOUTC	CMDTIMEOUTC	DCRCERRC	CCRCERRC				
	Reset Value										0	0												0	0	0	0	0	0	0	0	0	0	0
03Ch	SDIO_INTEN		Reserved						CEATAFEN	SDIOINTEN	RDATVALIDEN	TDATVALIDEN	RFIFOEEN	TFIFOEEN	RFIFOFEN	TFIFOFEN	RFIFOHFEN	TFIFOHEEN	RXRUNEN	TXRUNEN	CMDRUNEN	DATBLKENDEN	SBERREN	DATENDEN	CMDSENDEN	CMDRESPRECVEN	RXORERREN	TXURERREN	DATTIMEOUTEN	CMDTIMEOUTEN	DCRCERREN	CCRCERREN		
	Reset Value								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
048h	SDIO_FIFOCOUNT	Т	Reserved																FIFC	COL	NT[2	3:0]												
0-7011	Reset Value	\perp			1		,cu				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
080h	SDIO_DATFIFO																FI	FIDA	T[31:	0]												_		
30011	Reset Value	()	0 0 0 0 0 0 0							0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

18.7.2 SDIO power control register (SDIO_PWRCTRL)

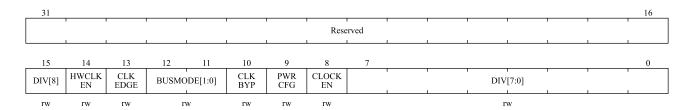
Address offset: 0x00

Reset value: 0x0000 0000

Bit Field	Name	Description
31:2	Reserved	Reserved, the reset value must be maintained.
1:0	PWRCTRL	Power supply control bits.
		Defines the current functional state of the card clock:
		00: The power is turned off and the clock of the card is stopped.
		01: Reserved.
		10: Reserved, power-on state.
		11: Power-on state, the clock of the card is turned on.

436

Note: This register cannot be written within 7 HCLK clock cycles after writing data.



18.7.3 SDIO clock control register (SDIO_CLKCTRL)

Address offset: 0x04

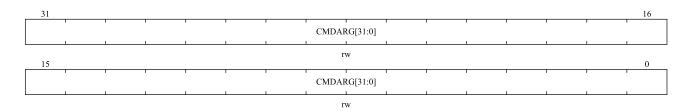
Reset value: 0x0000 0000

SDIO_CLKCTRL register controls the SDIO_CLK output clock.

Bit Field	Name	Description		
31:16	Reserved	Reserved, the reset value must be maintained.		
15	DIV[8]	The highest bit of the clock frequency division factor, used in extended mode.		
14	HWCLKEN	HW Flow Control enable.		
		0: Disable hardware flow control		
		1: Enable hardware flow control		
		When hardware flow control is enabled, please refer to the definition of SDIO status register in		
		Section 18.7.12 for the meaning of SDIO_STS.TFIFOE and SDIO_STS.RFIFOF interrupt signals.		
13	CLKEDGE	SDIO_CLK dephasing selection bit.		
		0: SDIO_CLK is generated on the rising edge of the master clock SDIOCLK.		
		1: SDIO_CLK is generated on the falling edge of the master clock SDIOCLK.		
12:11	BUSMODE	Wide bus mode enable bit.		
		00: Default bus mode, use SDIO_DAT0.		
		01: 4-bit bus mode, use SDIO_DAT[3:0].		
		10: 8-bit bus mode, use SDIO_DAT[7:0].		
10	CLKBYP	Clock divider bypass enable bit.		
		0: Bypass off: SDIOCLK is divided according to the DIV value before driving the SDIO_CLK		
		output signal.		
		1: Bypass enabled: SDIOCLK directly drives the SDIO_CLK output signal.		
9	PWRCFG	Power saving configuration bit.		
		To save power, the SDIO_CLK clock output can be turned off by setting the PWRCFG bit when		
		the bus is idle.		
		0: SDIO_CLK is always output.		
		1: SDIO_CLK is only output when there is bus activity.		
8	CLOCKEN	Clock enable bit.		
		0: SDIO_CLK is off.		
		1: SDIO_CLK is enabled.		
7:1	DIV	Clock divide factor.		
		This field defines the division factor between the input clock (SDIOCLK) and the output clock		
		(SDIO_CLK):		

Bit Field	Name	Description	
		SDIO_CLK frequency = SDIOCLK/[DIV + 2].	

Notice:

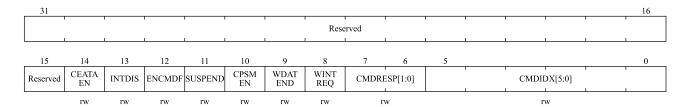

- When SD/SDIO card or multimedia card is in identification mode, the frequency of SDIO_CLK must be lower than 400kHz.
- 2. When all cards are assigned corresponding addresses, the clock frequency can be changed to the maximum frequency allowed by the card bus.
- 3. This register cannot be written within 7 HCLK clock cycles after writing data. For SD I/O cards, SDIO_CLK can be stopped during the read wait period, when SDIO_CLKCTRL register does not control SDIO_CLK.

18.7.4 SDIO command argument register (SDIO_CMDARG)

Address offset: 0x08

Reset value: 0x0000 0000

SDIO_CMDARG register contains the 32-bit command parameter, which will be sent to the card as part of the command.


Bit Field	Name	Description	
31:0	CMDARG	Command argument.	
		Command parameters are part of the command sent to the card. If a command contains a	
		parameter, this register must be loaded before writing the command to the command register.	

18.7.5 SDIO command register (SDIO_CMDCTRL)

Address offset: 0x0C

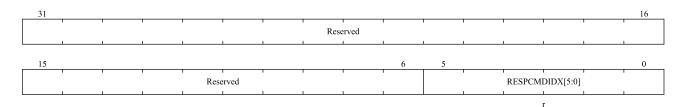
Reset value: 0x0000 0000

SDIO_CMDCTRL register contains the command index and command type bits. The command index is sent to the card as part of the command. The Command Type bit controls the Command Channel State Machine (CPSM).

Bit Field	Name	Description	
31:15	Reserved	Reserved, the reset value must be maintained.	
14	CEATAEN	CE-ATA command.	
		If this bit is set, CPSM will transmit CMD61.	
13	INTDIS	Not interrupt enable.	
		If this bit is not set, interrupts are enabled for CE-ATA devices.	
12	ENCMDF	Enable CMD completion.	
		If this bit is set, the command complete signal is enabled.	
11	SUSPEND	SD I/O suspend command.	
		If this bit is set, the command to be sent is a suspend command (for SDIO cards only).	
10	CPSMEN	Command path state machine (CPSM) Enable bit.	
		If this bit is set, CPSM is enabled.	
9	WDATEND	CPSM Waits for ends of data transfer (CmdPend internal signal).	
		If this bit is set, the CPSM waits for the end of the data transfer before starting to send a command.	
8	WINTREQ	CPSM waits for interrupt request.	
		If this bit is set, the CPSM turns off the command timeout control and waits for an interrupt	
		request.	
7:6	CMDRESP	Wait for response bits.	
		These 2 bits indicate whether the CPSM needs to wait for a response, and if it needs to wait for a	
		response, the response type.	
		00: No response, expect SDIO_STS.CMDSEND flag	
		01: Short response, expect SDIO_STS.CMDRESPRECV or SDIO_STS.CCRCERR flag	
		10: No response, expect SDIO_STS.CMDSEND flag	
		11: long response, expect SDIO_STS.CMDRESPRECV or C SDIO_STS.CRCERR flag	
5:0	CMDIDX	Command index.	
		The command index is sent to the card as part of the command.	

Notice:

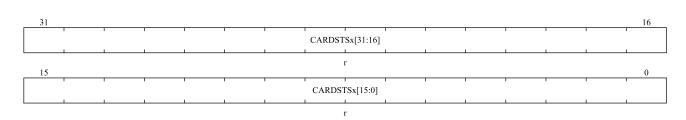
- 1. This register cannot be written within 7 HCLK clock cycles after writing data.
- 2. The multimedia card can send 2 kinds of responses: 48-bit short response, or 136-bit long response. SD cards and SD I/O cards can only send short responses, the parameters can be changed according to the type of response, and the software will distinguish the type of response according to the command sent. CE-ATA devices only send short responses.


18.7.6 SDIO command response register(SDIO_CMDRESP)

Address offset: 0x10

Reset value: 0x0000 0000

SDIO_CMDRESP register contains the command index in the last received command response. If the transmitted command response does not contain a command index (long response or OCR response), although it should contain 111111b (reserved field value in the response), the content of the RESPCMDIDX field is unknown.


Bit Field	Name	Description	
31:6	Reserved	Reserved, the reset value must be maintained.	
5:0	RESPCMDIDX	Response command index.	
		Read-only bit that contains the command index in the last command response received.	

18.7.7 SDIO response 1..4 register (SDIO_RESPONSEx)

Address offset: 0x14 + 4*(x-1), x = 1..4

Reset value: 0x0000 0000

SDIO_RESPONSE1/2/3/4 registers contain the status of the card, i.e. the part of the response received.

Bit Field	Name	Description
31:0	CARDSTSx:	See table below.

Depending on the response status, the card's status length is either 32 bits or 127 bits.

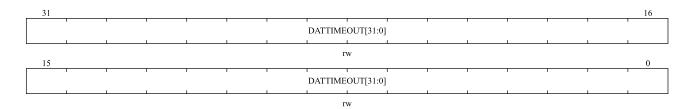
Table 18-33 Response Type and SDIO_RESPONSEx Register

Register	Short response	Long response
SDIO_RESPONSE1	Card Status[31:0]	Card Status[127:96]
SDIO_RESPONSE2	Unused	Card Status[95:64]
SDIO_RESPONSE3	Unused	Card Status[63:32]
SDIO_RESPONSE4	Unused	Card Status[31:1]

The highest bit of the card status is always received first, and the lowest bit of the SDIO_RESPONSE3 register is always 0.

440

18.7.8 SDIO data timer register (SDIO_DTIMER)

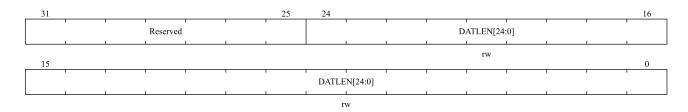

Address offset: 0x24

Reset value: 0x0000 0000

SDIO_DTIMER register contains the data timeout in card bus clock cycles.

A counter loads the value from the SDIO_DTIMER register and counts down when the data path state machine (DPSM) enters the Wait_R or busy state, and sets the timeout flag if the counter decrements to 0 while the DPSM is in these states.

Bit Field	Name	Description
31:0	DATTIMEOUT	Data timeout period.
		Data timeout in card bus clock cycles.


Note: Before writing to the data control register for data transfer, the data timer register and data length register must be written first.

18.7.9 SDIO data length register (SDIO_DATLEN)

Address offset: 0x28

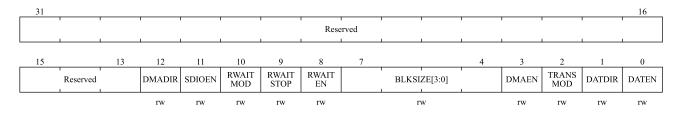
Reset value: 0x0000 0000

SDIO_DATLEN register contains the length of data bytes to be transferred. When data transfer starts, this value is loaded into the data counter.

Bit Field	Name	Description	
31:25	Reserved	Reserved, the reset value must be maintained.	
24:0	DATLEN	Data length value.	
		Number of data bytes to transfer.	

Note: For block data transfers, the value in the data length register must be a multiple of the data block length (see SDIO_DATCTRL). Before writing to the data control register for data transfer, the data timer register and data length register must be written first.

441


18.7.10 SDIO data control register (SDIO_DATCTRL)

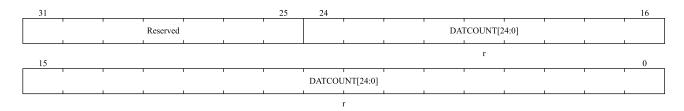
Address offset: 0x2C

Reset value: 0x0000 0000

SDIO_DATCTRL register controls the Data Path State Machine (DPSM).

Bit Field	Name	Description
31:13	Reserved	Reserved, the reset value must be maintained.
12	DMADIR	In DMA mode, it is configured as 1 when data output is transferred to an external device, and
		configured as 0 when external device data is input.
11	SDIOEN	SD I/O enable functions.
		If this bit is set, the DPSM performs SD I/O card specific operations.
10	RWAITMOD	Read wait mode.
		0: Stop SDIO_CLK control read wait;
		1: Use SDIO_DAT2 to control read wait.
9	RWAITSTOP	Read wait stop.
		0: If RWAITEN is set, execute read wait;
		1: Stop read wait if RWAITEN is set.
8	RWAITEN	Read wait start.
		Setting this bit starts a read wait operation.
7:4	BLKSIZE[3:0]	Data block size.
		When block data transfer mode is selected, this field defines the data block length:
		0000: block length = $2^0 = 1$ byte;
		0001: block length = $2^1 = 2$ bytes;
		0010: block length = $2^2 = 4$ bytes;
		0011: block length = $2^3 = 8$ bytes;
		0100: (decimal 4) block length=2 ⁴ =16 bytes;
		0101: (decimal 5) block length=2 ⁵ =32 bytes;
		0110: (decimal 6) block length = $2^6 = 64$ bytes;
		0111: block length = $2^7 = 128$ bytes;
		1000: block length = $2^8 = 256$ bytes;
		1001: block length = $2^9 = 512$ bytes;
		1010: block length = 2^{10} = 1024 bytes;
		1011: block length = 2^{11} = 2048 bytes;
		1100: block length=2 ¹² =4096 bytes;
		1101: block length=2 ¹³ =8192 bytes;
		1110: block length = 2^{14} = 16384 bytes;
		1111: reserved.
3	DMAEN	DMA enable bit.
		0: Turn off DMA;
		1: Enable DMA.

Bit Field	Name	Description
2	TRANSMOD	Data transfer mode selection.
		0: block data transfer;
		1: Streaming data transmission.
1	DATDIR	Data transfer direction selection.
		0: controller to card;
		1: Card to the controller.
0	DATEN	Data transfer enabled bit.
		If this bit is set to 1, data transfer starts. Depending on the DATDIR direction bit, the DPSM
		enters the Wait_S or Wait_R state, and if the RWAITEN bit is set at the very beginning of the
		transfer, the DPSM enters the read wait state. The enable bit does not need to be cleared after a
		data transfer, but SDIO_DATCTRL must be changed to allow a new data transfer.


Note: This register cannot be written within 7 HCLK clock cycles after writing data.

18.7.11 SDIO data counter register (SDIO_DATCOUNT)

Address offset: 0x30

Reset value: 0x0000 0000

When the DPSM enters the Wait_R or Wait_S state from the idle state, the SDIO_DATCOUNT register loads the value from the data length register (see SDIO_DATLEN). During the data transfer, the value of this counter is decremented until it is reduced to 0, then the SDIO_STS.DPSM enters the idle state and sets the data state End mark DATEND.

Bit Field	Name	Description
31:25	Reserved	Reserved, the reset value must be maintained.
24:0	DATCOUNT	Data count value.
		When reading this register, it returns the number of data bytes to be transmitted. Writing this
		register has no effect.

Note: This register can only be read at the end of a data transfer.

18.7.12 SDIO status register (SDIO_STS)

Address offset: 0x34

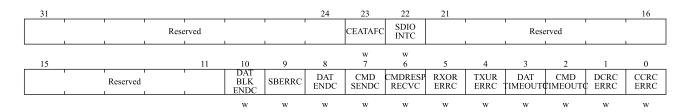
Reset value: 0x0000 0000

SDIO_STS is a read-only register that contains two types of flags:

- Static flags (bits[23:22, 10:0]): These bits can be cleared by writing to the SDIO Interrupt Clear Register (see SDIO_INTCLR).
- Dynamic flags (bits[21:11]): The state of these bits changes according to the part of the logic they correspond to (eg: FIFO full and empty flags go high or low with data writes to the FIFO).

31							24	23	22	21	20	19	18	17	16
	1	1	Reso	erved				CEATAF	SDIO INT	RDAT VALID	TDAT VALID	RFIFOE	TFIFOE	RFIFOF	TFIFOF
15	14	13	12	11	10	9	8	r 7	r 6	r 5	r 4	r 3	r 2	r 1	r 0
RFIFO HF	TFIFO HE	RXRUN	TXRUN	CMDRUN	DATBLK END	SBERR	DAT END	CMD SEND	CMD RESP RECV	RXOR ERR	TXUR ERR	DAT TIMEOUT	CMD TIMEOUT	DCRC ERR	CCRC ERR
								-							-

Bit Field	Name	Description					
31:24	Reserved	Reserved, the reset value must be maintained.					
23	CEATAF	CE-ATA command completion signal received for CMD61.					
22	SDIOINT	SDIO interrupt received.					
21	RDATVALID	Data available in receive FIFO.					
20	TDATVALID	Data available in transmit FIFO.					
19	RFIFOE	Receive FIFO empty.					
18	TFIFOE	Transmit FIFO empty.					
		If hardware flow control is used, the TFIFOE signal becomes active when the FIFO contains 2					
		words.					
17	RFIFOF	Receive FIFO full.					
		If hardware flow control is used, the RFIFOF signal becomes active when the FIFO is still 2					
		words full.					
16	TFIFOF	Transmit FIFO full.					
15	RFIFOHF	Receive FIFO half full:					
		There are at least 8 words left in the FIFO.					
14	TFIFOHE	Transmit FIFO half empty:					
		At least 8 more words can be written to the FIFO.					
13	RXRUN	Data receive in progress.					
12	TXRUN	Data transmit in progress.					
11	CMDRUN	Command transfer in progress.					
10	DATBLKEND	Data block sent/received (CRC check passed).					
9	SBERR	Start bit not detected on all data signals in wide bus mode.					
8	DATEND	Data end (Data counter, SDIDCOUNT, is zero).					
7	CMDSEND	Command sent (no response required).					
6	CMDRESPRECV	Command response (CRC check passed).					
5	RXORERR	Received FIFO overrun error.					
4	TXURERR	Transmit FIFO underrun error.					
3	DATTIMEOUT	Data timeout.					
2	CMDTIMEOUT	Command response timeout.					
		The command timeout is a fixed value of 64 SDIO_CLK clock cycles.					


Bit Field	Name	Description			
1	DCRCERR	Data block sent/received (CRC check failed).			
0	CCRCERR	Command response received (CRC check failed).			

18.7.13 SDIO interrupt clear register (SDIO_INTCLR)

Address offset: 0x38

Reset value: 0x0000 0000

SDIO_INTCLR is a write-only register, writing '1' in the corresponding register bit will clear the corresponding bit in the SDIO_STS status register.

Bit Field	Name	Description
31:24	Reserved	Reserved, the reset value must be maintained.
23	CEATAFC	CEATAF flag clear bit.
		Software sets this bit to clear the SDIO_STS.CEATAF flag.
22	SDIOINTC	SDIOINT flag clear bit.
		Software sets this bit to clear the SDIO_STS.SDIOINT flag.
21:11	Reserved	Reserved, the reset value must be maintained.
10	DATBLKENDC	DATBLKEND flag clear bit.
		Software sets this bit to clear the SDIO_STS.DATBLKEND flag.
9	SBERRC	SBERR flag clear bit.
		Software sets this bit to clear the SDIO_STS.SBERR flag.
8	DATENDC	DATEND flag clear bit.
		Software sets this bit to clear the SDIO_STS.DATEND flag.
7	CMDSENDC	CMDSEND flag clear bit.
		Software sets this bit to clear the SDIO_STS.CMDSEND flag.
6	CMDRESPRECVC	CMDRESPRECV flag clear bit.
		Software sets this bit to clear the SDIO_STS.CMDRESPRECV flag.
5	RXORERRC	RXORERR flag clear bit.
		Software sets this bit to clear the SDIO_STS.RXORERR flag.
4	TXURERRC	TXURERR flag clear bit.
		Software sets this bit to clear the SDIO_STS.TXURERR flag.
3	DATTIMEOUTC	DATTIMEOUT flag clear bit.
		Software sets this bit to clear the SDIO_STS.DATTIMEOUT flag.
2	CMDTIMEOUTC	CMDTIMEOUT flag clear bit.
		Software sets this bit to clear the SDIO_STS.CMDTIMEOUT flag.

Bit Field	Name	Description
1	DCRCERRC	DCRCERR flag clear bit.
		Software sets this bit to clear the SDIO_STS.DCRCERR flag.
0	CCRCERRC	CCRCERR clear bit.
		Software sets this bit to clear the SDIO_STS.CCRCERR flag.

18.7.14 SDIO interrupt enable register (SDIO_INTEN)

Address offset: 0x3C

Reset value: 0x0000 0000

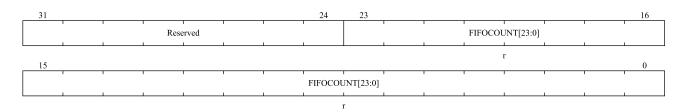
In the corresponding bit '1', the SDIO_INTEN interrupt enable register determines which status bit generates the interrupt.

31							24	23	22	21	20	19	18	17	16
	1	1	Rese	erved			1	CEATAF EN	SDIO INT EN	RDAT VALID EN	TDAT VALID EN	RFIFOE EN	TFIFOE EN	RFIFOF EN	TFIFOF EN
15	14	13	12	11	10	9	8	rw 7	rw 6	rw 5	rw 4	rw 3	rw 2	rw 1	rw 0
RFIFO HFEN	TFIFO HEEN	RXRUN EN	TXRUN EN	CMDRUN EN	DATBLK ENDEN	SBERR EN	DAT ENDEN	CMD SENDEN	CMD RESP RECVEN	RXOR ERREN	TXUR ERREN	DAT TIMEOUT EN	CMD TIMEOUT EN	DCRC ERREN	CCRC ERREN
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit Field	Name	Description
31:24	Reserved	Reserved, the reset value must be maintained.
23	CEATAFEN	CE-ATA command completion signal received interrupt enable.
		Setting/clearing this bit by software to enable/disable interrupt generation upon receipt of
		CE-ATA command completion signal.
		0: No interrupt is generated when the CE-ATA command completion signal is received
		1: An interrupt is generated when the CE-ATA command completion signal is received
22	SDIOINTEN	SDIO mode interrupt received interrupt enable
		Setting/clearing this bit by software to enable/disable the SDIO mode interrupt received
		interrupt function.
		1: SDIO mode interrupt has been received and no interrupt will be generated
		0: SDIO mode interrupt has been received and an interrupt is generated
21	RDATVALIDEN	Data available in Rx FIFO interrupt enable.
		Setting/clearing this bit by software to enable/disable the data valid interrupt in the receive
		FIFO.
		0: The data in the receiving FIFO is valid and no interrupt is generated
		1: The data in the receiving FIFO is valid to generate an interrupt
20	TDATVALIDEN	Data available in Rx FIFO interrupt enable.
		Setting/clearing this bit by software to enable/disable the data valid interrupt in the transmit
		FIFO.
		0: The data in the transmit FIFO is valid and no interrupt is generated
		1: The data in the transmit FIFO is valid to generate an interrupt
19	RFIFOEEN	Rx FIFO empty interrupt enable.
		Setting/clearing this bit by software to enable/disable the data valid interrupt in the transmit

Bit Field	Name	Description
		FIFO.
		0: The data in the transmit FIFO is valid and no interrupt is generated
		1: The data in the transmit FIFO is valid to generate an interrupt
18	TFIFOEEN	Tx FIFO empty interrupt enable.
		Setting/clearing this bit by software to enable/disable the transmit FIFO empty interrupt.
		0: No interrupt will be generated when the transmit FIFO is empty
		1: Transmit FIFO empty and generate interrupt
17	RFIFOFEN	Rx FIFO full interrupt enable.
		Setting/clearing this bit by software enables/disables the receive FIFO full interrupt.
		0: No interrupt will be generated when the receive FIFO is full
		1: Receive FIFO full and generate an interrupt
16	TFIFOFEN	Tx FIFO full interrupt enable.
		Setting/clearing this bit by software to enable/disable the transmit FIFO full interrupt.
		0: No interrupt will be generated when the transmit FIFO is full
		1: Transmit FIFO full generates an interrupt
15	RFIFOHFEN	Rx FIFO half full interrupt enable.
		Setting/clearing this bit by software enables/disables the receive FIFO half-full interrupt.
		0: No interrupt is generated when the receive FIFO is half full
		1: Interrupt generated when the receive FIFO is half full
14	TFIFOHEEN	Tx FIFO half empty interrupt enable.
		Setting/clearing this bit by software to enable/disable the transmit FIFO half-empty
		interrupt.
		0: No interrupt is generated when the transmit FIFO is half-empty
		1: Transmit FIFO half empty to generate interrupt
13	RXRUNEN	Data receive acting interrupt enable.
		Setting/clearing this bit by software to enable/disable the receiving data interrupt.
		0: Data is being received without generating an interrupt
		1: Interrupt when data is being received
12	TXRUNEN	Data transmit acting interrupt enable.
		Setting/clearing this bit by software to enable/disable the Transmitting Data interrupt.
		0: Data is being sent without generating an interrupt
		1: Interrupt when data is being sent
11	CMDRUNEN	Command acting interrupt enable.
		Setting/clearing this bit by software to enable/disable the command-in-transit interrupt.
		0: Transmitting command without interrupt
		1: Interrupt when command is being transmitted
10	DATBLKENDEN	Data block end interrupt enable.
		Setting/clearing this bit by software enables/disables the end of block transfer interrupt.
		0: No interrupt is generated at the end of data block transfer
		1: Interrupt generated at the end of data block transfer
9	SBERREN	Start bit error interrupt enable.
		Setting/clearing this bit by software to enable/disable start bit error interrupt.

Bit Field	Name	Description
		0: Start bit error does not generate an interrupt
		1: Start bit error generates an interrupt
8	DATENDEN	Data end interrupt enable.
		Set/clear this bit by software to enable/disable end of data transfer interrupt.
		0: No interrupt will be generated at the end of data transfer
		1: Interrupt generated at the end of data transfer
7	CMDSENDEN	Command sent interrupt enable.
		Setting/clearing this bit by software to enable/disable the command sent interrupt.
		0: The command has been sent without generating an interrupt
		1: The command has been sent to generate an interrupt
6	CMDRESPRECVEN	Command response received interrupt enable.
		Setting/clearing this bit by software to enable/disable the receive acknowledge interrupt.
		0: No interrupt is generated when a response is received
		1: Receive a response and generate an interrupt
5	RXORERREN	Rx FIFO overrun error interrupt enable.
		Setting/clearing this bit by software to enable/disable the receive FIFO overflow error
		interrupt.
		0: Receive FIFO overflow error does not generate an interrupt
		1: Receive FIFO overflow error generates interrupt
4	TXURERREN	Tx FIFO underrun error interrupt enable.
		Setting/clearing this bit by software to enable/disable the transmit FIFO underflow error
		interrupt.
		0: Transmit FIFO underflow error does not generate an interrupt
		1: Transmit FIFO underflow error generates an interrupt
3	DATTIMEOUTEN	Data timeout interrupt enable.
		Setting/clearing this bit by software to enable/disable the data timeout interrupt.
		0: Data timeout does not generate an interrupt
		1: Data timeout generates an interrupt
2	CMDTIMEOUTEN	Command timeout interrupt enable.
		Setting/clearing this bit by software to enable/disable the command timeout interrupt.
		0: Command timeout does not generate an interrupt
		1: Command timeout generates an interrupt
1	DCRCERREN	Data CRC fail interrupt enable.
		Setting/clearing this bit by software to enable/disable the interrupt for block CRC detection
		failure.
		0: Data block CRC detection failure does not generate an interrupt
		1: Data block CRC detection failure generates an interrupt
0	CCRCERREN	Command CRC fail interrupt enable.
		Setting/clearing this bit by software to enable/disable the command CRC detection failure
		interrupt.
		0: Command CRC detection failure does not generate an interrupt
		1: Command CRC detection failure generates an interrupt

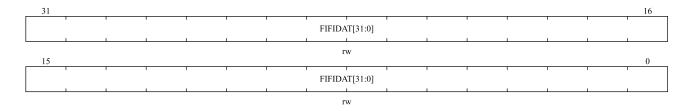


18.7.15 SDIO FIFO counter register (SDIO_FIFOCOUNT)

Address offset: 0x48

Reset value: 0x0000 0000

The SDIO_FIFOCOUNT register contains the number of data words that have not been written to or read from the FIFO. When the data transfer enable bit SDIO_DATCTRL.DATEN is set and the DPSM is idle, the FIFO counter is loaded with the value from the data length register (see SDIO_DATLEN). If the data length is not word-aligned (a multiple of 4), the last remaining 1~3 bytes are treated as a word.


Bit Field	Name	Description								
31:24	Reserved	Reserved, the reset value must be maintained.								
23:0	FIFOCOUNT	The number of data words to be written to or read from the FIFO.								

18.7.16 SDIO data FIFO register (SDIO_DATFIFO)

Address offset: 0x80

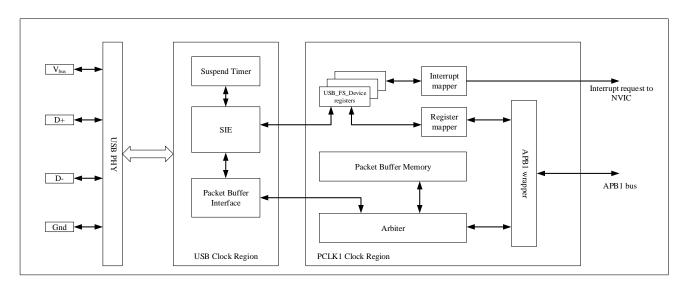
Reset value: 0x0000 0000

The receive and transmit FIFO is a 32-bit wide read or write set of registers, it contains 32 registers on consecutive 32 addresses, the CPU can use the FIFO to read and write multiple operands.

Bit Field	Name	Description
31:0	FIFIDAT	Receive and transmit FIFO data.
		The FIFO data occupies 32 entries of 32-bit words at the address:
		(SDIO base address $+ 0x80$) to (SDIO base address $+ 0xFC$)

19 Universal serial bus full-speed device interface (USB_FS_Device)

19.1 Introduction


Universal serial bus full-speed device interface (USB_FS_Device) module is a peripheral that conforms to the USB2.0 full-speed protocol. It contains the USB PHY of the physical layer and does not require an additional PHY chip. USB_FS_Device supports four transfer types defined in USB2.0 protocol: control transfer, bulk transfer, interrupt transfer and isochronous transfer.

19.2 Main features

- Comply with USB2.0 full-speed device specification
- Supports up to 8 configurable USB endpoints
- Each endpoint supports four transfer types in the USB2.0 protocol:
 - Control transfer
 - Bulk transfer
 - Interrupt transfer
 - Isochronous transfer
- Bulk endpoint/isochronous endpoint supports double buffering mechanism
- Cyclic redundancy check (CRC) generation/checking, non-return-to-zero inverted (NRZI) encoding/decoding and bit-stuffing
- Support USB suspend/resume operation
- Frame lock clock pulse generation

Figure 19-1 is a functional block diagram of a USB peripheral.

Figure 19-1 USB device block diagram

19.3 Clock configuration

The USB 2.0 protocol specification stipulates that the USB full-speed module uses a fixed 48MHz clock. In order to provide an accurate 48MHz clock to USB_FS_Device, a two-stage clock configuration is required, as follows:

- In the first stage, the 48MHz working clock is obtained by accurate frequency division of PLLCLK, so when using USB_FS_Device, it is necessary to ensure that the PLLCLK clock is 48MHz/72MHz/96MHz/144MHz, otherwise USB_FS_Device cannot work normally;
- In the second stage, enable the USB peripheral clock mounted on the APB1 bus, that is, the APB1 bus clock. Its frequency does not have to be equal to 48MHz, but can be greater or less than 48MHz.

Note:

1. The frequency of the APB1 bus clock must be greater than 8MHz, otherwise the data buffer may overflow/underflow.

19.4 Functional description

Based on this module, data exchange can be realized between the microcontroller and the PC host through a USB connection. The data transfer between the microcontroller and the PC host is based on a 512-byte dedicated SRAM, which is the Packet Buffer Memory in Figure 19-1. USB peripherals can directly access this SRAM. The actual usage size of this dedicated SRAM is determined by the number of endpoints used and the endpoint packet buffer size of each endpoint. Each endpoint has a buffer description table entry, which describes the buffer address, size and the number of bytes that need to be transferred. For details, please refer to 19.4.2 Buffer Description Table. The SRAM is mapped to the APB1 peripheral memory area, its address is from 0x4000 6000 to 0x4000 63FF, the total capacity is 1KB, but only 512 bytes are used due to the bus width, and the buffer description table of each endpoint is also stored in this SRAM, so the maximum endpoint packet buffer that can be used by each endpoint is less than 512 bytes.

Note:

1. USB and CAN1 share this SRAM, so USB and CAN1 cannot be used at the same time.

19.4.1 Access Packet Buffer Memory

As shown in Figure 19-1, the microcontroller communicates with the USB module through the APB1 bus, and the microcontroller accesses the Packet Buffer Memory through the APB1 wrapper. When the microcontroller and the USB module both access the Packet Buffer Memory, the Arbiter decides who can access, the arbitration logic is that half of the APB1 bus cycle is used for the microcontroller to access the Packet Buffer Memory, and the other half of the cycle is used for the USB module to access the Packet Buffer Memory, in this way, the access conflicts caused by the continuous access of the microcontroller to the Packet Buffer Memory can be avoided.

Note:

1. APB1 bus and USB module access Packet Buffer Memory in different ways.

19.4.1.1 USB module access Packet Buffer Memory

The USB module accesses the Packet Buffer Memory in 16-bit mode, refer to Figure 19-2. When the USB module 451

accesses the Packet Buffer Memory, first find the location of the buffer description table in the Packet Buffer Memory through the USB_BUFTAB register. The value of the USB_BUFTAB register indicates the starting address of the buffer description table, which must be within the memory range of the Packet Buffer Memory and be 8-byte aligned. If only endpoint 0 and endpoint 1 are used, the buffer description table only needs 16 bytes. If only endpoint 0 and endpoint 7 are used, the buffer description table needs 64 bytes. Although endpoint 1 to endpoint 6 are not used, but The description table of endpoint 7 starts from 56 bytes, so it will occupy 64 bytes of space.

19.4.1.2 User application access Packet Buffer Memory

The user application program on the microcontroller needs to access the Packet Buffer Memory from the APB1 bus according to 32-bit alignment and 16-bit read and write access, that is, the address of the operation data must be 32-bit aligned, and only 16-bit data can be read or written at a time, can't be 8-bit nor 32-bit. Figure 19-2 shows the way in which the user application program on the microcontroller and the USB module accesses the Packet Buffer Memory.

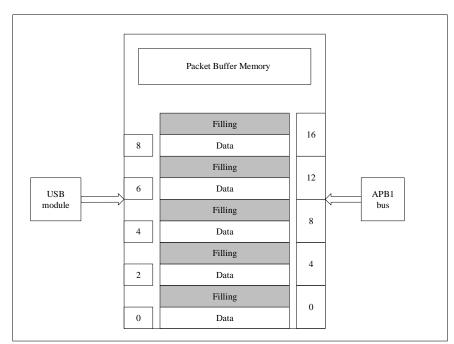


Figure 19-2 The user applications and the USB modules access Packet Buffer Memory

19.4.2 Buffer description table

The buffer description table defines the buffer address, size and the number of bytes to be transmitted for the endpoint used in the communication process. Each endpoint corresponds to two endpoint data packet buffers, one for sending and one for receiving. These endpoint packet buffers can be stored anywhere in the entire Packet Buffer Memory, and the buffer description table is also located in the Packet Buffer Memory, whose starting address is determined by the USB_BUFTAB register.

The buffer description table has a total of 8 entries, each entry corresponds to an endpoint register, each register has two directions of sending and receiving, and each direction requires two 16-bit word buffer description tables, so each table items consist of four 16-bit words, so the start address of the buffer description table must be 8-byte aligned. Endpoint packet buffers for unused endpoints or in the unused direction of a used endpoint may be used for other purposes. The relationship between the buffer description table and the endpoint packet buffer is shown in Figure

19-3 below.

Whether the endpoint is used for receiving or sending, the buffer description table starts with the first entry, which is the very bottom of the buffer description table. The USB module cannot access/modify the data of other endpoint packet buffers other than the currently allocated endpoint packet buffer area, For example: when the endpoint 0 packet receive buffer receives a data larger than the current endpoint 0 packet receive buffer from the PC host, the endpoint 0 only receives data up to the endpoint 0 packet receive buffer size, other redundant data is discarded and a buffer overflow exception occurs.

١ 1 Offset 0x1E CNT3 RX 1 Offset 0x1C ADDR3_RX_1 Buffer for OUT endpoint 3 in double Offset 0x1A buffer mode CNT3_RX_0 Offset 0x18 ADDR3_RX_0 Offset 0x16 CNT2_TX_1 Offset 0x14 ADDR2_TX_1 Buffer for IN endpoint 2 in double Offset 0x12 CNT2_TX_0 buffer mode Offset 0x10 ADDR2_TX_0 Offset 0x0E CNT1_RX Endpoint 1 RX buffer in single buffer mode Offset 0x0C ADDR1_RX Offset 0x0A CNT1_TX Offset 0x08 ADDR1_TX Offset 0x06 CNT0_RX Endpoint 0 RX buffer in single buffer mode Offset 0x04 ADDR0_RX Offset 0x02 CNT0_TX Endpoint 0 TX buffer in single buffer mode Offset 0x00 ADDR0 TX Endpoint packet buffer Buffer description table Packet Buffer Memory

Figure 19-3 The relationship between the buffer description table and the endpoint packet buffer

19.4.3 Double-buffered endpoints

19.4.3.1 Double buffer endpoint function introduction

When a large amount of data needs to be transmitted between the PC host and the USB device, the use of bulk transmission allows the PC host to transmit data with maximum efficiency within one frame. However, when the transmission speed is too fast, the USB device will receive a new data packet when the USB device is processing the previous data transmission. In order to correctly complete the previous data transmission, the USB can only reply the NAK handshake signal to the PC host. Due to the retransmission mechanism of bulk transfer, the PC host will continue to retransmit the same data packet until the USB device can process the data packet and reply to the PC host

with an ACK handshake signal, the PC host will stop retransmitting the data packet. Such retransmission will occupy a lot of bandwidth, thereby reducing the rate of bulk transfer. In order to solve this problem, a double buffering mechanism is introduced to improve the efficiency of bulk transfer, and flow control is implemented.

When the unidirectional endpoint uses the double buffer mechanism, both the receive buffer and the transmit buffer on the endpoint will be used, one of the buffers is used by the USB module, and the other buffer is used by the microcontroller, use the data toggle bit in the endpoint register to select which buffer is currently used, and introduce two flags for this: DATTOG and SW_BUF. DATTOG indicates the buffer currently being used by the USB module, and SW_BUF indicates the buffer currently being used by the application on the microcontroller. The definitions of DATTOG and SW_BUF are shown in Table 19-1 shown. A unidirectional endpoint using the double buffer mechanism only needs to use one USB_EPn register.

Buffer flag

Sending endpoint

Receiving endpoint

DATTOG_TX

DATTOG_RX

(Bit 6 of the USB_EPn register)

SW_BUF

Bit 14 of the USB_EPn register

Bit 6 of the USB_EPn register

Table 19-1 DATTOG and SW_BUF definitions

As shown in Figure 19-3, when an endpoint uses the double buffer mechanism, all four buffer description table entries of the endpoint will be used. DATTOG and SW_BUF are responsible for flow control. When a transfer is complete, the USB hardware toggles the DATTOG bit; when the application on the microcontroller has finished processing the data, the software toggles SW_BUF bit. After the first transfer starts, in the subsequent transfer process, if the values of DATTOG and SW_BUF are equal, a buffer access conflict occurs between the USB module and the application, the transfer is paused, and a NAK handshake packet is sent to the host; when the values of DATTOG and SW_BUF are not equal, normal USB communication can be performed.

DATTOG SW BUF Buffer used by the USB module Buffers used by the application Endpoint type 0 ADDRn_TX_0/CNTn_TX_0 ADDRn_TX_1/CNTn_TX_1 1 0 ADDRn_TX_1/CNTn_TX_1 ADDRn_TX_0/CNTn_TX_0 IN Endpoint 0 0 Endpoint is in NAK state $ADDRn_TX_0/CNTn_TX_0$ Endpoint is in NAK state ADDRn_TX_1/CNTn_TX_1 1 1 0 1 ADDRn_RX_0/CNTn_RX_0 ADDRn_RX_1/CNTn_RX_1 0 ADDRn_RX_1/CNTn_RX_1 ADDRn_RX_0/CNTn_RX_0 1 **OUT Endpoint** ADDRn_RX_0/CNTn_RX_0 0 0 Endpoint is in NAK state 1 Endpoint is in NAK state ADDRn_RX_1/CNTn_RX_1

Table 19-2 How to use double buffering

Note:

1. The double-buffered bulk endpoint will only set the endpoint to the NAK state when there is a buffer access conflict, and will not set the endpoint to the NAK state after each correct transmission is completed.

19.4.3.2 Double-buffered endpoint usage

If you want to use double-buffered bulk endpoints, you can set them up as follows:

■ Set USB EPn.EP TYPE = 00, define the endpoint as a bulk endpoint

■ Set USB_EPn.EP_KIND = 1, define endpoint as double buffer endpoint

As shown in Figure 19-3, when double-buffered bulk endpoint 3 performs data transmission in the OUT direction, assuming DATTOG = 1 and SW_BUF = 0, it means that the application can process the data in buffer0 corresponding to ADDR3_RX_0/CNT3_RX_0, after receiving the data from the USB bus, the USB module fills the data into the buffer1 corresponding to ADDR3_RX_1/CNT3_RX_1. When a transaction transfer on the USB bus is completed, the hardware will toggle DATTOG = 0. If the application has not finished processing the data in buffer0 corresponding to ADDR3_RX_0/CNT3_RX_0, the software will not toggle SW_BUF (SW_BUF = 0). If there is another OUT data packet transmission on the USB bus at this time, the USB device will automatically reply the NAK handshake signal to indicate flow control until the application finishes processing the data in buffer0 corresponding to ADDR3_RX_0/CNT3_RX_0, and the software toggle SW_BUF = 1. In this case, the DATTOG and SW_BUF values are different. If there is another OUT data packet transmission on the USB bus, the USB device can receive data normally, and fill the received data into buffer0 corresponding to ADDR3_RX_0/CNT3_RX_0, and the application can process the buffer1 corresponding to ADDR3_RX_1. As shown in Figure 19-4 below.

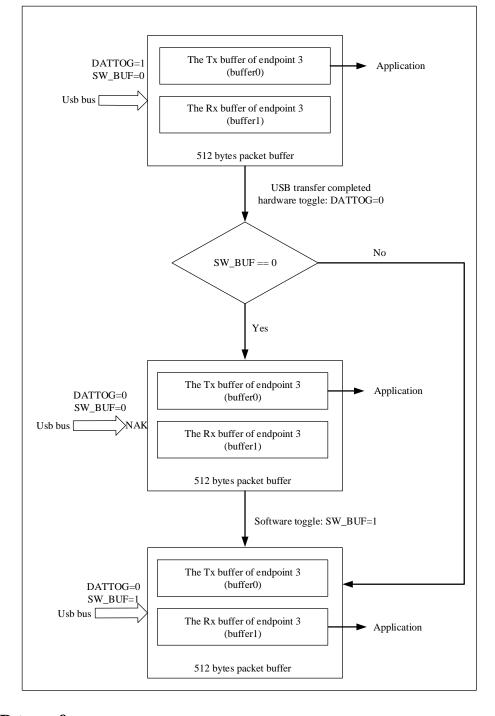


Figure 19-4 Double buffered bulk endpoint example

19.4.4 USB transfer

19.4.4.1 Overview of USB transfer

A USB transfer consists of multiple transactions, and a transaction consists of multiple packets.

A packet is the basic unit of USB transmission. All data must be packaged before being transmitted on the USB bus. The process of one time receiving or sending data on the USB is called a transaction, and there are three types of transactions: Setup transaction, Data IN transaction, and Data OUT transaction.

19.4.4.2 IN transaction

When the host wants to read the data of the USB device, the host sends a PID IN token packet to the USB device. After the USB device receives the IN token packet correctly, if the address matches a configured endpoint address, the USB module will access the corresponding USB_ADDRn_TX and USB_CNTn_TX registers according to the buffer description table entry of the endpoint, and store the values in these two registers to the internal 16-bit ADDR register and CNT register that cannot be accessed by the application. The ADDR register is used as a pointer to the endpoint's corresponding endpoint packet send buffer, and the CNT register is used to record the number of remaining untransferred bytes. The USB bus uses the low byte first method to read data from the endpoint data packet sending buffer. The data starts to read data from the endpoint data packet sending buffer pointed to by USB_ADDRn_TX, and the length is USB_CNTn_TX/2 words. If the data packet sent is an odd number of bytes, only the lower 8 bits of the last word are used.

After the USB device receives the PID IN token packet sent by the host, the USB processing flow for the IN transaction is as follows:

- If the device address information and endpoint information in this IN token packet are valid, and the status of the endpoint specified in the token packet is VALID, the USB device sends a PID DATA0 or DATA1 packet according to the USB_EPn.DATTOG_TX bit, send the prepared data to the host, when the last data byte is sent, the calculated data CRC will also be sent to the host. After the USB device receives the PID ACK handshake packet returned by the host. The hardware toggles the USB_EPn.DATTOG_TX bit, the hardware sets the endpoint's sending state to NAK state (USB_EPn.STS_TX = 10), and the hardware sets USB_EPn.CTRS_TX bit to generate a correct sending interrupt. The software responds to the CTRS_TX interrupt, identifies which endpoint the communication is on by checking the USB_STS.EP_ID bit, identifies the communication direction through USB_STS.DIR, clears the interrupt flag, and prepares the next data to be sent, and then the software sets the endpoint sending status to VALID status (USB_EPn.STS_TX = 11).
- If the endpoint specified in this IN token packet is invalid, the USB device does not send data packets, but sends PID NAK or STALL handshake packets according to USB EPn.STS TX.

19.4.4.3 OUT and SETUP transaction

When the host wants to send data or commands to the USB device, the host will send the PID OUT or SETUP token packet to the USB device. After the USB device receives the OUT or SETUP token correctly, if the address matches a configured endpoint address, the USB module will access the corresponding USB_ADDRn_RX and USB_CNTn_RX registers according to the buffer description table entry of the endpoint. Store the value of the USB_ADDRn_RX register into the internal ADDR register, and reset the internal CNT register at the same time. The ADDR register is used as a pointer to the endpoint data packet receiving buffer corresponding to the endpoint, and the CNT register is used to record the number of received data bytes, and initialize the internal 16-bit BUF_COUNT register that cannot be accessed by the application program with the BL_SIZE and NUM_BLK values in the USB_CNTn_RX register, which is used for buffer overflow detection. When the USB module receives data from the USB bus, the USB module organizes the received data in words (the first received is the low byte), and store it in the endpoint data packet receiving buffer pointed to by ADDR, at the same time, the CNT value is automatically incremented, and the BUF_COUNT value is automatically decremented.

After the USB device receives the PID OUT or SETUP token packet sent by the host, the USB processing flow for OUT or SETUP is as follows:

- If the device address information and endpoint information in the OUT or SETUP token packet are valid, and the status of the endpoint specified in the token packet is VALID, USB device moves data from the hardware buffer that cannot be accessed by the application to the endpoint data packet receiving buffer that can be accessed by the application. Then the USB device checks the received CRC. If the CRC is correct, the USB device replies to the host with a PID ACK handshake packet; If there is an error in the CRC or other error types (bit stuffing, frame error, etc.), the USB device will not reply to the host with an ACK handshake packet, and USB STS.ERROR is set, at this time, the application does not need to do any processing, the USB device will automatically recover to be ready to receive the next transfer. If the received data size exceeds the data packet buffer size of the receiving endpoint, the USB device will stop receiving data, and the hardware will reply to the STALL handshake packet and set the buffer overflow error, but no interrupt will be generated. After the USB device replies the PID ACK handshake packet to the host, the USB device toggles the USB_EPn.DATTOG_RX bit by the hardware, the hardware sets the endpoint receiving state to NAK state (USB_EPn.STS_RX = 10), and the hardware sets USB_EPn.CTRS_RX to generate a correct receive interrupt. The software responds to the CTRS RX interrupt, identifies the communication on which endpoint by checking the USB STS.EP ID bit, identifies the communication direction through USB_STS.DIR, clears the interrupt flag, processes the data received from the host, and after processing the received data, the software then sets the receiving state of the endpoint to the VALID state (USB_EPn.STS_RX = 11) to enable the next transmission.
- If the endpoint specified in this OUT or SETUP token packet is invalid, the USB device sends a PID NAK or STALL handshake packet according to USB EPn.STS RX.

Note:

1. When the USB device receives data from the host, if the size of the received data exceeds the size of the data packet buffer of the receiving endpoint, the hardware will automatically stop writing, that is, the data in the data packet buffer of other endpoints will never be overwritten.

19.4.4.4 Control transfer

Control transfer consists of 3 stages, 1 Setup stage + 0/multiple Data stages in the same direction + 1 Status stage. SETUP transaction can only be completed by the control endpoint, and the process of SETUP transaction and OUT transaction is similar. When a Setup transaction is completed correctly, the hardware generates a USB_EPn.CTRS_RX interrupt. In the interrupt, the software first changes the Tx and Rx direction states of the USB device endpoint to NAK, and then checks the USB_EPn.SETUP bit to determine whether it is a SETUP transaction or an OUT transaction. And according to the corresponding fields in the SETUP token packet, it is judged whether there is a data stage in the future, and if there is a data stage, whether the data stage is IN transmission or OUT transmission. As shown in Figure 19-5, take control write transfer as an example. Before enabling subsequent data stages, determine whether the Data stage is the last Data stage:

If it is not the last Data stage, that is, it is not the last data packet, before enabling the reception of OUT transactions, set the unused direction Tx status to STALL to prevent the host from prematurely ending the Data stage and entering the Status stage, the USB device can return a PID STALL handshake packet, and the Rx state of the direction to be used is set to VALID. When the first OUT transaction is completed correctly, the hardware generates the USB_EPn.CTRS_RX interrupt, and changes the Rx direction state of the USB device endpoint to NAK, the Tx direction state remains unchanged, the software judges whether the next OUT transaction to be enabled is the last Data stage in the interrupt. If it is not the last Data stage, before enabling the receiving OUT transaction, the software then sets the Rx direction status of the USB device endpoint to VALID, and the Tx

direction status remains unchanged;

■ If it is the last Data stage, before enabling the reception of the last OUT transaction, the software sets the Tx direction status that was not used in the previous Data stage to NAK, so that even if the host starts the Status stage immediately after the last Data stage, the USB device can still remain in the state of waiting for the end of the control transfer, and the Rx direction state is set to VALID, ready to receive the last packet of data;

After the last OUT transaction is completed correctly, the hardware generates the USB_EPn.CTRS_RX interrupt, and sets the Rx direction state of the USB device endpoint to NAK, and the TX direction state remains unchanged. When the software prepares the 0-length data packet that needs to be sent in the Status stage in the interrupt, the software changes the Tx direction status of the USB device endpoint to VALID.

Control read transfers are similar to control write transfers with the following differences:

- To control read transfer, after the last IN transaction in the Data stage is completed correctly, before enabling the Status stage in the OUT direction, in addition to setting the Rx direction status of the USB device endpoint to VALID, you also need to set STATUS_OUT (USB_EPn.EP_KIND) to 1, indicates that the next stage will be the Status stage in the OUT direction, and the subsequent OUT transaction must be a 0-length data packet, otherwise an error will be generated.
- After the Status stage is over, the software clears the STATUS_OUT (USB_EPn.EP_KIND) bit, the Rx direction status of the USB device endpoint is set to VALID, ready to receive a new command request, and the Tx direction status is set to NAK, indicating that before the next SETUP packet transmission is completed, the request for data transfer is not accepted.

Note:

- 1. Bidirectional endpoint 0 is used as the default control endpoint to handle control transfers.
- 2. As defined in the USB2.0 specification, after the USB device receives the PID SETUP token packet, it cannot reply with the PID NAK or STALL handshake packet, but only with the PID ACK handshake packet. If the transmission of the SETUP packet fails, the next SETUP packet will be raised. If the Rx state of endpoint 0 is set to STALL or NAK, the USB module can still receive the SETUP token packet.
- 3. When USB_EP0.CTRS_RX = 1, the USB module receives the SETUP token packet again, the USB module will discard the SETUP token packet, and will not reply any handshake packet to the host, forcing the host to send the SETUP token packet again.

Figure 19-5 Control transfer USB bus SETUP(0) DATA0 Tx = NAKRx = NAKTx = VALIDTx = STALLRx = STALLRx = VALIDOUT(1) IN(1) DATA1 DATA1 Tx = STALLTx = NAK $\mathbf{R}\mathbf{x} = \mathbf{N}\mathbf{A}\mathbf{K}$ Rx = STALLTx = VALIDTx = STALLRx = STALLRx = VALIDOUT(0) IN(0) DATA0 DATA0 Tx = STALLTx = NAKRx = NAKRx = STALLTx = NAKTx = VALIDRx = VALIDRx = NAKOUT(1) IN(1) DATA1 DATA1

19.4.4.5 Isochronous transfer

Transmissions that require a fixed and precise data rate are defined as isochronous transfer. If an endpoint is defined as a isochronous endpoint during enumeration, the USB host will allocate the required bandwidth for the endpoint in

460

Tx = NAK

 $\mathbf{R}\mathbf{x} = \mathbf{N}\mathbf{A}\mathbf{K}$

OUT(1)

DATA1

Tx = VALID

Rx = VALID

 $STATUS_OUT = 1$

Tx = NAKRx = VALID $STATUS_OUT = 0$

Tx = NAK

 $\mathbf{R}\mathbf{x} = \mathbf{N}\mathbf{A}\mathbf{K}$

IN(1)

DATA1

Tx = VALID

Rx = VALID

each frame of transmission, but in order to save bandwidth, isochronous transfer does not have a retransmission mechanism, that is, there is no handshake stage, there is no handshake packet after the data packet, so there is no need to use the data toggle mechanism, and the isochronous transfer only transmits the PID DATA0 data packet.

The isochronous endpoint uses a double buffer mechanism to reduce the processing pressure of the application. The buffer used by the USB module is identified by the DATTOG bit. In the same register, the USB_EPn.DATTOG_RX bit identifies the receiving isochronous endpoint, and the USB_EPn.DATTOG_TX bit identifies the sending isochronous endpoint. Compared with the bulk double buffering mechanism, the isochronous double buffering mechanism has no SW_BUF, because the buffer that the application can access is the one not indicated by DATTOG, so to achieve bidirectional isochronous transmission, two USB_EPn registers need to be used. The use of double-buffered isochronous endpoints is shown in Table 19-3.

Buffers used by the application Endpoint type DATTOG Buffer used by the USB module ADDRn_TX_0/CNTn_TX_0 ADDRn_TX_1/CNTn_TX_1 IN Endpoint 1 ADDRn_TX_1/CNTn_TX_1 ADDRn_TX_0/CNTn_TX_0 ADDRn_RX_1/CNTn_RX_1 0 ADDRn_RX_0/CNTn_RX_0 **OUT Endpoint** ADDRn_RX_1/CNTn_RX_1 ADDRn_RX_0/CNTn_RX_0

Table 19-3 How to use isochronous double buffering

The application initializes the DATTOG bits based on the buffer to be used the first time. Each time the transfer is completed, USB_EPn.CTRS_RX or USB_EPn.CTRS_TX is set according to the direction in which the transmission is enabled, and a corresponding interrupt is generated. If a CRC error or buffer overflow error occurs, the USB_EPn.CTRS_RX or USB_EPn.CTRS_TX interrupt event can still be triggered, but if it is a CRC error, the hardware will set the USB_STS.ERROR bit, indicating that the data may be corrupted. At the same time, the hardware toggles the DATTOG bit, but the USB_EPn.STS_RX or USB_EPn.STS_TX bits are not affected.

Isochronous endpoint definition: set USB_EPn.EP_TYPE = 10. Since the isochronous endpoint has no handshake mechanism, the status of the isochronous endpoint can only be set to VALID or DISABLED, and it is illegal to set it to STALL or NAK.

Note:

1. Compared with bulk double buffering, since isochronous double buffering has no handshake mechanism, isochronous double buffering has no flow control mechanism.

19.4.5 USB events and interrupts

Every USB behavior is initiated by the application and driven by USB interrupts or events. After a system reset, the application needs to wait for a series of USB interrupts and events.

19.4.5.1 Reset events

19.4.5.1.1 System reset and power-on reset

After a system reset or power-on reset occurs, the software first needs to enable the clock signal of the USB module, then clear the reset signal to access the registers of the USB module, and finally open the analog part connected to the USB transceiver. The software operation process is as follows:

■ Enable the clock signal of the USB module

- Clear the USB_CTRL.PD bit
- Wait for the internal reference voltage to stabilize, because it takes a start-up time to turn on the internal voltage, during which the USB transceiver is in an indeterminate state
- Clear the USB_CTRL.FRST bit
- Clear the USB_STS register, remove pending interrupts, and enable other units

Note:

1. Every time the USB module is enabled after system reset or power-on reset, the pull-up resistor on the DP signal line needs to be configured. This control bit is located in bit28 of the base address 0x4000 1820 register. Set bit28 to 1 to enable the pull-up resistor on the DP signal line, otherwise disable the pull-up resistor. Modification of other bits of this register is not allowed.

19.4.5.1.2 USB reset (reset interrupt)

When a USB reset occurs, the state of the USB module is the same as after a system reset: all endpoints are disabled for communication. The software needs to do the following:

- After the reset interrupt is generated, the software must enable the transmission of endpoint 0 within 10ms
- Set the USB_ADDR.EFUC bit
- Initialize the USB_EP0 register and its associated endpoint packet buffer

19.4.5.2 Suspend and resume events

19.4.5.2.1 Suspend events

When full-speed USB is communicating normally, the host will send a PID SOF token packet every millisecond. If the USB module detects that 3 consecutive SOF packets are lost, that is, the USB bus is in an idle state within 3ms, the hardware sets the USB_STS.SUSPD bit, triggers a suspend interrupt, and the USB device enters the suspend state. The USB2.0 standard stipulates that in the suspend state, the average current consumption on the USB bus does not exceed 2.5mA, but self-powered devices do not need to strictly abide by this regulation.

Note:

1. After the USB device enters the suspend state, it must still have the function of detecting the RESET signal.

19.4.5.2.2 Resume events

After the USB device enters the suspend state, to resume normal USB communication, the USB host can initiate a resume sequence or a reset sequence, or the USB device itself can trigger the resume sequence, but the resume sequence can only be ended by the USB host. If the reset sequence initiated by the USB host resumes the USB device, according to the regulations in the USB2.0 standard, it must be ensured that the resume process does not exceed 10ms.

Table 19-4 lists the USB_FN.RXDP_STS bit and the USB_FN.RXDM_STS bit to identify what triggers the resume event and the corresponding software action.

Table 19-4 Resume event detection

[USB_FN.RXDP_STS, USB_FN.RXDM_STS]	Wake-up event	Software operation
00	Root reset	None

01	Root resume	None
10	None (noise on bus)	Go back in Suspend mode
11	Not allowed (noise on bus)	Go back in Suspend mode

Note:

1. The USB_CTRL.RESUM bit can only be set when USB_CTRL.FSUSPD = 1, i.e. the USB module is in suspend state.

19.4.5.3 USB interrupt

The USB controller has 3 interrupt lines, which are as follows:

- USB low priority interrupt (channel 20): can be triggered by all USB events;
- USB high-priority interrupt (channel 19): can only be triggered by correct transfer events for isochronous and double-buffered bulk transfers;
- USB resume interrupt (channel 42): triggered by a resume event from USB suspend mode.

19.4.6 Endpoint initialization

- Initialize the USB_ADDRn_TX or USB_ADDRn_RX register, configure the endpoint Tx or Rx packet buffer start address;
- 2. According to the actual usage scenario of the endpoint, configure the USB_EPn.EP_TYPE bit and the USB_EPn.EP_KIND bit to set the endpoint type and buffer type;
- 3. Perform different operations based on the endpoint direction:
 - If it is a sending endpoint
 - 1) Set the USB_EPn.STS_TX bit to enable the sending function of the endpoint
 - 2) Configure the USB_CNTn_TX.CNTn_TX bit, set the endpoint data packet send buffer size
 - If it is a receiving endpoint
 - 1) Set the USB_EPn.STS_RX bit to enable the receiving function of the endpoint
 - 2) Configure the USB_CNTn_RX.BL_SIZE bit and the USB_CNTn_RX.NUM_BLK bit to set the endpoint packet receive buffer size

463

19.5 USB registers

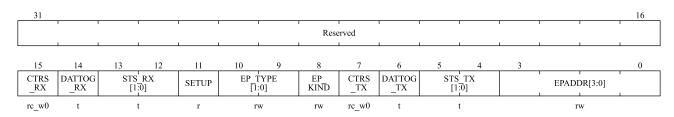
The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

USB base address: 0x4000 5C00

19.5.1 USB register overview

Table 19-5 USB register overview

Offset	Register	30 30 30 30 30 30 30 30 30 30 30 30 30 3	15	14	13	12	11	10	6	∞	7	9	5	4	3	2	1	0
000h	USB_EP0	Reserved	CTRS_RX	DATTOG_RX	STS RX[1:0]	[o]-a-c	SETUP	EP TYPEII-01		EP_KIND	CTRS_TX	DATTOG_TX	10-11XT STS	forther—ere	EI	PADD	R[3:0]
	Reset Value		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
004h	USB_EP1	Reserved	CTRS_RX	DATTOG_RX	STS RX[1:0]	Cara-car	SETUP	FP TYPE[1:0]		EP_KIND	CTRS_TX	DATTOG_TX	STS TXII-01	Griller - Grid	EI	PADD	R[3:0]
	Reset Value		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
008h	USB_EP2	Reserved	CTRS_RX	DATTOG_RX	STS_RX[1:0] SETUP EP_TYPE[1:0] EP_KIND CTRS_TX DATTOG_TX STS_TX[1:0]		fortwr-ere	EPADDR[3:0]]							
	Reset Value		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00Ch	USB_EP3	Reserved	CTRS_RX	DATTOG_RX	STS RX[1:0]	four least-or o	SETUP	FP TYPE[1:0]		EP_KIND	CTRS_TX	DATTOG_TX	STS TXII-01	fordwi-cre	EI	PADD	R[3:0]
•	Reset Value		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
010h	USB_EP4	Reserved	CTRS_RX	DATTOG_RX	STS RX[1:0]		SETUP	EP TYPEII-01		EP_KIND	CTRS_TX	DATTOG_TX	10-11XT 2T2	forder erg	EI	PADD	R[3:0]
•	Reset Value		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
014h	USB_EP5	Reserved	CTRS_RX	DATTOG_RX	STS RX[1:0]	for leave and	SETUP	EP TYPEII-01		EP_KIND	CTRS_TX	DATTOG_TX	10-11XT STS	facility - ara	EI	PADD	R[3:0]
	Reset Value		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
018h	USB_EP6	Reserved	CTRS_RX	DATTOG_RX	STS RX[1:0]	Caraltana and	SETUP	FP TYPE[1.0]		EP_KIND	CTRS_TX	DATTOG_TX	10-11XT STS	forther—gra	EI	PADD	R[3:0]
	Reset Value		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01Ch	USB_EP7	Reserved	CTRS_RX	DATTOG_RX	STS RX[1:0]	fourless-care	SETUP	FP TYPE[1:0]		EP_KIND	CTRS_TX	DATTOG_TX	STS TXII-01	for learning	EI	PADD	R[3:0]
	Reset Value		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
040h	USB_CTRL	Reserved	CTRSM	PMAOM	ERRORM	WKUPM	MGASUS	RSTM	SOFM	ESOFM		Reserved		RESUM	FSUSPD	LP_MODE	PD	FRST
	Reset Value		0	0	0	0	0	0	0	0				0	0	0	1	1
044h	USB_STS	Reserved	CTRS	PMAO	ERROR	WKUP	SUSPD	RST	SOF	ESOF		Reserved		DIR	I	EP_ID	[3:0]	
	Reset Value		0	0	0	0	0	0	0	0		R		0	0	0	0	0
048h	USB_FN	Reserved	RXDP_STS	RXDM_STS	LOCK	LSTSOF	[1:0]				T	FN	N[10:0)]				
	Reset Value		0	0	0	0	0	X	X	X	X	X	X	X	X	X	X	X
04Ch	USB_ADDR	Reserved					Reserved							AD	DR[6	:0]		



Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
	Reset Value																										0	0	0	0	0	0	0
050h	USB_BUFTAB								Rese	rved													BUF	ГАВ[15:3]							served	
	Reset Value																	0	0	0	0	0	0	0	0	0	0	0	0	0		Re	

19.5.2 USB endpoint n register (USB_EPn), n=[0..7]

Address offset: 0x00 to 0X1C

Reset value: 0x0000 0000

Bit Field	Name	Description
31: 16	Reserved	Reserved, the reset value must be maintained.
15	CTRS_RX	Correct receive flag
		This bit is set by hardware when an OUT or SETUP transaction on this endpoint
		completes successfully. If USB_CTRL.CTRSM = 1, the corresponding interrupt will
		be generated.
		Note:
		1. Software can read and write this bit, but only writing 0 is valid, and writing 1 is
		invalid.
14	DATTOG_RX	Receive data PID toggle bit
		If the endpoint is not isochronous, this bit represents the toggle data bit $(0 = DATA0,$
		1 = DATA1).
		Double-buffered endpoint, this bit is used to implement the flow control mechanism
		for double-buffered endpoints.
		Isochronous endpoint, this bit is used for double buffer exchange.
		Note:
		1. Software can read and write this bit, but writing 0 is invalid, and writing 1
		toggles this bit.
		2. Control endpoint, the hardware clears this bit after the USB module correctly
		receives the PID SETUP token packet.
		3. In isochronous transfer, hardware toggles this bit just after the end of data
		packet reception.
13: 12	STS_RX[1:0]	Receive status
		This bit indicates the current state of the endpoint, Table 19-6 lists the available states
		of the endpoint. Hardware sets this bit to the NAK state when a correct OUT or
		SETUP transaction completes.
		Note:

Bit Field	Name	Description								
		1. Software	can read and write this	bit, but writing 0 is invalid, and writing 1						
		toggles th	is bit.							
		2. Double-b	2. Double-buffered bulk endpoint, which controls the transmission status according							
		to the buffer status used, refer to section 19.4.3.								
		3. Isochrono	3. Isochronous endpoint, the hardware will not change the state of the endpoint							
		after the t	after the transaction is successfully completed							
11	SETUP	SETUP transfe	SETUP transfer completion flag							
		This bit is set b	by hardware when the U	JSB module correctly receives the PID SETUP						
		token packet.								
		Note:								
		1. Software	can only read this bit, r	ot write this bit.						
		2. This bit U	SB_EPn.SETUP is onl	y valid for control endpoints.						
10: 9	EP_TYPE[1:0]	Endpoint type								
		I	EP_TYPE[1:0]	Description						
			00	BULK: bulk endpoint						
			01	CONTROL: control endpoint						
			10	ISO: isochronous endpoint						
			11	INTERRUPT: interrupt endpoint						
8	EP_KIND	Endpoint speci	al type							
		EF	P_TYPE[1:0]	EP_KIND meaning						
		00	BULK	DBL_BUF: double buffered endpoint						
		01	CONTROL	STATUS_OUT						
		10	ISO	Undefined						
		11	INTERRUPT	Undefined						
7	CTRS_TX	Correct send fl	ag							
			This bit is set by hardware when an IN transaction on this endpoint completes							
		successfully. If	USB_CTRL.CTRSM	= 1, the corresponding interrupt will be						
			generated.							
			Note:							
			1. Software can read and write this bit, but only writing 0 is valid, and writing 1 is							
	DATEOC TV	invalid.	41- 1:4							
6	DATTOG_TX	Send data PID		hit represents the toggle data hit (0 - DATA)						
		1 = DATA1).	is not isochronous, this	s bit represents the toggle data bit $(0 = DATA0,$						
			ed andpoint this bit is a	ised to implement the flow control mechanism						
			fered endpoints.	ised to implement the now control mechanism						
			-	for double buffer exchange.						
		Note:		carrer exeminge.						
			can read and write this	bit, but writing 0 is invalid, and writing I						
		toggles th								
				will set this bit after the USB module correctly						
			he PID SETUP token p							

Bit Field	Name	Description
		3. In isochronous transfer, hardware toggles this bit just after the end of data
		packet transmission.
5: 4	STS_TX[1:0]	Send status
		This bit indicates the current state of the endpoint, Table 19-7 lists the available states
		of the endpoint. When a correct IN transaction completes, the hardware sets this bit to
		the NAK state.
		Note:
		1. Software can read and write this bit, but writing 0 is invalid, and writing 1
		toggles this bit.
		2. Double-buffered bulk endpoint, which controls the transmission status according
		to the buffer status used, refer to section 19.4.3.
		3. Isochronous endpoint, the hardware will not change the state of the endpoint
		after the transaction is successfully completed.
3: 0	EPADDR[3:0]	Endpoint address
		This bit indicates the destination endpoint of the communication and must be written
		before enabling the corresponding endpoint.

Note:

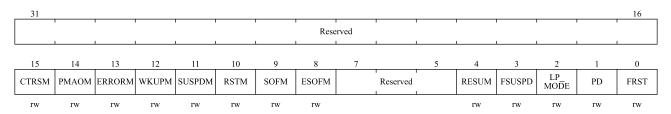
1. When the USB module receives the USB bus reset signal, or USB_CTRL.FRST = 1, the USB module will be reset. Except for the CTRS_RX and CTRS_TX bits that remain unchanged to process the following USB transfer, all other bits are reset.

Table 19-6 Receive status code

STS_RX[1:0]	Description
00	DISABLED: ignore all receive requests for this endpoint
01	STALL: the status of the handshake packet is STALL
10	NAK: the status of the handshake packet is NAK
11	VALID: endpoints can be used to receive

Table 19-7 Send status code

STS_TX[1:0]	Description
00	DISABLED: ignore all send requests for this endpoint
01	STALL: the status of the handshake packet is STALL
10	NAK: the status of the handshake packet is NAK
11	VALID: endpoints can be used to send

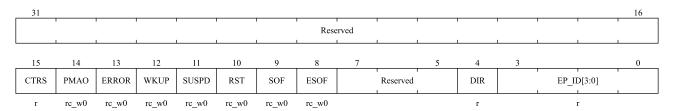

467

19.5.3 USB control register (USB_CTRL)

Address offset: 0x40

Reset value: 0x0000 0003

Bit Field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained.
15	CTRSM	Correct transfer interrupt enable
		0: Disable correct transfer interrupt
		1: Enable correct transfer interrupt, when USB_STS.CTRS = 1, an interrupt is
		generated.
14	PMAOM	Packet buffer overflow/underflow interrupt enable
		0: Disable packet buffer overflow/underflow interrupt
		1: Enable packet buffer overflow/underflow interrupt, when USB_STS.PMAO = 1, an
		interrupt is generated.
13	ERRORM	Error interrupt enable
		0: Disable error interrupt
		1: Enable error interrupt, when USB_STS.ERROR = 1, an interrupt will be generated.
12	WKUPM	Wake-up interrupt enable
		0: Disable wake-up interrupt
		1: Enable wake-up interrupt, when USB_STS.WKUP = 1, an interrupt will be
		generated.
11	SUSPDM	Suspend mode interrupt enable
		0: Disable suspend mode interrupt
		1: Enable suspend mode interrupt, when USB_STS.SUSPD = 1, an interrupt will be
		generated.
10	RSTM	USB reset interrupt enable
		0: Disable USB reset interrupt
		1: Enable USB reset interrupt, when USB_STS.RST = 1, an interrupt will be
		generated.
9	SOFM	Start of frame interrupt enable
		0: Disable start of frame interrupt
		1: Enable start of frame interrupt, when USB_STS.SOF = 1, an interrupt will be
		generated.
8	ESOFM	Expected start of frame interrupt enable
		0: Disable the expected start of frame interrupt
		1: Enable the expected start of frame interrupt, when USB_STS.ESOF = 1, generate
		an interrupt.
7: 5	Reserved	Reserved, the reset value must be maintained.
4	RESUM	Resume request
		0: No resume request

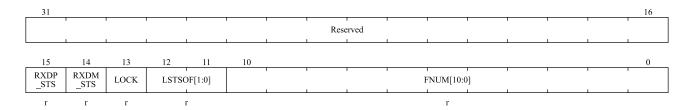

Bit Field	Name	Description	
		1: Send a resume request to the PC host	
		Note:	
		1. If USB_CTRL.RESUM = 1 remains active for 1ms to 15ms, the PC host will	
		implement a resume operation for the USB module.	
3	FSUSPD	Force suspend	
		Software must set this bit when the USB_STS.SUSPD interrupt is triggered.	
		0: Suspend mode not entered	
		1: Enter suspend mode, but the clock and static power consumption of the USB analog	
		transceiver are still present	
		Note:	
		1. To enter the low power consumption mode (bus powered device), the software must	
		first set USB_CTRL.FSUSPD, and then set USB_CTRL.LP_MODE.	
2	LP_MODE	Low power mode	
		0: No effect	
		1: Enter low power mode in suspend mode. Activity on the USB bus (wake event)	
		resets this bit (software can also reset this bit)	
		Note:	
		1. In low power mode, only the external pull-up resistor is used for power supply,	
		and the system clock will also be stopped or reduced to a certain frequency to	
		reduce power consumption.	
1	PD	Power-down mode	
		0: Exit power-down mode	
		1: Enter power-down mode	
		Note:	
		1. When $USB_CTRL.PD = 1$, the USB module is completely shut down,	
		disconnected from the host, and the USB module will not work.	
0	FRST	Force USB reset	
		0: No effect	
		1: Reset the USB module, if USB_CTRL.RSTM = 1, a reset interrupt will be	
		generated	
		Note:	
		1, When USB_CTRL.FRST = 1, the USB module will remain in reset state until	
		software clears this bit.	

19.5.4 USB interrupt status register (USB_STS)

Address offset: 0x44

Reset value: 0x0000 0000

Bit Field	Name	Description	
31:16	Reserved	Reserved, the reset value must be maintained.	
15	CTRS	Correct transmission interrupt flag	
		Set by hardware when the endpoint has completed a data transfer correctly.	
		Note:	
		1. Software can only read this bit, not write this bit.	
14	PMAO	Packet buffer overflow/underflow interrupt flag	
		This bit is set by hardware when the packet buffer cannot hold all the transmitted	
		data.	
		Note:	
		1. Software can read and write this bit, but only writing 0 is valid, and writing 1 is	
		invalid.	
		2. This interrupt will not be generated during isochronous transfer.	
13	ERROR	Error interrupt flag	
		Hardware sets this bit when the following errors occur:	
		1) No response, the host response timed out	
		2) CRC error, CRC check error in data or token packet	
		3) Bit stuffing error, bit stuffing error detected in PID, data or CRC	
		4) Frame format error, non-standard frame received	
		Note:	
		1. Software can read and write this bit, but only writing 0 is valid, writing 1 is	
		invalid.	
12	WKUP	Wake-up interrupt flag	
		In the suspend state, when the wake-up signal is detected, the hardware sets this bit,	
		and the hardware resets the USB_CTRL.LP_MODE bit at the same time.	
		Note:	
		1. Software can read and write this bit, but only writing 0 is valid, writing 1 is	
		invalid.	
11	SUSPD	Suspend mode interrupt flag	
		This bit is set by hardware when there is no activity on the USB bus for more than	
		3ms, indicating a suspend request.	
		Note:	
		1. Software can read and write this bit, but only writing 0 is valid, and writing 1 is invalid.	
		2. In suspend mode, the USB hardware will not detect the suspend signal until the	
		wake-up is over.	
		3. After the USB is reset, the hardware will immediately enable the detection of the	

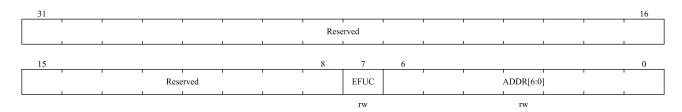

Bit Field	Name	Description	
		suspend signal.	
10	RST	USB reset interrupt flag	
		This bit is set by hardware when a USB reset signal is detected.	
		Note:	
		1. Software can read and write this bit, but only writing 0 is valid, and writing 1 is	
		invalid.	
		2. When the USB reset interrupt is generated, the address and endpoint registers of	
		the device will be reset, but the configuration registers will not be reset unless	
		cleared by software.	
9	SOF	Start of frame interrupt flag	
		This bit is set by hardware when a PID SOF token packet is detected on the USB bus.	
		Note:	
		1. Software can read and write this bit, but only writing 0 is valid, and writing 1 is	
		invalid.	
8	ESOF	Expected start of frame interrupt flag	
		This bit is set by hardware when the USB module does not receive the expected PID	
		SOF token packet.	
		Note:	
		1. Software can read and write this bit, but only writing 0 is valid, and writing 1 is	
		invalid.	
		2. When the USB module does not receive the PID SOF token packet for 3ms in a	
		row, that is, 3 ESOF interrupts occur in a row, and a SUSPD interrupt will be	
		generated.	
7: 5	Reserved	Reserved, the reset value must be maintained.	
4	DIR	Transmission direction	
		0: IN packet transfer is completed, and USB_EPn.CTRS_TX is set by hardware	
		1: OUT packet transfer is complete, and USB_EPn.CTRS_RX is set by hardware	
		Note:	
		1. Software can only read this bit, not write this bit.	
		2. When USB_EPn.CTRS_TX and USB_EPn.CTRS_RX are set at the same time, it	
2 0	ED 1013 01	indicates that there are OUT group and IN group at the same time.	
3: 0	EP_ID[3:0]	Endpoint number	
		After the USB module completes the data transmission and generates an interrupt, it	
		is written by the hardware according to the endpoint number of the interrupt request.	
		Note:	
		Software can only read this bit, not write this bit. When multiple and point requests are interrupted at the same time, the hardware.	
		2. When multiple endpoint requests are interrupted at the same time, the hardware	
		writes the endpoint number with the highest priority. Isochronous endpoints and	
		double-buffered bulk endpoints have high priority, other endpoints have low	
		priority (the lower the endpoint number, the higher the priority).	

19.5.5 USB frame number register (USB_FN)

Address offset: 0x48

Reset value: 0x0000 0XXX, X stands for undefined value

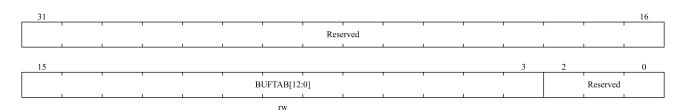
Bit Field	Name	Description	
31:16	Reserved	Reserved, the reset value must be maintained.	
15	RXDP_STS	D+ status	
		Represents the state of the USB D+ line, and can detect the occurrence of a resume	
		condition in the suspend state.	
14	RXDM_STS	D- status	
		Represents the state of the USB D- line, and can detect the occurrence of a resume	
		condition in the suspend state.	
13	LOCK	Lock USB	
		This bit is set by hardware if at least 2 PID SOF token packets are detected	
		continuously after the end of an USB reset condition or after the end of an USB	
		resume sequence.	
		Note:	
		1. When USB_FN.LOCK = 1, the frame counter will stop counting before the USB	
		module is reset or the USB bus is suspended.	
12:11	LSTSOF[1:0]	Lost SOF flag	
		The hardware increments this bit every time the USB_STS.ESOF event occurs, and	
		once the PID SOF token packet is received, the hardware clears this bit.	
10:0	FNUM[10:0]	Number of frames	
		Hardware increments this bit every time the USB module receives a PID SOF token	
		packet.	


472

19.5.6 USB device address register (USB_ADDR)

Address offset: 0x4C

Reset value: 0x0000 0000



Bit Field	Name	Description	
31:8	Reserved	Reserved, the reset value must be maintained.	
7	EFUC	USB module enable	
		0: The USB module stops working and does not respond to any USB communication	
		1: Enable USB module	
6: 0	ADDR[6:0]	USB device address	
		This bit holds the address value assigned to the USB device by the USB host during	
		enumeration. After a USB bus reset, this bit is reset to 0x00.	

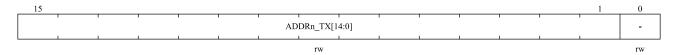
19.5.7 USB packet buffer description table address register (USB_BUFTAB)

Address offset: 0x50

Reset value: 0x0000 0000

Bit Field	Name	Description	
31:16	Reserved	Reserved, the reset value must be maintained.	
15:3	BUFTAB[12:0]	Buffer table	
		This bit holds the starting address of the buffer description table. The buffer	
		description table is used to indicate the address and size of the endpoint packet buffer	
		of each endpoint, aligned by 8 bytes (the lowest 3 bits are 000).	
2:0	Reserved	Reserved, the reset value must be maintained.	

19.6 Buffer description table


The buffer description table is located in the packet buffer memory and is used to configure the address and size of the endpoint packet buffer shared by the USB module and the microcontroller core. Since the APB1 bus is addressed by 32 bits, the data packet buffer memory addresses use 32-bit aligned addresses, not the addresses used by the USB_BUFTAB register and the buffer description table.

19.6.1 Send buffer address register n (USB_ADDRn_TX)

Address offset: [USB_BUFTAB] + $n \times 16$

USB local address: [USB_BUFTAB] + $n \times 8$

Bit Field	Name	Description	
15: 1	ADDRn_TX[14:0]	Send buffer address	
		The starting address of the endpoint packet buffer of the endpoint that needs to send	
		data when the next PID IN token packet is received	
0	-	Since packet buffer memory addresses are word (32-bit) aligned, this bit must be 0	

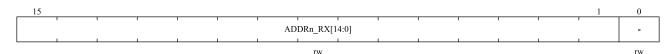
19.6.2 Send data byte number register n (USB_CNTn_TX)

Address offset: [USB_BUFTAB] + $n \times 16 + 4$

USB local address: [USB_BUFTAB] + $n \times 8 + 2$

Bit Field	Name	Description	
15:10	Reserved	Reserved, the reset value must be maintained.	
9: 0	CNTn_TX[9:0]	Number of bytes sent	
		The number of data bytes to send on the next PID IN token packet	

Note: As shown in Table 19-2 and Table 19-3, the double-buffered IN endpoint and the isochronous IN endpoint require two USB_CNTn_TX registers: USB_CNTn_TX_0 and USB_CNTn_TX_1.


474

19.6.3 Receive buffer address register n (USB_ADDRn_RX)

Address offset: [USB_BUFTAB] + $n \times 16 + 8$

USB local address: $[USB_BUFTAB] + n \times 8 + 4$

Bit Field	Name	Description	
15:1	ADDRn_RX[14:0]	Receive buffer address	
		Endpoint packet buffer start address for the endpoint to hold data when the next PID	
		SETUP or OUT token packet is received	
0	-	Since packet buffer memory addresses are word (32-bit) aligned, this bit must be 0	

19.6.4 Receive data byte number register n (USB_CNTn_RX)

Address offset: [USB_BUFTAB] + $n \times 16 + 12$

USB local address: $[USB_BUFTAB] + n\times8 + 6$

Bit Field	Name	Description	
15	BLSIZE	Memory block size	
		0: The memory block size is 2 bytes	
		1: The memory block size is 32 bytes	
14:10	NUM_BLK[4:0]	Number of memory blocks	
		Records the number of memory blocks allocated to the endpoint packet receive buffer	
		and determines the size of the endpoint packet receive buffer that is ultimately used.	
		For details, please refer to the following Table 19-8.	
9:0	CNTn_RX[9:0]	Number of bytes received	
		Written by the USB module to record the actual number of bytes of the latest PID	
		SETUP or OUT token packet received by the endpoint.	

Note: As shown in Table 19-2 and Table 19-3 double buffered OUT endpoints and isochronous OUT endpoints require two USB_CNTn_RX registers: USB_CNTn_RX_0 and USB_CNTn_RX_1.

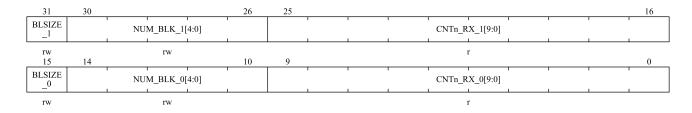


Table 19-8 Endpoint packet receive buffer size definition

NUM_BLK[4:0]	BLSIZE = 0	BLSIZE = 1
00000	Not allowed	32 bytes
00001	2 bytes	64 bytes
00010	4 bytes	96 bytes

NUM_BLK[4:0]	BLSIZE = 0	BLSIZE = 1
00011	6 bytes	128 bytes
01111	30 bytes	512 bytes
10000	32 bytes	Reserved
10001	34 bytes	Reserved
10010	36 bytes	Reserved
11110	60 bytes	Reserved
11111	62 bytes	Reserved

Note:

1. The size of the endpoint packet receive buffer is defined during the device enumeration process and is defined by the wMaxPacketSize field of the standard endpoint descriptor in the USB 2.0 protocol specification.

20 Controller area network (CAN)

20.1 Introduction to CAN

As CAN network interface, basic extended CAN supports CAN protocols 2.0A and 2.0B. It can efficiently process a large number of received messages and greatly reduce the consumption of CPU resources. The priority characteristics of message sending can be configured by software, and the hardware function of CAN can support time-triggered communication mode for some applications with high security requirements.

20.2 Main features of CAN

- Baud rate supports up to 1Mbit/s
- CAN protocol 2.0A/B are supported.
- Support time-triggered communication function
- Support individual interrupt control.
- CAN Core Manages the communication between the CAN and the 512 bytes SRAM memory (see Figure 20-3)
- Dual CAN: CAN1 and CAN2 each with 512 bytes of SRAM

Note: USB and CAN1 share a single 512-byte SRAM. Since this SRAM is used to transmit and receive data, USB and CAN1 cannot be used at the same time. USB and CAN1 can be time-shared using in an application, but not simultaneously.

477

Time triggered communication mode

- 16-bit free-running timer
- Automatic retransmission mode is prohibited.
- The last 2 data bytes of a message can be configured as the timestamp.

Send

- There are 3 sending mailboxes.
- Time stamp function for recording the time of sending SOF
- Software can configure the priority characteristics of sending messages.

Receive

- Filter groups support identifier list mode.
- Each CAN has two receiving FIFOs, each with a depth of 3 levels
- A total of 14 filter groups(each CAN module has its own)
- Configurable FIFO overrun handling method
- Time stamp function for recording the time of receiving SOF

20.3 CAN overall introduction

With the wide application of CAN, the nodes of CAN network are growing rapidly. Multiple CAN nodes are connected through CAN network. With increase number of CAN nodes, messages in CAN network also increase dramatically which will occupides lots of CPU resource. In this CAN controller, receive FIFOs and filter mechanism are added as hardware support for CPU message processing and reduce real-time response requirement of CAN message.

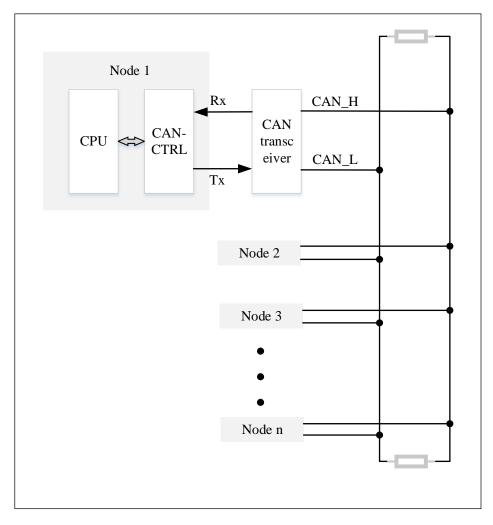


Figure 20-1 Topology of CAN network

20.3.1 CAN module

CAN module can automatically receive and send CAN messages, and supports standard identifiers (11 bits) and extended identifiers (29 bits).

20.3.2 CAN working mode

Initialization, normal and sleep mode are three main working modes of CAN. The internal pull-up resistor of CANTX pin is activated after hardware reset, and CAN works in sleep mode to reduce power consumption.

The software can set CAN_MCTRL.INIRQ and CAN_MCTRL.SLPRQ bit to configure CAN to enter **initialization** or **sleep** mode. The software reads values of the CAN_MSTS.INIAK or CAN_MSTS.SLPAK bit to confirm whether the **initialization** or **sleep** mode is entered, at this time the internal pull-up resistor of the CANTX pin is disabled.

CAN is in **normal** mode when CAN_MSTS.INIAK and CAN_MSTS.SLPAK bits are both '0', and it must **synchronize** with CAN bus to enter **normal** mode. When 11 consecutive recessive bits are monitored on the CANRX pin, the CAN bus is idle and synchronization is completed.

20.3.2.1 Normal mode

After the initialization is completed, the software configures CAN to enter normal mode. Clear the CAN_MCTRL.INIRQ and wait for the hardware to clear the CAN_MSTS.INIRQ bit to confirm that CAN enters normal mode. Only after the synchronization with CAN bus is completed, CAN can receive and send messages normally.

Setting the bit width and mode of the filter group must be completed when the filter is in the initialization mode (the CAN_FMC.FINITM bit is 1). Setting the initial value of the filter must be completed when it is inactive (the corresponding CAN_FA1.FAC bit is 0).

20.3.2.2 Initialization mode

The software can perform initialization configuration only when CAN is in initialization mode. Set the CAN_MCTRL.INIRQ bit and clear CAN_MCTRL.SLPRQ bit, and wait for the hardware to set the CAN_MSTS.INIAK bit to confirm that CAN enters the initialization mode. When entering the initialization mode, the register configuration will not be affected. When CAN is in initialization mode, message receiving and sending are prohibited, and the CANTX pin outputs a recessive bit (high level). To exit initialization mode, clear the CAN_MCTRL.INIRQ bit, and wait for the hardware to clear the CAN_MSTS.INIAK bit to confirm that CAN exits the initialization mode.

To perform initialization configuration for CAN by software, at least the bit time characteristic register (CAN_BTIM) and the control register (CAN_MCTRL) need to be configured. The software needs to set the CAN_FMC.FINITM bit to initialize the filter group (mode, bit width, FIFO association, activation and filter value) that configures CAN. Configuring the filter group of CAN does not necessarily need to be in initialization mode.

Specially, when CAN_FMC.FINITM=1, it is forbidden to receive messages. If you want to modify the value of the corresponding filter, you need to first clear the filter activation bit (in CAN_FA1). It is necessary to keep the unused filter group inactive (keep its CAN_FA1.FAC bit to '0').

20.3.2.3 Sleep mode (low power)

To enters sleep mode, set the CAN_MCTRL.SLPRQ bit, and wait for the hardware to set the CAN_MSTS.SLPAK bit to confirm that CAN enters sleep mode. CAN can configure to sleep mode reduce power consumption when unused. In sleep mode, the clock of CAN stops working, but the software can still access the sending/receiving mailbox register. When CAN is in sleep mode, the CAN_MCTRL.INIRQ bit must be set and the CAN MCTRL.SLPRQ bit must be clear at the same time so as to enter the initialization mode.

There are two situation to wake up CAN(CAN exits sleep mode):

■ When the CAN_MCTRL.AWKUM bit is set(enable hardware wake up automatically), once the activity of the CAN bus is detected, the hardware will automatically clear the CAN_MSTS.SLPRQ bit to wake up CAN.

■ When the CAN_MCTRL.AWKUM bit is clear(enable software wake up), and wake-up interrupt occurred ,then the software must clear the CAN_MCTRL.SLPRQ bit to exit the sleep state.

If the wake-up interrupt (set the CAN_INTE.WKUITE bit) is enabled, the wake-up interrupt will be generated once the CAN bus activity is detected, regardless of whether the hardware is enabled to automatically wake up CAN.

The CAN must be synchronized with the CAN bus before entering Normal mode Wait until the CAN_MSTS.SLPAK bit cleared to confirm the sleep mode has exited.Please refer to Figure 20-2.

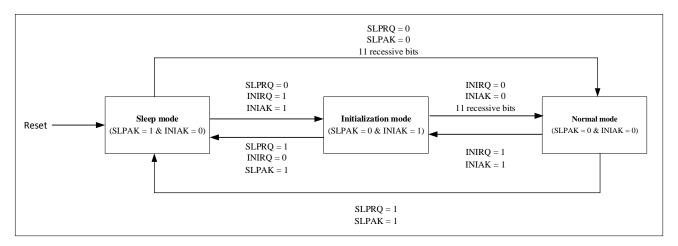


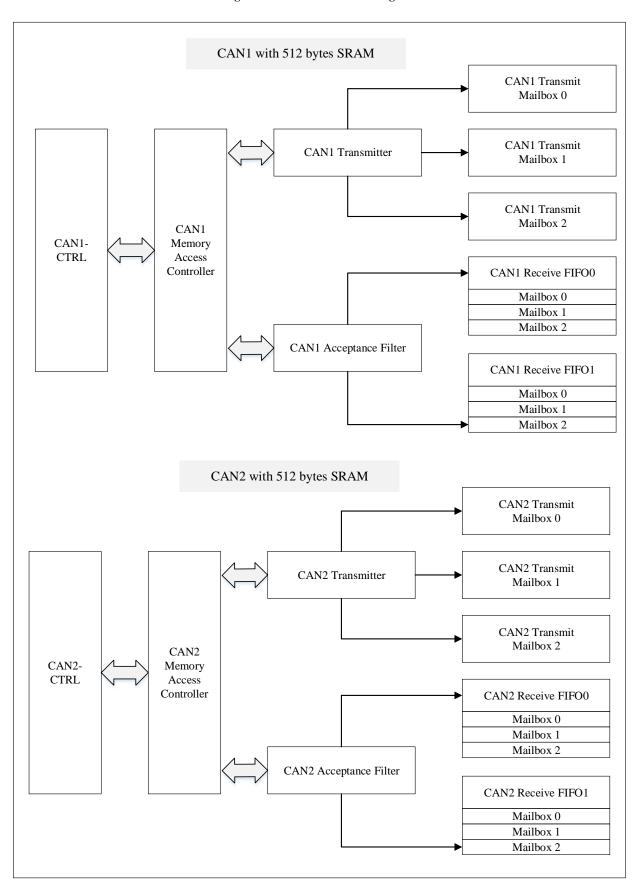
Figure 20-2 CAN working mode

Notes: the state that the hardware sets the CAN_MSTS.INIAK or CAN_MSTS.SLPAK bit in response to a sleep or initialization request.

20.3.3 Send mailbox

Applications can send messages through three sending mailboxes. The order of sending three mailbox messages is determined by the sending scheduler according to the priority of the messages, and the priority can be determined by the identifier of the messages or by the order of sending requests.

20.3.4 Receiving filter


Each CAN has 14 configurable identifier filter groups. After the application configures the identifier filter group, the receiving mailbox will automatically receive the required messages and discard other messages.

20.3.5 Receive FIFO

Each CAN has two receiving FIFOs, each of which can store three complete messages. No application program is needed to manage it, and it is managed by hardware.

Figure 20-3 Dual CAN block diagram

Tel: +86-755-86309900 Email: info@nationstech.com

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

Nanshan District, Shenzhen, 518057, P.R.China

20.3.6 CAN Test mode

In the initialization mode, a test mode must be selected by combining the CAN_BTIM.SLM bit and CAN_BTIM.LBM bit. After selecting a test mode, the software needs to clear the CAN_MCTRL.INIRQ bit to exit the initialization mode and enter the test mode.

20.3.6.1 Loopback mode

Loopback mode can be used for self-test. In loopback mode, CAN saves the sent message in the receiving mailbox as received message (if it can be filtered by reception). In loopback mode, CAN internally feeds back the Tx output to the Rx input, completely ignoring the actual state of the CANRX pin. The message sent can be detected on the CANTX pin. In order to avoid external influence, the CAN kernel ignores the acknowledgement error(at the moment of acknowledgement bit of data/remote frame, it does not detect whether there is an dominant bit). To enter loopback mode, the CAN_BTIM.SLM bit should be cleared and the CAN_BTIM.LBM bit should be set.

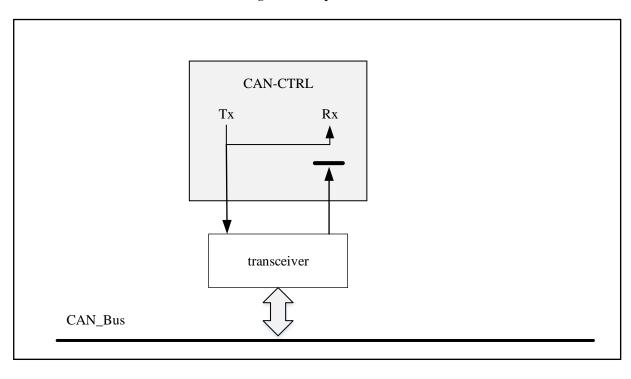
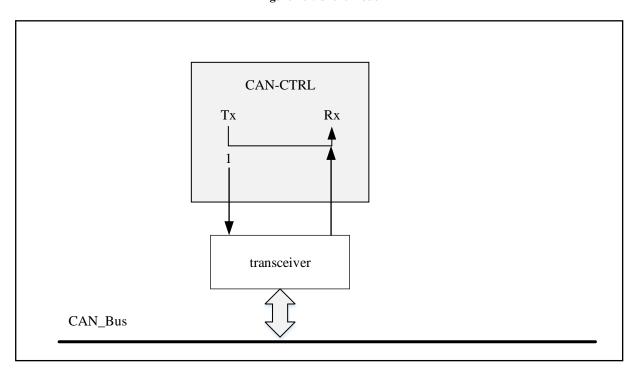


Figure 20-4 loopback mode


20.3.6.2 Silent mode

In silent mode, CAN can normally receive data frames and remote frames, but can only send recessive bits, and can't really send messages. If CAN needs to send overload flag, active error flag or ACK bit(these are dominant bits), such dominant bits are internally connected back so as to be detected by the CAN core. At the same time, the CAN bus will not be affected and still remain in the recessive bit state. Therefore, the silent mode is usually used to analyze the activity of the CAN bus, without affecting the bus because dominant bits is not actually sent to the bus.

To enter silent mode, the CAN_BTIM.SLM bit should be set and the CAN_BTIM.LBM bit should be cleared.

Figure 20-5 silent mode

20.3.6.3 Loopback silence mode

In loopback silent mode, the CANRX pin is disconnected from the CAN bus, while the CANTX pin is driven to the recessive bit state. It can be used for "Run-time self diagnose" just like CAN can be tested in loop-back mode, but not affect the whole CAN system connected by CANTX and CANRX.

To enter loopback silence mode, both the CAN_BTIM.SLM bit and the CAN_BTIM.LBM bit should be set.

CAN-CTRL

Tx Rx

transceiver

CAN_Bus

Figure 20-6 loopback silent mode

20.3.7 CAN Debugging mode

CAN can continue to work normally or stop working according to the state of the following configuration bits:

- DBG_CTRL.CAN1_STOP bit of CAN1 and DBG_CTRL.CAN2_STOP bit of CAN2 in the debug support(DBG) module.See paragraph 26.3.2 Section: Peripheral debugging support.
- CAN_MCTRL.DBGF bit see paragraph 20.7.3.1 Section: CAN_MCTRL.

When the microcontroller is in debug mode, Cortex-M4F core is in a suspended state.

20.4 CAN function description

20.4.1 Send processing

The process of sending messages is as follows:

- The application program selects an **empty** sending mailbox;
- Writes the identifier, data length and data to be sent in the sending mailbox register;
- Set the CAN_TMIx.TXRQ bit to request transmission(after CAN_TMIx.TXRQ is set the mailbox is no longer an empty mailbox and the software has no permission to write to the mailbox register);
- The mailbox enter the **pending** state and wait to be the highest priority, see 20.4.1.1 Send priority;
- Changing to the Ready sending status once the mailbox becomes the highest priority mailbox;
- The messages in the **Ready** state mailbox is sent as soon as the CAN bus enters the idle state, then enter the sending state.
- Become an **empty** mailbox when the message in the mailbox is successfully sent;
- Hardware set the RQCPM and TXOKM bits of the corresponding mailbox in CAN_TSTS register to indicate a successful transmission.

However, if the transmission fails, the CAN_TSTS.ALSTM bit will be set to indicate that the failure is caused by arbitration or the CAN_TSTS.TERRM bit will be set to indicates that it is caused by the transmission error (for specific errors, please check the CAN_ESTS.LEC[2:0] error code bits of the error status).

20.4.1.1 Send priority

Determined by the order of sending requests.

Set the CAN_MCTRL.TXFP bit, and the sending mailbox can be configured as a sending FIFO. At this time, the priority of sending is determined by the order of sending requests. This mode is useful for segmented transmission.

Determined by the identifier.

According to CAN protocol, the message with the lowest identifier has the highest priority. If the values of identifiers are equal, the message with small mailbox number is sent first. When more than one sending mailbox is registered, the sending order is determined by the identifier of the message in the mailbox.

Nanshan District, Shenzhen, 518057, P.R.China

20.4.1.2 Cancel sending

Set the CAN_TSTS.ABRQM bit can abort sending the request. If the mailbox is ready or pending, the sending request will be aborted immediately. If the mailbox is in the transmitting state, the request to abort may lead to two kinds of results:

- if the message in the mailbox fails to be sent, the mailbox becomes ready state, then the sending request is aborted, the mailbox becomes an empty mailbox and the CAN_TSTS.TXOKM bit is cleared;
- if the message in the mailbox is successfully sent, the mailbox becomes an empty mailbox, and the CAN TSTS.TXOKM bit will be set by hardware.

Therefore, when the sending mailbox is in the sending state, regardless of the sending result, the mailbox will become an empty mailbox after the sending operation is finished.

20.4.2 Time triggered communication mode

The internal timer of CAN is activated in time triggered communication mode. It is incremented at each CAN bit time (see 20.4.7 Section). CAN samples the value of the internal timer at the sampling point position of the received and sent frame start bits, and the sampled value is the time stamp of the sending and receiving mailboxes. Timestamps generate form the internal timer will be stored in the CAN_RMDTx/CAN_TMDTx registers respectively.

20.4.3 Non-automatic retransmission mode

To enable non-automatic retransmission mode the CAN_MCTRL.NART bit should be set. This mode corresponds to the function of time-triggered communication option in CAN standard.In non-automatic retransmission mode, the sending operation will only be executed once. If the sending operation fails, whether due to arbitration loss or error, the hardware will not automatically send the message again. At the end of a transmission operation, the hardware judge that the transmission request has been completed, and the hardware sets the CAN_TSTS.RQCPM bit. At the same time, the transmission result can query the CAN_TSTS.TXOKM, CAN_TSTS.ALSTM and CAN_TSTS.TERRM bits.

PENDING

Highest priority

Ready

Non-Highest priority

Start Write Data to Tx mailbox

Transmit succeeded

TRANSMIT

TRANSMIT

Figure 20-7 Send mailbox status

20.4.4 Receiving management

FIFOs with 3 levels depth are used to store received messages. When the application reads the FIFO output mailbox, it reads the first received message in the FIFO. FIFO is completely managed by hardware, which can simplify the application program, ensure the consistency of data and reduce the processing time of CPU.

20.4.4.1 Valid message

According to CAN protocol, when the message is correctly received (no errors are sent up to the last bit of the EOF field) and passes the identifier filtering, then the message is token as a valid message. Please refer to 20.4.5 Section: identifier filtering.

486

Nanshan District, Shenzhen, 518057, P.R.China

Valid Mesage Valid Mesage Receive FIFOx Receive FIFOx Receive FIFOx Release Release Mailbox null Mailbox Pending Mailbox Pending Mailbox Pending Mailbox null Mailbox null Mailbox null Mailbox null Mailbox null Valid Mesage Release Valid Mesage Receive FIFOx Receive FIFOx Mailbox Pending Mailbox Pending Valid Mesage Mailbox Pending Mailbox Pending Mailbox Pending Mailbox Pending overflow

Figure 20-8 Receive FIFO status

20.4.4.2 FIFO receive

A FIFO includes mailboxes with three levels of depth, and the initial state is empty. After receiving the first valid message, one of the mailboxes will be suspended, and the hardware will set the CAN_RFF.FFMP[1:0] bits to 1 to indicate the receipt of a valid message. A valid message is received again before the mailbox is released. At this time, two mailboxes will be suspended at the same time, and the hardware will set the CAN_RFF.FFMP[1:0] bits to 2 to indicate that two valid messages are pending. As above, the third valid message will suspend all three mailboxes and set the CAN_RFF.FFMP[1:0] bits to 3.

When the three-level mailboxes of the FIFO are all suspended, receiving a valid message again will cause the mailbox to overflow and lose a message, and the hardware will set the CAN_RFF.FFOVR bit to 1 to indicate the occurrence of the event. The rules for lost messages depend on the configuration of the FIFO. If the FIFO lock function is disabled (clear the CAN_MCTRL.RFLM bit), then the last message received in the FIFO will be overwritten by the new message. In this way, the latest received message will not be discarded; If the FIFO lock function is enabled (set the CAN_MCTRL.RFLM bit), then the newly received messages will be discarded, and the software can read the first three messages in the FIFO.

20.4.4.3 FIFO release

The message stored in the FIFO will be read through the corresponding receive mailbox. The software reads the mailbox message and releases the mailbox by setting the CAN_RFR.RFOM bit to 1, and he CAN_RFF.FFMP[1:0] bit is decremented by 1 until it is 0.

20.4.4.4 Receive related interrupts

The hardware will update the CAN_RFF.FFMP[1:0] bits when a message is stored in the receiving FIFO. If the FIFO message pending interrupt is currently enabled (the CAN_INTE.FMPITE bit is set), then the FIFO message pending interrupt request will be generated.

When the third message is stored, the FIFO becomes full, then the CAN_RFF.FFULL bit will be set, and if the FIFO full interrupt is currently enabled (the CAN_INTE.FFITE bit is set), a FIFO full interrupt request will be generated.

When the FIFO overrun, the FFOVR bit will be set . If the FIFO overrun interrupt is currently enabled (the

CAN_INTE.FOVITE bit is set), a FIFO overrun interrupt request will be generated.

20.4.5 Identifier filtering

In the CAN network, when basic CAN is in the transmitter state, it broadcasts a message to each node by sending a message to the bus; when basic CAN is in the receiver state, it determines whether the node needs the message according to the identifier of the message after receiving the message. If message is vaild, CAN core copies the message to SRAM(CAN's own SRAM); If it is not needed, the message will be discarded. This process does not require software intervention. Compared with software filtering, hardware filtering reduces the CPU usage. CAN controller provides 14 configurable filter banks (0~13) with variable bit width for application programs to meet this demand. These filter banks are used to receive only those messages needed by software. Each filter bank x contains two 32-bit registers, namely CAN_FxR0 and CAN_FxR1.

20.4.5.1 Setting of filter bit width and mode

Each filter in a filter bank is numbered (filter number, from 0 to a certain maximum value) depending on the mode and bit width setting of the filter bank. See the figure below for the filter configuration. The filter group can be configured through the corresponding CAN_FMC register. Filter banks that are not used by the application should be kept disabled. Before configuring a filter bank, it must be set to the disabled state by clearing the CAN_FA1.FAC bit.

By setting the corresponding CAN_FS1.FSCx bit you can configure the bit width of a filter bank, see Figure 20-9.

By means of the CAN_FM1.FBx bit, the corresponding mask/identifier register can be configured to be the **identifier list** or **identifier mask** mode. The filter group should be set to work in the mask mode in order to filter out a group of identifiers. And the filter group should be set to work in identifier list mode in order to filter out an identifier.

32 bit Mask Mode(CAN_FS1.FSCx = 1;CAN_FM1.FBx = 0) USER ID STDID[10:0]/EXTID[28:18] EXTID[17:0] FiR1 Register FBC[31:21] FBC[20:3] filter ID FBC2 FBC1 FBC0 One FiR2 Register filter filter Mask FBC[31:21] FBC[20:3] FBC2 FBC2 FBC2 32 bit List Mode(CAN_FS1.FSCx = 1;CAN_FM1.FBx = 1) USER ID STDID[10:0]/EXTID[28:18] EXTID[17:0] -FiR1 Register FBC[31:21] FBC[20:3] filter ID FBC2 FBC1 FBC0 Two -FiR2 Register filters filter ID FBC[31:21] FBC[20:3] FBC2 FBC2 FBC2 16 bit Mask Mode(CAN_FS1.FSCx = 0;CAN_FM1.FBx = 0) USER ID STDID[10:0] IDE EXTID[17:15] FiR1 Register FBC4 FBC3 filter ID FBC[15:5] FBC[2:0] filter MASK FBC[31:21] FBC20 FBC19 FBC[18:16] Two FiR2 Register filters FBC4 FBC3 FBC[2:0] filter ID FBC[15:5] filter MASK FBC[31:21] FBC20 FBC19 FBC[18:16] 16 bit List Mode(CAN_FS1.FSCx = 0;CAN_FM1.FBx = 1) USER ID IDE STDID[10:0] EXTID[17:15] FiR1 Register filter ID FBC4 FBC3 FBC[15:5] FBC[2:0] filter ID FBC[31:21] FBC20 FBC19 FBC[18:16] Four FiR2 Register filters filter ID FBC[15:5] FBC4 FBC3 FBC[2:0] filter ID FBC[31:21] FBC20 FBC19 FBC[18:16]

Figure 20-9 Filter bit width setting-register organization

20.4.5.2 Variable bit width

The bit width of each filter bank can be independently configured. Each filter bank can be configured to be one 32bit filter: including STDID[10:0], EXTID[17:0], IDE and RTRQ bits; or two 16-bit filters,:including STDID[10:0], IDE, RTRQ and EXTID[17:15] bits, see Figure 20-9. In addition, the filter can be configured in two different modes, namely, the mask mode and the identifier list mode.

Mask mode

The filter ID is used to store the identifier format, and the filter MASK is used to indicate which bits must be checked and which bits can be ignored.

489

Identifier list mode

The filter ID is used to store the identifier format. At this time, there is no mask for comparison, and the mask bit can be used to store one more filter ID. However, at this time, the identifier of the message needs to be exactly the same as the filter ID format, otherwise it will fail to pass the filter.

20.4.5.3 Filter matching sequence number

After CAN core received an valid message it will matching the message ID with filters one by one until there is one filter pass or all filters failed. If this message failed to pass any enabled filter then it will be discarded. Otherwise when CAN core finds the first filter that the ID can pass, it pack filter index with the CAN message and stores inside receive FIFO in SRAM according to filter setting (CAN_FFA1 decides store in which FIFO). User can find filter index in FMI [7:0] bits of CAN RMDTx register. This filter matching index can help to identify which types of message it is in this receive FIFO.

The filter matching sequence number can be used two ways. The first one is comparing the filter matching sequence number with a series of expected values. The another is using the filter matching sequence number as an index to access the target address. When numbering filters, whether the filter group is active or not is not considered. In addition, each FIFO numbers its associated filter. Please refer to the example below.

For the filter in mask mode, the software only needs to compare the mask bits that are needed (bits that must be matched). For the filter in identifier list mode (non-screening filter), the software does not need to directly compare with the identifier.

Table 20-1 Examples of filter numbers

Point to FIFOx	Filter group	Filter mode	FIFO0 filter number
	0	32 bit mask mode	0
	2	16 bit mask mode	1/2
	5	32 bit list mode	3/4
FIFO	7	16 bit list mode	5/6/7/8
	9	32 bit list mode	9/10
	11	16 bit list mode	11/12/13/14
	13	32 bit mask mode	15
Point to FIFOx	Filter group	Filter mode	FIFO1 filter number
	1	32 bit list mode	0/1
EJEO 1	3	16 bit list mode	2/3/4/5
FIFO1	4	32 bit mask mode	6
	6	16 bit mask mode	7/8

8	32 bit mask mode	9
10	16 bit mask mode	10/11
12	32 bit list mode	12/13

20.4.5.4 Filter priority rule

According to different configurations of filters, it is possible that a message identifier can be filtered by multiple filters; In this case, the filter matching serial number stored in the receiving mailbox is first determined according to bit width,32-bit-wide filters have higher priority than 16-bit-wide filters. For filters with the same bit width, then the identifier list mode takes precedence over the mask mode. If filters have the same bit width and mode, the priority is determined by the filter group number, and the filter group with lower number has the higher priority. Within a filter group, the lower the filter number, the higher the priority.

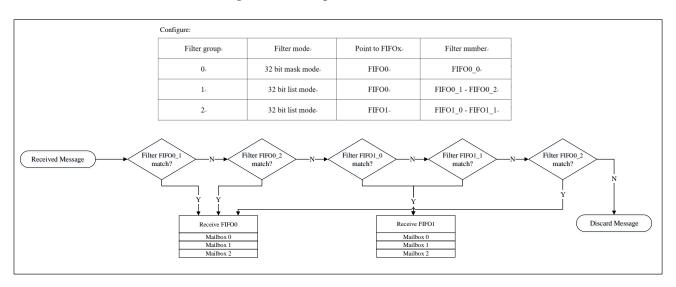


Figure 20-10 Examples of filter mechanisms

Figure 20-10 illustrates the filter rules of CAN. When receiving a message, its identifier is first compared with the filter configured in identifier list mode. If there is a match, the message will be stored in the associated FIFO, and the serial number of the matched filter will be stored in the filter matching serial number.

If there is no match, the message identifier is then compared with the filter configured in the mask mode. And the hardware will automatically discard the message without software intervention if the message identifier does not match any identifier in the filter.

20.4.6 Message storage

A mailbox contains all information related to a message: identifier, data, control, status and time stamp information. The mailbox is the interface between software and hardware to transfer messages.

20.4.6.1 Send mailbox

Message should be written into an empty sending mailbox by software before enable the sending request. You can query the sending status through the CAN_TSTS register.

Table 20-2 Send mailbox register list

Offset from the base address of the sending mailbox	Register name
0	CAN_TMIx
4	CAN_TMDTx
8	CAN_TMDLx
12	CAN_TMDHx

20.4.6.2 Receiving mailbox (FIFO)

CAN_RMDTx.FMI[7:0] field can store the filter matching serial number and CAN_RMDTx.MTIM[15:0] field can store the 16-bit timestamp. The software can access the output mailbox of the receiving FIFO to read the received message. Once the software has processed the message, such as reading it out, the software should set the CAN_RFFx.RFFOM bit to release the corresponding receive FIFO, so as to reserve storage space for later messages.

Table 20-3 Receive mailbox register list

Offset from the base address of the receiving mailbox	Register name
0	CAN_RMIx
4	CAN_RMDTx
8	CAN_RMDLx
12	CAN_RMDHx

20.4.7 Bit time characteristic

The bit time characteristic logic monitors the serial CAN bus by sampling, and adjusts its sampling point by synchronizing with the edge of the frame start bit and resynchronizing with the following edge. To avoid programming errors in software, setting the bit time characteristic register (CAN_BTIM) can only be done when CAN is initialized.

Its operation can be simply understood as dividing each bit time into three segments: Synchronization segment (SYNC_SEG), Time period 1(BS1) and Time period 2(BS2).

Usually, it is expected that the change of bits will occur in SYNC_SEG. Its value is fixed to 1 time unit (1 \times t_{CAN}).

BS1 defines the position of the sampling point. It includes PROP_SEG and PHASE_SEG1 in CAN standard. Its value can be programmed into 1 to 16 time units, but in order to compensate the forward drift of phase caused by the frequency difference of different nodes in the network, it can also be automatically extended.

In BS2, it defines the location of the sending point. It stands for PHASE_SEG2 in CAN standard. Its value can be programmed into 1 to 8 time units, but it can also be automatically shortened to compensate for the negative drift of phase.

If a valid transition is detected in BS1 but not in SYNC SEG, then the time of BS1 is extended by at most RSJW to delay the sampling point. On the contrary, if a valid transition is detected in BS2 but not in SYNC_SEG, then the time of BS2 is shortened at most RSJW to advance the sampling point.

In the above description, RSJW(the resynchronization hop width) defines the upper limit of how many time units can 492

be extended or shortened in each bit. Its value can be programmed into 1 to 4 time units. The effective transition is defined as the first transition from the dominant bit to the recessive bit when CAN itself does not send the recessive bit.

Note: 1. The time characteristics and resynchronization mechanism of CAN bits are detailed in the ISO11898 standard.

2. In order to improve the CAN bit time accuracy, it is not recommended to use HSI as the clock source.

Figure 20-11 Bit sequence

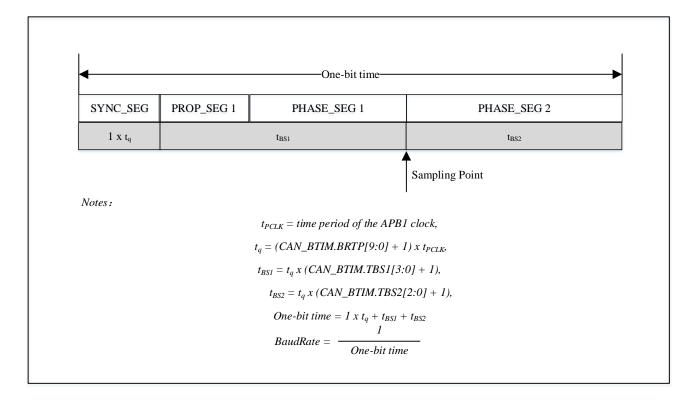
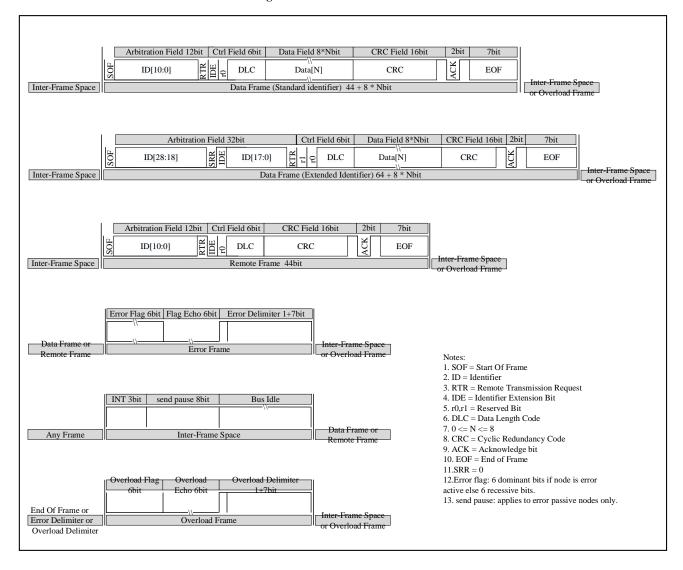



Figure 20-12 Various CAN frames

20.5 CAN interrupt

FMPITE0 FFMP0 CAN_RX0_IRQn FFITE0 N. FFULL0 RF F0 FOVITE0 FFOVR0 FMPITE1 FFMP1 CA CAN_RX1_IRQn FFITE1 N_ RF FFULL1 F1 FOVITE1 FFOVR1 CAN_TX_IRQn N TMEITE N ERRITE EWGITE EWGFL **EPVITE EPVFL** ERRINT ES **BOFITE** BOFFL TS CAN_MSTS LECITE CAN_SCE_IRQn $1 \le LEC \le 6$ WKUITE WKUINT CAN. SLKITE MSTS SLAKINT

Figure 20-13 Event flag and interrupt generation

CAN has four interrupt vectors. By setting the CAN interrupt enable register (CAN_INTE), you can individually enable or disable each interrupt source. The following are the events that can generate each interrupt.

■ FIFO0 interrupt(CAN_RX0_IRQn):

FIFO0 receives a new message, and the CAN_RFF0.FFMP0 bit is not '00';

When FIFO0 becomes full, and the CAN_RFF0.FFULL0 bit is set;

When FIFO0 overruns, and the CAN_ RFF0.FFOVR0 bit is set.

■ FIFO1 interrupt(CAN_RX1_IRQn):

FIFO1 receive a new message, and the CAN_RFF1.FFMP1 bit is not '00'.

When FIFO1 becomes full, and the CAN_RFF1.FFULL1 bit is set.

When FIFO1 overruns, and the CAN_RFF1.FFOVR1 bit is set.

■ Send interrupts(CAN_TX_IRQn):

Send mailbox x becomes empty, and the corresponding CAN_TSTS.RQCPMx bit is set(x=1/2/3).

■ Error and status change interrupt(CAN_SCE_IRQn):

CAN enters sleep mode;

Wake-up condition, the start of frame bit (SOF) is monitored on the CAN receiving pin.

Error condition, please refer to the CAN error status register (CAN_ESTS) for details of the error.

20.5.1 Error management

As described in CAN protocol, the error management is completely realized by hardware through sending error counter (CAN_ESTS.TXEC field) and receiving error counter (CAN_ESTS.RXEC field). The counter value will increase or decrease according to the error situation. Please refer to CAN standard if you want to know more detailed information about CAN_ESTS.TXEC and CAN_ESTS.RXEC management.

Reset Error Active Error Passive TXEC > 255

Bus off

TXEC and

RXEC<128

When 128*11 recessive bits occur

Figure 20-14 CAN error state diagram

Software can read out the value of the sending/receiving error counter to judge the stability of CAN network, and CAN_ESTS.LEC[2:0] bits can be read to get the detailed information of the current error status. What's more, by setting the CAN_INTE register (such as CAN_INTE. LECITE bit), the software can flexibly control the generation of interrupts when an error is detected.

20.5.2 Bus-Off recovery

When TXEC is greater than 255, the CAN_ESTS.BOFFL bit is set indicating that CAN goes bus-off. at this time, CAN can't receive and send messages.

In normal mode, according to the CAN_MCTRL.ABOM bit, CAN can automatically or at the request of software, recover from bus-off state, and change to error active state. If the CAN_MCTRL.ABOM bit is set, the recovery process will be started automatically after it has entered bus-off state. Otherwise, the recovery process will be started after software must request CAN to enter and then exit initialization mode. In both cases, CAN must wait for a recovery process described in CAN standard, that is 128*11 consecutive recessive bits are detected on CAN RX pin.

In initialization mode, CAN will not monitor the status of CAN RX pin, so the recovery process cannot be completed.

20.6 CAN Configuration Flow

This chapter will introduce common configuration procedure of CAN while other details like functions of each mode and register bits are revealed in other part of this manual. CAN configuration flow can divided into serval phases.

Some of the configurations can be changed anytime as long as prior requirements are satisfyied (e.g., filter value).

Preparation Stage:

- Configure RCC to enable CAN clock
- Configure RCC to enable AFIO and GPIO clock
- Write into GPIO registers to map CAN TX and CAN RX signals to desired GPIO pins.

Basic Configuration Stage:

- After reset CAN device starts with Sleep mode.
- 2. Exit Sleep mode by clearing CAN_MCTRL.SLPRQ bit.
- 3. Enter Initialization mode by setting CAN_MCTRL.INIRQ bit.
- 4. Wait for CAN MSTS.INIAK bit become 1 (enter Initilization mode).
- 5. Configure bit timing for CAN by writing value to CAN_BTIM.BSJW, CAN_BTIM.TBS2, CAN_BTIM.TBS1 and CAN_BTIM.BRTP bits. Baud rate of CAN bus is defined by the formula below:

$$BaudRate = \frac{1}{\left(1 + (TBS1 + 1) + (TBS2 + 1)\right) * (BRTP * t_{pclk})}$$

- 6. Configure work mode options for CAN by writing to CAN BTIM.SLM (silent) or CAN BTIM.LBM in register.
- 7. Configure CAN behavior(TTCM,ABOM,AWKUM,NART,RFLM,TXFP) through CAN_MCTRL. Most of the configuration in this register can be changed on the fly but its advised not to do so. Otherwise during few cycles, CAN behavior will become unpredictable.
- 8. Exit Initialization mode by clearing CAN MCTRL.INIRQ bit.
- 9. Wait for CAN MSTS.INIAK bit become 0 (exit Initilization mode).
- 10. User can use filters to filter the messages they want to receive. To configure filter, user needs to write '1' to CAN_FMC.FINITM bit to request the filters to enter initialization mode. When filter is in initialization mode, CAN stops reception.
- 11. Configure each filter for working mode (CAN_FM1), filter scale (CAN_FS1) and filter assignment (CAN FFA1). User can also change filter value (CAN FiRx) during this time. After completing filter configuration, clear CAN FMC.FINITM bit to exit initialization for filters.

For transmission:

- 1. Enable the necessary transmit related interrupt CAN_INTE.TMEITE bit.
- Check status bits of each mailbox in CAN TSTS. If any mailbox with TMEMx (x = 0-2) is '1', user can write the message, which is waiting for transmission, to the corresponding mailbox address. CAN TMIx.TXRQ(x = $0\sim2$) bit must be written to '1' after this mailbox is programed.
- 3. After some time or after waiting for transmit interrupts, come back to check transmit status in CAN_TSTS. Repeat step 2~3 for new message transmission.

For Reception:

User can also change a filter value (CAN_FiRx) when the corresponding filter is deactivated. To deactivate 497

certain filter, user needs to write '0' to the corresponding bit in CAN_FA1 register.

- 2. Configure reception related interrupts in CAN_INTE register.
- 3. Once CAN has received message and stored them inside reception FIFO, user needs to read the corresponding FIFO on time and release reception mailbox by writing '1' to RFFOMx in register CAN RFFx (x = 0.1).

20.7 CAN Register File

These peripheral registers must be operated as words (32 bits).

20.7.1 Register Description

20.7.1.1 Register access protection

When a CAN node is working normally, incorrect access/modification of some configuration registers may cause hardware errors in the node and temporarily interfere with the entire CAN network. Therefore, modification of the CAN_BTIM register is only allowed when the CAN core is in initialization mode.

Only when the send mailbox status bit CAN_TSTS.TMEM = 1 then the user can modify data to the send mailbox.

20.7.1.2 Control and status registers

By configuring these registers, user can: configure CAN parameters, such as working mode and baud rate; start message sending; handling message reception; interrupt setting; read diagnostic information.

20.7.1.3 Mailbox Register Description

The sending and receiving mailboxes are basically the same except that the receiving mailbox is read-only and contains the CAN_RMDTx.FMI field. The sending mailbox is writable when it is empty.

Notes: the corresponding CAN_TSTS.TMEM bit is set, which means that the sending mailbox is empty.

There are 3 sending mailboxes and 2 receiving FIFO. Each receiving FIFO has three mailboxes, and only the first received message in the FIFO can be accessed.

Each mailbox contains 4 registers:

FIFO0 contains CAN_RMI0, CAN_RMDT0, CAN_RMDL0, CAN_RMDH0;

FIFO1 contains CAN_RMI1, CAN_RMDT1, CAN_RMDL1, CAN_RMDH1;

Send mailbox (x) contains CAN_TMIx, CAN_TMDTx, CAN_TMDLx, CAN_TMDHx; x = 0,1,2.

20.7.1.4 Filter Register Description

The value of the filter can only be modified when the corresponding filter group is closed or the CAN_FMC.FINITM bit is set. In addition, only when the whole filter is set to the initialization mode (that is, CAN_FMC.FINITM=1), the settings of the filter can be modified, that is, the CAN_FM1,CAN_FS1 and CAN_FFA1 registers can be modified.

20.7.2 CAN register address overview

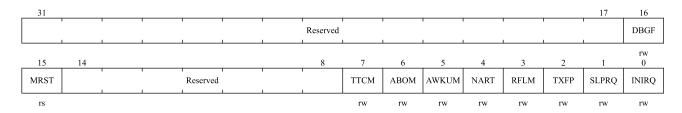
Table 20-4 CAN register overview

Offset	Register	31	30	29	28	27	56	25	24 53	23	22	21	20	19	18	17	16	15	14	13	12	Ξ	10	6	~	7	9	5	4	3	2	-	0
						<u> </u>		<u> </u>																		M	M	MC	Ε	M	Ъ	02	0
000h	CAN_MCTRL								Reserved								DBGF	MRST				Reserved				TTCM	ABOM	AWKUM	NART	RFLM	TXFP	SLPRQ	INIRQ
•	Reset Value								ž								1	0				Ŗ				0	0	0	0	0	0	1	0
004h	CAN_MSTS											Reserved										RXS	LSMP	RXMD	TXMD		Reserved		SLAKINT	WKUINT	ERRINT	SLPAK	INIAK
	Reset Value											ă										1	1	0	0		Ř		0	0	0	1	0
008h	CAN_TSTS		LOWM[2:0]			TMEM[2:0]			CODE[1:0]	ABRQM2		Reserved		TERRM2	ALSTM2	TXOKM2	RQCPM2	ABRQM1		Reserved		TERRM1	ALSTM1	TXOKMI	RQCPM1	ABRQM0		Reserved		TERRM0	ALSTM0	TXOKM0	RQCPM0
•	Reset Value	0	0	0	1		1	0	0	0		×		0	0	0	0	0		×		0	0	0	0	0		×		0	0	0	0
00Ch	CAN_RFF0														Reserved													RFFOM0	FFOVR0	0TTOHH	Reserved	EEMIDOU -01	rrivir oli.oj
	Reset Value														<u> </u>													0	0	0	F	0	0
010h	CAN_RFF1		Reserved													RFFOM1	FF0VR1	FFULL1	Reserved	EEMB1[1.0]	rrivir il i.o												
	Reset Value														0	0	0	R	0	0													
014h	CAN_INTE		Reserved WKUITE WKUITE ERRITE ERRITE BOFITE EPVITE EVITE EWITE EVITE EWITE Reserved												FOVITE1	FFITE1	FMPITE1	FOVITE0	FFITE0	FMPITE0	TMEITE												
•	Reset Value								Ä							0	0	0		×		0	0	0	0	Re	0	0	0	0	0	0	0
018h	CAN_ESTS				RXI	EC[7:0]]						TXE	EC[7:0]]							Reserved						LEC[2:0]		Reserved	BOFFL	EPVFL	EWGFL
•	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					ž					0	0	0	R	0	0	0
01Ch	CAN_BTIM	SLM	LBM			Reserved			RSJW[1:0]	Reserved	Т	BS2[2	2:0]		TBS	1[3:0]	l				Keserved							BRTI	P[9:0]				
•	Reset Value	0	0			Re		0		Re	0	1	0	0	0	1	1			,	ş			0	0	0	0	0	0	0	0	0	0
020h - 17Fh									·							Reserved																	
180h	CAN_TMI0			5	STE	OID[10:	0]/EΣ	ζTII	D[28:18]										E	XTID)[17:0)]								IDE	RTRQ	TXRQ
•	Reset Value	х	x	x	х	x	x	х	x	х	х	х	х	х	х	х	х	х	х	х	х	x	х	x	x	x	х	х	х	x	х	x	0
184h	CAN_TMDT0							MTIM	[15:0)]										Reserved				TGT			Keserved			DLC[[3:0]		
	Reset Value	x x x x x x x x						x	x	x	x	x	х	x	х	x				R				x		,	×		x	х	x	x	
188h	CAN_TMDL0		DATA3[7:0]]	DAT	A2[7:0	0]	_				I	DATA	1[7:0)]	_	_			Г	DATA	0[7:0	1			
	Reset Value	х	x	x	х	x	x	х	х	х	х	x	х	x	x	x	x	х	x	x	x	х	x	x	x	х	x	x	x	x	х	x	x
18Ch	CAN_TMDH0		DATA7[7:0]]	DAT	A6[7:0	0]					I	DATA	5[7:0)]					Γ	OATA	4[7:0]			
	Reset Value	х	x	х	х	x	х	х	x	х	х	x	х	x	x	х	x	х	х	х	х	х	x	х	x	x	х	х	x	х	х	x	x

					1	1			1	1	1				ı	1	ı		1				1	1	1		1	1	1	-	_	_	1 1
Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	Ξ	10	6	∞	7	9	5	4	8	2	-	0
190h	CAN_TMI1			5	STDI	D[10:	0]/EX	KTID	[28:18	[]										E	EXTID	[17:0	0]								IDE	RTRQ	TXRQ
	Reset Value	х	x	x	x	x	x	х	x	x	x	x	x	x	x	x	x	х	х	х	х	х	х	х	х	х	х	x	х	х	x	x	0
194h	CAN_TMDT1								MTIM	1[15:0]										Reserved				TGT			Reserved			DL	C[3:0]	
	Reset Value	х	x	x	x	x	x	x	х	х	x	x	x	x	x	x	x				24				х			24		х	х	х	x
198h	CAN_TMDL1			Ι	DATA	A 3[7:0)]					1	DATA	\ 2[7:0)]					I	DATA	1[7:0)]						DAT	A0[7	:0]		
	Reset Value	х	x	x	x	x	x	х	x	x	x	x	x	x	x	x	x	х	х	x	х	х	x	x	x	x	х	x	х	х	х	х	х
19Ch	CAN_TMDH1			Ι	DATA	A 7[7:0)]					1	DATA	1 6[7:0)]					I	DATA	5[7:0)]						DAT	A4[7	:0]		
-	Reset Value	x	x	х	x	х	х	х	x	х	x	х	x	x	х	x	x	х	х	x	х	х	x	x	х	x	х	x	х	х	х	х	х
1A0h	CAN_TMI2			5	STDI	D[10:	0]/EX	TID	[28:18	3]										E	EXTID	[17:0)]								IDE	RTRQ	TXRQ
-	Reset Value	х	x	х	x	х	х	x	x	x	x	х	х	x	х	x	x	х	х	x	х	х	х	x	х	x	х	х	х	х	х	х	0
1A4h	CAN_TMDT2				ı	1			MTIN	1[15:0]	ı				ı			ı		Reserved				TGT			Reserved			DL	C[3:0]	
•	Reset Value	х	x	х	x	х	х	х	х	х	x	х	x	x	х	x	x				Re				х			Re		х	x	х	х
1A8h	CAN_TMDL2		DATA3[7:0]						•	1	DATA	\ 2[7:0)]	•				I	DATA	1[7:0)]						DAT	A0[7:	:0]	•			
-	Reset Value	x	x	x	x	x	x	х	x	х	x	x	x	x	x	x	x	x	х	x	x	х	x	x	x	x	х	x	х	x	x	x	x
1ACh	CAN_TMDH2			Ι	DATA	A 7[7:0)]					1	DATA	1 6[7:0)]					I	DATA	5[7:0)]						DAT	A4[7	:0]		
•	Reset Value	х	x	x	х	x	x	х	х	х	x	х	х	x	x	х	х	x	х	x	х	х	х	x	х	х	х	x	х	х	х	х	x
1B0h	CAN_RMI0			5	STDI	D[10:	0]/EX	KTID	[28:18	[]										E	EXTID)[17:()]								IDE	RTRQ	Reserved
	Reset Value	х	x	x	x	x	x	х	x	x	x	х	х	x	x	x	x	x	х	х	х	х	x	x	x	x	х	x	х	х	х	х	Re
1B4h	CAN_RMDT0								MTIM	1[15:0]										FMI	[7:0]						Reserved			DL	C[3:0]	
•	Reset Value	х	х	х	х	x	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х			Σ.		х	х	х	х
1B8h	CAN_RMDL0			Ι	DATA	A3[7;0)]					1	DATA	\ 2[7:0)]					I	DATA	1[7:0)]						DAT	A0[7	:0]		
	Reset Value	х	х	х	х	x	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
1BCh	CAN_RMDH0			Ι	DATA	A 7[7:0)]					1	DATA	1 6[7:0)]					I	DATA	5[7:0)]						DAT	A4[7	:0]		
•	Reset Value	x x x x x x x x x				x	x	x	х	x	x	х	x	x	х	х	x	х	х	x	x	x	x	х	x	х	x	x	х	х			
1C0h	CAN_RMI1	STDID[10:0]/EXTID[28:18					3]										F	EXTID)[17:0	0]								IDE	RTRQ	Reserved			
	Reset Value	x x x x x x x x x					x	x	x	х	х	x	x	x	x	x	х	x	x	х	x	x	х	х	х	x	х	х	х	х	R		
1C4h	CAN_RMDT1	MTI					MTIN	1[15:0]										FMI	7:0]						Reserved			DL	C[3:0]			
	Reset Value	x x x x x x x x x				x	х	x	х	x	x	x	х	x	х	х	x	x	х	x	х	x			2		х	x	х	x			
1C8h	CAN_RMDL1		DATA3[7:0]							1	DATA	\ 2[7:0)]					I	DATA	1[7:0)]						DAT	A0[7	:0]				
	Reset Value	x	x	x	х	x	x	х	x	x	x	х	x	x	x	x	x	х	х	x	х	х	x	х	x	x	х	x	х	x	x	x	x

Offset	Register	31	29	28	27	56	25	54	23	22	21	20	19	18	17	16	15	41	13	12	11	10	6	∞	7	9	5	4		2	-	0
OHISCE		3 6				44	64	<4	4.4	64					_		1	_	1	l			1	<u> </u>		1	1	1			1	1
1CCh	CAN_RMDH1		DA	ATA7	[7:0]						Е	OATA	6[7:0)]					Ι	OATA	\ 5[7:0)]						DAT.	A4[7	0]		
	Reset Value	x x	x	x	x	x	х	х	x	х	x	x	x	х	x	х	x	x	x	х	х	х	х	х	х	x	х	х	х	х	x	x
1D0h -															Reserved																	
1FFh															Re																	
200h	CAN_FMC															Reserved																FINITM
	Reset Value															Re																1
	CAN_FM1								/ed																FB[13:0]						
204h	Reset Value								Reserved										0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Reset Value														pə/									10		1 0	10	10	10	10	10	
208h															Reserved																	
	CAN_FS1								/ed																FSC	[13:0]	l					
20Ch	Reset Value								Reserved										0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Reset value														ved									1 0	10		10	10	10		10	
210h															Reserved																	
	CAN_FFA1								pə/																FAF	[13:0]]					
214h	Reset Value								Reserved										0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Reset Value														pə/				U	U	U	U	U	0	0	10	0	0	U	10	10	
218h															Reserved																	
	CAN_FA1								ved																FAC	[13:0]]					
21Ch	Reset Value								Reserved										0	0	0	0	0	0	0	0	0	0	0	0	0	0
	reset value														ved								<u> </u>	L		<u> </u>	1	<u>l </u>				
220h															Reserved																	
224h -															Reserved																	
23Fh															Re																	
240h	CAN_F0B1								-		- 1			ı		FBC[3	31:0]			ı	ı		1	1	1	1		1	-			
	Reset Value	х х	x	х	х	х	х	х	х	х	х	X	х	х	х	х	х	х	х	х	Х	х	х	х	Х	х	х	х	х	х	х	х
244h	CAN_F0B2			<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	1	-			l		FBC[3			1	l	l	1		ı	1	1		1	1			\dashv
	Reset Value	x x	x	Х	X	X	Х	Х	Х	х	Х	X	х	Х	Х	х	Х	х	Х	Х	Х	х	Х	Х	Х	Х	х	Х	х	х	х	х
248h	CAN_F1B1															FBC[3	31:0]															
	Reset Value	x x	x	х	x	x	х	x	х	x	x	x	x	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	x
246	CAN_F1B2															FBC[3	31:0]															
24Ch	Reset Value	x x	х	х	x	x	х	x	х	х	x	x	х	x	x	х	х	x	х	х	х	х	х	х	х	х	х	х	x	х	х	x
																						1	ı		1	1	1					
																Recerved																
																						_										

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
2A8h	CAN_F13B1																FBC[:	31:0]															
	Reset Value	x	x	x	х	х	х	х	х	х	х	х	x	х	x	х	х	x	x	х	x	x	x	x	x	х	x	x	x	х	x	x	x
2ACh	CAN_F13B2																FBC[31:0]															
	Reset Value	x	x	x	x	х	х	x	x	х	x	x	x	x	x	x	х	x	x	x	x	x	x	x	x	x	x	x	x	х	x	x	x


20.7.3 CAN control and status register

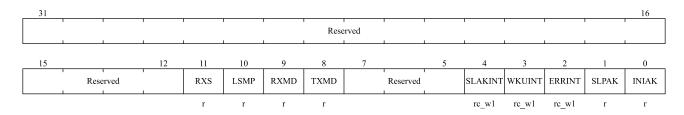
Abbreviations used in register descriptions, please refer to 1.1 section.

20.7.3.1 CAN master control register (CAN_MCTRL)

Address offset: 0x00

Reset value: 0x0001 0002

Bit Field	Name	Description
31:17	Reserved	Reserved, the reset value must be maintained.
16	DBGF	Debug freeze
		0: During debugging, CAN works as usual.
		1: Freeze the reception/transmission of CAN during debugging. The receiving
		FIFO can still be read, written and controlled normally.
		Notes: DBG_CTRL.CAN_STOP bit must be set when CAN is frozen, please refer
		to 20.3.7: Debugging mode.
15	MRST	CAN software master reset
		0: This peripheral works normally;
		1: enforce reset CAN, after which CAN enters sleep mode and CAN_RFFx.FFMP
		bit and CAN_MCTRL register are initialized to their reset values. After that, the
		hardware automatically clears this bit.
14:8	Reserved	Reserved, the reset value must be maintained.
7	TTCM	Time triggered communication mode
		0: disable time triggered communication mode;
		1: enable time trigger communication mode.
		Notes: For more information about time-triggered communication mode, please
		refer to 20.4.2: Time-triggered communication mode.
6	ABOM	Automatic bus-off management
		This bit determines the conditions under which the CAN hardware can exit the
		bus-off state.
		0: The process of exiting the bus-off state is that after the software sets the
		CAN_MCTRL.INIRQ bit and then clears it, once the hardware detects 128
		consecutive 11-bit recessive bits, it exits the bus-off state;
		1: Once the hardware detects 128 consecutive 11-bit recessive bits, it will
		automatically exit the bus-off state.
		Notes: For more information about bus-off status, please refer to 20.5.1: Error
		management.


Bit Field	Name	Description
5	AWKUM	Automatic wake up mode
		This bit determines whether CAN is awakened by hardware or software when it is
		in sleep mode.
		0: The sleep mode is awakened by the software by clearing the
		CAN_MCTRL.SLPRQ bit;
		1: Sleep mode is automatically awakened by hardware by detecting CAN
		messages. At the same time of wake-up, the hardware automatically clears the
		CAN_MSTS.SLPRQ and CAN_MSTS.SLPAK bits.
4	NART	No automatic retransmission
		0: According to the CAN standard, when the CAN hardware fails to send a
		message, it will automatically retransmit it until it is successfully sent;
		1: CAN message is only sent once, regardless of the sending result (success, error
		or arbitration loss).
3	RFLM	Receive FIFO locked mode.
		0: the FIFO is not locked when receiving overflows, and when the message of the
		receiving FIFO is not read out, the next received message will overwrite the last
		message;
		1: FIFO is locked when receiving overflow. When the message of receiving FIFO
		is not read out, the next received message will be discarded.
2	TXFP	Transmit FIFO priority
		When there are multiple messages waiting to be sent at the same time, this bit
		determines the sending order of these messages.
		0: Priority is determined by the identifier of the message;
		1: Priority is determined by the order in which requests are sent.
1	SLPRQ	Sleep mode request
	32334	The software can request the CAN to enter the sleep mode by setting this bit, and
		once the current CAN activity (sending or receiving messages) ends, the CAN
		will enter the sleep mode.
		Clear by software to make CAN exit sleep mode.
		When the CAN_MCTRL.AWKUM bit is set and the SOF bit is detected in the
		CAN Rx signal, the hardware clears this bit.
		This bit is set after reset, that is, CAN is in sleep mode after reset.
0	INIRQ	Initialization request
Ü	nance	clear this bit by software can make CAN exit from initialization mode: when
		CAN leaves Initialization mode and entering normal mode, it needs to detect 11
		consecutive recessive bits at the receiving pin, CAN will be synchronized and
		ready for receiving and sending data. To this end, the hardware correspondingly
		the CAN_MSTS.INIAK bit is cleared.
		Setting this bit by software enables CAN to enter initialization mode from normal
		operation mode: once the current CAN activity (sending or receiving) is over, the
		hardware sets the CAN_MSTS.INIAK bit and CAN enters initialization mode.

20.7.3.2 CAN master status register (CAN_MSTS)

Address offset: 0x04

Reset value: 0x0000c02

Bit Field	Name	Description
31:12	Reserved	Reserved, the reset value must be maintained.
11	RXS	CAN Rx signal
		This bit reflects the actual level of the CAN receive pin (CAN_RX).
10	LSMP	Last sample point
		The last sampled value of the CAN receive pin (corresponding to the value of the
		current receive bit).
9	RXMD	Receive mode
		if this bit equals to 1 indicates CAN is currently the receiver.
8	TXMD	Transmit mode
		if this bit equals to 1 indicates CAN is currently the transmitter.
7:5	Reserved	Reserved, the reset value must be maintained.
4	SLAKINT	Sleep acknowledge interrupt
		When CAN_INTE.SLKITE=1, once CAN enters sleep mode, hardware will set
		this bit, and then the corresponding interrupt will be triggered. When this bit is
		set, if the CAN_INTE.SLKITE bit is set, a state change interrupt will be
		generated.
		Software can clear this bit, and hardware also clears this bit when
		CAN_MSTS.SLPAK bit is cleared.
		Notes: When CAN_INTE.SLKITE=0, this bit should not be queried, but the
		CAN_MSTS.SLPAK bit should be queried to know the sleep state.
3	WKUINT	Wakeup interrupt
		When CAN is in sleep state, once the start of frame bit (SOF) is detected, the
		hardware will set this bit; And if the CAN_INTE.WKUITE bit is set, a state
		change interrupt is generated.
		This bit is cleared by software.
2	ERRINT	Error interrupt
		When an error is detected, a bit of the CAN_ESTS register will be set, and if the
		corresponding interrupt enable bit of the CAN_INTE register is also set, the
		hardware will set this bit; If the CAN_INTE.ERRITE bit is set, a state change
		interrupt is generated. This bit is cleared by software.
1	SLPAK	Sleep acknowledge

505

Nanshan District, Shenzhen, 518057, P.R.China

Bit Field	Name	Description
		This bit is set by hardware, indicating that the software CAN module is in sleep
		mode. This bit is the confirmation of the software request to enter sleep mode
		(the CAN_MCTRL.SLPRQ bit is set).
		Hardware clears this bit when CAN exits sleep mode (CAN leaves Sleep mode
		and entering normal mode, it needs to be synchronized with CAN bus).
		Synchronization with CAN bus here means that the hardware needs to detect 11
		consecutive recessive bits on the RX pin of CAN.
		Notes: clearing CAN_MCTRL.SLPRQ bit by software or hardware will start the
		process of exiting sleep mode. See the description of CAN_MCTRL.AWKUM bit
		for details of clearing CAN_MCTRL.SLPRQ bit.
0	INIAK	Initialization acknowledge
		This bit is set by hardware, indicating that the software CAN module is in
		initialization mode. This bit is the confirmation of the software request to enter
		the initialization mode (the CAN_MCTRL.INIRQ bit is set).
		Hardware clears this bit when CAN exits initialization mode (CAN leaves
		Initialization mode and entering normal mode, it needs to be synchronized with
		CAN bus). Synchronization with CAN bus here means that the hardware needs to
		detect 11 consecutive recessive bits on the RX pin of CAN.

20.7.3.3 CAN transmit status register (CAN_TSTS)

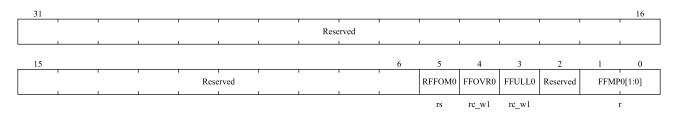
Address offset: 0x08

Reset value: 0x1C00 0000

31	30	29	28	27	26	25	24	23	22		20	19	18	17	16
LOWM2	LOWM1	LOWM0	TMEM2	TMEM1	TMEM0	CO	DE	ABRQM2		Reserved		TERRM2	ALSTM2	TXOKM2	RQCPM2
r 15	r 14	r	r 12	r 11	r 10	9	r 8	rs 7	6		4	rc_w1	rc_w1	rc_w1	rc_w1
ABRQM1		Reserved	1	TERRM1	ALSTM1	TXOKM1	RQCPM1	ABRQM0		Reserved		TERRM0	ALSTM0	TXOKM0	RQCPM0
rs				rc_w1	rc_w1	rc_w1	rc_w1	rs				rc_w1	rc_w1	rc_w1	rc_w1

Bit Field	Name	Description
31	LOWM2	Lowest priority flag for mailbox 2
		When multiple mailboxes are waiting to send messages, and the priority of
		mailbox 2 is the lowest, hardware sets this bit.
30	LOWM1	Lowest priority flag for mailbox 1
		When multiple mailboxes are waiting to send messages, and the priority of
		mailbox 1 is the lowest, hardware sets this bit.
29	LOWM0	Lowest priority flag for mailbox 0
		When multiple mailboxes are waiting to send messages, and the priority of
		mailbox 0 is the lowest, hardware sets this bit.
		Notes: If there is only one mailbox waiting, CAN_TSTS.LOW[2:0] is cleared
28	TMEM2	Transmit mailbox 2 empty
		When there is no message waiting to be sent in mailbox 2, hardware sets this bit.

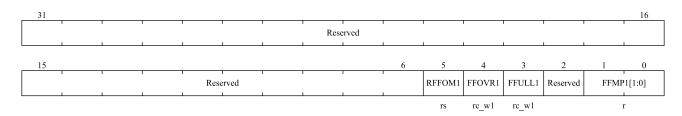
Bit Field	Name	Description					
27	TMEM1	Transmit mailbox 1 empty					
		When there is no message waiting to be sent in mailbox 1, hardware sets this bit.					
26	TMEM0	Transmit mailbox 0 empty					
		When there is no message waiting to be sent in mailbox 0, hardware sets this bit .					
25:24	CODE[1:0]	Mailbox code					
		When at least one sending mailbox is empty, these two bits represent the next					
		empty sending mailbox number.					
		When all sending mailboxes are empty, these two bits represent the sending					
		mailbox number with the lowest priority.					
23	ABRQM2	Abort request for mailbox 2					
		Set this bit, software can stop the sending request of mailbox 2, and hardware					
		clears this bit when the sending message of mailbox 2 is idle. If there is no					
		message waiting to be sent in mailbox 2, it will have no effect to set this bit.					
22:20	Reserved	Reserved, hardware force is 0.					
19	TERRM2	Transmission error of mailbox 2 failed.					
		When the mailbox 2 fails to send due to an error, set this bit.					
18	ALSTM2	Arbitration lost for mailbox 2					
		When the mailbox 2 fails to send due to the loss of arbitration, set this bit.					
17	TXOKM2	Transmission OK of mailbox 2					
		The hardware updates this bit after each sending attempt of mailbox 2:					
		0: The last sending attempt is not yet successful;					
		1: The last sending attempt was successful.					
		When the sending request of mailbox 2 is successfully completed, hardware sets					
		this bit. See Figure 20-7.					
16	RQCPM2	Request completed mailbox 2					
		When the last request (send or abort) for mailbox 2 is completed, the hardware					
		will set this bit.					
		Writing '1' to this bit by software can clear it; When the hardware receives the					
		send request, it can also clear this bit (the CAN_TMI2.TXRQ bit is set).					
		When this bit is cleared, other sending status bits (CAN_TSTS.TXOKM2,					
		CAN_TSTS.ALSTM2 and CAN_TSTS.TERRM2 bits) of mailbox 2 are also					
		cleared.					
15	ABRQM1	Abort request for mailbox 1					
		Set this bit, the software can stop the sending request of mailbox 1, and the					
		hardware clears this bit when the sending message of mailbox 1 is idle. If there is					
		no message waiting to be sent in mailbox 1, it will have no effect to set this bit.					
14:12	Reserved	Reserved, the reset value must be maintained.					
11	TERRM1	Transmission error of mailbox 1					
		When the mailbox 1 fails to send due to an error, set this bit.					
10	ALSTM1	Arbitration lost for mailbox 1					
		When the mailbox 1 fails to send due to the loss of arbitration, set this bit					
9	TXOKM1	Transmission OK of mailbox 1					


Bit Field	Name	Description
		The hardware updates this bit after each sending attempt of mailbox 1:
		0: The last sending attempt is not yet successful;
		1: The last sending attempt was successful.
		When the sending request of mailbox 1 is successfully completed, the hardware
		sets this bit. See Figure 20-7.
8	RQCPM1	Request completed mailbox 1
		When the last request (send or abort) for mailbox 1 is completed, the hardware
		sets this bit.
		Writing '1' to this bit by software can clear it; When the hardware receives the
		send request, it can also clears this bit (the CAN_TMI1.TXRQ bit is set).
		When this bit is cleared, other sending status bits (CAN_TSTS.TXOKM1,
		CAN_TSTS.ALSTM1 and CAN_TSTS.TERRM1 bits) of mailbox 1 are also
		cleared.
7	ABRQM0	Abort request for mailbox 0
		The software can stop the sending request of mailbox 0 by setting this bit , and the
		hardware clears this bit when the sending message of mailbox 0 is idle. If there is
		no message waiting to be sent in mailbox 0, it will have no effect to set this bit.
6:4	Reserved	Reserved, the reset value must be maintained.
3	TERRM0	Transmission error of mailbox 0
		When the mailbox 0 fails to send due to an error, set this bit.
2	ALSTM0	Arbitration lost for mailbox 0
		When the mailbox 0 fails to send due to the loss of arbitration, set this bit
1	TXOKM0	Transmission OK of mailbox 0
		The hardware updates this bit after each attempt to send mailbox 0:
		0: The last send attempt is not yet successful;
		1: The last sending attempt was successful.
		When the sending request of mailbox 0 is successfully completed, the hardware
		sets this bit. See Figure 20-7.
0	RQCPM0	Request completed mailbox 0
		When the last request (send or abort) for mailbox 0 was completed, the hardware
		sets this bit.
		Writing '1' to this bit by software can clear it; When the hardware receives the
		send request, it can also clears this bit (the CAN_TMI0.TXRQ bit is set).
		When this bit is cleared, other sending status bits (CAN_TSTS.TXOKM0,
		CAN_TSTS.ALSTM0 and CAN_TSTS.TERRM0 bits) of mailbox 0 are also
		cleared.

20.7.3.4 CAN receive FIFO 0 register (CAN_RFF0)

Address offset: 0x0c

Reset value: 0x0000 0000



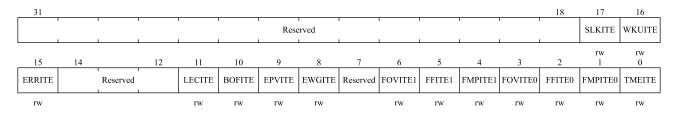
Bit Field	Name	Description
31:6	Reserved	Reserved, the reset value must be maintained.
5	RFFOM0	Release FIFO 0 output mailbox.
		The software releases the output mailbox of the receive FIFO by setting this bit. If
		the receiving FIFO is empty, it will have no effect on setting this bit, that is, it will
		be meaningful to set this bit only when there is a message in the FIFO. If there are
		more than two messages in FIFO, because of the characteristics of FIFO, the
		software needs to release the output mailbox to access the second message.
		When the output mailbox is released, the hardware clears this bit.
4	FFOVR0	FIFO 0 overrun
		When FIFO 0 is full, a new message is received and the message meets the
		filtering conditions, the hardware sets this bit. This bit is cleared by software.
3	FFULL0	FIFO 0 full
		When there are 3 messages in FIFO 0, the hardware sets this bit'. This bit is
		cleared by software.
2	Reserved	Reserved, the reset value must be maintained.
1:0	FFMP0[1:0]	FIFO 0 message pending
		Number of FIFO messages 0 These two bits reflect the number of messages
		currently stored in the receiving FIFO 0. Every time a new message is stored in
		the receiving FIFO 0, the hardware adds 1 to the CAN_RFF0.FFMP0.
		Every time the software writes '1' to the CAN_RFF0.RFFOM0 bit to release the
		output mailbox, CAN_RFF0.FFMP0 is decremented by 1 until it is 0.

20.7.3.5 CAN receive FIFO 1 register (CAN_RFF1)

Address offset: 0x10

Reset value: 0x0000 0000

Bit Field	Name	Description
31:6	Reserved	Reserved, the reset value must be maintained.
5	RFFOM1	Release FIFO 1 output mailbox.
		The software releases the output mailbox of the receive FIFO by setting this bit. If



Bit Field	Name	Description
		the receiving FIFO is empty, it will have no effect on setting this bit, that is, it will
		be meaningful to set this bit only when there is a message in the FIFO. If there are
		more than two messages in FIFO, because of the characteristics of FIFO, the
		software needs to release the output mailbox to access the second message.
		When the output mailbox is released, the hardware clears this bit.
4	FFOVR1	FIFO 1 overrun
		When FIFO 1 is full, a new message is received and the message meets the
		filtering conditions, the hardware sets this bit. This bit is cleared by software.
3	FFULL1	FIFO 1 full
		When there are 3 messages in FIFO 1, the hardware sets this bit. This bit is
		cleared by software.
2	Reserved	Reserved, the reset value must be maintained.
1:0	FFMP1[1:0]	FIFO 1 message pending
		Number of messages in FIFO 1 These two bits reflect the number of messages
		stored in the current receiving FIFO 1. Every time a new message is stored in
		receiving FIFO 1, the hardware adds 1 to CAN_RFF1.FFMP1.
		Every time the software releases the output mailbox by writing '1' to
		CAN_RFF1.RFFOM1 bit, CAN_RFF1.FFMP1 is decremented by 1 until it is 0.

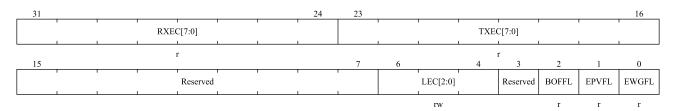
20.7.3.6 CAN interrupt enable register (CAN_INTE)

Address offset: 0x14

Reset value: 0x0000 0000

Bit Field	Name	Description
31:18	Reserved	Reserved, the reset value must be maintained.
17	SLKITE	Sleep interrupt enable
		0: when the CAN_MSTS.SLAKINT bit is set, no interrupt is generated;
		1: when the CAN_MSTS.SLAKINT bit is set, an interrupt is generated.
16	WKUITE	Wakeup interrupt enable
		0: when CAN_MSTS.WKUINT bit is set, no interrupt is generated;
		1: when CAN_MSTS.WKUINT bit is set, an interrupt is generated.
15	ERRITE	Error interrupt enable
		0: When there is an error registration in the CAN_ESTS register, no interrupt is
		generated;
		1: When there is an error registration in the CAN_ESTS register, an interrupt is
		generated.

Bit Field	Name	Description
14:12	Reserved	Reserved, the reset value must be maintained.
11	LECITE	Last error code interrupt enable
		0: When an error is detected, when the hardware sets CAN_ESTS.LEC[2:0], the
		CAN_MSTS.ERRINT bit is not set;
		1: When an error is detected, when the hardware sets CAN_ESTS.LEC[2:0], the
		CAN_MSTS.ERRINT bit is set.
10	BOFITE	Bus-off interrupt enable
		0: When CAN_ESTS.BOFFL bit is set, CAN_MSTS.ERRINT bit is not set;
		1: When the CAN_ESTS.BOFFL bit is set, set the CAN_MSTS.ERRINT bit.
9	EPVITE	Error passive interrupt enable
		0: when CAN_ESTS.EPVFL bit is set, CAN_MSTS.ERRINT bit is not set;
		1: when CAN_ESTS.EPVFL bit is set, set the CAN_MSTS.ERRINT bit.
8	EWGITE	Error warning interrupt enable
		0: When CAN_ESTS.EWGFL bit is set, CAN_MSTS.ERRINT bit is not set;
		1: when the CAN_ESTS.EWGFL bit is set, set the CAN_MSTS.ERRINT bit.
7	Reserved	Reserved, the reset value must be maintained.
6	FOVITE1	FIFO 1 overflow interrupt enable
		0: When CAN_RFF1.FFOVR bit is set, no interrupt is generated;
		1: When CAN_RFF1.FFOVR bit is set, an interrupt is generated.
5	FFITE1	FIFO 1 full interrupt enable
		0: When CAN_RFF1.FFULL bit is set, no interrupt is generated;
		1: When CAN_RFF1.FFULL bit is set, an interrupt is generated.
4	FMPITE1	FIFO 1 message pending interrupt enable
		0: When CAN_RFF1.FFMP[1:0] bits are non-0, no interrupt is generated;
		1: When CAN_RFF1.FFMP[1:0] bits are not 0, an interrupt is generated.
3	FOVITE0	FIFO 0 overflow interrupt enable
		0: When CAN_RFF0.FFOVR bit is set, no interrupt is generated;
		1: When CAN_RFF0.FFOVR bit is set, an interrupt is generated.
2	FFITE0	FIFO 0 full interrupt enable
		0: When CAN_RFF0.FFULL bit is set, no interrupt is generated;
		1: When CAN_RFF0.FFULL bit is set, an interrupt is generated.
1	FMPITE0	FIFO 0 message pending interrupt enable
		0: When CAN_RFF0.FFMP[1:0] bits are non-0, no interrupt is generated;
		1: When CAN_RFF0.FFMP[1:0] bits are not 0, an interrupt is generated.
0	TMEITE	Transmit mailbox empty interrupt enable.
		0: When CAN_TSTS.RQCPMx bit is set, no interrupt is generated;
		1: When CAN_TSTS.RQCPMx bit is set, an interrupt is generated.
		Notes: Please refer to 20.5 Section CAN interrupt.


20.7.3.7 CAN error status register (CAN_ESTS)

Address offset: 0x18

Reset value: 0x0000 0000

Nanshan District, Shenzhen, 518057, P.R.China

Bit Field	Name	Description
31:24	RXEC[7:0]	Receive error counter
		This counter is implemented according to the receiving part of the fault definition
		mechanism of CAN protocol. According to the standard of CAN, when receiving
		error, the counter is incremented by 1 or incremented by 8 according to the error
		condition; After each successful reception, the counter is decremented by 1, or
		when the value of the counter is greater than 127, its value is set to 120. When the
		value of this counter exceeds 127, CAN enters the error passive state.
23:16	TXEC[7:0]	Least significant byte of the 9-bit transmit error counter
		Similar to the above, this counter is implemented according to the sending part of
		the fault definition mechanism of CAN protocol.
15:7	Reserved	Reserved, the reset value must be maintained.
6:4	LEC[2:0]	The Last error code.
		When an error is detected on the CAN bus, the hardware is set according to the
		error situation. When the message is sent or received correctly, the hardware
		clears its value to '0'.
		The hardware does not use error code 7, and the software can set this value, so
		that the code update can be detected.
		000: there is no error;
		001: Bit padding error;
		010: wrong Format (form);
		011: Acknowledgment (ack) error;
		100: recessive dislocation (CAN transmits recessive but detect dominant on the
		bus);
		101: dominant dislocation(CAN transmits dominant but detect recessive on the
		bus);
		110: CRC error;
		111: Set by software.
3	Reserved	Reserved, the reset value must be maintained.
2	BOFFL	Bus-off flag
		When going bus-off, hardware sets this bit. When the transmission error counter
		CAN_TSTS.TXEC overflows, that is, it is greater than 255, CAN goes bus-off.
		Please refer to 20.5.1 section.
1	EPVFL	Error passive flag
		When the number of errors reaches the threshold of error passivity, the hardware
		sets the bit.
		(The value of the receiving error counter or the sending error counter is > 127).

Bit Field	Name	Description
0	EWGFL	Error warning flag
		When the number of errors reaches the warning threshold, the hardware sets the
		bit.
		(The value of the receiving error counter or the sending error counter is ≥96).

20.7.3.8 CAN bit timing register (CAN_BTIM)

Address offset: 0x1C

Reset value: 0x0123 0000

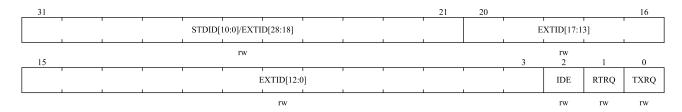
Notes: This register CAN only be accessed by software when CAN is in initialization mode.

31	30	29			26	25	24	23	22		20	19			16
SLM	LBM		Rese	erved	1	RSJV	V[1:0]	Reserved		TBS2[2:0]			TBS1	[3:0]	
rw 15	rw	•			10	9 r	w			rw			rv	w	0
		Rese	erved	1			1			BRTI	P[9:0]		1		
			•				•			r	w				

Bit Field	Name	Description
31	SLM	Silent mode (debug)
		0: Normal state;
		1: Silent mode.
30	LBM	Loop back mode (debug)
		0: Loopback mode is prohibited;
		1: Loopback mode is allowed.
29:26	Reserved	Reserved, the reset value must be maintained.
25:24	RSJW[1:0]	Resynchronization jump width
		For resynchronization, this bit field defines the upper limit of how many time
		units CAN be extended or shortened by CAN hardware in each bit.
		$t_{RJW} = t_{CAN} x (RSJW[1:0] + 1).$
23	Reserved	Reserved, the reset value must be maintained.
22:20	TBS2[2:0]	Time segment 2
		This bit field defines how many time units time period 2 occupies.
		$t_{BS2} = t_{CAN} x (TBS2[2:0] + 1).$
19:16	TBS1[3:0]	Time segment 1
		This bit field defines how many time units time period 1 occupies.
		$t_{BS1} = t_{CAN} x (TBS1[3:0] + 1)$
		For details of bit time characteristics, please refer to section 20.4.7 secton: bit
		time characteristics.
15:10	Reserved	Reserved, the reset value must be maintained.
9:0	BRTP[9:0]	Baud rate prescaler
		This bit field defines the time length of the time unit (tq)
		$t_q = (BRTP[9:0]+1) \times t_{PCLK}$

20.7.4 CAN mailbox register

This section describes the sending and receiving mailbox registers. For more information about register mapping, refer to 20.4.6 section: message storage.


20.7.4.1 Tx mailbox identifier register(CAN_TMIx)(x=0..2)

Address offset: 0x180, 0x190, 0x1A0

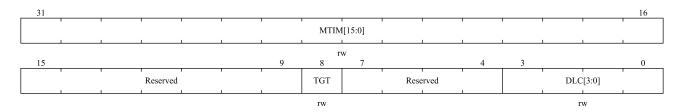
Reset value: 0xXXXX XXXX,X= undefined bit (except bit 0, TXRQ=0 at reset)

Notes: 1. This register is write-protected when the mailbox to which it belongs is waiting to be sent;

2. This register implements the send request control function (bit 0)-the reset value is 0.

Bit Field	Name	Description
31:21	STDID[10:0]/EXTID[28:18]	Standard identifier or extended identifier
		Depending on the content of CAN_TMIx.IDE bits, these bits are either standard
		identifiers or high bytes of extended identity.
20:3	EXTID[17:0]	Extended identifier
		Low byte of extended identity.
2	IDE	Identifier extension.
		This bit determines the type of identifier used for sending messages in the
		mailbox.
		0: Use standard identifier;
		1: Use extended identifiers.
1	RTRQ	The Remote transmission request
		0: data frame;
		1: Remote frame.
0	TXRQ	Transmit mailbox request
		It is set by the software to request to send the data of the mailbox. When the data
		transmission is completed and the mailbox is empty, hardware clears it.

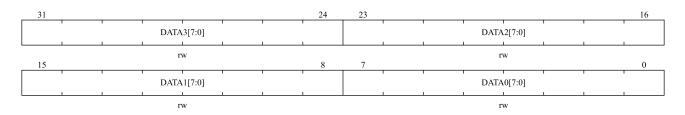
514


20.7.4.2 Tx mailbox data length and time stamp register (CAN_TMDTx)(x=0..2)

When the mailbox is not empty, all bits in this register are write-protected.

Address offset: 0x184, 0x194, 0x1A4

Reset value: undefined


Bit Field	Name	Description
31:16	MTIM[15:0]	Message time stamp
		This field contains the value of the 16-bit timer at the time of sending the
		message SOF.
15:9	Reserved	Reserved, the reset value must be maintained.
8	TGT	Transmit global time
		This bit is valid only when the CAN is in time-triggered communication mode,
		that is, the CAN_MCTRL.TTCM bit is set.
		0: Do not send the time stamp CAN_TMDTx.MTIM[15:0];
		1: send the time stamp CAN_TMDTx.MTIM[15:0]. In a message of length 8, the
		time stamp CAN_TMDTx.MTIM[15:0] is the last two bytes sent:
		CAN_TMDTx.MTIM[7:0] is the seventh byte and CAN_TMDTx.MTIM[15:8] is
		the eighth byte. They replace the data written in CAN_TMDHx[31:16]
		(CAN_TMDLx.DATA6[7:0] and CAN_TMDLx.DATA7[7:0]). In order to send
		the 2 bytes of the timestamp, DLC must be programmed to 8.
7:4	Reserved	Reserved, the reset value must be maintained.
3:0	DLC[3:0]	Data length code
		This field specifies the data length of the data message or the data length
		requested by the remote frame. One message contains 0 to 8 bytes of data, which
		is determined by DLC.

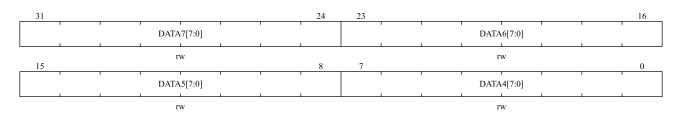
20.7.4.3 Tx mailbox low byte data register(CAN_TMDLx) (x=0..2)

When the mailbox is not empty, all bits in this register are write-protected.

Address offset: 0x188, 0x198, 0x1A8

Reset value: undefined

Bit Field	Name	Description
31:24	DATA3[7:0]	Data byte 3
		Data byte 3 of the message.
23:16	DATA2[7:0]	Data byte 2

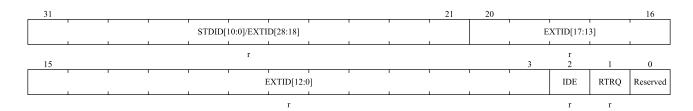

Bit Field	Name	Description
		Data byte 2 of the message.
15:8	DATA1[7:0]	Data byte 1
		Data byte 1 of the message.
7:0	DATA0[7:0]	Data byte 0
		Data byte 0 of the message.
		Notes:the message contains 0 to 8 bytes of data, starting from byte 0.

20.7.4.4 Tx mailbox high byte data register(CAN_TMDHx) (x=0..2)

When the mailbox is not empty, all bits in this register are write protected.

Address offset: 0x18c, 0x19c, 0x1ac

Reset value: undefined

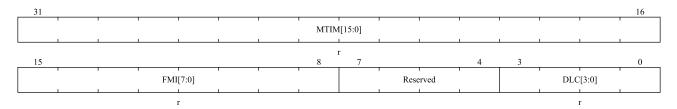

Bit Field	Name	Description
31:24	DATA7[7:0]	Data byte 7
		Data byte 7 of the message.
		Notes: If the CAN_MCTRL.TTCM bit is '1' and the CAN_TMDTx.TGT bit of this
		mailbox is also '1', then DATA7 and DATA6 will be replaced by TIME stamps.
23:16	DATA6[7:0]	Data byte 6
		Data byte 6 of the message.
15:8	DATA5[7:0]	Data byte 5
		Data byte 5 of the message.
7:0	DATA4[7:0]	Data byte 4
		Data byte 4 of the message.

20.7.4.5 Receive FIFO mailbox identifier register (CAN_RMIx) (x=0..1)

Address offset: 0x1B0, 0x1C0

Reset value: undefined

Notes: All receiving mailbox registers are read-only.


Bit Field	Name	Description
31:21	STDID[10:0]/EXTID[28:18]	Standard identifier or extended identifier
		Depending on the content of CAN_RMIx.IDE bits, these bits are either standard
		identifiers or high bytes of extended identity.
20:3	EXTID[17:0]	Extended identifier
		Low byte of extended identity.
2	IDE	Identifier extension.
		This bit determines the type of identifier used for sending messages in the
		mailbox.
		0: Use standard identifier;
		1: Use extended identifiers.
1	RTRQ	Remote transmission request
		0: data frame;
		1: Remote frame.
0	Reserved	Reserved, the reset value must be maintained.

20.7.4.6 Receive FIFO mailbox data length and time stamp register(CAN_RMDTx)(x=0..1)

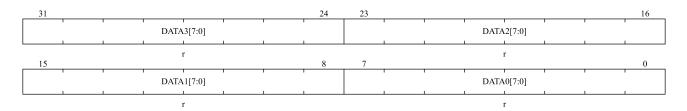
Address offset: 0x1B4, 0x1C4

Reset value: undefined

Notes: All receiving mailbox registers are read-only.

Bit Field	Name	Description
31:16	MTIM[15:0]	Message time stamp
		This field contains the value of the 16-bit timer at the time of sending the
		message SOF.
15:8	FMI[7:0]	Filter match index
		Here is the filter serial number of the information transfer stored in the mailbox.
		For details of identifier filtering, please refer to 20.4.5 section: Identifier filtering.
7:4	Reserved	Reserved, the reset value must be maintained.
3:0	DLC[3:0]	Data length code
		This field indicates the data length (0~8) of the received data frame. For remote
		frame requests, the data length DLC is always 0.

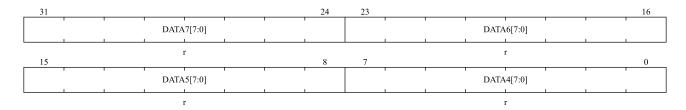
517


20.7.4.7 Receive FIFO mailbox low byte data register(CAN_RMDLx)(x=0..1)

Address offset: 0x1B8, 0x1C8

Reset value: undefined

Notes: All receiving mailbox registers are read-only.


Bit Field	Name	Description
31:24	DATA3[7:0]	Data byte 3
		Data byte 3 of the message.
23:16	DATA2[7:0]	Data byte 2
		Data byte 2 of the message.
15:8	DATA1[7:0]	Data byte 1
		Data byte 1 of the message.
7:0	DATA0[7:0]	Data byte 0
		Data byte 0 of the message.
		Notes: the message contains 0 to 8 bytes of data, starting from byte 0.

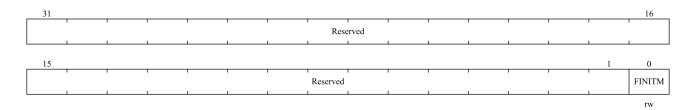
20.7.4.8 Receive FIFO mailbox high byte data register(CAN_RMDHx) (x=0..1)

Address offset: 0x1BC, 0x1CC

Reset value: undefined

Note: All receiving mailbox registers are read-only.

Bit Field	Name	Description
31:24	DATA7[7:0]	Data byte 7
		Data byte 7 of the message.
23:16	DATA6[7:0]	Data byte 6
		Data byte 6 of the message.
15:8	DATA5[7:0]	Data byte 5
		Data byte 5 of the message.
7:0	DATA4[7:0]	Data byte 4
		Data byte 4 of the message.

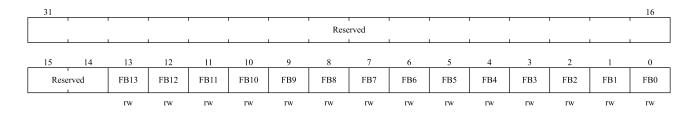

20.7.5 CAN filter register

20.7.5.1 CAN filter master control register (CAN_FMC)

Address offset: 0x200

Reset value: 0x2A1C 0E01

Notes: The unreserved bits of this register are completely controlled by software.


Bit Field	Name	Description
31:1	Reserved	Reserved, the reset value must be maintained.
0	FINITM	Filter init mode
		Initialization mode settings for all filter groups.
		0: The filter group works in normal mode;
		1: The filter group works in initialization mode.

20.7.5.2 CAN filter mode register (CAN_FM1)

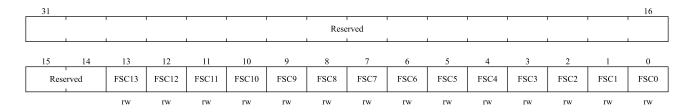
Address offset: 0x204

Reset value: 0x0000 0000

Notes: You can only write to this register when you set CAN_FMC.FINITM bit and put the filter in initialization mode.

Bit Field	Name	Description
31:28	Reserved	Reserved, the reset value must be maintained.
13:0	FBx	Filter mode
		Working mode of filter group X
		0: Two 32-bit registers of CAN_FiRx work in identifier mask mode;
		1: Two 32-bit registers of CAN_FiRx work in identifier list mode.

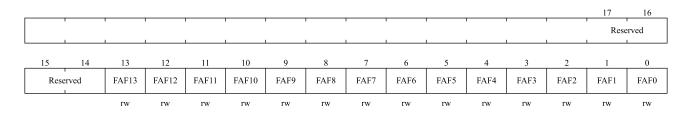
519


20.7.5.3 CAN filter scale register (CAN_FS1)

Address offset: 0x20C

Reset value: 0x0000 0000

Notes: You can only write to this register when you set CAN_FMC.FINITM bit and put the filter in initialization mode.


Bit Field	Name	Description
31:28	Reserved	Reserved, the reset value must be maintained.
13:0	FSCx	Filter scale configuration
		Bit width of filter group x (13~0).
		0: The filter bit width is 2 16-bits;
		1: The filter bit width is a single 32-bit.

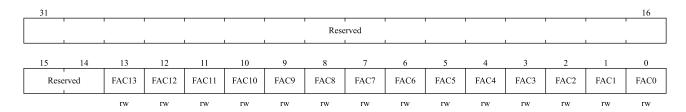
20.7.5.4 CAN filter FIFO assignment register (CAN_FFA1)

Address offset: 0x214

Reset value: 0x0000 0000

Notes: You can only write to this register when you set CAN_FMC.FINITM bit and put the filter in initialization mode.

Bit Field	Name	Description
31:28	Reserved	Reserved, the reset value must be maintained.
13:0	FAFx	Filter FIFO assignment for filter x
		After the message is filtered by a certain filter, it will be stored in its associated
		FIFO.
		0: the filter is associated to FIFO0;
		1: the filter is associated to FIFO1.


520

20.7.5.5 CAN filter activation register (CAN_FA1)

Address offset: 0x21C

Reset value: 0x0000 0000

Bit Field	Name	Description
31:28	Reserved	Reserved, the reset value must be maintained.
13:0	FACx	Filter active
		The software sets '1' for someone to activate the corresponding filter. The
		corresponding filter register i(CAN_FiR[2:1]) can only be modified after the
		CAN_FA1.FACx bit is cleared or the CAN_FMC.FINITM bit is set.
		0: The filter is disabled;
		1: The filter is activated.

20.7.5.6 CAN filter i register x (CAN_FiRx) (i=0..13;x=1..2)

Address offset: 0x240h, 0x31C

Reset value: undefined

Notes: 14 groups of filters: $i = 0 \dots 13$. Each group of filters consists of two 32-bit registers, CAN_FiR[2:1].

Only when the corresponding CAN_FA1.FACx bit is cleared or the CAN_FMC.FINIT bit is set, the corresponding filter register can be modified.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
FBC31	FBC30	FBC29	FBC28	FBC27	FBC26	FBC25	FBC24	FBC23	FBC22	FBC21	FBC20	FBC19	FBC18	FBC17	FBC16
rw 15	rw 14	rw 13	rw 12	rw 11	rw 10	rw 9	rw 8	rw 7	rw 6	rw 5	rw 4	rw 3	rw 2	rw 1	rw 0
FBC15	FBC14	FBC13	FBC12	FBC11	FBC10	FBC9	FBC8	FBC7	FBC6	FBC5	FBC4	FBC3	FBC2	FBC1	FBC0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit Field	Name	Description
31:0	FBC[31:0]	Filter bits
		Identifier pattern
		Each bit of the register corresponds to the level of the corresponding bit of the
		expected identifier.
		0: the corresponding bit is expected to be dominant;
		1: The corresponding bit is expected to be recessive.
		Mask bit pattern
		Each bit of the register indicates whether the corresponding identifier register bit
		must be consistent with the corresponding bit of the expected identifier.
		0: Don't care, this bit is not used for comparison;
		1: Must match, and the incoming identifier bit must be consistent with the
		identifier register bit corresponding to the filter.

Notes: According to the different settings of filter bit width and mode, the functions of the two registers in the filter

bank are different. For the mapping of filters, function description and association of mask registers, see 20.4.5 Section: identifier filtering.

Mask/identifier register in **mask mode** has the same definition as register bit in **identifier list mode**.

See for the address of the filter bank register Table 20-4.

21 Serial peripheral interface/Inter-IC Sound (SPI/ I²S)

21.1 SPI/ I²S introduction

This module is about SPI/I²S. It works in SPI mode by default and users can choose to use I²S by setting the value of registers.

Serial peripheral interface (SPI) is able to work in master or slave mode, support full-duplex and simplex high-speed communication mode, and have hardware CRC calculation and configurable multi-master mode.

On-chip audio interface (I^2S) is able to work in master and slave modes in simplex communication, and supports four audio standards: Philips I^2S standard, MSB alignment standard, LSB alignment standard and PCM standard.

Both of them are synchronous serial interface communication protocols.

21.2 SPI and I²S main features

21.2.1 SPI features

- Full duplex mode and simplex synchronous mode.
- Support master mode, slave mode and multi-master mode.
- Supports 8-bit or 16-bit data frame format.
- Data bit sequence programmable.
- NSS management by hardware or software.
- Clock polarity and phase programmable.
- Sending and receiving support hardware CRC calculation and check.
- Supports DMA function.

21.2.2 I²S features

- Simplex synchronous mode.
- Supports master mode and slave mode operation.
- Four audio standards are supported: Philips I²S standard, MSB alignment standard, LSB alignment standard and PCM standard.
- The audio sampling frequency from 8kHz to 96kHz can be configured.
- Supports 16-bit, 24-bit or 32-bit data length and data frame format (configured according to requirements).

- Steady state clock polarity programmable.
- The data direction is always MSB first.
- Supports DMA function.

21.3 SPI function description

21.3.1 General description

BIDIRM

BIDIRO

address and data bus Read Receive buffer MOSI LSBFF SPI_CTRL2 control bit Shift register SSOEN TDMAEN RDMAEN MISO SPL STS Send buffer BUSY OVER MODERR UNDER CHSIDE RNE Communication circuit BR[2:0] Baud rate generator SPI_CTRL1

Figure 21-1 SPI block diagram

To connected external devices, SPI has four pins, which are as follows:

DATFF

RONLY

SSMEN

SSEL

Main controller

- SCLK: serial clock pin. Serial clock signal is output from the SCLK pin of master device and input to SCLK pin of slave device.
- MISO: master input/slave output pin. Data is received from the MISO pin of master device and send by the MISO pin of slave device.
- MOSI: master output/slave input pin. Data is send by the MOSI pin of master device and received from the MOSI pin of slave device.
- NSS: chip select pin. There are two types of NSS pin, internal pin and external pin. If the internal pin detects a high level, SPI works in the master mode. Conversely, SPI works in the slave mode. Users can use a standard I/O pin of the master device to control the NSS pin of the slave device.

524

Software NSS mode

Фnss

The software slave device management is enabled when SPI_CTRL1.SSMEN = 1.

The NSS pin is not used in software NSS mode. In this mode the internal NSS signal level is driven by writing the SPI_CTRL1.SSEL bit (master mode SPI_CTRL1.SSEL = 1, slave mode SPI_CTRL1.SSEL = 0).

Hardware NSS mode

The software slave device management is disabled when SPI_CTRL1.SSMEN = 0.

NSS input mode: The NSS output of the master device is disabled (SPI_CTRL1.MSEL = 1, SPI_CTRL2.SSOEN = 0), allowing operation in multi-master mode. The master should connect NSS pin to the high level and the slave should connect NSS pin to the low level during the entire data frame transfer.

NSS output mode: NSS output of the master device is enable (SPI_CTRL1.MSEL = 1, SPI_CTRL2.SSOEN = 1). SPI as the master device must pull the NSS pin to low level, all device which connected to the master device and set to NSS hardware mode, will detect low level and enter the slave mode automatically. If the master device cannot pull the NSS pin to low level, device will enter the slave mode and generates the master mode failure error.

Note: The choice of software mode or hardware mode depends on whether NSS control is needed in the communication protocol. If not, you can choose the software mode, and release a GPIO pin for other purposes.

Figure 21-2 Selective management of hardware/software

The following figure is an example of the interconnection of single master and single slave devices

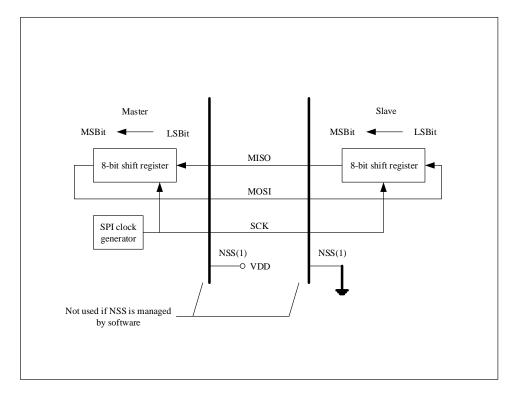


Figure 21-3 Master and slave applications

Note: NSS pin is set as input

SPI is a ring bus structure. The master device outputs a synchronous clock signal through the SCK pin, the MOSI pin of the master device is connected to the MOSI pin of the slave device, and the MISO pin of the master device is connected to the MISO pin of the slave device, so that data can be transferred between devices. Continuous data transfer between master and slave, sending data to slave through MOSI pin and slave sending data to master through MISO pin.

SPI timing mode

User can selects the clock edge of data capture by setting SPI_CTRL1.CLKPOL bit and SPI_CTRL1.CLKPHA bit.

- When CLKPOL = 0, CLKPHA = 0, the SCLK pin will keep low in idle state, and the data will be sampled at the first edge, which is rising edge.
- When CLKPOL = 0, CLKPHA = 1, the SCLK pin will keep low in idle state, and the data will be sampled at the second edge, which is falling edge.
- When CLKPOL = 1, CLKPHA = 0, the SCLK pin will keep high in idle state, and the data will be sampled at the first edge, which is falling edge.
- When CLKPOL = 1, CLKPHA = 1, the SCLK pin will keep high in idle state, and the data will be sampled at the second edge, which is rising edge.

Regardless of the timing mode used, the master and slave configuration must be the same.

Figure 21-4 is the combination timing of four CLKPHA and CLKPOL bits transmitted by SPI when the SPI_CTRL1.LSBFF=0.

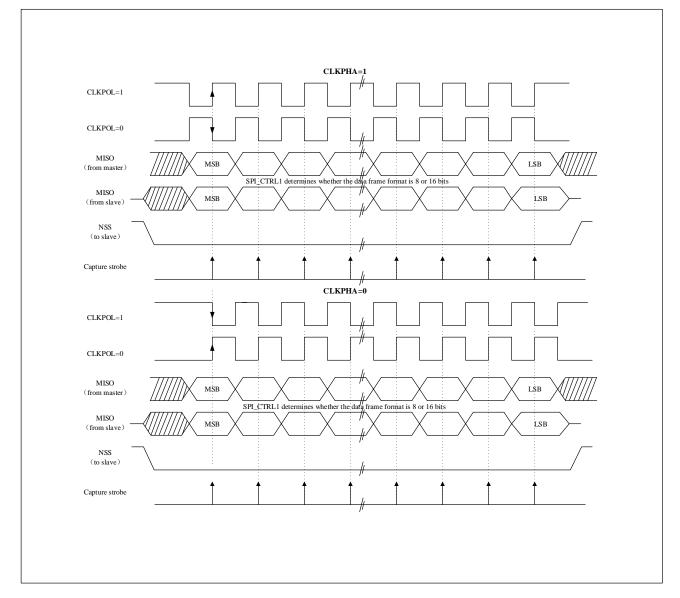


Figure 21-4 Data clock timing diagram

Data format

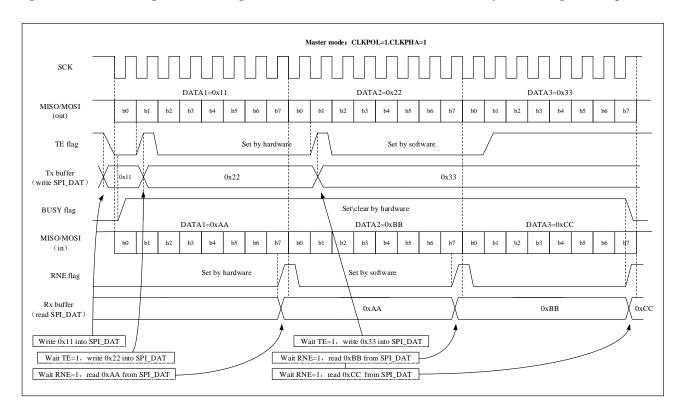
User can selects the data order by setting the SPI_CTRL1.LSBFF bit. When SPI_CTRL1.LSBFF = 0, SPI will send the high-order data (MSB) first; When SPI_CTRL1.LSBFF = 1, SPI will send low-order data (LSB) first.

User can selects the data frame by setting the SPI_CTRL1.DATFF bit.

21.3.2 SPI work mode

Master full duplex mode (SPI_CTRL1.MSEL = 1, SPI_CTRL1.BIDIRMODE = 0, SPI_CTRL1.RONLY = 0)

After the first data is written to the SPI_DAT register, the transmission will start. When the first bit of the data is sent, the data bytes are loaded from the data register into the shift register in parallel, and then according to the configuration of the SPI_CTRL1.LSBFF bit, the data bits follow the MSB or LSB order is serially shifted to the MOSI pin. At the same time, the data received on the MISO pin is serially shifted into the shift register in the same



order and then loaded into the SPI_DAT register in parallel. The software operation process is as follows:

- Enable SPI module, set SPI_CTRL1.SPIEN = 1.
- 2. Write the first data to be sent into SPI_DAT register (this operation will clear SPI_STS.TE bit).
- Wait for SPI_STS.TE bit to be set to '1', and write the second data to be sent into SPI_DAT. Wait for 3. SPI_STS.RNE bit to be set to '1', read SPI_DAT to get the first received data, and the SPI_STS.RNE bit will be cleared by hardware while reading SPI_DAT. Repeat the above operation, sending subsequent data and receiving n-1 data at the same time;
- Wait for SPI_STS.RNE bit to be set to '1' to receive the last data;
- Wait for SPI_STS.TE to be set to '1', then wait for SPI_STS.BUSY bit to be cleared and turn off SPI module. 5.

The process of data sending and data receiving can also be implemented in the interrupt handler generated by the rising edge of the SPI_STS.RNE or SPI_STS.TE flag.

Figure 21-5 Schematic diagram of the change of TE/RNE/BUSY when the host is continuously transmitting in full duplex mode

Master two-wire one-way send-only mode (SPI_CTRL1.MSEL = 1, SPI_CTRL1.BIDIRMODE = 0, $SPI_CTRL1.RONLY = 0$

Master two-wire one-way send-only mode is similar to master full-duplex mode. The difference is that this mode will not read the received data, so the SPI_STS.OVER bit will be set to '1', and the software will ignore it. The software operation process is as follows:

- Enable SPI module, set SPI_CTRL1.SPIEN = 1. 1.
- Write the first data to be sent into SPI_DAT register (this operation will clear SPI_STS.TE bit).

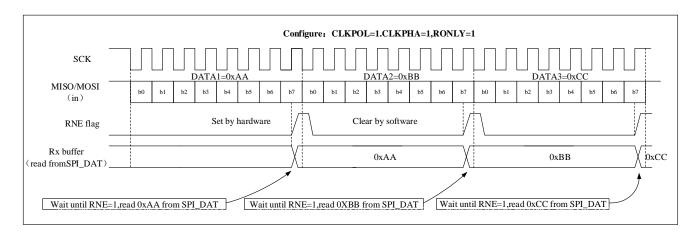
- 3. Wait for SPI_STS.TE bit to be set to '1', and write the second data to be sent into SPI_DAT. Repeat this operation to send subsequent data;
- 4. After writing the last data to SPI_DAT, wait for SPI_STS.TE bit to set '1'; then wait for SPI_STS.BUSY bit to be cleared to complete the transmission of all data.

The process of data sending can also be implemented in the interrupt handler generated by the rising edge of the TE flag.

Master mode: CLKPOL=1.CLKPHA=1 SCK MISO/MOSI (out) TE flag Set by hardware Clear by software Tx buffer 0x11 0x22 0x33 (write SPI_DAT The flag set/clear by hardware BUSY flag Write 0x11 into SPI_DAT Wait until TE=1,Write 0x33 into SPI_DAT Wait BUSY=0 Wait until TE=1,Write 0x22 into SPI_DAT Wait TX=1

Figure 21-6 Schematic diagram of TE/BUSY change when the host transmits continuously in one-way only mode

■ Master two-wire one-way receive-only mode (SPI_CTRL1.MSEL = 1, SPI_CTRL1.BIDIRMODE = 0, SPI_CTRL1.RONLY = 1)


When SPI_CTRL1.SPIEN = 1, the receiving process starts. The data bits from the MISO pin are sequentially shifted into the shift register and then loaded into the SPI_DAT register (receive buffer) in parallel. The software operation process is as follows:

- 1. Enable the receive-only mode (SPI_CTRL1.RONLY = 1).
- 2. Enable SPI module, set SPI_CTRL1.SPIEN = 1: in master mode, SCLK clock signal is generated immediately, and serial data is continuously received before SPI is turned off (SPI_CTRL1.SPIEN = 0); in slave mode, serial data is continuously received when the SPI master device pulls low the NSS signal and generates SCLK clock.
- 3. Wait for SPI_STS.RNE bit to be set to '1', read the SPI_DAT register to get the received data, and the SPI_STS.RNE bit will be cleared by hardware while reading SPI_DAT register. Repeat this operation to receive all data.

The process of data receiving can also be implemented in the interrupt handler generated by the rising edge of the RNE flag (SPI_STS.RNE).

Figure 21-7 Schematic diagram of RNE change when continuous transmission occurs in receive-only mode (BIDIRMODE = 0 and RONLY = 1)

■ Master one-wire bidirectional send mode (SPI_CTRL1.MSEL = 1, SPI_CTRL1.BIDIRMODE = 1, SPI_CTRL1.BIDIROEN = 1, SPI_CTRL1.RONLY = 0)

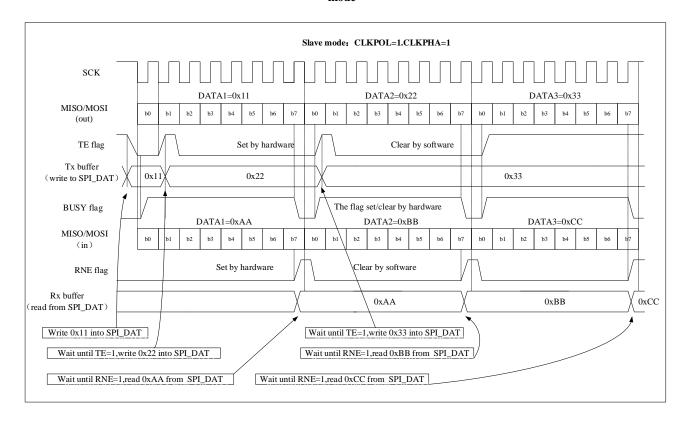
After the data is written to the SPI_DAT register (send buffer), the transmission process starts. This mode does not receive data. At the same time as the first data bit is send, the data to be sent is loaded into the shift register in parallel, and then according to the configuration of the SPI_CTRL1.LSBFF bit, the SPI serially shifts the data bits to the MOSI pin in MSB or LSB order

The software operation flow of the master one-wire bidirectional send mode is the same as that of the send-only mode.

■ Master one-wire bidirectional receive mode (SPI_CTRL1.MSEL = 1, SPI_CTRL1.BIDIRMODE = 1, SPI_CTRL1.BIDIROEN = 0, SPI_CTRL1.RONLY = 0)

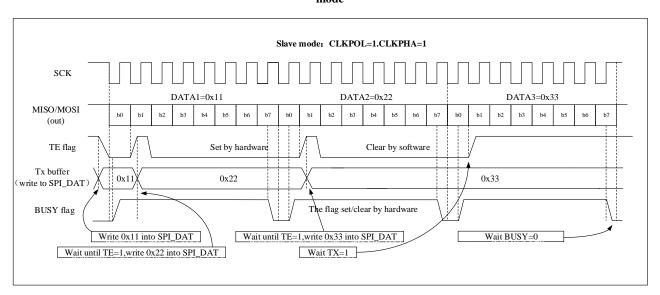
When SPI_CTRL1.SPIEN = 1, the receiving process starts. There is no data output in this mode, the received data bits are sequentially and serially shifted into the shift register, and then loaded into the SPI_DAT register (receive buffer) in parallel

The software operation flow of the master one-wire bidirectional receive mode is the same as that of the receive-only mode.


Slave full duplex mode (SPI_CTRL1.MSEL = 0, SPI_CTRL1.BIDIRMODE = 0, SPI_CTRL1.RONLY = 0)

The data transfer process begins when the slave device receives the first clock edge. Before the master starts data transfer, software must ensure that the data to be send is written to the SPI_DAT register.

Figure 21-8 Schematic diagram of the change of TE/RNE/BUSY when the slave is continuously transmitting in full duplex



mode

■ Slave two-wire one-way send-only mode (SPI_CTRL1.MSEL = 0, SPI_CTRL1.BIDIRMODE = 0 and SPI_CTRL1.RONLY = 0)

Figure 21-9 Schematic diagram of TE/BUSY change during continuous transmission in slave unidirectional transmit-only

■ Slave two-wire one-way receive-only mode (SPI_CTRL1.MSEL = 0, SPI_CTRL1.BIDIRMODE = 0 and SPI_CTRL1.RONLY = 1)

The data receiving process begins when the slave device receives the clock signal and the first data bit from the MOSI pin. The received data bits are sequentially and consecutively shifted serially into an shift register and then

loaded into the SPI_DAT register (receive buffer) in parallel.

■ Slave one-wire bidirectional send mode (SPI_CTRL1.MSEL = 0, SPI_CTRL1.BIDIRMODE = 1 and SPI_CTRL1.BIDIROEN = 1)

When the slave device receives the first edge of the clock signal, the sending process starts. No data is received in this mode, and the software must ensure that the data to be sent has been written in the SPI_DAT register before the SPI master device starts data transmission.

■ Slave one-wire bidirectional receive mode (SPI_CTRL1.MSEL = 0, SPI_CTRL1.BIDIRMODE = 1 and SPI_CTRL1.BIDIROEN = 0)

Data receiving begins when the slave device receives the first clock edge and a data bit from the MOSI pin. There is no data output in this mode, the received data bits are sequentially and consecutively shifted serially into an shift register, and then loaded into the SPI_DAT register (receive buffer) in parallel.

Note: The software operation process of the slave can refer to the master.

SPI initialization process

- 1. The baud rate of serial clock is defined by the SPI_CTRL1.BR[2:0] bits (this step is ignored if it is working in slave mode).
- 2. Select SPI_CTRL1.CLKPOL bit and SPI_CTRL1.CLKPHA bit to define the phase relationship between data transmission and serial clock (see Figure 21-4).
- 3. Set SPI_CTRL1.DATFF bit to define 8-bit or 16-bit data frame format.
- 4. Configure the SPI_CTRL1.LSBFF bit to define the frame format.
- 5. Configure the NSS mode as described above for the NSS function.
- 6. Run mode is configured by SPI_CTRL1.MSEL bit, SPI_CTRL1.BIDIRMODE bit, SPI_CTRL1.BIDIROEN bit and SPI_CTRL1.RONLY bit.
- 7. Set the SPI_CTRL1.SPIEN = 1 to enable SPI.

Basic send and receive process

When SPI sends a data frame, it first loads the data frame from the data buffer into the shift register, and then starts to send the loaded data. When the data is transferred from the send buffer to the shift register, the send buffer empty flag is set (SPI_STS.TE = 1), and the next data can be loaded into the send buffer; if the TEINTEN bit is set (SPI_CTRL2.TEINTEN = 1), an interrupt will be generated; writing data to the SPI_DAT register will clear the SPI_STS.TE bit.

At the last edge of the sampling clock, when the data is transferred from the shift register to the receive buffer, the receive buffer non-empty flag is set (SPI_STS.RNE = 1), at this time the data is ready and can be read from the SPI_DAT register; if the receive buffer non-empty interrupt is enabled (SPI_CTRL2.RNEINTEN = 1), an interrupt will be generated; the SPI_STS.RNE bit can be cleared by reading the SPI_DAT register data.

In master mode, the sending process starts when data is written to the send buffer. If the next data has been written into the SPI_DAT register before the current data frame sending is completed, the continuous sending function can be achieved.

In slave mode, the NSS pin is low, and when the first clock edge arrives, the transmission process begins. In order to avoid accidental data transmission, software must write data to the transmit buffer before data transmission (it is recommended to enable the SPI module before the host sends the clock).

In some configurations, when the last data is sent, the BUSY flag (SPI_STS.BUSY) can be used to wait for the end of the data sending.

Continuous and discontinuous transmission.

When sending data in master mode, if the software is fast enough to detect each TE (SPI_STS.TE) rising edge (or TE interrupt), and the data is written to the SPI_DAT register immediately before the end of the ongoing transmission. At this time, the SPI clock remains continuous between the transmission of data items, and the SPI_STS.BUSY bit will not be cleared, continuous communication can be achieved.

If the software is not fast enough, it will result in discontinuous communication; in this case, the SPI_STS.BUSY bit is cleared between the transmission of each data items(see Figure 21-10 below).

In master receive-only mode (SPI_CTRL1.RONLY = 1), communication is always continuous and the BUSY flag (SPI_STS.BUSY) is always high.

In slave mode, the continuity of communication is determined by the SPI master device. However, even if the communication is continuous, the BUSY flag (SPI_STS.BUSY) will be low for at least one SPI clock cycle between each data item (see Figure 21-9).

Configure: CLKPOL=1.CLKPHA=1

SCK

DATA1=0x11

DATA2=0x22

DATA3=0x33

MOSI (out)

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

TE flag

Tx buffer (write to SPI_DAT)

Wait until TE=1, write 0x22 into SPI_DAT

Wait until TE=1, write 0x33 into SPI_DAT

Figure 21-10 Schematic diagram of TE/BUSY change when BIDIRMODE = 0 and RONLY = 0 are transmitted discontinuously.

21.3.3 Status flag

The SPI_STS register has 3 flag bits to monitor the status of the SPI:

Send buffer empty flag bit (TE)

When the send buffer is empty, the TE flag (SPI_STS.TE) is set to 1, which means that new data can be written into the SPI_DAT register. When the send buffer is not empty, the hardware will clear this flag to 0.

533

Receive buffer non-empty flag bit (RNE)

When the receive buffer is not empty, the RNE flag (SPI_STS.RNE) is set to 1, so the user knows that there is data in the receive buffer. After reading the SPI DAT register, the hardware will set this flag to 0.

BUSY flag bit (BUSY)

When the transmission starts, the hardware sets the BUSY flag (SPI STS.BUSY) to 1, and after the transmission ends, the hardware sets the BUSY flag to 0.

Only when the device is in the master one-wire bidirectional receive mode, the BUSY flag (SPI_STS.BUSY) will be set to 0 when the communication is in progress.

The BUSY flag (SPI_STS.BUSY) will be cleared to 0 in the following cases:

- End of transmission (except for continuous communication in master mode);
- Turn off the SPI module (SPI_CTRL1.SPIEN = 0);
- The master mode error occurs (SPI_STS.MODERR = 1)

When the communication is discontinuous: the BUSY flag (SPI_STS.BUSY) is cleared to '0' between the transmission of each data item.

When communication is continuous: in master mode, the BUSY flag (SPI STS.BUSY) remains high during the entire transfer process; In slave mode, the BUSY flag (SPI_STS.BUSY) will be low for 1 SPI clock cycle between each data item transfer. So do not use the BUSY flag to handle the sending and receiving of each data item.

21.3.4 Disabling the SPI

In order to turn off the SPI module, different operation modes require different operation steps:

Master or slave full duplex mode

- Wait for the RNE flag (SPI_STS.RNE) to be set to 1 and the last byte to be received;
- Wait for the TE flag (SPI_STS.TE) to be set to 1; 2.
- 3. Wait for the BUSY flag (SPI_STS.BUSY) to be cleared to 0;
- Turn off the SPI module (SPI_CTRL1.SPIEN = 0).

Two-wire one-way send-only mode or one-wire bidirectional send mode for master or slave

- 1. After writing the last byte to the SPI DAT register, wait for the TE flag (SPI STS.TE) to be set to 1;
- 2. Wait for the BUSY flag (SPI_STS.BUSY) to be cleared to 0;
- 3. Turn off the SPI module (SPI_CTRL1.SPIEN = 0).

Two-wire one-way receive-only mode or one-wire bidirectional receive mode for master

- Wait for the penultimate RNE (SPI STS.RNE) to be set to 1;
- Before closing the SPI module (SPI CTRL1.SPIEN = 0), wait for 1 SPI clock cycle (using software delay);
- 3. Wait for the last RNE (SPI_STS.RNE) to be set before entering shutdown mode (or turning off the SPI module clock).

534

Two-wire one-way receive-only mode or one-wire bidirectional receive mode for slave

- 1. The SPI module can be turned off at any time (SPI_CTRL1.SPIEN = 0), and after the current transfer is over, the SPI module will be turned off;
- 2. If you want to enter the shutdown mode, you must wait for the BUSY flag (SPI_STS.BUSY) to be set to 0 before entering the shutdown mode (or turn off the SPI module clock).

21.3.5 SPI communication using DMA

Users can choose DMA for SPI data transfer, the application program can be released, and the system efficiency can be greatly improved.

When the send buffer DMA is enabled (SPI_CTRL2.TDMAEN = 1), each time the TE flag (SPI_STS.TE) bit is 1, a DMA request will be generated, and the DMA will automatically write the data to the SPI_DAT register, which will clear the TE flag (SPI_STS.TE) bit. When the receive buffer DMA is enabled (SPI_CTRL2.RDMAEN = 1), each time the RNE flag (SPI_STS.RNE) bit is set to 1, a DMA request will be generated, and the DMA will automatically read the SPI_DAT register, which will clear the RNE flag (SPI_STS.RNE) bit.

When the SPI is only used for sending data, only the send DMA channel of the SPI needs to be enabled (SPI_CTRL2.TDMAEN = 1).

When the SPI is only used for receiving data, only the receive DMA channel of the SPI needs to be enabled (SPI_CTRL2.RDMAEN = 1).

In send mode, after DMA has sent all the data to be sent (DMA_INTSTS.TXCF = 1), BUSY flag (SPI_STS.BUSY) can monitor to confirm whether SPI communication is over, which can avoid destroying the transmission of the last data when the SPI is turned off or enters the shutdown mode. Therefore, the software needs to wait for the TE flag (SPI_STS.TE) bit to be set to 1, and wait for the BUSY flag (SPI_STS.BUSY) bit to be set to 0.

Figure 21-11 Transmission using DMA

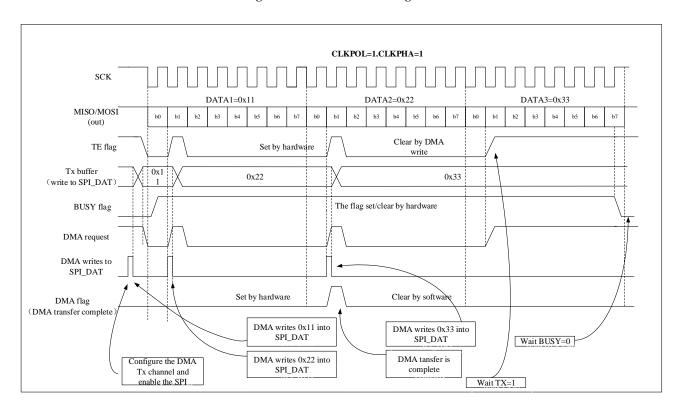
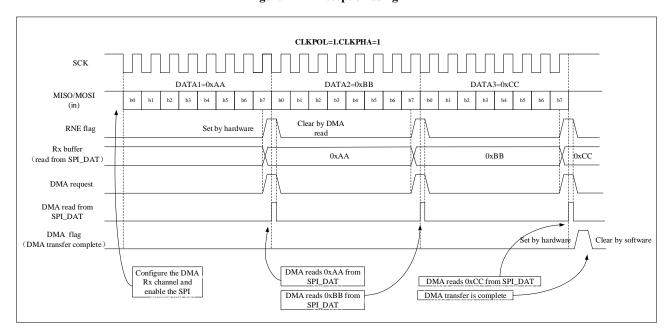



Figure 21-12 Reception using DMA

21.3.6 CRC calculation

SPI contains two independent CRC calculators for data sending and data receiving to ensure the correctness of data transmission. According to the sending and receiving data frame format, CRC adopts different calculation methods, the 8-bit data frame format adopts CRC8, and the 16-bit data frame format adopts CRC16. The polynomial used in

the SPI CRC calculation is set by the SPI_CRCPOLY register, and the user enables the CRC calculation by setting the SPI_CTRL1.CRCEN = 1.

In send mode, after the last data is written into the send buffer, set the SPI_CTRL1.CRCNEXT = 1, which indicates that the hardware will start sending the CRC value (SPI_CRCTDAT value) after sending the data. When the CRC is sent, the CRC calculation will stop.

In receive mode, after the penultimate data frame is received, set the SPI_CTRL1.CRCNEXT = 1. The received CRC and SPI_CRCRDAT values are compared, if they are different, the SPI_STS.CRCERR bit is set to 1. If the SPI_CTRL2.ERRINTEN bit is set to 1, an interrupt will be generated.

In order to keep the synchronization of the next CRC calculation result of the master-slave device, the user should clear the CRC value of the master-slave device. Setting the SPI_CTRL1.CRCEN bit resets the SPI_CRCRDAT and SPI_CRCTDAT registers. Take the following steps in order: SPI_CTRL1.SPIEN = 0; SPI_CTRL1.CRCEN = 0; SPI_CTRL1.CRCEN = 1; SPI_CTRL1.SPIEN = 1.

Most importantly, when the SPI is configured in slave mode and CRC is enabled, as long as there is a clock pulse on SCLK pin, the CRC calculation will still be performed even if the NSS pin is high. This situation is common when the master device communicates with multiple slave devices alternately, so it is necessary to avoid CRC misoperation.

When the SPI hardware CRC check is enabled (SPI_CTRL1.CRCEN = 1) and the DMA is enabled, the hardware automatically completes the sending and receiving of CRC bytes when the communication ends.

21.3.7 Error flag

Master mode failure error (MODERR)

The following two conditions will cause the master mode failure error:

- NSS pin hardware management mode, the master device NSS pin is pulled low;
- NSS pin software management mode, the SPI_CTRL1.SSEL bit is set to 0.

When a master mode failure error occurs, the SPI_STS.MODERR bit is set to 1. An interrupt is generated if the user enables the corresponding interrupt(SPI_CTRL2.ERRINTEN = 1). The SPI_CTRL1.SPIEN bit and SPI_CTRL1.MSEL bit will be write protected and both are cleared by hardware. SPI is turned off and forced into slave mode

Software performs a read or write operation to the SPI_STS register, and then writes to the SPI_CTRL1 register to clear the SPI_STS.MODERR bit (in multi-master mode, the master's NSS pin must be pulled high first).

Normally, the SPI_STS.MODERR bit of the slave cannot be set to 1. However, in a multi-master configuration, the slave's SPI_STS.MODERR bit may be set to 1. In this case, the SPI_STS.MODERR bit indicates that there is a multi-master collision. The interrupt routine can perform a reset or return to the default state to recover from an error state.

Overflow error (OVER)

When the SPI_STS.RNE bit is set to 1, but there is still data sent into the receive buffer, an overflow error will occur. At this time, the overflow flag SPI_STS.OVER bit is set to 1. An interrupt is generated if the user enables the corresponding interrupt(SPI_CTRL2.ERRINTEN = 1). All received data is lost, and the SPI_DAT register retains only previously unread data.

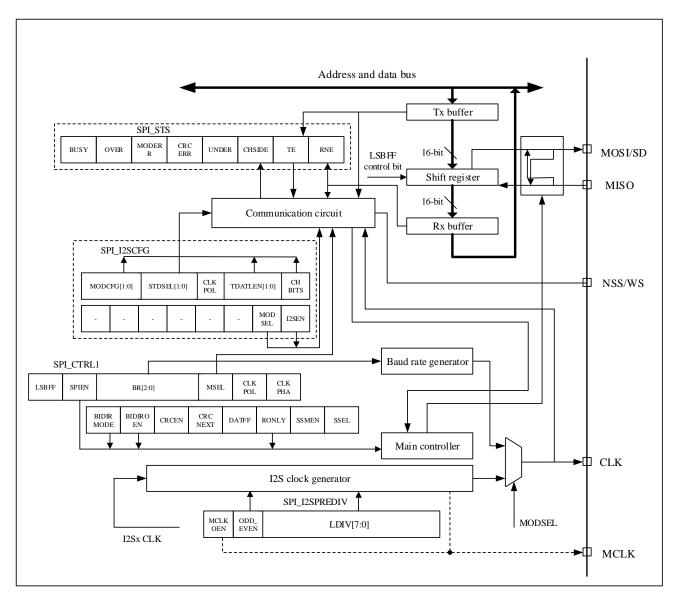
Read the SPI_DAT register and the SPI_STS register in turn to clear the SPI_STS.OVER bit.

CRC error (CRCERR)

The CRC error flag is used to check the validity of the received data. A CRC error occurs when the received CRC value does not match the SPI_CRCRDAT value. At this time, the SPI_STS.CRCERR flag bit is set to '1', and an interrupt will be generated if the user enables the corresponding interrupt(SPI_CTRL2.ERRINTEN = 1).

21.3.8 SPI interrupt

Table 21-1 SPI interrupt request


Interrupt event	Event flag bit	Enable control bit		
Send buffer empty flag	TE	TEINTEN		
Receive buffer non empty flag	RNE	RNEINTEN		
Master mode failure event	MODERR			
Overflow error	OVER	ERRINTEN		
CRC error flag	CRCERR			

21.4 I²S function description

The block diagram of I2S is shown in the figure below:

Figure 21-13 I²S block diagram

The I2S interface uses the same pins, flags and interrupts as the SPI interface. Setting the SPI_I2SCFG.MODSEL = 1 selects the I2S audio interface.

I2S has a total of 4 pins, 3 of which are shared with SPI:

- CLK: Serial clock (shared with SCLK pin), CLK generates a pulse every time 1-bit audio data is sent.
- SD: Serial data (shared with MOSI pin), used for data send and receive;
- WS: Channel selection (shared with NSS pin), used as data control signal output in master mode, and used as input in slave mode;
- MCLK: master clock (independent mapping, optional), output 256 × Fs clock signal to ensure better

synchronization between systems.

Note: F_S *is the sampling frequency of audio signal*

In master mode, I2S uses its own clock generator to generate clock signals for communication, and this clock generator is also the clock source of the master clock output (SPI_I2SPREDIV.MCLKOEN = 1, the master clock output is enabled).

21.4.1 Supported audio protocols

Four audio standards can be selected by setting the SPI_I2SCFG.STDSEL[1:0] bits:

- I²S Philips standard
- MSB alignment standard
- LSB alignment standard
- PCM standard

The audio data of the left channel and the right channel are usually time-division multiplexed, and the left channel always sends data before the right channel. By checking the SPI_STS.CHSIDE bit, the user can distinguish which channel the received data belongs to. However, in the PCM audio standard, the CHSIDE bit has no meaning.

By setting the SPI_I2SCFG.TDATLEN bits, the user can set the length of the data to be transmitted, and set the data bit width of the channel by setting the SPI_I2SCFG.CHBITS bits. There are 4 data formats for sending data as follows:

- 16-bit data is packed into 16-bit data frame
- 16-bit data is packed into a 32-bit data frame (the first 16 bits are meaningful data, and the last 16 bits are set to 0 by hardware)
- 24-bit data is packed into 32-bit data frame (the first 24-bit data is meaningful data, and the latter 8-bit data is set to 0 by hardware)
- 32-bit data is packed into 32-bit data frame

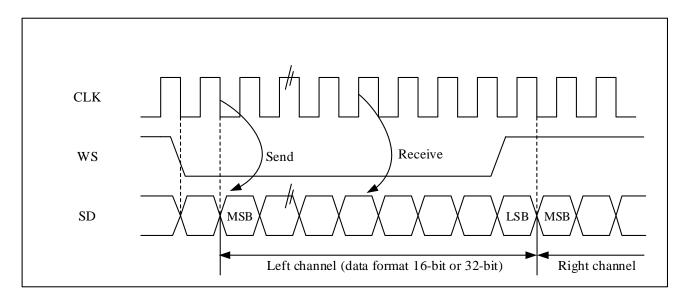
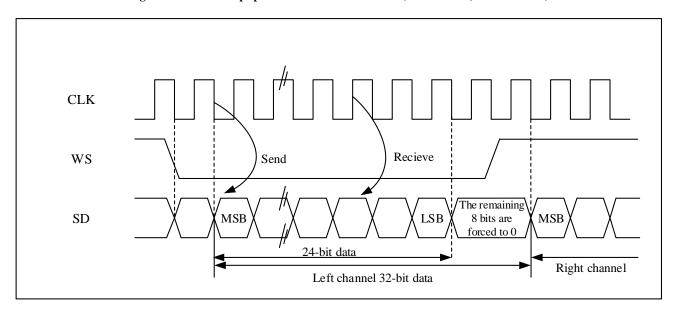
I2S uses the same SPI_DAT register as SPI to send and receive 16-bit wide data. If I2S needs to send or receive 24-bit or 32-bit wide data, the CPU needs to read or write the SPI_DAT register twice. On the other hand, when I2S sends or receives 16-bit wide data, the CPU only needs to read or write the SPI_DAT register once.

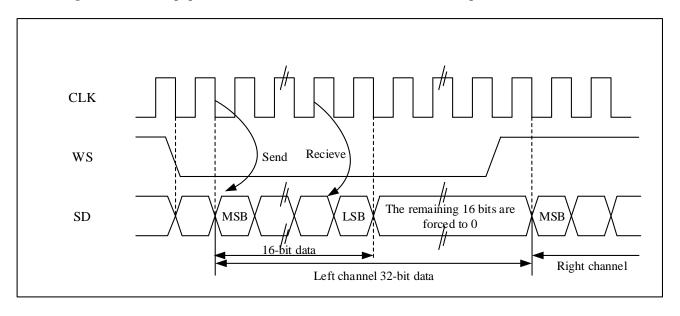
Regardless of which data format and communication standard is used, I2S always sends the data high-order bit (MSB) first.

I²S Philips standard

Using the I2S Philips standard, the device that sends data changes the data on the falling edge of the clock, and the device that receives data samples the data on the rising edge of the clock. The WS signal should be valid one clock before the first data bit (MSB) is sent and will change on the falling edge of the clock signal.

Figure 21-14 I²S Philips protocol waveform (16/32-bit full precision, CLKPOL = 0)


Figure 21-15 I²S Philips protocol standard waveform (24-bit frame, CLKPOL = 0)

If the 24-bit data needs to be packaged into 32-bit data frame format, the CPU needs to read or write the SPI_DAT register twice during each frame of data transmission. For example, if the user sends 24-bit data 0x95AA66, the CPU will first write 0x95AA into the SPI_DAT register, and then write 0x66XX into the SPI_DAT register (only the upper 8-bit data is valid, the lower 8-bit data is meaningless and can be any value); if the user receives 24-bit data 0x95AA66, the CPU will first read the SPI_DAT register to get 0x95AA, and then read the SPI_DAT register to get 0x6600 (only the upper 8-bit data is valid, and the lower 8-bit data is always 0).

Figure 21-16 I²S Philips protocol standard waveform (16-bit extended to 32-bit packet frame, CLKPOL = 0)

If 16-bit data needs to be packed into 32-bit data frame format, the CPU only needs to read or write the SPI_DAT register once for each frame of data transmission. The lower 16 bits of data for expansion to 32 bits are always set to 0x0000. For example, if the user sends or receives 16-bit data 0x89C1 (extended to 32-bit data is 0x89C10000). In the process of sending data, the upper 16-bit half word (0x89C1) needs to be written into the SPI_DAT register; the user can write new data until the SPI_STS.TE bit is set. An interrupt is generated if the user enables the corresponding interrupt. The sending is performed by hardware, even if the last 16 bits (0x0000) are not sent, the hardware will set the TE (SPI_STS.TE) bit to 1 and the corresponding interrupt will be generated. In the process of receiving data, the RNE flag (SPI_STS.RNE) will be set to 1 after each time the device receives the upper 16-bit halfword (0x89C1). An interrupt is generated if the user enables the corresponding interrupt. In this way, there is more time between 2 reads and writes, which can prevent underflow or overflow from happening.

MSB alignment standard

In the MSB alignment standard, the device sending the data will change the data on the falling edge of the clock, and the device receiving the data will sample the data on the rising edge of the clock. The WS signal and the first data bit (MSB) are generated simultaneously.

542

The standard data receiving and sending processing mode is the same as I²S Philips standard.

Figure 21-17 The MSB is aligned with 16-bit or 32-bit full precision, CLKPOL = 0.

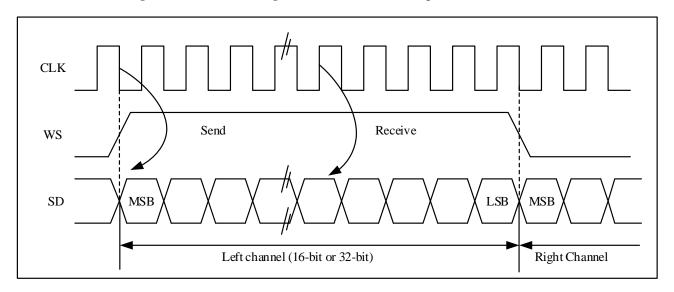


Figure 21-18 MSB aligns 24-bit data, CLKPOL = 0

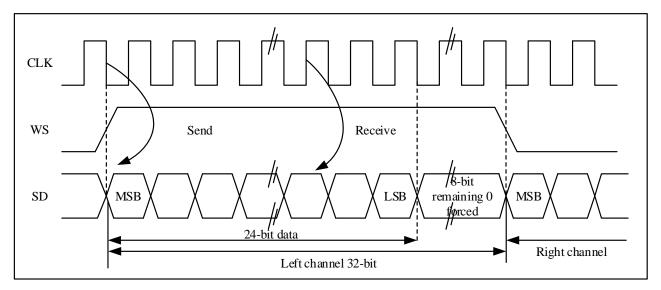
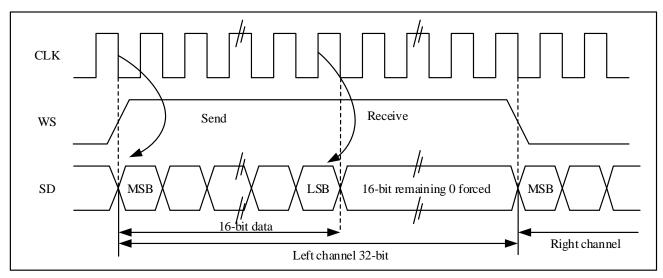



Figure 21-19 MSB-aligned 16-bit data is extended to 32-bit packet frame, CLKPOL = 0

Nations Technologies Inc.

Tel: +86-755-86309900 Email: info@nationstech.com

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

LSB alignment standard

In 16-bit or 32-bit full-precision frame format, LSB alignment standard is the same as MSB alignment standard.

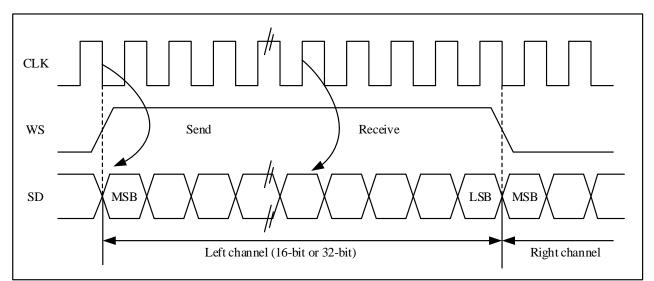
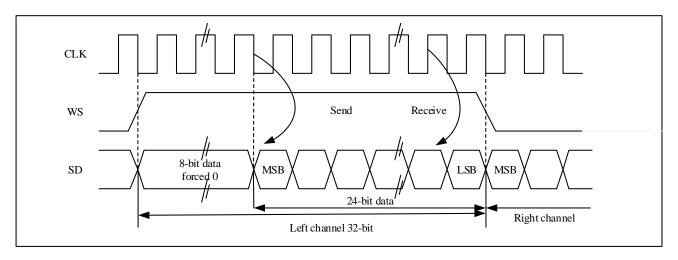
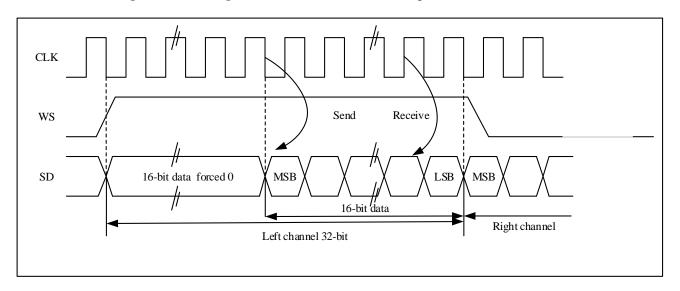



Figure 21-20 LSB alignment 16-bit or 32-bit full precision, CLKPOL = 0

Figure 21-21 LSB aligns 24-bit data, CLKPOL = 0



If the 24-bit data needs to be packed into the 32-bit data frame format, the CPU needs to read or write the SPI_DAT register twice during each frame of data transmission. For example, if the user sends 24-bit data 0x95AA66, the CPU will first write 0xXX95 (only the lower 8-bit data is valid, the upper 8-bit data is meaningless and can be any value) into the SPI_DAT register, and then write 0xAA66 into the SPI_DAT register. If the user receives 24-bit data 0x95AA66, the CPU will first read the SPI_DAT register to get 0x0095 (only the lower 8 bits are valid, the upper 8 bits are always 0), and then read the SPI_DAT register to get 0xAA66.

544

Figure 21-22 LSB aligned 16-bit data is extended to 32-bit packet frame, CLKPOL = 0

If the 16-bit data needs to be packaged into a 32-bit data frame format, the CPU only needs to read or write the SPI_DAT register once for each frame of data transmission. The upper 16 bits of extended to 32 bits data are set to 0x0000 by hardware, if the user sends or receives 16-bit data 0x89C1 (extended to 32-bit data is 0x000089C1). In the process of sending data, the upper 16-bit halfword (0x0000) needs to be written to the SPI_DAT register first; once the valid data starts to be send, the next TE (SPI_STS.TE) event will be generated. In the process of receiving data, once the device receives valid data, the RNE (SPI_STS.RNE) event will be generated. In this way, there is more time between 2 reads and writes, which can prevent underflow or overflow from happening.

PCM standard

In the PCM standard, there are two frame structures, short frame and long frame. The user can select the frame structure by setting the SPI_I2SCFG.PCMFSYNC bits. The WS signal indicates frame synchronization information. The WS signal for synchronizing long frames is 13 bits effective; the WS signal length for synchronizing short frames is 1 bit.

The standard data receiving and sending processing mode is the same as I²S Philips standard.

Figure 21-23 PCM standard waveform (16 bits)

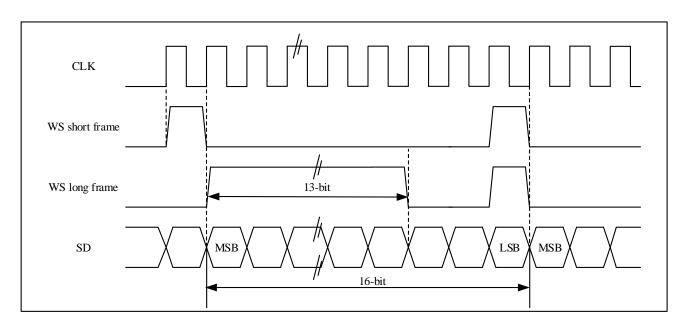
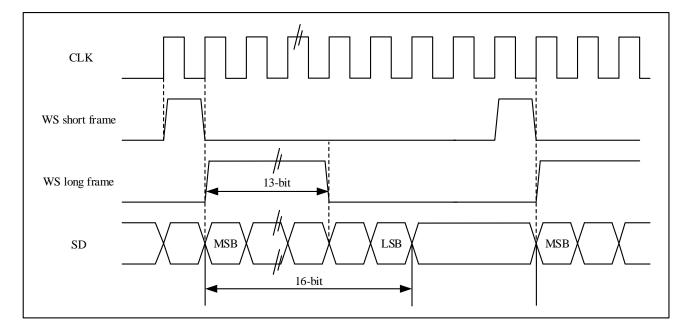
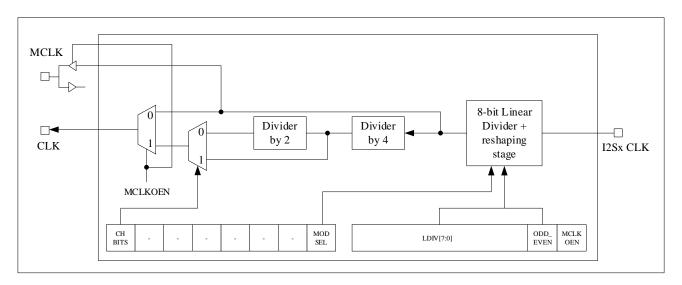



Figure 21-24 PCM standard waveform (16-bit extended to 32-bit packet frame)



21.4.2 Clock generator

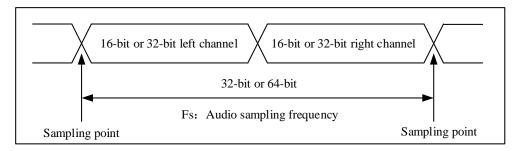
In the master mode, the linear divider needs to be set correctly in order to obtain the desired audio frequency.

Figure 21-25 I²S clock generator structure

Note: The clock source of I²Sx CLK is HSI, HSE or PLL system clock that drives AHB clock.

The bit rate of I2S determines the data flow on the I2S data line and the frequency of the I2S clock signal.

I^2S bit rate = number of bits per channel × number of channels × audio sampling frequency


For a signal with left and right channels and 16-bit audio, the I2S bit rate is calculated as:

$$I^2S$$
 bit rate = $16 \times 2 \times F_S$

If the packet length is 32 bits, there are:

$$I^2S$$
 bit rate = $32 \times 2 \times F_S$

 $Figure\ 21\text{-}26\ Audio\ sampling\ frequency\ definition$

The sampling signal frequency of the audio can be set by setting the SPI_I2SPREDIV.ODD_EVEN bit and the SPI_I2SPREDIV.LDIV[7:0] bits. Audio can be sampled at 96kHz, 48kHz, 44.1kHz, 32kHz, 22.05kHz, 16kHz, 11.025kHz, or 8kHz (or any value within this range). Set the linear divider according to the following formula:

When MCLKOEN = 1 and CHBITS = 0,
$$F_S = I^2 Sx \ CLK / [(16 \times 2) \times ((2 \times LDIV) + ODD_EVEN) \times 8]$$

When MCLKOEN = 1 and CHBITS = 1, $F_S = I^2 Sx \ CLK / [(32 \times 2) \times ((2 \times LDIV) + ODD_EVEN) \times 4]$
When MCLKOEN = 0 and CHBITS = 0, $F_S = I^2 Sx \ CLK / [(16 \times 2) \times ((2 \times LDIV) + ODD_EVEN)]$

When MCLKOEN = 0 and CHBITS = 1,
$$F_S = I^2 Sx \ CLK / [(32 \times 2) \times ((2 \times LDIV) + ODD_EVEN)]$$

The exact audio frequency can be obtained by referring to the clock configuration in the table below.

Table 21	-2 Heathact	andard SMHz I	HSF clock to get	accurate audio frequency.
Table 21	-z use me su	andaru olvinz i	ast clock to get	accurate audio frequency.

SYSCLK	I ² S_LDIV		I ² S_LDIV I ² S_ODD_EV		MCLV	Target	Real l	Fs(Hz)	Error	
(MHz)	16 bits	32 bits	16 bits	32 bits	MCLK	$\mathbf{F}_{\mathbf{S}}(\mathbf{H}\mathbf{z})$	16 bits	32 bits	16 bits	32 bits
72	11	6	1	0	without	96000	97826.09	93750	1.90%	2.34%
72	23	11	1	1	without	48000	47872.34	48913.04	0.27%	1.90%
72	25	13	1	0	without	44100	44117.65	43269.23	0.04%	1.88%
72	35	17	0	1	without	32000	32142.86	32142.86	0.44%	0.44%
72	51	25	0	1	without	22050	22058.82	22058.82	0.04%	0.04%
72	70	35	1	0	without	16000	15675.75	16071.43	0.27%	0.45%
72	102	51	0	0	without	11025	11029.41	11029.41	0.04%	0.04%
72	140	70	1	1	without	8000	8007.11	7978.72	0.09%	0.27%
72	2	2	0	0	yes	96000	70312.15	70312.15	26.76%	26.76%
72	3	3	0	0	yes	48000	46875	46875	2.34%	2.34%
72	3	3	0	0	yes	44100	46875	46875	6.29%	6.29%
72	4	4	1	1	yes	32000	31250	31250	2.34%	2.34%
72	6	6	1	1	yes	22050	21634.61	21634.61	1.88%	1.88%
72	9	9	0	0	yes	16000	15625	15625	2.34%	2.34%
72	13	13	0	0	yes	11025	10817.3	10817.3	1.88%	1.88%
72	17	17	1	1	yes	8000	8035.71	8035.71	0.45%	0.45%

21.4.3 I²S Transmission and reception sequence

I²S initialization sequence

- 1. The user can set the SPI_I2SPREDIV.LDIV [7:0] bits and SPI_I2SPREDIV.ODD_EVEN bit to configure the related prescaler and serial clock baud rate;
- 2. If the user needs the master device to provide the main clock MCLK to the external DAC/ADC audio device, set the SPI_I2SPREDIV.MCLKOEN = 1. (Calculate LDIV and ODD_EVEN according to different clock outputs, see section 21.4.2).
- 3. The user can set the SPI_I2SCFG.CLKPOL bit to define the polarity of the communication clock when idle; the user can set the SPI_I2SCFG.MODSEL = 1 to configure the device to be in I2S mode, and set SPI_I2SCFG.MODCFG[1:0] bits to select the I2S master-slave mode and transmission direction (send or receive); set SPI_I2SCFG.STDSEL[1:0] bits to select the corresponding I2S standard (under the PCM standard, set the SPI_I2SCFG.PCMFSYNC bit to select the PCM frame synchronization mode); set SPI_I2SCFG.TDATLEN [1:0] bits to select length of data to be transmitted, and select the number of data bits of per channel by set the SPI_I2SCFG.CHBITS bit;
- 4. When user needs to enable interrupt or DMA, the configuration operation is the same as SPI;
- 5. Finally, set the SPI_I2SCFG.I2SEN = 1 to start I2S communication.

Sending sequence

Master mode

When I2S works in master mode, the CLK pin outputs the serial clock, the WS pin generates the channel selection

signal, and set the SPI_I2SPREDIV.MCLKOEN bit to select whether to output the master clock (MCLK).

The sending process begins when data is written to the send buffer. When the data of the current channel is moved from the send buffer to the shift register in parallel, the flag bit TE (SPI_STS.TE) is set to '1'. At this time, the data of the other channel should be written into SPI_DAT. The channel corresponding to the current data to be transmitted is confirmed by the flag bit CHSIDE (SPI_STS. CHSIDE). The value of CHSIDE (SPI_STS. CHSIDE) is updated when TE (SPI_STS.TE) is set to '1'. A complete data frame includes left and right channels, and only part of the data frame cannot be transmitted. When the flag bit TE (SPI_STS.TE) is set to '1', if the SPI_CTRL2.TEINTEN = 1, an interrupt will be generated.

The operation of writing data depends on the selected I2S standard. See chapter 21.4.1 for details.

When the user wants to turn off the I2S function, wait for the TE flag (SPI_STS.TE) bit to be 1 and the BUSY flag (SPI_STS.BUSY) bit to be 0, and then clear the SPI_I2SCFG.I2SEN bit to 0.

Slave mode

The sending process of the slave mode is similar to that of the master mode, the difference is as follows:

When I2S works in slave mode, there is no need to configure the clock, and the CLK pin and WS pin are connected to the corresponding pins of the master device. The sending process begins when an external master sends a clock signal, and when a WS signal requires data transfer. Only when the slave device is enabled and the data has been written to the I2S data register, the external master device can start communication.

When the first clock edge representing the next data transfer arrives, the new data has not been written into the SPI_DAT register, an underflow occurs, and the SPI_STS.UNDER flag bit is set to 1. If the SPI_CTRL2.ERRINTEN bit is set to 1, an interrupt is generated to indicate that an error has occurred.

The SPI_STS.CHSIDE flag indicates which channel the currently transmitted data corresponds to. Compared with the master mode sending process, in the slave mode, CHSIDE depends on the WS signal of the external master I2S device (WS signal is 1 means the left channel)

Receiving sequence

Master mode

Audio is always received in 16-bit packets. According to the configured data and channel length, the received audio data will need to be transferred to the receive buffer once or twice.

When the data is transferred from the shift register to the receive buffer, the SPI_STS.RNE flag bit is set to 1, at this time, the data is ready and can be read from the SPI_DAT register. If the SPI_CTRL2.RNEINTEN bit is set to 1, an interrupt will be generated. Reading the SPI_DAT register to clear the SPI_STS.RNE flag. If the previously received data is not read, new data is received again, an overflow occurs, and the SPI_STS.OVER flag is set to 1. If the SPI_CTRL2.ERRINTEN bit is set to 1, an interrupt is generated to indicate that an error has occurred.

The channel corresponding to the currently transmitted data can be confirmed by the SPI_STS.CHSIDE bit. When the SPI_STS.RNE flag bit is set to 1, the SPI_STS.CHSIDE value is updated.

The operation of reading data depends on the selected I²S standard. See Section 21.4.1 for details.

When I²S function is turned off, different audio standards, data length and channel length adopt different operation steps:

- Data length is 16 bits, channel length is 32 bits (SPI_I2SCFG.TDATLEN = 00, SPI_I2SCFG.CHBITS = 1), LSB alignment standard (SPI I2SCFG.STDSEL = 10).
 - Wait for the penultimate RNE flag (SPI STS.RNE) bit to be set to' 1'.
 - Software delay, waiting for 17 I²S clock cycles.
 - Turn off I^2S (SPI I2SCFG.I2SEN = 0).
- The data length is 16 bits, the channel length is 32 bits (SPI I2SCFG.TDATLEN = 00 and SPI_I2SCFG.CHBITS = 1), the MSB alignment standard (SPI_I2SCFG.STDSEL = 01), I²S Philips standard (SPI_I2SCFG.STDSEL = 00) or PCM standard (SPI_I2SCFG.STDSEL = 11)
 - Wait for the last RNE flag (SPI_STS.RNE) bit to be set to' 1'.
 - 2. Software delay, waiting for 1 I²S clock cycle.
 - Turn off I^2S (SPI_I2SCFG.I2SEN = 0).
- Other combinations of SPI_I2SCFG.TDATLEN and SPI_I2SCFG.CHBITS and any audio mode selected by SPI_I2SCFG.STDSEL:
 - Wait for the penultimate RNE flag (SPI STS.RNE) bit to be set to' 1'.
 - Software delay, waiting for 1 I²S clock cycle.
 - Turn off I^2S (SPI_I2SCFG.I2SEN = 0). 3.

Slave mode

The receiving process of the slave mode is similar to that of the master mode, with the following differences:

The CHSIDE flag (SPI STS.CHSIDE) indicates which channel corresponds to the currently transmitted data. Compared with the master mode receiving process, in the slave mode, SPI_STS.CHSIDE depends on the WS signal of the external master device. When the I2S function is turned off, clear the SPI_I2SCFG.I2SEN bit to 0 when the SPI_STS.RNE flag is 1.

21.4.4 Status flag

There are the following 4 flag bits in the SPI_STS register for monitoring the status of the I2S bus.

TX buffer empty flag (TE)

When the send buffer is empty, this flag is set to 1, indicating that new data can be written into the SPI_DAT register. When the send buffer is not empty, this flag is cleared to 0.

RX buffer not empty flag (RNE)

When the receive buffer is not empty, this flag is set to 1, indicating that valid data has been received into the receive buffer. When reading the SPI_DAT register, this flag is set to 0.

BUSY flag (BUSY)

When the transfer starts, the BUSY flag (SPI_STS.BUSY) is set to 1, and when the transfer ends, the BUSY flag (SPI_STS.BUSY) is set to 0 by hardware (software operation is invalid).

In master receiving mode (SPI_I2SCFG.MODCFG = 11), the BUSY flag (SPI_STS.BUSY) is set to 0 during 550

receiving. When the I2S module is turned off or the transmission is completed, this flag is set to 0.

In the slave continuous communication mode, between each data item transmission, the BUSY flag (SPI_STS.BUSY) goes low in 1 I²S clock cycle. Therefore, do not use the BUSY flag (SPI_STS.BUSY) to handle the sending and receiving of each data item.

Channel Side flag (CHSIDE)

The CHSIDE (SPI_STS.CHSIDE) bit is used to indicate the channel where the data currently sent and received is located. Under the PCM standard, this flag has no meaning.

In send mode, the flag is updated when the TE flag (SPI_STS.TE) is set; in receive mode, the flag is updated when the RNE flag (SPI_STS.RNE) is set. In the process of sending and receiving, if an overflow (SPI_STS.OVER) or underflow (SPI_STS.UNDER) error occurs, this flag is meaningless, and the I2S needs to be turned off and then turned on again.

21.4.5 Error flag

The SPI_STS register has 2 error flag bits.

Overflow flag (OVER)

When the RNE flag (SPI_STS.RNE) is set to 1, but there is still data sent to the receive buffer, an overflow error will occur. At this time, the OVER flag (SPI_STS.OVER) is set to 1. An interrupt will be generated if the user enables the corresponding interrupt. All data received after this time will be lost, and the SPI_DAT register only retains the previously unread data.Reading the SPI_DAT register and the SPI_STS register in turn to clear the SPI_STS.OVER bit.

Underflow flag (UNDER)

In slave send mode, when the first clock edge of sending data arrives, if the send buffer is still empty, the UNDER flag (SPI_STS.UNDER) is set to 1. An interrupt will be generated if the user enables the corresponding interrupt.

Reading the SPI STS register to clears the SPI STS.UNDER bit.

21.4.6 I²S interrupt

The following table lists all I²S interrupts.

Table 21-3 I2S interrupt request

Interrupt event	Event flag bit	Enable control bit
Send buffer empty flag	TE	TEINTEN
Receive buffer non empty flag	RNE	RNEINTEN
Underflow flag bit	UNDER	EDDINEEN
Overflow flag bit	OVER	ERRINTEN

21.4.7 DMA function

Working in I2S mode, it does not need data transmission protection function, so it does not need to support CRC, other DMA functions are the same as SPI mode.

Nanshan District, Shenzhen, 518057, P.R.China

21.5 SPI and I²S register description

21.5.1 SPI register overview

Table 21-4 SPI register overview

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	ć	19	18	į	/ i	10	15	14	13	12	11	10	6	∞	7	9	5	4	3	2	1	0
000h	SPI_CTRL1								Rese	rved									BIDIRMODE	BIDIROEN	CRCEN	CRCNEXT	DATFF	RONLY	SSMEN	SSEL	LSBFF	SPIEN	В	R[2:0]	MSEL	CLKPOL	CLKPHA
	Reset Value																		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
004h	SPI_CTRL2												R	eserved	l												TEINTEN	RNEINTEN	ERRINTEN	Document	neserveu	SSOEN	TDMAEN	RDMAEN
	Reset Value				Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved																	0	0	0			0	0	0					
008h	SPI_STS												R	eserveo	I												ASOR	OVER	MODERR	CRCERR	UNDER	CHSIDE	TE	RNE
	Reset Value																										0	0	0	0	0	0	1	0
00Ch	SPI_DAT								Dana	an oa al																DAT	[15:0]							
OOCII	Reset Value								Kese	rveu									0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
010h	SPI_CRCPOLY								Danne	m.ad															CR	CPOI	LY[15	5:0]						
01011	Reset Value								Kese	i veu									0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
014h	SPI_CRCRDAT								Rese	rved															CR	.CRD	AT[15	5:0]						
01411	Reset Value								Rese	ı vcu									0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
018h	SPI_CRCTDAT								Rese	rved															CR	CTD.	AT[15	5:0]						
OTON	Reset Value								Rese	rvcu									0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01Ch	SPI_I2SCFG										Rese	rved											MODSEL	12SEN	MOE [1	OCFG :0]	PCMFSYNC	Reserved	STD [1:		CLKPOL	TDAT [1:		CHBITS
	Reset Value																						0	0	0	0	0	I	0	0	0	0	0	0
020h	SPI_I2SPREDIV		Reserved															MCLKOEN	ODD_EVEN				LDIV	[7:0]										
	Reset Value																								0	0	0	0	0	0	0	0	1	0

21.5.2 SPI control register 1 (SPI_CTRL1) (not used in I2S mode)

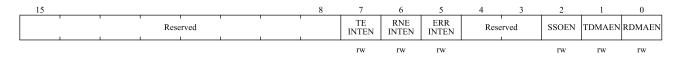
Address: 0x00

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5		3	2	1	0
BIDIR MODE	BIDIR OEN	CRCEN	CRC NEXT	DATFF	RONLY	SSMEN	SSEL	LSBFF	SPIEN		BR[2:0]		MSEL	CLKPOL	CLKPHA
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		rw		rw	rw	rw

Bit field	name	describe
15	BIDIRMODE	Bidirectional data mode enable 0: Select the "two-wire one-way" mode. 1: Select the "one-wire bidirectional " mode.

Bit field	name	describe
		Note: Not used in I ² S mode.
14	BIDIROEN	Output enable in bidirectional mode
		0: Output disable (receive-only mode).
		1: Output enabled (send-only mode).
		In master mode, the "one-wire" data line is the MOSI pin, and in slave mode, the "one-wire"
		data line is the MISO pin.
		Note: Not used in I ² S mode.
13	CRCEN	Hardware CRC check enable
		0: Disable CRC calculation.
		1: Enable CRC calculation.
		Note: This bit can only be written when SPI is disabled (SPI_CTRL1.SPIEN = 0), otherwise an
		error will occur.
		This bit can only be used in full duplex mode.
		Note: Not used in I ² S mode.
12	CRCNEXT	Send CRC next
		0: The next sent value comes from the send buffer.
		1: The next send value comes from the CRC register.
		Note: This bit should be set immediately after the last data is written in SPI_DAT register.
		Note: Not used in 1 ² S mode.
11	DATFF	Data frame format
		0: 8-bit data frame format is used for sending/receiving.
		1: 16-bit data frame format is used for sending/receiving.
		Note: This bit can only be written when SPI is disabled (SPI_CTRL1.SPIEN = 0), otherwise
		an error will occur.
		Note: Not used in I ² S mode.
10	RONLY	Only receive mode
		This bit, together with the SPI_CTRL1.BIDIRMODE bit, determines the transfer direction in
		two-wire one-way mode. In the application scenario of multiple slave devices, this bit is only set
		to 1 by the accessed slave device, and only the accessed slave device can output, so as to avoid
		data line conflicts.
		0: Full duplex (sending mode and receiving mode).
		1: Disable output (receive-only mode).
		Note: Not used in I ² S mode.
9	SSMEN	Software slave device management
		When the SPI_CTRL1.SSMEN bit is set to 1, the NSS pin level is determined by the value of
		the SPI_CTRL1.SSEL bit.
		0: Disable software slave device management.
		1: Enable software slave device management.
		Note: Not used in 1 ² S mode.


Bit field	name	describe
8	SSEL	Internal slave device selection
		This bit only has meaning when the SPI_CTRL1.SSMEN bit is set. It determines the NSS level,
		and I/O operations on the NSS pin have no effect.
		Note: Not used in I ² S mode.
7	LSBFF	Frame format
		0: Send MSB first.
		1: Send LSB first.
		Note: This bit cannot be changed during communication.
		Note: Not used in I ² S mode.
6	SPIEN	SPI enable
		0: Disable SPI device.
		1: Enable the SPI device.
		Note: Not used in 1 ² S mode.
		Note: When turning off the SPI device, please follow paragraph 21.3.4 Section's procedure
		operation.
5:3	BR[2:0]	Baud rate control
		000: fPCLK/2
		001: fPCLK/4
		010: fPCLK/8
		011: fPCLK/16
		100: fPCLK/32
		101: fPCLK/64
		110: fPCLK/128
		111: fPCLK/256
		Note: This bit cannot be changed during communication.
		Note: Not used in I ² S mode.
2	MSEL	Master device selection
		0: Configure as the slave device.
		1: Configure as the master device.
		Note: This bit cannot be changed during communication.
		Note: Not used in I ² S mode.
1	CLKPOL	Clock polarity
		0: In idle state, SCLK remains low.
		1: In idle state, SCLK remains high.
		Note: This bit cannot be changed during communication.
		Note: Not used in I ² S mode.
0	CLKPHA	Clock phase
		0: Data is sampled on the first clock edge.
		1: Data is sampled on the second clock edge.
		Note: This bit cannot be changed during communication.
		Note: Not used in I^2S mode.
		1

21.5.3 SPI control register 2 (SPI_CTRL2)

Address: 0x04

Reset value: 0x0000

I_STS.TE) is set to PI_STS.RNE) is set to
Y_STS.RNE) is set to
PI_STS.RNE) is set to
Y_STS.RNE) is set to
PI_STS.RNE) is set to
SPI_STS.MODERR)
er mode.
e device cannot work
TS.TE) is set
STS.RNE) is set
e no

555

21.5.4 SPI status register (SPI_STS)

Address: 0x08

Reset value: 0x0002

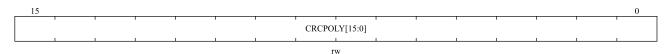
15					8	7	6	5	4	3	2	1	0
	1	Rese	rved	ī	1	BUSY	OVER	MODERR	CRCERR	UNDER	CHSIDE	TE	RNE
	•	•			•	r	r	r	rc_w0	r	r	r	r

Bit field	name	describe
15:8	Reserved	Reserved, the reset value must be maintained.
7	BUSY	Busy flag
		0: SPI is not busy.
		1: SPI is busy communicating or the send buffer is not empty.
		This bit is set or reset by hardware.
		Note: special attention should be paid to the use of this sign, see Section 21.3.3 and Section
		21.3.4 for details
6	OVER	Overflow flag
		0: No overflow error.
		1: An overflow error occurred.
		Note: This bit is set by hardware and cleared according to the sequence of software operations.
		For more information about software sequences, refer to 21.3.7 for details.
5	MODERR	Mode error
		0: No mode error.
		1: A mode error occurred.
		Note: This bit is set by hardware and cleared according to the sequence of software operations.
		For more information about software sequences, refer to 21.3.7 for details.
		Note: Not used in I ² S mode.
4	CRCERR	CRC error flag
		0: The received CRC value matches the value the SPI_CRCRDAT register value.
		1: The received CRC value does not match the SPI_CRCRDAT register value.
		Note: this bit is set by hardware and cleared by software by writing 0.
		Note: Not used in I ² S mode.
3	UNDER	Underflow flag
		0: No underflow occurred.
		1: Underflow occurred.
		Note: This bit is set by hardware and cleared according to the sequence of software operations.
		For more information about software sequences, refer to 21.4.5 for details.
		Note: not used in SPI mode.
2	CHSIDE	Channel
		0: The left channel needs to be sent or received.
		1: The right channel needs to be sent or received.
		Note: not used in SPI mode. No meaning in PCM mode.
1	TE	The send buffer is empty
		0: The send buffer is not empty.
		1: The send buffer is empty.
0	RNE	Receive buffer is not empty
		0: The receive buffer is empty.
		1: The receive buffer is not empty.

21.5.5 SPI data register (SPI_DAT)

Address: 0x0C

Reset value: 0x0000



Bit field	name	describe
15:0	DAT[15:0]	Data register
		Data to be sent or received
		The data register corresponds to two buffers: one for write (send buffer); The other is for read
		(receive buffer). Write operation writes data to send buffer; The read operation will return the
		data in the receive buffer.
		Note on SPI mode: According to the selection of the data frame format by the
		SPI_CTRL1.DATFF bit, the data sending and receiving can be 8-bit or 16-bit. To ensure correct
		operation, the data frame format needs to be determined before enabling the SPI.
		For 8-bit data, the buffer is 8-bit, and only SPI_DAT[7:0] is used when sending and receiving.
		When receiving, SPI_DAT[15:8] is forced to 0.
		For 16-bit data, the buffer is 16-bit, and the entire data register is used when sending and
		receiving, that is, SPI_DAT[15:0].

$21.5.6 \ SPI \ CRC \ polynomial \ register \ (SPI_CRCPOLY) \ (not \ used \ in \ I^2S \ mode)$

Address: 0x10

Reset value: 0x0007

Bit field	name	describe
15:0	CRCPOLY [15:0]	CRC polynomial register
		This register contains the polynomial used for the CRC calculation.
		The reset value is 0x0007, other values can be set according to the application.
		Note: not used in I ² s mode.

557

21.5.7 SPI RX CRC register (SPI_CRCRDAT) (not used in I²S mode)

Address offset: 0x14

Reset value: 0x0000

15															0
									1		1	1			
	CRCRDAT[15:0]														
											L	1			

r

Bit field	name	describe
15:0	CRCRDAT	Receive CRC register
		When CRC calculation is enabled, CRCRDAT[15:0] will contain the calculated CRC value of
		subsequent received bytes. This register is reset when '1' is written to the SPI_CTRL1.CRCEN
		bit. The CRC calculation uses the polynomial in SPI_CRCPOLY.
		When the data frame format is set to 8 bits, only the lower 8 bits participate in the calculation
		and follow the CRC8 standard; when the data frame format is 16 bits, all 16 bits in the register
		participate in the calculation and follow the CRC16 standard.
		Note: reading this register when the BUSY flag (SPI_STS.BUSY) is '1' may read incorrect
		values.
		Note: not used in I ² s mode.

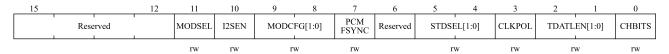
21.5.8 SPI TX CRC register (SPI_CRCTDAT)

Address offset: 0x18

Reset value: 0x0000

15															0
	1	1	1	1							1				
	CRCTDAT[15:0]														
	1	1	1	1	1		1	1			l				

r


Bit field	Name	Description
15:0	CRCTDAT	Send CRC register
		When CRC calculation is enabled, CRCTDAT[15:0] contains the CRC value calculated by the
		bytes sent subsequently. This register is reset when '1' is written to the SPI_CTRL1.CRCEN bit.
		The CRC calculation uses the polynomial in SPI_CRCPOLY.
		When the data frame format is set to 8 bits, only the lower 8 bits participate in the calculation
		and follow the CRC8 standard; when the data frame format is 16 bits, all 16 bits in the register
		participate in the calculation and follow the CRC16 standard.
		Note: reading this register when the BUSY flag (SPI_STS.BUSY) is '1' may read incorrect
		values.
		Note: not used in I ² s mode.

558

$21.5.9 \ SPI_I^2S \ configuration \ register \ \ (SPI_I2SCFG)$

Address offset: 0x1c Reset value: 0x0000

Bit field	Name	Description
15:12	Reserved	Reserved, the reset value must be maintained.
11	MODSEL	I ² S mode selection
		0: Select SPI mode.
		1: Select I ² S mode.
		Note: this bit can only be set when SPI or I2S is turned off.
10	I ² SEN	I ² S enable
		0: Disable I ² S.
		1: Enable I ² S.
		Note: not used in SPI mode.
9:8	MODCFG	I ² S mode setting
		00: Slave device sends.
		01: Slave device receives.
		10: Master device sends.
		11: Master device receives.
		Note: This bit can only be set when I ² S is turned off.
		Note: not used in SPI mode.
7	PCMFSYNC	PCM frame synchronization
		0: Short frame synchronization.
		1: Long frame synchronization.
		Note: This bit is only meaningful when SPI_I2SCFG.STDSEL = 11 (used by the PCM standard).
		Note: not used in SPI mode.
6	Reserved	Reserved, the reset value must be maintained.
5:4	STDSEL	Selection of I ² S standard
		00: I ² S Philips standard.
		01: High byte alignment standard (left alignment).
		10: Low byte alignment standard (right alignment).
		11: PCM standard.
		See for details of I ² S standard on section 21.4.1.
		Note: For correct operation, this bit can only be set when I ² S is turned off.
		Not used in SPI mode.
3	CLKPOL	Static clock polarity
		0: I2S clock static state is low level.
		1: I2S clock static state is high level.
		Note: For correct operation, this bit can only be set when I ² S is turned off.
		Note: not used in SPI mode.
2:1	TDATLEN	Length of data to be transmitted
		00: 16-bit data length.
		01: 24-bit data length;
		10: 32-bit data length;

Bit field	Name	Description									
		11: Not allowed.									
		Note: For correct operation, this bit can only be set when I ² S is turned off.									
		Note: not used in SPI mode.									
0	CHBITS	Channel length (number of data bits per audio channel)									
		0: 16 bits wide;									
		1: 32 bits wide.									
		Writing to this bit is meaningful only when SPI_I2SCFG.TDATLEN = 00, otherwise the									
		channel length is fixed to 32 bits by hardware.									
		Note: For correct operation, this bit can only be set when I ² S is turned off.									
		Note: not used in SPI mode.									

21.5.10 SPI_I²S prescaler register (SPI_I2SPREDIV)

Address: 0x20

Reset value: 0x0002

Bit field	Name	Description									
15:10	Reserved	Reserved, the reset value must be maintained.									
9	MCLKOEN	Master clock output enable									
		0: Disable master clock output.									
		1: Enable master clock output.									
		Note: For correct operation, this bit can only be set when I^2S is turned off.									
		Note: not used in SPI mode.									
8	ODD _EVEN	Coefficient prescaler									
		0: actual frequency division coefficient = LDIV $\times 2$.									
		1: actual frequency division coefficient = $(LDIV \times 2) + 1$.									
		See Section 21.4.2 for details.									
		Note: For correct operation, this bit can only be set when I ² S is turned off. Use this bit only in									
		I ² S master mode.									
		Not used in SPI mode.									
7:0	LDIV	I ² S linear prescaler									
		Setting LDIV [7:0] = 0 or LDIV [7:0] = 1 is prohibited.									
		See Section 21.4.2 for details.									
		Note: For correct operation, this bit can only be set when I ² S is turned off. Use this bit only in									
		I ² S master mode.									
		Not used in SPI mode.									

22 I²C interface

22.1 Introduction

I2C(Inter-Integrated Circuit) bus is a widely used bus structure, it has only two bidirectional lines, namely data bus SDA and clock bus SCL. All devices compatible with I2C bus can communicate directly with each other through I2C bus with these two lines.

I2C interface connects microcontroller and serial I2C bus, and can be used for communication between MCU and external I2C devices. It supports standard speed mode and fast mode, it supports CRC calculation and verification, SMBus (System Management Bus) and PMBus (Power Management Bus), it also provides multi-master function to control all I2C bus specific timing, protocol, arbitration. I2C interface module also supports DMA mode, which can effectively reduce the CPU overload.

22.2 Main features

- Same interface can have both master function and slave function
- Parallel-bus to I²C protocol converter
- Supports 7-bit/10-bit address mode and broadcast addressing
- As I²C master, it can generate clock, start and stop signal
- As I²C slave, it supports address detection, stop bit detection function
- Support standard speed mode(up to 100 kHz), fast mode(up to 400kHz) and fast plus mode(up to 1MHz)
- Support interrupt vector, byte transfer successfully interrupt and error event interrupt
- Optional clock extending function
- Support DMA mode
- Optional PEC (Packet Error Check) generation and verification
- Compatible with SMBus 2.0 and PMBus

Note: not all of the above features are included in all products. Please refer to the relevant data manual to confirm the I^2C functions supported by the product.

22.3 Function description

I2C interface is connected to I2C bus through data pin (SDA) and clock pin (SCL) to communicate with external devices. It can be connected to standard (up to 100kHz) or fast (up to 400kHz) I2C bus. I2C module converts data from serial to parallel when receiving, and converts data from parallel to serial when sending. It support interrupt mode, users can enable or disable interrupt according to their needs.

22.3.1 SDA and SCL line control

I2C module has two interface lines: serial data line (SDA) and serial clock line (SCL). Devices connected to the bus 561

and transmit information to each other through these two wires. SDA and SCL are two-way wires, it should connected to a current source or the positive of the power supply with a pull-up resistor. When the bus is idle, both lines are high level. The output of device which is connected to the bus must have open drain or open collector to provide wired-AND functionality. The data on I2C bus can reach 100 kbit/s in standard mode and 400 kbit/s in fast mode. Since devices of different processors may be connected to the I2C bus, the levels of logic '0' and logic '1' are not fixed and depend on the actual level of VDD.

If the clock extending is allowed, the SCL line is pulled down which can be avoided the overload error during receiving and the under load error during transmission.

For example, when in the transmission mode, if the transmit data register is empty and the byte transmit end bit is set (I2C_STS1.TXDATE = 1, I2C_STS1.BSF = 1), the I2C interface keeps the clock line low before transmission to wait for the software to read STS1 and write the data into the data register (both buffer and shift register are empty); when In the receive mode, if the data register is not empty and the byte sending end bit is set (I2C_STS1.RXDATNE = 1, I2C_STS1.BSF = 1), the I2C interface keeps the clock line low after receiving the data byte, waiting for the software to read STS1, and then read the data register(buffer and shift register are full).

If clock extending is disable in slave mode, if the receive data register is not empty (I2C_STS1.RXDATNE = 1) in the receive mode, and the data has not been read before receiving the next byte, an overrun error will issue and the last word byte will be discarded. In transmit mode, if the transmit data register is empty (I2C_STS1.TXDATE = 1), no new data is written into the data register before the next byte must be sent, an underrun error will issue. The same byte will be send repeatedly. In this case, duplicate write conflicts are not controlled.

22.3.2 Software communication process

The data transmission of I2C device is divided into master and slave. Master is the device responsible for initializing the transmission of data on the bus and generating clock signal. At this time, any addressed device is a slave. Whether the I2C device is a master or a slave, it can send or receive data. Therefore, the I2C interface supports four operation modes:

- Slave transmitter mode
- Slave receiver mode
- Master transmitter mode
- Master receiver mode

After system reset, I2C works in slave mode by default. The I2C interface is configured by software to send a start bit on the bus, and then the interface automatically switches from the slave mode to the master mode. When arbitration is lost or a stop signal is generated, the interface will switched to the slave mode from the receive mode.

562

The block diagram of I²C interface is shown in the figure below.

SDA Data Shift register Data register GPIO control PEC Own address register Comparator calculation Dual address register PEC register Clock SCL Clock Control Register GPIO control Control Register Control SMBALERT logic Status Register Interrupts DMA requests

Figure 22-1 I²C functional block diagram

Note: in SMBus mode, SMBALERT is an optional signal. If SMBus is disabled, the signal cannot be used

22.3.2.1 Start and stop conditions

All data transfers always start with the start bit and end with the stop bit. The start and stop conditions are generated by software in the master mode. Start bit is a level conversion from high to low on SDA line when SCL is high. Stop bit is a level transition from low to high on SDA line when SCL is high. as shown in the figure below.

SDA MSB ACK

SCL 1 2 8 9

Start condition

Figure 22-2 I2C bus protocol

22.3.2.2 Clock synchronization and Arbitration

The I2C module supports multi-master arbitration, which means two masters can initiate an I2C START operation

Nanshan District, Shenzhen, 518057, P.R.China

concurrently when the bus is inactive. So some mechanisms are needed to grant a master the access to the bus. This process is generally named Clock Synchronization and Arbitration.

I2C module has two key features:

- SDA and SCL are drain open circuit structures, and the signal "wire-and" logic is realized through an external pull-up resistor.
- SDA and SCL pins will also detect the level on the pin while outputting the signal to check whether the output is consistent with the previous output. This provides the hardware basis for "Clock Synchronization" and "Bus Arbitration".

The I2C device on the bus is to output logic 0 by "grounding the line". Based on the characteristics of the I2C bus, if one device sends logic 0 and the other sends logic 1, then the line sees only logic 0, so there is no possibility of level conflicts on the line.

The physical connection of the bus allows the master to read data while writing data to the bus. In this way, when two masters are competing for the bus, the one that sends logic 0 does not know the occurrence of the competition. Only the one that sends logic 1 will find the conflict (when writing a logic 1, but read 0) and exit the competition.

Clock synchronization

The high-to-low switching of the SCL line causes the devices to begin counting their low-level periods, and once the device's clock goes low, it keeps the SCL line in this state until the high-level of the clock is reached. However, if another clock is still in the low period, the low-to-high switch of this clock will not change the state of the SCL line. Therefore, the SCL line is kept low by the device with the longest low-level period. A device with a short low-level period will enter a high-level wait state.

When all related devices have counted their low-level periods, the clock line is released and goes high-level, after which there is no difference in the state of the device clock and SCL lines, and all devices will begin counting their high-level periods, the device that completes the high-level period first will pull the SCL line low again.

In this way, the low-level period of the generated synchronous SCL clock is determined by the device with the longest low-level clock period, and the high-level period is determined by the device with the shortest high-level clock period.

Arbitration

Arbitration, like synchronization, is to resolve bus control conflicts in the case of multiple masters. The arbitration process has nothing to do with the slave. When the two masters both produce a valid start bit when the bus is idle, in this case, it is necessary to decide which master will complete the data transmission. This is the process of arbitration.

Each master controller does not have the priority level of controlling the bus, which is all determined by arbitration. The bus control is determined and carried out bit by bit. They follow the principle of "low level first", that is, whoever sends the low level first will control the bus. During the arbitration of each bit, when SCL is high, each host checks whether its own SDA level is the same as that sent by itself. In theory, if the content transmitted by two hosts is exactly the same, then they can successfully transmit without errors. If a host sends a high level but detects that the SDA line is low, it considers that it has lost arbitration and shuts down its SDA output driver, while the other host continues to complete its own transmission.

22.3.2.3 I2C data communication flow

Each I2C device is identified by a unique address. According to the device function, they can be either a transmitter

or a receiver.

The I2C host is responsible for generating the start bit and the end bit in order to start and end a transmission. And is responsible for generating the SCL clock.

The I2C module supports 7-bit and 10-bit addresses, and the user can configure the address of the I2C slave through software. After the I2C slave detects the start bit on the I2C bus, it starts to receive the address from the bus, and compares the received address with its own address. Once the two addresses are matched, the I2C slave will send an acknowledgement (ACK) and respond to subsequent commands on the bus: send or receive the requested data. In addition, if the software opens a broadcast call, the I2C slave always sends a confirmation response to a broadcast address (0x00).

Data and address are transmitted in 8-bit width, with the most significant bit first. The 1 or 2 bytes following the start condition is the address (1 byte in 7-bit mode, 2 bytes in 10-bit mode). The address is only sent in master mode. During the 9th clock period after 8 clocks of a byte transmission, the receiver must send back an acknowledge bit (ACK) to the transmitter, as shown in the Figure 22-2 I2C bus protocol.

Software can enable or disable acknowledgement (ACK), and can set the I2C interface address (7-bit, 10-bit address or general call address).

22.3.2.4 I2C slave transmission mode

In slave mode, the transmission reception flag bit (I2C_STS2.TRF) indicates whether it is currently in receiver mode or transmission mode. When sending data to I2C bus in transmission mode, the software should follow the following steps:

- 1. First, enable I2C peripheral clock and configure the clock related register in I2C_CTRL1, ensuring the correct I2C timing. After these two steps are completed, I2C runs in slave mode, waiting for receiving start bit and address.
- 2. I2C slave receives a start bit first, and then receives a matching 7-bit or 10-bit address. I2C hardware will set the I2C_STS1.ADDRF(received address and matched its own address). The software should monitor this bit regularly or have an interrupt to monitor this bit. After this bit is set, the software reads I2C_STS1 register and then read I2C_STS2 register to clear the I2C_STS1.ADDRF bit. If the address is in 10 bit format, the I2C master should then generate a START and send an address header to the I2C bus. After detecting START and the following address header, the slave will continue to set I2C_STS1.ADDRF bit. The software continues to read I2C_STS1 register and read I2C_STS2 register to clear the I2C_STS1.ADDRF bit a second time.
- 3. I2C enters the data sending state, and now shift register and data register I2C_DAT are all empty, so the hardware will set the I2C_STS1.TXDATE(send data empty). At this time, the software can write the first byte data to I2C_DAT register, however, because the byte of the I2C_DAT register is immediately moved into the internal shift register, the I2C_STS1.TXDATE bit is not cleared to zero. When the shift register is not empty, I2C starts to send data to I2C bus.
- 4. During the sending of the first byte, the software writes the second byte to I2C_DAT, neither the I2C_DAT register nor the shift register is empty. The I2C_STS1.TXDATE bit is cleared to 0.
- 5. After the first byte is sent, I2C_STS1.TXDATE is set again, and the software writes the third byte to I2C_DAT, the same time, the I2C_STS1.TXDATE bit is cleared. After that, as long as there is still data to be sent and I2C_STS1.TXDATE is set to 1, the software can write a byte to I2C_DAT register.

- 6. During the sending of the second last byte, the software writes the last data to the I2C_DAT register to clear the I2C_STS1.TXDATE flag bit, and then the I2C_STS1.TXDATE status is no longer concerned. I2C_STS1.TXDATE bit is set after the second last byte is sent until the stop end bit is detected.
- 7. According to the I2C protocol, the I2C master will not send a ACK to the last byte received. Therefore, after the last byte is sent, the I2C_STS1.ACKFAIL bit (acknowledge fail) of the I2C slave will be set to notify the software of the end of sending. The software writes 0 to the I2C_STS1.ACKFAIL bit to clear this bit.

7-bit address Master Master Slave Master Slave Master Slave Master Master Tx Stop Start Address(R) ACK Data 1 ACK Data2 ACK DataN NACK EV3 EV3 EV3 EV3-2 10-bit address Master Slave Master Slave Master Master Slave Slave Master Slave Master Master Header(W) Address ACK Header(R) ACK NACK Stop Start Data 1 DataN EV1 EV3-1 EV3 EV3-2

Figure 22-3 Slave transmitter transfer sequence diagram

Instructions:

- 1. EV1: I2C STS1.ADDRF = 1, read STS1 and then STS2 register to clear the event.
- 2. EV3-1: I2C STS1.TXDATE=1, shift register is empty, data register is empty, write DAT.
- 3. EV3: I2C_STS1.TXDATE=1, shift register is not empty, data register is empty, write DAT will clear the event.
- 4. EV3-2: I2C_STS1.ACKFAIL=1, ACKFAIL bit of STS1 register write "0" to clear the event.

Note: a) EV1 and EV3_1 event prolongs the low SCL time until the end of the corresponding software sequence.

b) The software sequence of EV3 must be completed before the end of the current byte transfer.

22.3.2.5 I2C slave receiving mode

When receiving data in slave mode, the software should operate as follows:

- First, enable I2C peripheral clock and configure the clock related register in I2C_CTRL1 ensuring the correct I2C timing. After these two steps are completed, I2C runs in slave mode, waiting for receiving start bit and address.
- 2. After receiving the START condition and the matched 7-bit or 10-bit address, I2C hardware will set I2C_STS1.ADDRF bit(the address received and matched with its own address) to 1. This bit should be detected by software polling or interrupt. After it is found that it is set, the software clears the I2C_STS1.ADDRF bit by reading I2C_STS1 register first and then I2C_STS2 register. Once the I2C_STS1.ADDRF bit is cleared, The I2C

slave starts to receive data from the I2C bus.

- 3. When the first byte is received, the I2C_STS1.RXDATNE bit (the received data is not empty) is set to 1 by hardware. If the I2C_CTRL2.EVTINTEN and I2C_CTRL2.BUFINTEN bits are set, an interrupt is generated. The software should check this bit by polling or interrupt. Once it is found that it is set, the software can read the first byte of I2C_DAT register, and then the I2C_STS1.RXDATNE bit is cleared to 0. Note that if the I2C_CTRL1.ACKEN bit is set, after receiving a byte, the slave should generate a response pulse.
- 4. At any time, as long as the I2C_STS1.RXDATNE bit is set to 1, the software can read a byte from the I2C_DAT register. When the last byte is received, I2C_STS1.RXDATNE is set to 1 and the software reads the last byte.
- 5. When the slave detects the STOP bit on I2C bus, set I2C_STS1.STOPF to 1, and if the I2C_CTRL2.EVTINTEN bit is set, an interrupt will be generated. The software clears the I2C_STS1.STOPF bit by reading the I2C_STS1 register before writing the I2C_CTRL1 register (see EV4 in the following figure).

7-bit address Master Master Slave Master Slave Master Slave Master Master Slave Tx Tx Tx Tx Tx Tx Address(W) ACK ACK Data2 ACK ACK Stop Start Data 1 DataN EV1 EV2 EV2 EV4 10-bit address Slave Slave Master Master Slave Master Master Master Slave Master Header(W) ACK Address ACK ACK Stop Start Data 1 DataN ACK EV1 EV2 EV2

Figure 22-4 Slave receiver transfer sequence diagram

Instructions:

- 1. EV1: I2C STS1.ADDRF = 1, read STS1 and then STS2 to clear the event.
- 2. EV2: I2C STS1.RXDATNE =1, reading DAT will clear this event.
- 3. EV4: I2C_STS1.STOPF=1, reading STS1 and then writing the CTRL1 register will clear this event.

Note: a)EV1 event prolongs the time when SCL is low until the end of the corresponding software sequence.

b) The software sequence of EV2 must be completed before the end of the current byte transmission.

22.3.2.6 I2C master transmission mode

In the master mode, the I2C interface starts data transmission and generates a clock signal. Serial data transmission always starts with a start condition and ends with a stop condition. When the START condition is generated on the bus through the start bit, the device enters the master mode.

567

When sending data to I2C bus in master mode, the software should operate as follows:

- 1. First, enable the I2C peripheral clock, and configure the clock-related registers in I2C_CTRL1 to ensure the correct I2C timing. When these two steps are completed, I2C runs in the slave mode by default, waiting for receiving the start bit and address.
- 2. When BUSY=0, I2C_CTRL1.STARTGEN bit set to 1, and the I2C interface will generate a start condition and switch to the master mode (I2C STS2.MSMODE bit set to "1").
- 3. Once the start condition is issued, I2C hardware will set I2C_STS1.STARTBF bit(START bit flag)and then enters the master mode. If the I2C_CTRL2.EVTINTEN bit is set, an interrupt will be generated. Then the software reads the I2C_STS1 register and then writes a 7-bit address bit or a 10-bit address bit with an address header to the I2C_DAT register to clear the I2C_STS1.STARTBF bit. After the I2C_STS1.STARTBF bit is cleared to 0, I2C starts sending addresses or address headers to I2C bus.

In 10-bit address mode, sending a header sequence will generate the following events:

- ◆ I2C_STS1.ADDR10F bit is set by hardware, and if I2C_CTRL2.EVTINTEN bit is set, an interrupt is generated. Then the master reads the STS1 register, and then writes the second address byte into the DAT register.
- ◆ I2C_STS1.ADDRF bit is set by hardware, and if I2C_CTRL2.EVTINTEN bit is set, an interrupt is generated. Then the master reads the STS1 register, followed by the STS2 register.

Note: In the transmitter mode, the master device first sends the header byte (11110xx0) and then sends the lower 8 bits of the slave address. (where xx represents the highest 2 bits of the 10-bit address).

In the 7-bit address mode, only one address byte needs to be sent out. Once the address byte is sent out:

◆ I2C_STS1.ADDRF bit is set by hardware, and if I2C_CTRL2.EVTINTEN bit is set, an interrupt is generated. Then the master device waits for reading the STS1 register once, followed by reading the STS2 register.

Note:

In the transmitter mode, when the master sends the slave address, set the lowest bit to "0".

In 7-bit address mode, don't set the slave address to 0xF0 to prevent the I2C_STS1.ADDR10F bit from being set by hardware.

- 4. After the 7-bit or 10-bit address bit is sent, the I2C hardware sets the I2C_STS1.ADDRF bit (address has been sent) to 1, if the I2C_CTRL2.EVTINTEN bit is set, an interrupt is generated, and the software is cleared by reading the I2C_STS1 register and then the I2C_STS2 register I2C_STS1.ADDRF.
- 5. I2C enters the data transmission state. Because the shift register and the data register (I2C_DAT) are empty, the hardware sets the I2C_STS1.TXDATE bit (transmission data empty) to 1, and then the software writes the first byte of data to the I2C_DAT register, but because the byte written into the I2C_DAT register is immediately moved into the internal shift register, the I2C_STS1.TXDATE bit will not be cleared at this time. Once the shift register is not empty, I2C starts sending data to the bus.
- 6. During the transmission of the first byte, the software writes the second byte to I2C_DAT, and I2C_STS1.TXDATE is cleared at this time. At any time, as long as there is data waiting to be sent and the I2C_STS1.TXDATE bit is set to 1, the software can write a byte to the I2C_DAT register.
- 7. In the process of sending the penultimate byte, the software writes the last byte of data to I2C_DAT to clear the I2C_STS1.TXDATE flag bit. After that, there is no need to care about the status of the I2C_STS1.TXDATE bit. The I2C_STS1.TXDATE bit will be set after the penultimate byte is sent, and will be cleared when the stop bit

(STOP) is sent.

8. After the last byte is sent, because the shift register and the I2C_DAT register are empty at this time, the I2C host sets the I2C_STS1.BSF bit (byte transmission end), and the I2C interface will keep SCL low before clearing the I2C_STS1.BSF bit. After reading I2C_STS1, writing to the I2C_DAT register will clear the I2C_STS1.BSF bit. The software sets the I2C_CTRL1.STOPGEN bit at this time to generate a stop condition, and then the I2C interface will automatically return to the slave mode (I2C_STS2.MSMODE bit is cleared).

7-bit address Master Master Slave Master Slave Master Slave Master Slave Master Tx Tx Tx Tx Tx Tx ACK Start Address(W) ACK Data 1 ACK Data2 DataN ACK Stop EV5 EV8 EV8-1 EV8-2 10-bit address Master Master Slave Master Slave Master Slave Master Slave Master ACK ACK ACK Start Header(W) Address ACK Data 1 DataN Stop EV5 EV9 EV8 EV6 EV8-1 EV8 EV8-2

Figure 22-5 Master transmitter transfer sequence diagram

Instructions:

- 1. EV5: I2C STS1.STARTBF = 1, reading STS1 and writing the address to the DAT register will clear the event.
- 2. EV6: I2C STS1.ADDRF = 1, read STS1 and then STS2 to clear the event.
- 3. EV8_1: I2C_STS1.TXDATE = 1, shift register is empty, data register is empty, write DAT register.
- 4. EV8: I2C_STS1.TXDATE = 1, shift register is not empty, data register is empty, write to DAT register will clear the event.
- 5. EV8_2: I2C_STS1.TXDATE = 1, I2C_STS1.BSF = 1, request to set stop bit. These two events are cleared by the hardware when a stop condition is generated.
- 6. EV9: I2C_STS1.ADDR10F = 1, read STS1 and then write to DAT register to clear the event.

Note: a) EV5, EV6, EV9, EV8_1 and EV8_2 event prolonged the low SCL time until the end of the corresponding software sequence.

569

- b) The software sequence of EV8 must be completed before the end of the current byte transfer.
- c) When I2C_STS1.TXDATE or I2C_STS1.BSF bit is set, stop condition should be arranged when EV8_2 occurs.

22.3.2.7 I2C master receiving mode

In master mode, software receiving data from I2C bus should follow the following steps:

- First, enable the I2C peripheral clock and configure the clock-related registers in I2C_CTRL1, in order to ensure
 that the correct I2C timing is output. After enabling and configuring, I2C runs in slave mode by default, waiting
 to receive the start bit and address.
- 2. When BUSY=0, set the I2C_CTRL.STARTGEN bit, and the I2C interface will generate a start condition and switch to the master mode (I2C_STS2.MSMODE bit is set to 1).
- 3. Once the start condition is issued, the I2C hardware sets I2C_STS1.STARTBF(start bit flag) and enters the host mode. If the I2C_CTRL2.EVTINTEN bit is set to 1, an interrupt will be generated. Then the software reads the I2C_STS1 register and then writes a 7-bits address or a 10-bits address with an address header to the I2C_DAT register, in order to clear the I2C_STS1.STARTBF bit. After the I2C_STS1.STARTBF bit is cleared to 0, I2C begins to send the address or address header to the I2C bus.

In 10-bits address mode, sending a header sequence will generate the following events:

- ◆ The I2C_STS1.ADDR10F bit is set to 1 by hardware, and if the I2C_CTRL2.EVTINTEN bit is set to 1, an interrupt will be generated. Then the master device reads the STS1 register, and then writes the second byte of address into the DAT register.
- ◆ The I2C_STS1.ADDRF bit is set to 1 by hardware, and if the I2C_CTRL2.EVTINTEN bit is set to 1, an interrupt will be generated. Then the master device reads the STS1 register and the STS2 register in sequence.

Note: In the receiver mode, the master device sends the header byte (11110xx0) firstly, then sends the lower 8 bits of the slave address, and then resends a start condition followed by the header byte (11110xx1) (where xx represents the highest 2 digits of the 10-bits address).

In the 7-bits address mode, only one address byte needs to be sent, once the address byte is sent:

◆ The I2C_STS1.ADDRF bit is set to 1 by hardware, and if the I2C_CTRL2.EVTINTEN bit is set to 1, an interrupt will be generated. Then the master device waits to read the STS1 register once, and then reads the STS2 register.

Note:

In the receiving mode, the master device sets the lowest bit as '1' when sending the slave address.

In 7-bit address mode, don't set the slave address to 0xF0 to prevent the I2C_STS1.ADDR10F bit from being set by hardware.

- 4. After the 7-bits or 10-bits address is sent, the I2C hardware sets the I2C_STS1.ADDRF bit (address has been sent) to 1. If the I2C_CTRL2.EVTINTEN bit is set to 1, an interrupt will be generated. The software clears the I2C_STS1.ADDRF bit by reading the I2C_STS1 register and the I2C_STS2 register in sequence. If in the 10-bit address mode, software should set the I2C_CTRL1.STARTGEN bit again to regenerate a START. After the START is generated, the I2C_STS1.STARTBF bit will be set. The software should clear the I2C_STS1.STARTBF bit by reading I2C_STS1 firstly and then writing the address header to I2C_DAT, and then the address header is sent to the I2C bus, I2C_STS1.ADDRF is set to 1 again. The software should clear the I2C_STS1.ADDRF bit again by reading I2C_STS1 and I2C_STS2 in sequence.
- 5. After sending the address and clearing the I2C_STS1.ADDRF bit, the I2C interface enters the host receiving mode. In this mode, the I2C interface receives data bytes from the SDA line and sends them to the DAT register through the internal shift register. Once the first byte is received, the hardware will set the

Nanshan District, Shenzhen, 518057, P.R.China

I2C_STS1.RXDATNE bit (not empty flag bit of received data) to 1, and if the I2C_CTRL1.ACKEN bit is set to 1, an acknowledge pulse will be sent. At this time, the software can read the first byte from the I2C_DAT register, and then the I2C_STS1.RXDATNE bit is cleared to 0. After that, as long as I2C_STS1.RXDATNE is set to 1, the software can read a byte from the I2C_DAT register.

- 6. The master device sends a NACK after receiving the last byte from the slave device. After receiving the NACK, the slave device releases the control of SCL and SDA lines; the master device can send a stop/restart condition. In order to generate a NACK pulse after receiving the last byte, the software should clear the I2C_CTRL1.ACKEN bit immediately after receiving the penultimate byte (N-1). In order to generate a stop/restart condition, the software must set the I2C_CTRL1.STOPGEN bit or I2C_CTRL1.STARTGEN to 1 after reading the penultimate data byte. This process needs to be completed before the last byte is received to ensure that the NACK is sent for the last byte.
- 7. After the last byte is received, the I2C_STS1.RXDATNE bit is set to 1, and the software can read the last byte. Since I2C_CTRL1.ACKEN has been cleared to 0 in the previous step, I2C no longer sends ACK for the last byte, and generates a STOP bit after the last byte is sent.

Note: The above steps require the number of bytes N>1. If N=1, step 6 should be executed after step 4, and it needs to be completed before the reception of byte is completed.

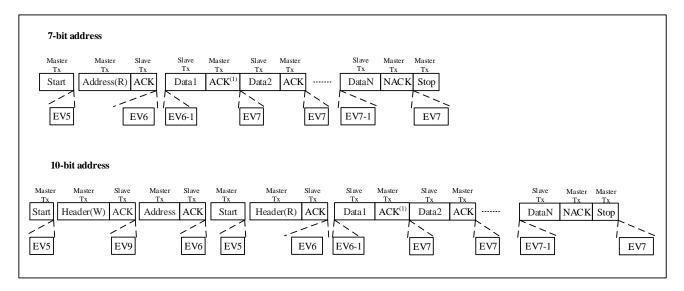


Figure 22-6 Master receiver transfer sequence diagram

Instructions:

- 1. EV5: I2C_STS1.STARTBF=1, reading STS1 and then writing the address into the DAT register will clear this event.
- 2. EV6: I2C_STS1.ADDRF=1, reading STS1 and STS2 in sequence will clear this event. In the 10-bits master receiving mode, the I2C_CTRL1.STARTGEN should be set to 1 after this event.
- 3. EV6_1: There is no corresponding event flag, only suitable for receiving 1 byte. Just after EV6 (that is after clearing I2C_STS1.ADDRF), the generation bits for acknowledge and stop condition should be cleared.
- 4. EV7: I2C_STS1.RXDATNE=1, read the DAT register to clear this event.

- 5. EV7_1: I2C_STS1.RXDATNE =1, read the DAT register to clear this event. Set I2C_CTRL1.ACKEN=0 and I2C_CTRL1.STOPGEN=1.
- 6. EV9: I2C_STS1.ADDR10F=1, reading STS1 and then writing to the DAT register will clear this event.

Note:

- a) If a single byte is received, it is NA.
- b) EV5, EV6, and EV9 events extend the low level of SCL until the corresponding software sequence ends.
- c) The EV7 software sequence shall be completed before the end of the current byte transmission.
- d) The software sequence of EV6_1 or EV7_1 shall be completed before the ACK pulse of the current transmission byte.

22.3.3 Error conditions description

I2C errors mainly include bus error, acknowledge error, arbitration loss, overload\ underload error. These errors may cause communication failure.

22.3.3.1 Acknowledge Failure (ACKFAIL)

The interface have a acknowledge bit is detected that does not match the expectation, it will occurs acknowledge fail error, I2C_STS1.ACKFAIL bit is set. An interrupt occurs, when I2C_CTRL2.ERRINTEN bit is set to 1.

When transmitter receives a NACK, The communication must be reset: Device in slave mode, hardware release the bus; Device in master mode, it must generate a stop condition from software.

22.3.3.2 Bus Error (BUSERR)

when address or data is transmissing, I2C interface receive external stop or start condition, it will happen a bus error, I2C_STS1.BUSERR bit is set. An interrupt occurs, when I2C_CTRL2.ERRINTEN bit is set to 1.

I2C device as master, the hardware does not release bus, as the same time it done not affect the current status of transfer, The current transfer will determined by software whether suspend.

I2C device as slave, when data is discarded in transmission and the bus releases by hardware, it will have two situation: If an error start condition is detected, the slave device considers a restart condition and waits for an address or a stop condition. If an error stop condition is detected, the slave device operates as a normal stop condition and the hardware releases the bus.

22.3.3.3 Arbitration Lost (ARLOST)

The interface have arbitration lost is detected, hardware release the bus, it will occurs arbitration lost error, I2C_STS1.ARLOST bit is set. An interrupt occurs, when I2C_CTRL2.ERRINTEN bit is set to 1.

I2C interface will go to slave mode automatically(I2C_STS2.MSMODE bit is cleared). When the I2C interface lost the arbitration, in the same communication, it can not respond to its slave address, but it can respond when master win the bus retransmits a start signal. Hardware release the bus.

572

22.3.3.4 Overrun/Underrun Error (OVERRUN)

In slave mode, disable clock extend prone to Overrun/Underrun Error:

When I2C interface is receiving data (I2C_STS1.RXDATNE=1, data have received in register), and I2C_DAT register still have previous byte has not been read, it will occurs an overrun error. In this situation, the last received data is discarded. And software should clear I2C_STS1.RXDATNE bit, transmitter retransmit last byte.

When I2C interface is sending data (I2C_STS1.TXDATE=1, new data have not sending to register), and I2C_DAT register still empty, it will occurs an underrun error. In this situation, the previous byte in the I2C_DAT register is sending repeatedly. And User make sure that in the event of an underrun error, the receiver discard repeatedly byte, and transmitter should update the I2C_DAT register at the specified time according to the I2C bus standard.

In sending the first byte, I2C_DAT register must be written after I2C_STS1.ADDRF bit is cleared and the before the first SCL rising edge. If cannot make sure do that, the first byte should be discard by receiver.

22.3.4 DMA application

DMA can generate a requests when transfer data register empty or full. DMA can oprate write data to I2C or read data from I2C reduce burden of CPU.

Before transfer current byte at the end DMA requests must be answered. If set the DMA channel transfer data is done, DMA will send EOT(End Of Transmission) to I2C, and ocurrs a interrupt when enable interrupt bit.

In the master transfer mode, in EOT interrupt handler DMA request need to be disbale, and set stop condition after waiting for I2C_STS1.BSF event.

In the master receive mode, the data of received is great than or equal to 2, DMA will send a hardware signal EOT_1 in DMA transmission(byte number-1). If set I2C_CTRL2.DMALAST bit, when hardware have send the EOT_1 next byte it will send a NACK automatically. The user can set a stop condition in the interrupt handler after the DMA transfer is completed if interrupt enable.

Note: When I2C and other peripherals use the same DMA controller, they cannot be turned on at the same time.

22.3.4.1 Transmit process

If use the DMA mode need set the I2C_CTRL2.DMAEN bit. When I2C_STS1.TXDATE bit is set, the data will send to I2C_DAT from storage area by the DMA. DMA assign a channle for I2C transmission, (x is the channel number) the following step must be opreate:

- 1. In the DMA_PADDRx register set the I2C_DAT register address. Data will be send to address in every I2C_STS1.TXDATE event.
- 2. In the DMA_MADDRx register set the memory address. Data will send to I2C_DAT address in every I2C_STS1.TXDATE event.
- 3. In the DMA_TXNUMx register set the number of need to be transferred.In every I2C_STS1.TXDATE event this number-1 until 0.
- 4. In the DMA_CHCFGx register set PRIOLVL[1:0] bit to configure the priority of channel.
- 5. In the DMA_CHCFGx register set DIR bit to configure when ocurrs an interrupt whether send a half data or all completed.
- 6. In the DMA_CHCFGx register set CHEN bit to enable transfer channel.
- 7. When DMA transfer data is done, DMA need send a EOT/EOT_1 signal to I2C indicate this transfer is done. If

interrupt is enable, DMA ocurrs a interrrupt.

Note: if DMA is used for transmission, do not set I2C_CTRL2.BUFINTEN bit.

22.3.4.2 Receive process

If use DMA mode need set I2C_CTRL2.DMAEN bit. When data byte is received,DMA will send I2C data to storage area, set DMA channel for I2C reception. The following steps must be opreate:

- 1. In DMA_PADDRx register set the address of the I2C_DAT register. In every I2C_STS1.RXDATEN event, data will send from address to storage area.
- 2. In DMA_MADDRx register set the memory area address. In every I2C_STS1.RXDATEN event,data will send from I2C_DAT register to storage area.
- 3. In DMA_TXNUMx register set the number of need to be transferred. In every I2C_STS1.RXDATEN event the number-1 until 0.
- 4. In DMA_CHCFGx register set PRIOLVL[0:1] to configure the priority of channel.
- 5. In DMA_CHCFGx register clear DIR to configure when ocurrs a interrupt request whether received half data or all data is received.
- 6. In the DMA_CHCFGx register set CHEN bit to activate the channle.
- 7. When DMA tansfer data is done, DMA need to send EOT/EOT_1 signal to I2C indicate this transfer is done, if interrupt is enbale, DMA ocurrs a interrupt.

Note: If DMA is used for receiving, do not set I2C CTRL2.BUFINTEN bit.

22.3.5 Packet error check

Setting the I2C_CTRL1.PECEN bit to 1 enables the PEC function. PEC uses CRC-8 algorithm to calculate all information bytes including address and read/write bits.it can improve the reliability of communication. The CRC-8 polynomial uses by the PEC calculator is $C(x) = x^8 + x^2 + x + 1$.

In transmit mode, software sets I2C_CTRL1.PEC transfer bit in the last I2C_STS1.TXDATE event, and then PEC will be transferred in the last byte. In receiving mode, software sets I2C_CTRL1.PEC transfer bit after the last I2C_STS1.RXDATNE event, and then receives the PEC byte and compares the received PEC byte to the internally calculated PEC value. If it is not equal to the internally calculated PEC value, the receiver needs to send a NACK. If it is host receiver mode, NACK will be sent after PEC regardless of the calculated result. It should pay attention that I2C_CTRL1.PEC bit has to be set before receiving.

If both DMA and PEC calculator are activated, I2C will automatically send or check the PEC value.

In transfer mode, when I2C interface receives EOT signal from DMA controller, it will automatically send PEC following the last byte. In receiving mode, when I2C interface receives an EOT_1 signal from DMA, it will automatically consider the next byte as PEC and compare it with the internally calculated PEC. It will happen a DMA request after receiving PEC.

In order to allow intermediate PEC transfer, I2C_CTRL2.DMALAST bit is used to determine whether it is the last DMA transfer. And if it does the last DMA request of the master receiver, NACK will be sent automatically after receiving the last byte.

When arbitration is lost, PEC calculation is invalid.

22.3.6 SMBus

22.3.6.1 Introduction

The System Management Bus(SMBus or SMB) is a dual-wire bus interface. Using SMBus can communicate with other device or other parts of the system, it able to commicate with multiple devices without other independent control wire. SMBus base on I2C commincate standard. SMBus have a control bus for system and power management related tasks. If you want browse more information, please refer to the SMBus specification V2.0(http://smbus.org/specs/).

SMBus have three types of device standard.

- Master: device send command, generate clocks and stop transmmissions;
- Slave: device receive,respond to commands;
- Host: system have only one host. a device provides a master to system CPU. host have function of master and slave, it support SMBus alert protocol.

SMBus is a subset of the data transmission format of the I2C specification.

Similarities between SMBus and I2C:

- Both bus protocols contain of 2 wires (a clock wire SCL and a data wire SDA), with an optional SMBus alert wire.
- The data format is similar. SMBus data format is similar to 7-bit address format of I2C(See Figure 22-2).
- Both are master-slave communication modes, and the master device provides the clock.
- Both support multi master

Differences between SMBus and I2C:

Table 22-1 Comparison between SMBus and I2C

SMBus	I ² C
Maximum transmission speed 100kHz	Maximum transmission speed 1MHz
Minimum transmission speed 10kHz	No minimum transmission speed
Low clock timeout 35ms	No clock timeout
Fixed logic level	VDD determined logic level
Different address types (reserved, dynamic, etc.)	7-bit, 10-bit, and broadcast call slave address
	types
Different bus protocols (quick command, call handling,	No bus protocol
etc.)	

22.3.6.2 SMBus usage

SMBus uses the system management bus to meet lightweight communication requirements. In general, SMBus is commonly used on the computer motherboard. It is mainly used to transmit ON/OFF instructions for power unit and provide a control bus for system and power management-related tasks.

22.3.6.3 Device identification

On the SMBus, as a slave have a only address for any device, named slave address.

In order to distribute addres for each devices, it must have a unique device identifier(UDID) to distinguish devices.

22.3.6.4 Bus protocol

SMBus specification include eight bus protocols. If want browse the details on protocols or SMBus address types,it can refer to the SMBus specification v2.0(http://smbus.org/specs/). User's software can device what protocols are implemented.

Every packet through the SMBus complies with the SMBus protocol predefined format. SMBus is a subset of the data transfer format of I2C specification. As long as an I2C device can be accessed through one of the SMBus protocols, it is considered to be SMBus compliant.

Note: SMBus does not support Quick command protocol.

22.3.6.5 Address resolution protocol

The SMBus resolves address conflicts by dynamically assigning a new unique address to each slave device. This is the address resolution protocol(ARP).

Any master device can connected bus to access all devices.

SMBus physical layer arbitration enable to distribute addresses. When device power on, the device's distribute address is not change, the protocol allows address retain when device power off.

When address is distributed, there is no extra SMBus packaging cost(the cost time that access distribute address device and access fixed address device is same).

22.3.6.6 Timeout function

A kind of feature related to timeout on SMBus: if it has taken too long time during the communication, it automatically resets the device. This is the reason why SMBus has a minimum transmission rate limitation -- to prevent the bus from locking up for a long time after the timeout occurs. I2C bus is essentially a "DC" bus, that is to say, if the slave is executing some subroutines and cannot respond in time while the master is accessing the slave, it can hold the clock. That can remind the host that the slave is busy but does not want to give up the current communication. This session can continue after the current task of the slave is over. I2c doesn't have a maximum limitation for the delay, but it is limited to 35ms in the SMBus system. According to the SMBus protocol, if a session takes too long, it means something is wrong with the bus, and all devices should be reset to eliminate this state. Like this, the slave device is not allowed to pull the clock down for too long. I2C_STS1.TIMOUT bit indicates the status of this feature.

22.3.6.7 SMBus alter mode

SMBus offer a optional interrupt signal SMBALERT(like SCL and SDA,is a wired-and signal) that devices uses to extend their control capabilities at expense of a pin. SMBus broadcast call address often combine with SMBALERT. There is 2 bytes message about SMBus.

A device which only has slave function can set I2C_CTRL1.SMBALERT bit to indicate it want to communicate with host. The host handles the interrupt and accesses all SMBALERT devices through the ARA (Alert Response Address, address value 0001100x). Only those devices that pull SMBALERT low can respond to ARA. This state is identified

by the I2C_STS1.SMBALERT. The 7-bit device address provided from the sending device is placed on the 7 most significant bits of the byte, the eighth bit can be either '0' or '1'.

When more than one device's SMBALERT is low, the highest priority(The smaller the address, the higher the priority) can win bus communication through the standard arbitration during address transmission. If confirming the slave address, device's SMBALERT is no longer pulled low. If message transmitted completely, device's SMBALERT still is low, it mean host will read ARA again. The host can periodically access the ARA when the SMBALERT signal is not used.

22.3.6.8 SMBus communication process

The communication process on SMBus is similar to that on I2C.To use the SMBus mode, you need to configure SMBus specific registers in the program, respond and process SMBus specific flag, to implement the upper-layer protocols described in the SMBus manual.

- At first, set I2C_CTRL1.SMBMODE bit, and configure I2C_CTRL1.SMBTYPE bit and I2C_CTRL1.ARPEN bit according to the application requirements. If I2C_CTRL1.ARPEN=1 and I2C_CTRL1.SMBTYPE=0, use the default address of the SMB device. If I2C_CTRL1.ARPEN=1 and I2C_CTRL1.SMBTYPE=1, use the SMB master header field.
- 2. In order to support ARP (I2C_CTRL1.ARPEN=1), in SMBus host mode (I2C_CTRL1.SMBTYPE=1), software needs to respond to the I2C_STS2.SMBHADDR bit (in SMBus slave mode, respond to I2C_STS2.SMBDADDR bit) and implement the functions according to the ARP protocol.
- 3. To support the SMBus warning mode, software should respond to the I2C_STS1.SMBALERT bit and implement the corresponding functions.

22.4 Debug mode

When the microcontroller enters the debug mode (Cortex-M4 core is in the stop state), configure the DBG_CTRL.I2CxSMBUS_TIMEOUT bit in the DBG module, Select SMBUS timeout to continue normal work or stop. See section 26.3.2 for details.

22.5 Interrupt request

All I2C interrupt requests are listed in the following table.

Table 22-2 I²C interrupt request

Interrupt function	Interrupt event	Event flag	Set control bit
	Start bit sent (master)	STARTBF	
	Address sent (master) or address matched (slave)	ADDRF	
100	10-bit header sent (master)	ADDR10F	EVTINTEN
I2C event interrupt	Received stop (slave)	STOPF	
	Data byte transfer completed.	BSF	
	Receive buffer is not empty.	RXDATNE	EVTINTEN and BUFINTEN
	Send buffer is empty.	TXDATE	EVIINTEN and BOFINTEN
I2C error interrupt	Bus error	BUSERR	ERRINTEN

Nanshan District, Shenzhen, 518057, P.R.China

Interrupt function	Interrupt event	Event flag	Set control bit
	Lost arbitration (master)	ARLOST	
	Acknowledge fail	ACKFAIL	
	Overrun/underrun	OVERRUN	
	PEC error	PECERR	
	Timeout /Tlow error	TIMOUT	
	SMBus Alert	SMBALERT	

Note: 1. STARTBF, ADDRF, ADDR10F, STOPF, BSF, RXDATNE and TXDATE are merged into the event interrupt channel through logical OR.

2. BUSERR, ARLOST, ACKFAIL, OVERRUN, PECERR, TIMEOUT and SMBALERT are merged into the error interrupt channel through logical OR.

22.6 I2C registers

These peripheral registers can be operated by half word (16 bits) or word (32 bits)

22.6.1 I2C register overview

Table 22-3 I2C register overview

Offset	Register	31	30	59	28	27	26		25	24	23	22	21	20	,	19	18	17	16	15	41	13	12	Ξ	10	6	∞	7	9	5	4	3	2	1	0
000h	I2C_CTRL1								F	Rese	rved									SWRESET	Reserved	SMBALERT	PEC	ACKPOS	ACKEN	STOPGEN	STARTGEN	NOEXTEND	GCEN	PECEN	ARPEN	SMBTYPE	Reserved	SMBMODE	EN
	Reset Value																			0		0	0	0	0	0	0	0	0	0	0	0		0	0
004h	I2C_CTRL2										F	Rese	erved										DMALAST	DMAEN	BUFINTEN	EVTINTEN	ERRINTEN		Reserved		CI	.KFR	EQ[5	:0]	
	Reset Value																						0	0	0	0	0			0	0	0	0	0	0
008h	I2C_OADDR1								F	Rese	rved									ADDRMODE	Reserved		Rese	rved		4 P.D.00.01	ADDR[9:8]			AD	DR[7:1]			ADDR0
	Reset Value																			0						0	0	0	0	0	0	0	0	0	0
00Ch	I2C_OADDR2		Reserved														AD	DR2[7:1]		DUALEN														
	Reset Value																											0	0	0	0	0	0	0	0
010h	I2C_DAT													Re	eser	ved]	DAT	A [7:0]		
0.1011	Reset Value															rea												0	0	0	0	0	0	0	0
014h	I2C_STS1								F	Rese	rved									SMBALERT	TIMOUT	Reserved	PECERR	OVERRUN	ACKFAIL	ARLOST	BUSERR	TXDATE	RXDATNE	Reserved	STOPF	ADDR10F	BSF	ADDRF	STARTBF
	Reset Value																			0	0		0	0	0	0	0	0	0		0	0	0	0	0
018h	I2C_STS2								F	lese	rved											PE	CVA	L[7:0)]			DUALFLAG	SMBHADDR	SMBDADDR	GCALLADDR	Reserved	TRF	BUSY	MSMODE
	Reset Value																			0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
01Ch	I2C_CLKCTRL	Reserved Reserved CLKCTRL[11:0]																																	

Nanshan District, Shenzhen, 518057, P.R.China

	Reset Value		0	0	0	0	0	0	0	0	0	0	0	0	0	0
020h	I2C_TMRISE	Reserved									TMRISE[5:0]					
02011	Reset Value	Reserved									0	0	0	0	0	0

22.6.2 I2C Control register 1 (I2C_CTRL1)

Address offset: 0x00 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SW RESET	Reserved	SMB ALERT	PEC	ACK POS	ACKEN	STOP GEN	START GEN	NO EXTEND	GCEN	PECEN	ARPEN	SMB TYPE	Reserved	SMB MODE	EN
2777		2777	P117	2777	2337	PIII	2337	*****	2337	****	P117	P337		****	2331

Bit field	Name	Description
		Software reset
		Make sure the I2C bus is idle before resetting this bit.
1.5	an Dealest	0:I2C not reset;
15	SWRESET	1:I2C reset.
		Note: This bit can be used when the I2C_STS2.BUSY bit is set to 1 and no stop condition is detected
		on the bus.
14	Reserved	Reserved, the reset value must be maintained.
		SMBus alert
10	CLAD ALEDE	It can be set or cleared by software. When I2C_CTRL1.EN=0, it will be cleared by hardware.
13	SMBALERT	0: SMBAlert pin go high. The response address header is followed by the NACK signal;
		1: SMBAlert pin go low. The response address header is followed by the ACK signal.
		Packet error checking
		It can be set or cleared by software. It will be cleared by hardware when PEC has been transferred, or
10	DEC	by start or stop condition, or when I2C_CTRL1.EN=0.
12	PEC	0: No PEC transfer
		1: PEC transfer.
		Note: When arbitration is lost, the calculation of PEC is invalid.
		Acknowledge/PEC Position (for data reception)
		It can be set or cleared by software. Or when I2C_CTRL1.EN=0, it will be cleared by hardware.
		0: I2C_CTRL1.ACKEN bit determines whether to send an ACK to the byte currently being received;
		I2C_CTRL1.PEC bit indicates that the byte in the current shift register is PEC.
		1: I2C_CTRL1.ACKEN bit etermines whether to send an ACK to the next received byte;
		I2C_CTRL1.PEC bit indicates that the next byte received in the shift register is PEC.
11	ACKPOS	Note:
		ACKPOS bit can only be used in 2-byte receiving configuration and must be configured before
		receiving data.
		For the second byte of NACK, the I2C_CTRL1.ACKEN bit must be cleared after the
		I2C_STS1.ADDRF bit is cleared.
		To detect the PEC of the second byte, the I2C_CTRL1.PEC bit must be set after the ACKPOS bit is
		configured and when the ADDR event is extended.
10	ACKEN	Acknowledge enable

Dit field	Name	Description				
Bit field	Name	Description Co. 1. 10C CTPL 1 EN. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.				
		It can be set or cleared by software. Or when I2C_CTRL1.EN equals to 0, it will be cleared by				
		hardware.				
		0: No acknowledge send;				
		1: Send an acknowledge after receiving a byte				
		Stop generation				
		It can be set or cleared by software. Or it will be cleared by hardware when a stop condition is				
		detected. Or it will be set by hardware when SMBus timeout error is detected,.				
		In the master mode:				
		0: No stop condition generates;				
9	STOPGEN	1: Generate a stop condition.				
	BTOT GET	In the slave mode:				
		0: No stop condition generates;				
		1: Release SCL and SDA lines after the current byte.				
		Note: When the STOPGEN, STARTGEN or PEC bit is set, the software should not take any write				
		operation to I2C_CTRL1 until this bit is cleared by hardware. Otherwise, the STOPGEN,				
		STARTGEN or PEC bits may be set twice.				
		Start generation				
		It can be set or cleared by software. Or it will be cleared by hardware when the start condition is				
8	STARTGEN	transferred or I2C_CTRL1.EN=0.				
		0: No start condition generates;				
		1: Generate a start conditions.				
		Clock extending disable (Slave mode)				
		This bit determines whether to pull SCL low when the data is not ready(I2C_STS1.ADDRF or				
7	NOEXTEND	I2C_STS1.BSF flag is set) in slave mode, and is cleared by software reset				
		0: Enable Clock extending.				
		1: Disable Clock extending.				
		General call enable				
6	GCEN	0: Disable General call. not respond(NACK) to the address 00h;				
		1: Enable General call. respond(ACK) the address 00h.				
		PEC enable				
5	PECEN	0: Disable PEC module;				
		1: Enable PEC module.				
		ARP enable				
		0: Disable ARP;				
4	ARPEN	1: Enable ARP.				
		If I2C_CTRL1.SMBTYPE=0, the default address of SMBus device is used.				
		If I2C_CTRL1.SMBTYPE=1, the host address of SMBus is used.				
		SMBus type				
3	SMBTYPE	0: Device				
-		1: Host				
2	Reserved	Reserved, the reset value must be maintained.				
1	SMBMODE	SMBus mode				
1	SMDMODE	מאומים ווועוב				

Bit field	Name	Description					
		0: I2C mode;					
		1: SMBus mode.					
		I2C Peripheral enable					
		0: Disable I2C module;					
	EN	1: Enable I2C module					
0	EN	Note: If this bit is cleared when the communication is in progress, the I2C module is disabled and					
		returns to the idle state after the current communication ends,all bits will be cleared.					
		In master mode, this bit must never be cleared until the communication has ended.					

22.6.3 I2C Control register 2 (I2C_CTRL2)

Address offset: 0x04 Reset value: 0x0000

1:	5	13	12	11	10	9	8	7	6	5					0
	Reserved	ı	DMA LAST	DMA EN	BUFINT EN	EVTINT EN	ERRINT EN	Rese	rved		1	CLKFR	EQ[5:0]	1	
			rw	rw	rw	rw	rw					r	w		

Bit field	Name	Description
15:13	Reserved	Reserved, the reset value must be maintained.
12	DMALAST	DMA last transfer
		0: Next DMA EOT is not the last transfer
		1: Next DMA EOT is the last transfer
		Note: This bit is used in the master receiving mode, so that a NACK can be generated when
		data is received for the last time.
11	DMAEN	DMA requests enable
		0: Disable DMA
		1: Enable DMA
10	BUFINTEN	Buffer interrupt enable
		0: When I2C_STS1.TXDATE=1 or I2C_STS1.RXDATNE=1, any interrupt is not generated.
		1: If I2C_CTRL2.EVTINTEN= 1,When I2C_STS1.TXDATE=1 or I2C_STS1.RXDATNE= 1,
		interrupt will be generated.
9	EVTINTEN	Event interrupt enable
		0: Disable event interrupt;
		1: Enable event interrupt
		This interrupt is generated when:
		I2C_STS1.STARTBF = 1 (Master)
		I2C_STS1.ADDR F = 1 (Master/Slave)
		$I2C_STS1.ADD10F = 1$ (Master)
		I2C_STS1.STOPF = 1 (Slave)
		I2C_STS1.BSF = 1 with no I2C_STS1.TXDATE or I2C_STS1.RXDATNE event
		I2C_STS1.TXDATE = 1 if I2C_CTRL2.BUFINTEN = 1
		I2C_STS1.RXDATNE = 1 if I2C_CTRL2.BUFINTEN = 1

Bit field	Name	Description
8	ERRINTEN	Error interrupt enable
		0: Disable error interrupt;
		1: Enable error interrupt.
		This interrupt is generated when:
		I2C_STS1.BUSERR = 1;
		I2C_STS1.ARLOST = 1;
		I2C_STS1.ACKFAIL = 1;
		I2C_STS1.OVERRUN = 1;
		I2C_STS1.PECERR = 1;
		I2C_STS1.TIMOUT = 1;
		I2C_STS1.SMBALERT = 1.
7:6	Reserved	Reserved, the reset value must be maintained.
5:0	CLKFREQ[5:0]	I2C Peripheral clock frequency
		CLKFREQ[5:0] should be the APB clock frequency to generate the correct timming.
		000000: Disable
		000001: Disable
		000010: 2MHz
		000011: 3MHz
		100100: 36MHz
		100101~111111: Disable.

22.6.4 I2C Own address register 1 (I2C_OADDR1)

Address offset: 0x08 Reset value: 0x0000

Bit field	Name	Description					
15	ADDRMODE	Addressing mode (slave mode)					
		0: 7-bit slave address					
		1: 10-bit slave address					
14	Reserved	st always be kept as' 1' by the software.					
13:10	Reserved	Reserved, the reset value must be maintained.					
9:8	ADDR[9:8]	Interface address					
		9~8 bits of the address.					
		Note: don't care these bits in 7-bit address mode					
7:1	ADDR[7:1]	Interface address					
		7~1 bits of the address.					
0	ADDR0	Interface address					

Bit field	Name	Description
		0 bit of the address.
		Note: don't care these bits in 7-bit address mode

22.6.5 I2C Own address register 2 (I2C_OADDR2)

Address offset: 0x0C Reset value: 0x0000

Bit field	Name	Description
15:8	Reserved	Reserved, the reset value must be maintained.
7:1	ADDR2[7:1]	Interface address
		7~1 bits of address in dual address mode.
0	DUALEN	Dual addressing mode enable
		0: Disable dual address mode, only OADDR1 is recognized;
		1: Enable dual address mode, both OADDR1 and OADDR2 are recognized.
		Note: Valid only for 7-bit address mode

22.6.6 I2C Data register (I2C_DAT)

Address offset: 0x10 Reset value: 0x0000

Bit field	Name	Description
15:8	Reserved	Reserved, the reset value must be maintained.
7:0	DATA[7:0]	8-bit data register
		Send or receive data buffer.
		Note: In the slave mode, the address will not be copied into the data register;
		Note: if I2C_STS1.TXDATE =0, data can still be written into the data register;
		Note: If the ARLOST event occurs when processing the ACK pulse, the received byte will not be
		copied into the data register, so it cannot be read.

583

22.6.7 I2C Status register 1 (I2C_STS1)

Address offset: 0x14 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMB ALERT	TIM OUT	Reserved	PEC ERR	OVER RUN	ACK FAIL	AR LOST	BUS ERR	TXDATE	RXDAT NE	Reserved	STOPF	ADDR10F	BSF	ADDRF	START BF
re w0	re wo		re 1110	re wo	re wo	re wo	re w0	*	r			,	,,		

Bit field	Name	Description
15	SMBALERT	SMBus alert
		Writing '0' to this bit by software can clear it, or it is cleared by hardware when
		I2C_CTRL1.EN=0.
		0: No SMBus alert(host mode) or no SMB alert response address header sequence(slave mode);
		1: SMBus alert event is generated on the pin(host mode) or receive SMBAlert response
		address(slave mode)
14	TIMOUT	Timeout or Tlow error
		Writing '0' to this bit by software can clear it, or it is cleared by hardware when
		I2C_CTRL1.EN=0.
		0: No Timeout error;
		1: A timeout error occurred
		Error in the following cases:
		■ SCL has kept low for 25ms (Timeout).
		■ Master cumulative clock low extend time more than 10 ms (Tlow:mext).
		■ Slave cumulative clock low extend time more than 25 ms (Tlow:sext).
		Timeout in slave mode: slave device resets the communication and hardware frees the bus.
		Timeout in master mode: hardware sends the stop condition.
13	Reserved	Reserved, the reset value must be maintained.
12	PECERR	PEC Error in reception
		Writing '0' to this bit by software can clear it, or it is cleared by hardware when
		I2C_CTRL1.EN=0.
		0: No PEC error
		1: PEC error: receiver will returns NACK Whether the I2C_CTRL1.ACKEN bit is enabled
11	OVERRUN	Overrun/Underrun
		Writing '0' to this bit by software can clear it, or it is cleared by hardware when
		I2C_CTRL1.EN=0.
		0: No Overrun/Underrun
		1: Overrun/Underrun
		Set by hardware in slave mode when I2C_CTRL1.NOEXTEND=1, and when receiving a new byte
		in receiving mode, if the data within DAT register has not been read yet, over-run occurs, the new
		received byte will be lost. When transferring a new byte in transfer mode, but there is not new data
		that has not been written in DAT register, under-run occurs which leads that the same byte will be
		send twice.
10	ACKFAIL	Acknowledge failure
		Writing '0' to this bit by software can clear it, or it is cleared by hardware when
		I2C_CTRL1.EN=0.
		0: No acknowledge failed;
		1: Acknowledge failed.
	+	

Bit field	Name	Description
		Writing '0' to this bit by software can clear it, or it is cleared by hardware when
		I2C_CTRL1.EN=0.
		0: No arbitration lost;
		1: Arbitration lost.
		When the interface loses control of the bus to another host, the hardware will set this bit to '1', and
		the I2C interface will automatically switch back to slave mode (I2C_STS2.MSMODE=0).
		Note: In SMBUS mode, the arbitration of data in slave mode only occurs in the data stage or the
		acknowledge transfer interval (excluding the address acknowledge).
8	BUSERR	Bus error
		Writing '0' to this bit by software can clear it, or it is cleared by hardware when
		I2C_CTRL1.EN=0.
		0: No start or stop condition error
		1: Start or stop condition error
7	TXDATE	Data register empty (transmitters)
		Writing data to DAT register by software can clear this bit; Or after a start or stop condition occurs,
		or automatically cleared by hardware when I2C_CTRL1.EN=0.
		0: Data register is not empty;
		1: Data register is empty.
		When sending data, this bit is set to' 1' when the data register is empty, and it is not set at the
		address sending stage.
		If a NACK is received, or the next byte to be sent is PEC(I2C_CTRL1.PEC=1), this bit will not be
		set.
		Note: After the first data to be sent is written, or data is written when BSF is set, the TXDATE bit
		cannot be cleared, because the data register is still empty.
6	RXDATNE	Data register not empty(receivers)
		This bit is cleared by software reading and writing to the data register, or cleared by hardware when
		I2C_CTRL1.EN=0.
		0: Data register is empty;
		1: Data register is not empty.
		During receiving data, this bit is set to' 1' when the data register is not empty, and it is not set at the
		address receiving stage.
		RXDATNE is not set when the ARLOST event occurs.
		Note: When BSF is set, the RXDATNE bit cannot be cleared when reading data, because the data
		register is still full.
5	Reserved	Reserved, the reset value must be maintained.
4	STOPF	Stop detection (slave mode)
		After the software reads the STS1 register, the operation of writing to the CTRL1 register will clear
		this bit, or when I2C_CTRL1.EN=0, the hardware will clear this bit.
		0: No stop condition is detected;
		1: Stop condition is detected.
		After a ACK, the hardware sets this bit to' 1' when the slave device detects a stop condition on the
		bus.

Bit field	Name	Description
		Note: I2C_STS1.STOPF bit is not set after receiving NACK.
3	ADDR10F	10-bit header sent (Master mode)
		After the software reads the STS1 register, the operation of writing to the CTRL1 register will clear
		this bit, or when I2C_CTRL1.EN=0, the hardware will clear this bit.
		0: No ADD10F event;
		1: Master has sent the first address byte.
		In 10-bit address mode, when the master device has sent the first byte, the hardware sets this bit to'
		1'.
		Note: After receiving a NACK, the I2C_STS1.ADDR10F bit is not set.
2	BSF	Byte transfer finished
		After the software reads the STS1 register, reading or writing the data register will clear this bit; Or
		after sending a start or stop condition in sending mode, or when I2C_CTRL1.EN=0, this bit is
		cleared by hardware.
		0: Byte transfer does not finish.
		1: Byte transfer finished.
		When I2C_CTRL1.NOEXTEND =0, the hardware sets this bit to' 1' in the following cases:
		In receiving mode, when a new byte (including ACK pulse) is received and the data register has not
		been read (I2C_STS1.RXDATNE=1).In sending mode, when a new data is to be transmitted and
		the data register has not been written with the new data (I2C_STS1.TXDATE=1).
		Note: After receiving a NACK, the BSF bit will not be set.
		If the next byte to be transferred is PEC (I2C _STS2.TRF is' 1' and I2C_CTRL1.PEC is' 1'), the
		BSF bit will not be set.
1	ADDRF	Address sent (master mode) / matched (slave mode)
		After the STS1 register is read by software, reading the STS2 register will clear this bit, or when
		I2C_CTRL1.EN=0, it will be cleared by hardware.
		0: Address mismatch or no address received(slave mode) or Address sending did not end(master
		mode);
		1: Received addresses matched(slave mode) or Address sending ends(master mode)
		In master mode:
		In 7-bit address mode, this bit is set to' 1' after receiving the ACK of the address. In 10-bit address
		mode, this bit is set to' 1' after receiving the ACK of the second byte of the address.
		In slave mode:
		Hardware sets this bit to' 1' (when the corresponding setting is enabled) when the received slave
		address matches the content in the OADDR register, or a general call or SMBus device default
		address or SMBus host or SMBus alter is recognized.
		Note: After receiving NACK, the I2C_STS1.ADDRF bit will not be set.
0	STARTBF	Start bit (Master mode)
		After the STS1 register is read by software, writing to the data register will clear this bit, or when
		I2C_CTRL1.EN=0, the hardware will clear this bit.
		0: Start condition was not sent;
		1: Start condition has been sent.
		This bit is set to' 1' when the start condition is sent.

22.6.8 I2C Status register 2 (I2C_STS2)

Address offset: 0x18 Reset value: 0x0000

Bit field	Name	Description
15:8	PECVAL[7:0]	Packet error checking register
		Stores the internal PEC value When I2C_CTRL1.PECEN =1.
7 DUALFLAG		Dual flag(Slave mode)
		Hardware clears this bit when a stop condition or a repeated start condition is generated, or when
		I2C_CTRL1.EN=0.
		0: Received address matches the content in OADDR1;
		1: Received address matches the content in OADDR2.
6	SMBHADDR	SMBus host header (Slave mode)
		Hardware clears this bit when a stop condition or a repeated start condition is generated, or when
		I2C_CTRL1.EN=0.
		0: SMBus host address was not received;
		1: when I2C_CTRL1.SMBTYPE=1 and I2C_CTRL1.ARPEN=1, SMBus host address is
		received.
5	SMBDADDR	SMBus device default address (Slave mode)
		Hardware clears this bit when a stop condition or a repeated start condition is generated, or when
		I2C_CTRL1.EN=0.
		0: The default address of SMBus device has not been received;
		1: when I2C_CTRL1.ARPEN=1, the default address of SMBus device is received.
4	GCALLADDR	General call address(Slave mode)
		Hardware clears this bit when a stop condition or a repeated start condition is generated, or when
		I2C_CTRL1.EN=0.
		0: No general call address was received;
		1: when I2C_CTRL1.GCEN=1, general call address was received.
3	Reserved	Reserved, the reset value must be maintained.
2	TRF	Transmitter/receiver
		After detecting the stop condition (I2C_STS1.STOPF=1), repeated start condition or bus
		arbitration loss (I2C_STS1.ARLOST=1), or when I2C_CTRL1.EN=0, the hardware clears it.
		0: Data receiving mode;
		1: Data transmission mode;
		At the end of the whole address transmission stage, this bit is set according to the R/W bit of the
		address byte.
1	BUSY	Bus busy
		Hardware clears this bit when a stop condition is detected.

Bit field	Name	Description
		0: No data communication on the bus;
		1: Data communication on the bus.
		When detecting that SDA or SCL is low level, the hardware sets this bit to' 1';
		Note:This bit indicates the bus communication currently in progress, and this information is still
		updated when the interface is disabled (I2C_CTRL1.EN=0).
0	MSMODE	Master/slave mode
		Hardware clears this bit when a stop condition is detected on the bus, arbitration is lost
		(I2C_STS1.ARLOST=1), or when I2C_CTRL1.EN=0.
		0: In slave mode;
		1: In master mode.
		When the interface is in the master mode (I2C_STS1.STARTBF=1), the hardware sets this bit;

22.6.9 I2C Clock control register (I2C_CLKCTRL)

Address offset: 0x1c

Reset value: 0x0000

Note: 1. F_{PCLK1} is required to be an integer multiple of 10 MHz, so that a fast clock of 400KHz can be generated correctly.

2. The CLKCTRL register can only be set when I²C is turned off (I2C_CTRL1.EN=0)

15	14	13	12	11										0
FSMODE	DUTY	Rese	rved				1		CLKCTI	RL[11:0]				
					1	1	1	1		1	1	1	1	 1
rw	rw								rv	w				

Bit field	Name	Description
15	FSMODE	I2C master mode selection
		0: I2C in standard mode(duty cycle defaults to 1/1);
		1: I2C in fast mode(duty cycle can be configured).
14	DUTY	Duty cycle in fast mode
		0: Tlow/Thigh = 2;
		1: Tlow/Thigh = 16/9
13:12	Reserved	Reserved, the reset value must be maintained.
11:0	CLKCTRL[11:0]	Clock control register in Fast/Standard mode (Master mode)
		This division factor is used to set the SCL clock in the master mode.
		■ If duty cycle = Tlow/Thigh = 1/1:
		$CLKCTRL = f_{PCLK1}(Hz)/100000/2$
		$Tlow = CLKCTRL \times T_{PCLK1}$
		Thigh = $CLKCTRL \times T_{PCLK1}$
		■ If duty cycle = Tlow/Thigh = 2/1:
		$CLKCTRL = f_{PCLK1}(Hz)/100000/3$
		Tlow = 2 ×CLKCTRL×TPCLK1
		Thigh = $CLKCTRL \times T_{PCLK1}$

Bit field	Name	Description
		■ If duty cycle = Tlow/Thigh = 16/9:
		$CLKCTRL = f_{PCLK1}(Hz)/100000/25$
		$Tlow = 16 \times CLKCTRL \times T_{PCLK1}$
		Thigh = $9 \times CLKCTRL \times T_{PCLK1}$
		For example, if $f_{PCLK1}(Hz) = 8MHz$, duty cycle = 1/1, $CLKCTRL = 8000000/100000/2 = 0x28$.
		Note: 1. The minimum setting value is 0x04 in standard mode and 0x01 in fast mode;
		2. $T_{high} = T_{r(SCL)} + T_{w(SCLH)}$. See the definitions of these parameters in the data sheet for details.
		3. $T_{low} = T_{f(SCL)} + T_{w(SCLL)}$, see the definitions of these parameters in the data sheet for details;
		4. These delays have no filters;

22.6.10 I2C Rise time register (I2C_TMRISE)

Address offset: 0x20

Reset value: 0x0002

Note: The I2C_TMRISE register function is only valid in master mode. changed when I2C is disabled (I2C_CTRL1.EN=0).

Bit field	Name	Description
15:6	Reserved	Reserved, the reset value must be maintained.
5:0	TMRISE[5:0]	Maximum rise time in fast/standard mode (master mode).
		These bits must be set to the maximum SCL rising time given in the I2C bus specification, and
		incremented step is 1.
		For example, the maximum allowable SCL rise time in standard mode is 1000ns. if the value in
		I2C_CTRL2.CLKFREQ [5:0] is equal to 0x08 and TPCLK1=125ns ,09h(1000ns/125 ns + 1) must
		be written in TMRISE[5:0],.
		If the result is not an integer, write the integer part to TMRISE[5:0] to ensure the thigh parameter.

23 Universal synchronous asynchronous receiver transmitter (USART)

23.1 Introduction

USART is a full-duplex universal synchronous/asynchronous serial transceiver module. This interface is a highly flexible serial communication device that can perform full-duplex data exchange with external devices.

The USART has programmable transmit and receive baud rates and can communicate continuously using DMA. It also supports multiprocessor communication, LIN mode, synchronous mode, single-wire half-duplex communication, smart card asynchronous protocol, IrDA SIR ENDEC function, and hardware flow control function.

23.2 Main features

- Full-duplex operation
- Single-wire half-duplex operation
- Baud rate generator, the highest baud rate can reach 4.5Mbit/s
- Support serial data frame structure with 8 or 9 data bits, 1 or 2 stop bits
- Generation and checking of supported parity bits
- Support hardware flow control: RTS flow control and CTS flow control
- Support DMA receiving and sending
- Support multi-processor communication mode, can enter mute mode, wake up by idle detection or address mark detection
- Synchronous mode, allowing users to control bidirectional synchronous serial communication in master mode
- Comply with ISO7816-3 standard, support smart card asynchronous protocol
- IrDA SIR ENDEC function: IrDA normal mode and IrDA low power mode
- LIN (Local Area Network) mode
- Support data overflow error detection, frame error detection, noise error detection, parity error detection
- Interrupt requests include: transmit data register empty, CTS flag, transmit complete, receive data ready to read, data overflow detected, idle line detected, parity error, LIN break frame detection, noise flag/overflow error/frame error in multi-buffer communication

23.3 Functional block diagram

CPU/DMA Transmit Data Receive Register(TDR) Data(RDR) TX₀-**IrDA** SIR RXO-**ENDEC** Transmit Shift Receive Shift SW_RX O-**BLOCK** Register Register Hardware nRTS Oflow TX control RX control controller nCTS O Tx clock Rx clock Buadrate PCLK-CTRL register generate **BRCF** Interrupt Wake up register STS **GTP USART** register register address CK O

Figure 23-1 USART block diagram

23.4 Function description

As shown in the Figure 23-1, the bidirectional communication of any USART needs to use the RX and TX pins of the external connection. Among them, TX is the output pin for serial data transmission. When the transmitter is active and not sending data, the TX pin is pulled high. When the transmitter is inactive, the TX pin reverts to the I/O port configuration. RX is an input pin for serial data reception, data is recovered by oversampling technique.

The data packets of serial communication are transmitted from the sending device to the RX interface of the receiving

device through its own TX interface, and the bus is in an idle state before sending or receiving. Frame format is: 1 start bit + 8 or 9 data bits (least significant bit first) + 1 parity bit (optional) + 0.5, 1, 1.5 or 2 stop bit.

Use the fractional baud rate generator to configure transmit and receive baud rates.

According to the block diagram, when using the hardware flow control mode, the nRTS output and nCTS input pins are required. When the USART receiver is ready to receive new data, nRTS becomes low level. If nCTS is valid (pulled to a low level), the next data is sent, otherwise the next frame of data is not sent.

When using synchronous mode, the CK pin is required. The CK pin is used for clock output for synchronous transfers. Clock phase and polarity are software programmable. During the start and stop bits, the CK pin does not output clock pulses. The CK pin is also used when using smart card mode.

23.4.1 USART frame format

The start bit of the data frame is low.

The word length can be selected as 8 or 9 bits by programming the USART_CTRL1.WL bits, least significant bit first.

The stop bit of the data frame is high.

An idle frame is a complete data frame consisting of '1's, including the start bit. followed by the start bit of a data frame containing the data.

A break frame is a complete data frame consisting of '0's, including the stop bit. at the end of the break frame, the transmitter inserts 1 or 2 more stop bits ('1') to acknowledge the start bit.

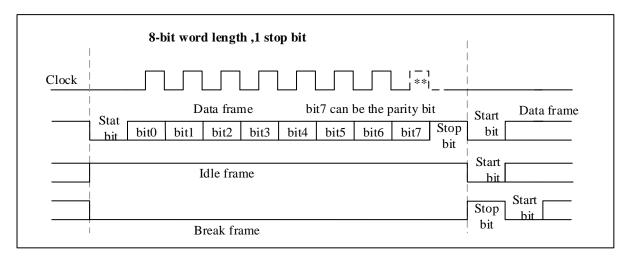
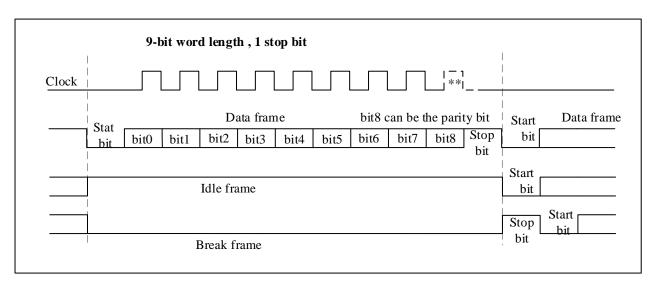



Figure 23-2 word length = 8 setting

Figure 23-3 word length = 9 setting

23.4.2 Transmitter

After the transmitter is enabled, the data entered into the transmit shift register is sent out through the TX pin.

23.4.2.1 Idle frame

Setting USART_CTRL1.TXEN will cause the USART to transmit an idle frame before the first data frame.

23.4.2.2 Character send

Idle frames are followed by characters sent. Each character is preceded by a low start bit. The transmitter sends 8-bit or 9-bit data according to the configuration of the data bit length, with the least significant bit first. If USART_CTRL1.TXEN is reset during a data transfer, it will cause the baud rate counter to stop counting and the data being transferred will be corrupted.

23.4.2.3 Stop bit

The characters are followed by stop bits, the number of which can be configured by setting USART_CTRL2. STPB[1:0].

Table 23-1 Stop bit configuration

USART_CTRL2.STPB[1:0]	Stop bit length (bits)	functional description
00	1	default
01	0.5	Receiving in Smartcard mode
10	2	General USART mode, single-wire mode and modem mode.
11	1.5	Transmitting and receiving in Smartcard mode

8-bit Word length (WL bit is reset) **CLOCK** bit7 can be the parity bit Data frame Start Stat bit0 bit1 bit2 bit3 bit5 bit6 bit7 Data frame 0.5 Stop bit 0.5Stop bit Data frame Data frame bit7 can be the parity bit Start Stat Stop bit0 bit1 bit2 bit3 bit4 bit5 bit6 bit7 bit 1|Stop bit Start Data frame Data frame bit7 can be the parity bit Stat bit bit0 bit1 bit2 bit3 bit4 bit5 bit6 bit7 1.5Stop bits 1.5 Stop bits bit7 can be the parity bit Data frame Start Data frame bit2 bit1 bit3 bit4 bit5 bit6 bit7 2Stop bits bit0 bit

Figure 23-4 configuration stop bit

23.4.2.4 Break frame

2 Stop bits

Use USART CTRL1.SDBRK to send the break character. When there is 8-bit data, the break frame consists of 10 bits of low level, followed by a stop bit; when there is 9-bit data, the break frame consists of 11 bits of low level, followed by a stop bit.

After the break frame is sent, USART_CTRL1.SDBRK is cleared by hardware, and the stop bit of the break frame is being sent. Therefore, to send a second break frame, USART_CTRL1.SDBRK should be set after the stop bit of the previous break frame has been sent.

If software resets the USART_CTRL1.SDBRK bit before starting to send the break frame, the break frame will not be sent.

23.4.2.5 Transmitter process

- Enable USART_CTRL1.UEN to activate USART;
- Configure the transmitter's baud rate, data bit length, parity bit (optional), the number of stop bits or DMA configuration;
- Activate the transmitter (USART_CTRL1.TXEN); 3.
- Send each data to be sent to the USART_DAT register through the CPU or DMA, and the write operation to the USART_DAT register will clear USART_STS.TXDE;
- After writing the last data word in the USART_DAT register, wait for USART_STS.TXC =1, which indicates 5.

the end of the transmission of the last data frame.

23.4.2.6 Single byte communication

A write to the USART_DAT register clears the USART_STS.TXDE bit.

The USART_STS.TXDE bit is set by hardware when the data in the TDR register is transferred to the transmit shift register (indicating that data is being transmitted). An interrupt will be generated if USART_CTRL1.TXDEIEN is set. At this point, the next data can be sent to the USART_DAT register because the TDR register has been cleared and will not overwrite the previous data.

Write operation to USART_DAT register:

- When the transmit shift register is not sending data and is in an idle state, the data is directly put into the shift register for transmission, and the USART_STS.TXDE bit is set by hardware;
- When the transmit shift register is sending data, the data is stored in the TDR register, and after the current transmission is completed, the data is put into the shift register.

When a frame containing data is sent and USART_STS.TXDE=1, the USART_STS.TXC bit is set to '1' by hardware. An interrupt is generated if USART_CTRL1.TXCIEN is '1'. USART_STS.TXC bit is cleared by a software sequence (read USART_STS register first, then write USART_DAT register).

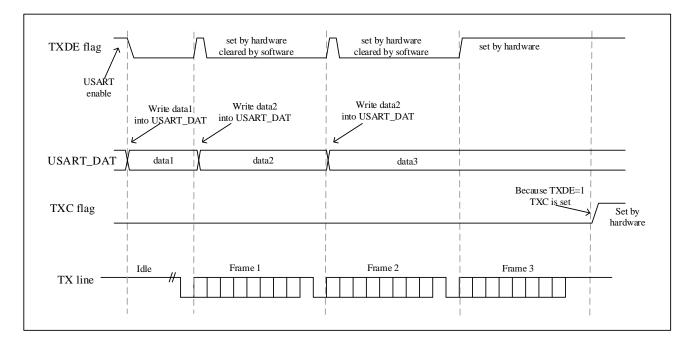


Figure 23-5 TXC/TXDE changes during transmission

23.4.3 Receiver

23.4.3.1 Start bit detection

When the received sampling sequence is: 1 1 1 0 X 0 X 0 X 0 0 0 0, it is considered that a start bit is detected.

The samples at the 3rd, 5th, and 7th bits, and the samples at the 8th, 9th, and 10th bits are all '0' (that is, 6 '0'), then confirm the receipt of the start bit, the USART_STS.RXDNE flag bit is set, and if USART_CTRL1.RXDNEIEN=1,

an interruption occurs and will not Set the NEF noise flag.

The samples of the 3rd, 5th, and 7th bits have two '0' points, and at the same time, the samples of the 8th, 9th, and 10th bits have three '0' points, then the start bit is confirmed, but it will be set NEF noise flag.

The samples of the 3rd, 5th, and 7th bits have three '0' points, and at the same time, the samples of the 8th, 9th, and 10th bits have two '0' points, then the start bit is confirmed, but it will be set NEF noise flag.

The samples of the 3rd, 5th, and 7th bits have two '0' points, and at the same time, the samples of the 8th, 9th, and 10th bits have two '0' points, then it is confirmed that the start bit is received, but it will be set bit NEF noise flag.

If the sampling values in the 3rd, 5th, 7th, 8th, 9th and 10th bits cannot meet the above four requirements, the USART receiver thinks that it has not received the correct start bit, and will exit the start bit detection and Return to idle state and wait for falling edge.

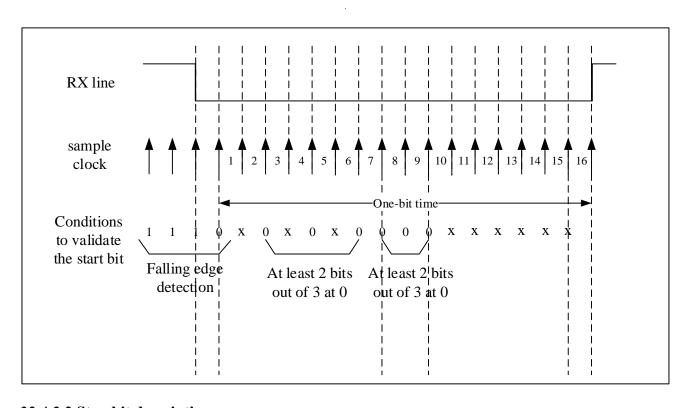


Figure 23-6 Start bit detection

23.4.3.2 Stop bit description

During data reception, the number of data stop bits can be configured by the USART_CTRL2.STPB[1:0]. In normal mode, 1 or 2 stop bits can be selected. In Smartcard mode, 0.5 or 1.5 stop bits can be selected.

- 1. 0.5 stop bits (receive in smartcard mode): 0.5 stop bits are not sampled. Therefore, if 0.5 stop bits is selected, framing errors and broken frames cannot be detected.
- 2. 1 stop bit: the sampling of one stop bit is carried out through three points, and the 8th, 9th and 10th sampling bits are selected.
- 3. 1.5 stop bit (Smartcard mode): when sending in Smartcard mode, the device must check whether the data is sent correctly. So the receiver function block must be activated (USART_CTRL1.RXEN=1) and sample the signal

on the data line during the transmission of the stop bit. If a parity error occurs, the smartcard will pull down the data line when the transmitter samples the NACK signal, that is, within the time corresponding to the stop bit on the bus, indicating that a framing error has occurred. The USART_STS.FEF is set together with the USART_STS.RXDNE at the end of the 1.5th stop bit. The 1.5 stop bits were sampled at points 16, 17 and 18. The 1.5 stop bits can be divided into two parts: one is 0.5 clock cycles, during which nothing is done. This is followed by the stop bit of 1 clock cycle, which is sampled at the midpoint of this period of time. For details, see 23.4.14 Smartcard mode.

4. 2 stop bits: the sampling of the 2 stop bits is completed at the 8th, 9th and 10th sampling points of the first stop position. If a frame error is detected during the first stop bit, the frame error flag is set. The second stop bit does not detect framing error. The USART_STS.RXNE flag will be set at the end of the first stop bit.

23.4.3.3 Receiver process

- 1. Enable USART_CTRL1.UEN to activate USART;
- 2. Configure the receiver's baud rate, data bit length, parity bit (optional), stop bit number or DMA configuration;
- 3. Activate the receiver (USART CTRL1.RXEN) and start looking for the start bit;
- 4. The receiver receives 8-bit or 9-bit data according to the configuration of the data bit length, and the least significant bit of the data is first shifted from the RX pin into the receive shift register;
- 5. When the data of the received shift register is moved to the RDR register, USART_STS.RXDNE is set, and the data can be read out. If USART_CTRL1.RXNEIEN is 1, an interrupt will be generated;
- 6. When an overflow error, noise error, or frame error is detected in the received frame, the corresponding error flag status bit will be set. If USART_CTRL1.RXEN is reset during data transmission, the data being received will be lost;
- 7. USART_STS.RXDNE is set after receiving data, and a read operation of USART_DAT can clear this bit:
- During multi-buffer communication, the data register is cleared by the DMA read operation;
- During single-buffer communication, it is cleared by software reading the USART_DAT register.

23.4.3.4 Idle frame detection

The receiver of the USART can detect idle frames. An interrupt is generated if USART_CTRL1.IDLEIEN is '1'. USART_STS.IDLEF bit is cleared by a software sequence (read USART_STS register first, then read USART_DAT register).

23.4.3.5 Break frame detection

The frame error flag(USART_STS.FEF) is set by hardware when the receiver detects a break frame. It can be cleared by a software sequence (read USART_STS register first, then read USART_DAT register).

23.4.3.6 Framing error

A framing error occurs when a stop bit is not received and recognized at the expected time. At this time, the frame error flag USART_STS.FEF will be set by hardware, and the invalid data will be transferred from the shift register to the USART_DAT register. During single-byte communication, no framing error interrupt will be generated because it occurs with USART_STS.RXDNE and the hardware will generate an interrupt when the USART_STS.RXDNE flag is set. In multi-buffer communication mode, an interrupt will be generated if the USART_CTRL3.ERRIEN bit

is set.

23.4.3.7 Overrun error

When USART_STS.RXDNE is still '1', when the data currently received in the shift register needs to be transferred to the RDR register, an overflow error will be detected, and the hardware will set USART_STS.OREF. When this bit is set, the value in the RDR register is not lost, but the data in the shift register is overwritten. It is cleared by a software sequence (read USART_STS register first, then write USART_DAT register).

When an overflow error occurs, USART_STS.RXDNE is '1', and an interrupt is generated. If the USART_CTRL3.ERRIEN bit is set, an interrupt will be generated when the USART_STS.OREF flag is set in multi-buffer communication mode.

23.4.3.8 Noise error

USART_STS.NEF is set by hardware when noise is detected on a received frame. It is cleared by software sequence (read USART_STS register first, then write USART_DAT register). During single-byte communication, no noise interrupt generated because it occurs with USART_STS.RXDNE and the hardware will generate an interrupt when the USART_STS.RXDNE flag is set. In multi-buffer communication mode, an interrupt is generated when the USART_STS.NEF flag is set if the USART_CTRL3.ERRIEN bit is set.

Received bits Sample value **NE status Data validity** 0 000 0 Effective 001 1 0 be invalid 010 0 1 be invalid 011 1 1 be invalid 100 1 0 be invalid 101 1 1 be invalid 110 1 1 be invalid 0 1 111 Effective

Table 23-2 Data sampling for noise detection

23.4.4 Generation of fractional baud rate

The baud rate of the USART can be configured in the USART_BRCF register. This register defines the integer and fractional parts of the baud rate divider. The baud rate of the transmitter and receiver should be configured to the same value. Be careful not to change the value of the USART_BRCF register during communication, because the baud rate counter will be replaced by the new value of the baud rate register.

TX / RX band rate = $f_{PCLK} / (16 *USARTDIV)$

where f_{PCLK} is the clock provided to the peripheral:

■ PCLK1 is used for USART2, USART3, UART4, UART5, up to 36MHz;

Nanshan District, Shenzhen, 518057, P.R.China

■ PCLK2 is used for USART1, UART6, UART7, up to 72MHz.

USARTDIV is an unsigned fixed-point number.

23.4.4.1 USARTDIV and USART_BRCF register configuration

Example 1:

If USARTDIV = 27.75, then:

 $DIV_Decimal = 16*0.75 = 12 = 0x0C$

 $DIV_Integer = 27=0x1B$

So $USART_BRCF = 0x1BC$

Example 2:

If USARTDIV = 20.98, then:

 $DIV_Decimal = 16*0.98 = 15.68$

Nearest integer: DIV_Decimal = 16 = 0x10, out of configurable range, so a carry to integer is required

So DIV_Integer = 20+1 = 21 = 0x15

 $DIV_Decimal = 0x0$

So USART_BRCF = 0x150

Example 3:

If $USART_BRCF = 0x19B$:

 $DIV_Integer = 0x19 = 25$

 $DIV_Decimal = 0x0B = 11$

So USARTDIV = 25+11/16 = 25.6875

Table 23-3 Error calculation when setting baud rate

Baud rate	Baud rate fPCLK=36MHz			f _{PCLK} =72MHz			
serial number	Kbps	reality	Set value in register	Error(%)	reality	Set value in register	Error(%)
1	2.4	2.4	937.5	0%	2.4	1875	0%
2	9.6	9.6	234.375	0%	9.6	468.75	0%
3	19.2	19.2	117.1875	0%	19.2	234.375	0%
4	57.6	57.6	39.0625	0%	57.6	78.125	0%
5	115.2	115.384	19.5	0.15%	115.2	39.0625	0%

6	230.4	230.769	9.75	0.16%	230.769	19.5	0.16%
7	460.8	461.538	4.875	0.16%	461.538	9.75	0.16%
8	921.6	923.076	2.4375	0.16%	923.076	4.875	0.16%
9	2250	2250	1	0%	2250	2	0%
10	4500	impossible	impossible	impossible	4500	1	0%

Notes: The lower the clock frequency of the CPU, the lower the error for a particular baud rate.

23.4.5 Receiver's tolerance clock deviation

Variations due to transmitter errors (including transmitter side oscillator variations), receiver side baud rate rounding errors, receiver side oscillator variations, variations due to transmission lines (usually due to The inconsistency between the low-to-high transition timing of the transceiver and the high-to-low transition timing of the transceiver), these factors will affect the overall clock system variation. Only when the sum of the above four changes is less than the tolerance of the USART receiver, the USART asynchronous receiver can work normally.

When receiving data normally, the tolerance of the USART receiver depends on the selection of the data bit length and whether it is generated using a fractional baud rate. The tolerance of the USART receiver is equal to the maximum tolerable variation.

Table 23-4 when DIV_Decimal = 0. Tolerance of USART receiver

WL bit	NF is an error	NF is don't care
0	3.75%	4.375%
1	3.41%	3.97%

Table 23-5 when DIV_Decimal != 0. Tolerance of USART receiver

WL bit	NF is an error	NF is don't care
0	3.33%	3.88%
1	3.03%	3.53%

23.4.6 Parity control

Parity can be enabled by configuring the USART_CTRL1.PCEN bit.

When the parity bit is enabled for transmission, A parity bit is generated, parity check is performed on reception.

Table 23-6 Frame format

WL bit	PCEN bit	USART frame
--------	----------	-------------

0	0	Start bit 8-bit data Stop bit
0	1	Start bit 7 bits of data Parity bit Stop bit
1	0	Start bit 9-bit data Stop bit
1	1	start bit 8-bit data parity bit stop bit

Even parity

Configure USART CTRL1.PSEL to 0, and even parity can be selected.

Make the number of '1' in the transmitted data (including parity bit) be an even number. That is: if Data=11000101, there are 4 '1's, then the parity bit will be '0' (4 '1' in total). After the data and check digit are sent to the receiver, the receiver calculates the number of 1s in the data again. If it is an even number, the check is passed, indicating that no errors occurred during the transmission process. If it is not even, it means that an error has occurred, the USART_STS.PEF flag is set to '1', and if USART_CTRL1.PEIEN is enabled, an interrupt is generated.

Odd parity

Configure USART_CTRL1.PSEL to 1, you can choose odd parity.

Make the number of '1' in the transmitted data (including parity bit) be an odd number. That is: if Data=11000101, there are 4 '1's, then the parity bit will be '1' (5 '1' in total). After the data and check digit are sent to the receiver, the receiver calculates the number of 1s in the data again. If it is an odd number, the check is passed, indicating that no errors occurred during the transmission process. If it is not an odd number, it means that an error has occurred, the USART_STS.PEF flag is set to '1', and if USART_CTRL1.PEIEN is enabled, an interrupt is generated.

23.4.7 DMA application

The USART supports the DMA mode using multi-buffer configuration, which can realize high-speed data communication.

23.4.7.1 Using DMA transmission

Set USART CTRL3.DMATXEN to enable DMA mode when transmitting. When the USART's transmit shift register is empty (USART_STS.TXDE=1), the DMA will transfer the data from the SRAM to the USART_DAT register of the USART.

When using DMA transmission, the process of configuring the DMA channel is as follows:

- 1. Set the address of the data memory. When a data transfer request occurs, the transferred data will be read from this address.
- 2. Set the address of the USART_DAT register. When a data transfer request occurs, this address will be the destination address of the data transfer.
- 3. Set the amount of data to transfer.
- 4. Set the priority of the channel, set whether to use the cyclic mode, the incremental mode of peripherals and memory, the data width of peripherals and memory, the interrupt generated by half of the transfer or the interrupt when the transfer is completed.
- 5. Start the channel.
- 6. After the data transfer is completed, the transfer complete flag (DMA_INTSTS.TXCFx) is set to 1.

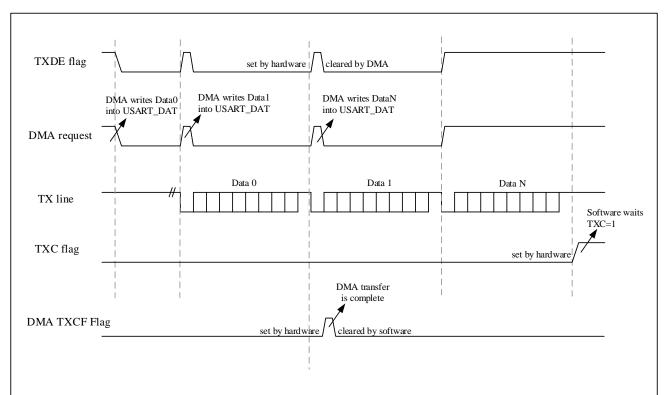
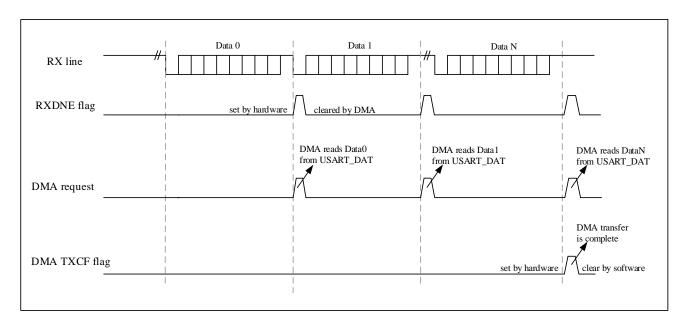


Figure 23-7 Transmission using DMA

23.4.7.2 Using DMA reception

Set USART_CTRL3.DMARXEN to enable DMA mode when receiving. When a byte is received (USART_STS.RXDNE=1), the DMA will transfer the data from the USART_DAT register of the USART to the SRAM.

When using DMA reception, the process of configuring the DMA channel is as follows:


- 1. Set the address of the USART_DAT register. When a data transfer request occurs, this address will be the source address of the data transfer.
- 2. Set the address of the data memory. When a data transfer request occurs, the transferred data will be written to this address.
- 3. Set the amount of data to transfer.
- 4. Set the priority of the channel, set whether to use the cyclic mode, the incremental mode of peripherals and memory, the data width of peripherals and memory, the interrupt generated by half of the transfer or the interrupt when the transfer is completed.

602

5. Start the channel.

Figure 23-8 Reception using DMA

In multi-buffer communication mode, the error flag will be set when there is a frame error, overrun or noise error. An interrupt will be generated if the error interrupt is enabled (USART_CTRL3.ERRIEN=1).

23.4.8 Hardware flow control

USART supports hardware flow control. The purpose is to coordinate the sending and receiving parties so that the data will not be lost. The connection method is shown in the following figure.

DEVICE 1 DEVICE 2 ΤX RXTX control RX control CTS RTS RXTXRX control TX control RTS **CTS**

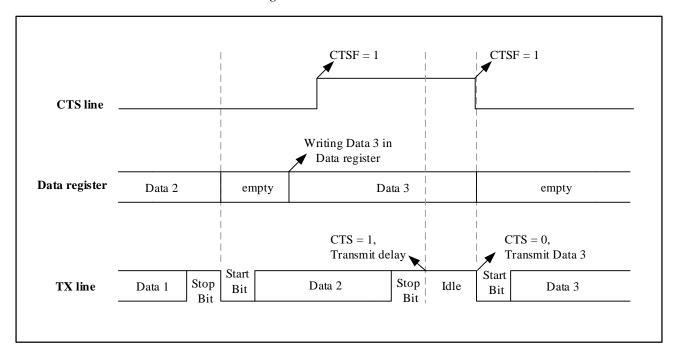
Figure 23-9 hardware flow control between two USART

23.4.8.1 RTS flow control

Set USART_CTRL3.RTSEN to enable RTS. RTS is the output signal used to indicate that the receiver is ready. When data arrives in RDR, pull high nRTS output, notifying the sender to stop data transmission at the end of the current frame. when receiver is ready to receive new data, assert (pull low) the nRTS output.

Waiting to read data Read data register register,RTS high end,RTS low RTS line Start Start Stop Stop RX line Idle Data 1 Data 2 Bit Bit Bit Bit

Figure 23-10 RTS flow control


23.4.8.2 CTS flow control

Set USART_CTRL3.CTSEN to enable CTS. CTS is an input signal, used to judge whether data can be sent to the other device. The low level is valid, and the low level indicates that the device can send data to the other device. If the nCTS signal becomes invalid during data transmission, the transmission will stop after sending the data. If you write data to the data register when nCTS is invalid, the data will not be sent until nCTS is valid.

If the USART_CTRL3.CTSEN bit is set, the USART_STS.CTSF bit will be set high by hardware when the nCTS input changes state. An interrupt will be generated if USART_CTRL3.CTSIEN is enabled.

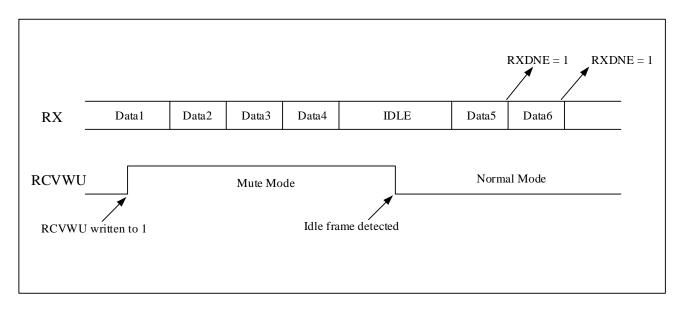
Figure 23-11 CTS flow controls

23.4.9 Multiprocessor communication

USART allows multiprocessor communication. The principle is: multiple processors communicate through USART, and it is necessary to determine who is the master device, and the remaining processors are all slave devices. The TX output of the master device is directly connected to the RX port of all slave device. The TX outputs of the slaves are logically AND together and connected to the RX inputs of the master.

When multi-processor communication is performed, the slave devices are all in mute mode, and the host uses a specific method to wake up a slave device to be communicated when needed, so that the slave device is in an active state and transmits data with the master device.

The USART can wake up from mute mode by idle line detection or address mark detection.


23.4.9.1 Idle line detection

The idle line detection configuration process is as follows:

- 1. Configure the USART CTRL1.WUM bit to 0, and the USART performs idle line detection;
- When USART_CTRL1.RCVWU is set (which can be automatically controlled by hardware or written by software under certain conditions), USART enters mute mode. In mute mode, none of the receive status bits are set, and all receive interrupts are disabled;
- 3. As shown in the Figure 23-12 below, when an idle frame is detected, USART is woken up, and then USART_CTRL1.RCVWU is cleared by hardware. At this time, USART_STS.IDLEF is not set.

Figure 23-12 Mute mode using idle line detection

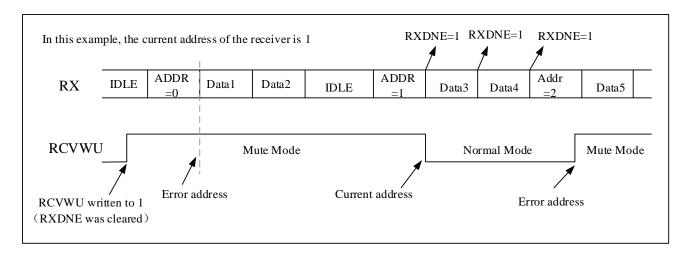
23.4.9.2 Address mark detection

By configuring the USART_CTRL1.WUM bit to 1, the USART performs address mark detection. The address of the receiver is programmable through the USART_CTRL2.ADDR[3:0] bits. If the MSB is 1, the byte is considered an address, otherwise it is considered data.

In this mode, the USART can enter mute mode by:

■ When the receiver does not contain data, USART_CTRL1.RCVWU can be written to 1 by software, and USART enters mute mode;

Note: When the receive buffer contains no data (RXNE=0 in USART_SR), the USART_CTRL1.RCVWU bit can be written to 0 or 1. Otherwise, the write operation is ignored.


■ When the received address does not match the address of the USART_CTRL2.ADDR[3:0] bits, USART_CTRL1.RCVWU is written to 1 by hardware.

In mute mode, none of the receive status bits are set and all receive interrupts are disabled.

When the received address matches the address of the USART_CTRL2.ADDR[3:0] bits, the USART is woken up and USART_CTRL1.RCVWU is cleared. The USART_STS.RXDNE bit will be set when this matching address is received. Data can then be transmitted normally.

Figure 23-13 Mute mode detected using address mark

23.4.10 Synchronous mode

USART supports synchronous serial communication. The USART only supports the master mode, and cannot use the input clock from other devices to receive and transmit data. Synchronous mode can be enabled by configuring the USART_CTRL2.CLKEN bit.

Note: When using synchronous mode, USART_CTRL2.LINMEN, USART_CTRL3.SCMEN, USART_CTRL3.HDMEN, USART_CTRL3. IRDAMEN, these bits need to be kept clear.

23.4.10.1 Synchronized clock

The CK pin is the output of the USART transmitter clock. During the bus idle period, before the actual data arrives and when the break symbol is sent, the clock not output.

Clock phase and polarity are software programmable and need to be configured when both the transmitter and receiver are disabled. When the clock polarity is 0 (USART_CTRL2.CLKPOL=0), the default level of CLK is low; when the clock polarity is 1 (USART_CTRL2.CLKPOL=1), the default level of CLK is high. When the phase polarity is 0 (USART_CTRL2.CLKPHA=0), the data is sampled on the first edge of the clock; when the phase polarity is 1 (USART_CTRL2.CLKPHA=1), the data is sampled on the second edge.

During the start and stop bits, the CK pin does not output clock pulses.

A sync data cannot be received when no data is sent. Because the clock is only available when the transmitter is activated and data is written to the USART_DAT register.

The USART_CTRL2.LBCLK bit controls whether to output the clock pulse corresponding to the last data byte (MSB) sent on the CK pin. This bit needs to be configured when both the transmitter and receiver are disabled. If USART_CTRL2.LBCLK is 1, the clock pulse of the last bit of data will be output from CK. If USART_CTRL2.LBCLK is 0, the clock pulse of the last bit of data is not output from CK.

23.4.10.2 Synchronized transmitting

The transmitter in synchronous mode works the same as in asynchronous mode. Data on the TX pin is sent out synchronously with CK.

23.4.10.3 Synchronized receiving

The receiver in synchronous mode works differently than in asynchronous mode. Data is sampled on CK without any oversampling. But setup time and hold time (depending on baud rate, 1/16 bit time) must be considered.

Figure 23-14 USART synchronous transmission example

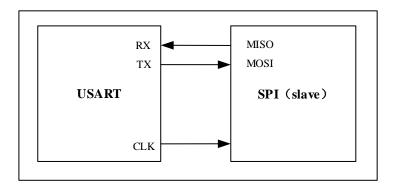


Figure 23-15 USART data clock timing example (WL=0)

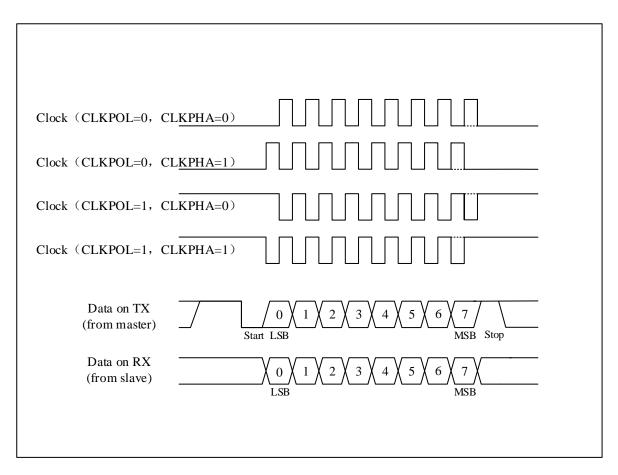


Figure 23-16 USART data clock timing example (WL=1)

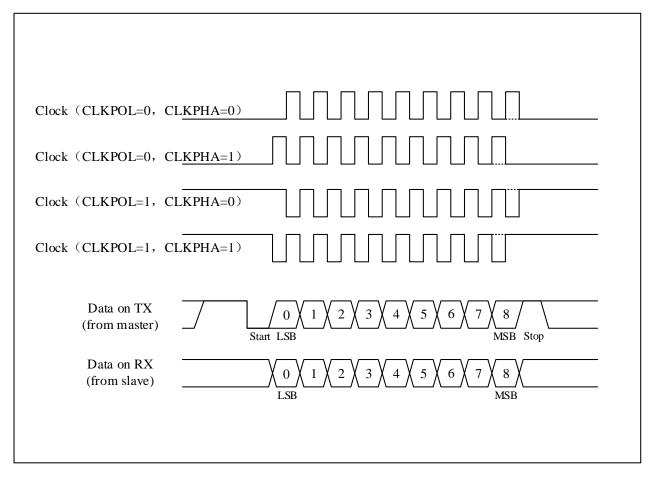
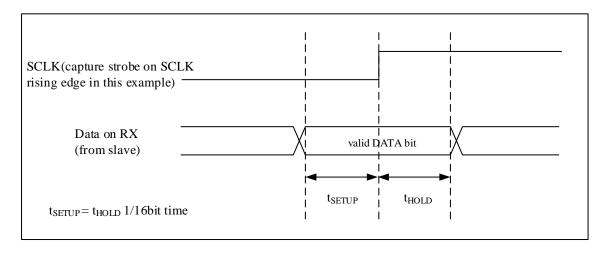



Figure 23-17 RX data sampling / holding time

Note: the function of CK is different in Smartcard mode, please refer to the Smartcard mode section for details.

23.4.11 Single-wire half-duplex mode

USART supports single-wire half-duplex communication, allowing data to be transmitted in both directions, but only allows data to be transmitted in one direction at the same time. Communication conflicts are managed by software.

Nanshan District, Shenzhen, 518057, P.R.China

Through the USART_CTRL3.HDMEN bit, you can choose whether to enable half-duplex mode. When using single-wire half-duplex, USART_CTRL2. CLKEN, USART_CTRL2. LINMEN, USART_CTRL3. SCMEN, USART_CTRL3. IRDAMEN, these bits should be kept clear.

After the half-duplex mode is turned on, the TX pin and the RX pin are interconnected inside the chip, and the Rx pin is no longer used. When there is no data to transmit, TX is always released. Therefore, when not driven by the USART, the TX pin must be configured as a floating input or an open-drain output high.

23.4.12 IrDA SIR ENDEC mode

USART supports the IrDA (Infrared Data Association) SIR ENDEC specification.

Through the USART_CTRL3. IRDAMEN bit, you can choose whether to enable the infrared mode. When using the infrared function, USART_CTRL2.CLKEN, USART_CTRL2.STPB[1:0], USART_CTRL2.LINMEN, USART_CTRL3.HDMEN, USART_CTRL3.SCMEN, these bits should be kept clear.

Through the USART_CTRL3. IRDALP bit, it can be used to select normal mode or low power infrared mode.

23.4.12.1 IrDA normal mode

When USART_CTRL3.IRDALP=0, select normal infrared mode.

IrDA is a half-duplex communication protocol, so there should be a minimum delay of 10ms between sending and receiving that uses a inverted return-to-zero modulation scheme (RZI), which uses an infrared light pulse to represent a logic '0', and the pulse width is specified as 3/16 of a bit period in normal mode, as shown in the Figure 23-19.USART only supports up to 115200bps for SIR ENDEC.

The USART sends data to the SIR encoder, and the bit stream output by the USART will be modulated. A modulated stream of pulses is sent from the infrared transmitter and then received by the infrared receiver. The SIR receiver decoder demodulates it and outputs the data to the USART.

The transmit encoder output has opposite polarity to the decoder input. When idle, SIR transmit is low, while SIR receive is high. The high pulse sent by SIR is '0' and the low level is '1', while SIR reception is the opposite.

If the USART is sending data to the IrDA transmit encoder, then the IrDA receive decoder will ignore any data on the IrDA receive line. If the USART is receiving data sent from the SIR receiver decoder, the data sent by the USART to the IrDA transmitter encoder will not be encoded.

Pulse width is programmable. The IrDA specification requires pulses to be wider than 1.41us. For pulse widths less than 2 cycles, the receiver will filter them out. PSCV is the prescaler value programmed in the USART_GTP register.

23.4.12.2 IrDA low power mode

When USART_CTRL3.IRDALP=1, select low power infrared mode.

For the transmitter, when in low power mode, the pulse width is 3 times the low power band rate, which is a minimum of 1.42MHz. Typically this value is 1.8432MHz (1.42 MHz < PSC < 2.12 MHz).

For the receiver, the requirement for a valid signal is that the duration of the low level signal must be greater than 2 cycles of the IrDA low power baud rate clock.

Figure 23-18 IrDASIRENDEC-Block diagram

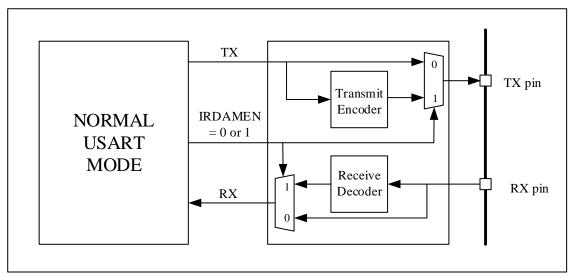
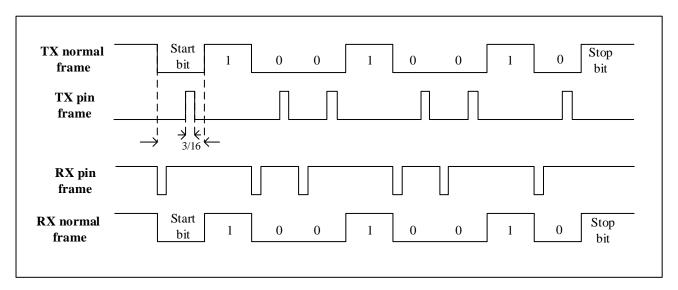



Figure 23-19 IrDA data Modulation (3/16)-normal mode

23.4.13 LIN mode

USART supports the ability of a LIN(Local interconnection Network) master to send a synchronization break and the ability of a LIN slave to detect a break. LIN mode can be enabled by configuring the USART_CTRL2.LINMEN bit.

Note: When using LIN mode, USART CTRL2.STPB[1:0], USART CTRL2.CLKEN, USART CTRL3.SCMEN, USART_CTRL3.HDMEN, USART_CTRL3. IRDAMEN, these bits should be kept clear.

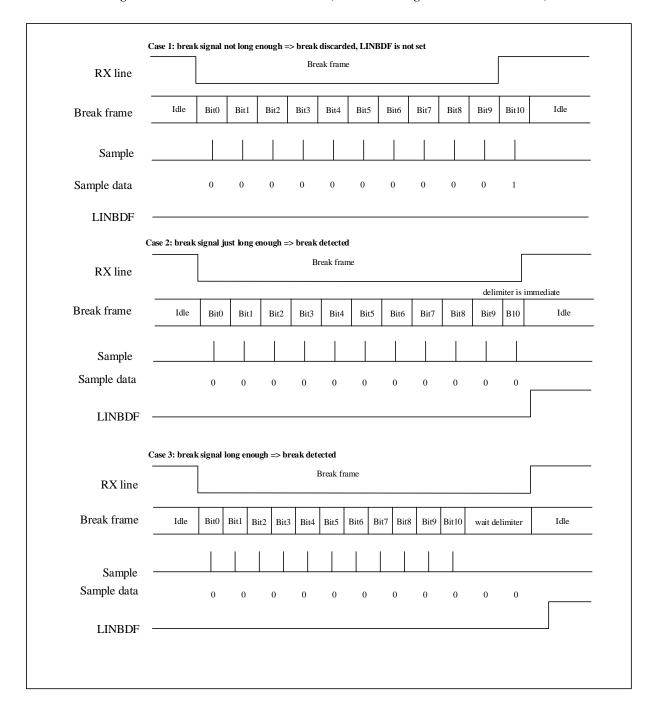
23.4.13.1 LIN transmitting

When LIN is sent, the length of the data bits sent can only be 8 bits. By setting USART_CTRL1.SDBRK, a 13-bit '0' will be sent as the break symbol, and insert a stop bit.

23.4.13.2 LIN receiving

Whether the bus is idle or during the transmission of a data frame, as long as the break frame appears, it can be 611

detected. the break symbol detection is independent of the USART receiver.


By configuring the USART_CTRL2.LINBDL bit, 10-bit or 11-bit break character detection can be selected.

After the receiver detects the start bit, the circuit samples each subsequent bit at the 8th, 9th, and 10th oversampling clock points of each bit. When 10 or 11 consecutive bits are detected as '0' and followed by a delimiter, it means that a LIN break is detected, and USART_STS.LINBDF is set. Before confirming the break symbol, check the delimiter as it means the RX line has gone back to high.An interrupt is generated if the LIN breaker detection interrupt (USART_CTRL2.LINBDIEN) is enabled.

If a '1' is sampled before the 10th or 11th sample point, the current detection is canceled and the start bit is searched again.

Figure 23-20 Break detection in LIN mode (11-bit break length-the LINBDL bit is set)

In these examples, we suppose that LINBDL=1(11-bit break length), WL=0(8-bit data) Break occurring after an Idle: RX line frame1 Idle frame2 frame3 1 frame time 1 frame time RXDNE/FEF LINBDF Break occurring while a data is being received: RX line frame1 frame2 frame2frame3 1 frame time 1 frame time RXDNE/FEF LINBDF

Figure 23-21 Break detection and framing error detection in LIN mode

23.4.14 Smartcard mode (ISO7816)

USART supports smart card protocol. The smart card interface supports the asynchronous smart card protocol defined in the ISO7816-3 standard.

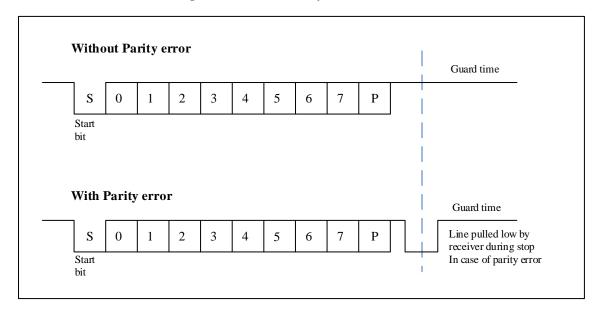
Through the USART_CTRL3.SCMEN bit, you can choose whether to enable smart card mode. When using smart card mode, USART_CTRL2.LINMEN, USART_CTRL3.HDMEN, USART_CTRL3.IRDAMEN, these bits should be kept clear.

In smart card mode, the USART can provide a clock through the CK pin. The system clock is divided by the prescaler register to provide the clock to the smart card. The CK frequency can be from $f_{CK}/2$ to $f_{CK}/62$, where f_{CK} is the peripheral input clock.

In smart card mode, 0.5 and 1.5 stop bits can be used when receiving data, and only 1.5 stop bits can be used when sending data. So 1.5 stop bits are recommended as this avoids configuration transitions.

In smart card mode, the data bits should be configured as 8 bits, and the parity bit should be configured.

When a parity error is detected by receiver, the transmit data line is pulled low for one baud clock cycle at the end of the stop bit as NACK signal(If USART_CTRL3.SCNACK is set). This NACK signal will generate a framing error on the transmit side (transmit side is configured with 1.5 stop bits).


When the transmitter receives a NACK signal (framing error) from the receiver, it does not detect the NACK as a start bit (according to the ISO protocol, the duration of the received NACK can be 1 or 2 baud clock cycles).

614

The example given in the following figure illustrates the signal on the data line with and without parity errors.

Figure 23-22 ISO7816-3 Asynchronous Protocol

The break frame has no meaning in smart card mode. A 00h data with a framing error will be treated as data instead of a break symbol.

Under normal operation, data will be shifted out of the transmit shift register on the next baud clock. The smart card mode is delayed by a minimum of 1/2 baud clock than normal operation.

In normal operation, USART_STS.TXC is set when a frame containing data is sent and USART_STS.TXDE=1.In smart card mode, the transmission completion flag (USART_STS.TXC) is set high when the guard time counter reaches the value (USART_GTP.GTV[7:0]). The clearing of the USART_STS.TXC flag is not affected by the smart card mode.

The following figure details how USART samples NACK signals.

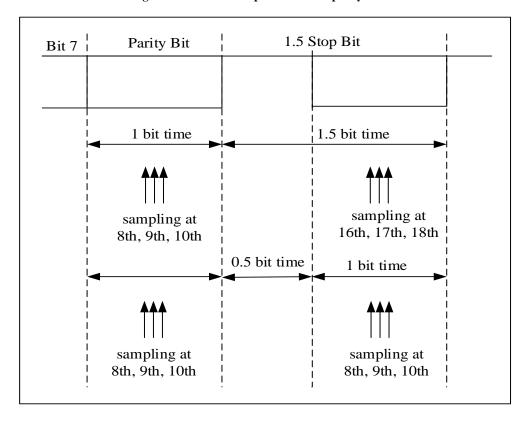


Figure 23-23 Use 1.5 stop bits to detect parity errors

23.5 Interrupt request

The various interrupt events of USART are logical OR relations, if the corresponding enable control bit is set, these events can generate their own interrupts, but only one interrupt request can be generated at the same time.

Interrupt function Event flag Enable bit Interrupt event Transmission data register is empty. **TXDE TXDEIEN CTSF CTSIEN** CTS flag TXC **TXCIEN** Transmission complete **RXDNE** Receive data ready to be read USART global interrupt **RXDNEIEN** ORERR Data overrun error detected. **IDLEIEN** Idle line detected **IDLEF** Parity error **PEF PEIEN** LINBDF Disconnect flag LINBDIEN

Table 23-7 USART interrupt request

Nanshan District, Shenzhen, 518057, P.R.China

Noise, overrun error and framing error in multi-buffer communication	NEF/OREF/FEF	ERRIEN ⁽¹⁾
--	--------------	-----------------------

(1) This flag bit is used only when DMA is used to receive data(USART_CTRL3.DMARXEN=1).

23.6 Mode support

Table 23-8 USART mode setting (1)

Communication mode	USART1	USART2	USART3	UART4	UART5	UART6	UART7
Asynchronous mode	Y	Y	Y	Y	Y	Y	Y
Multiprocessor	Y	Y	Y	Y	Y	Y	Y
LIN mode	Y	Y	Y	Y	Y	Y	Y
Synchronous mode	Y	Y	Y	N	N	N	N
Single-wire half duplex mode	Y	Y	Y	Y	Y	Y	Y
Smartcard mode	Y	Y	Y	N	N	N	N
IrDA infrared mode	Y	Y	Y	Y	Y	Y	Y
DMA communication mode	Y	Y	Y	Y	Y	Y	Y
Hardware flow control mode	Y	Y	Y	N	N	N	N

(1) Y = support this mode, N = do not support this mode

23.7 USART registers

23.7.1 USART register overview

Table 23-9 USART register overview

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
000h	USART_STS			Reserved								CTSF	LINBDF	TXDE	JXL	RXDNE	HELLI	OREF	NEF	FEF	PEF												
	Reset Value																							0	0	1	1	0	0	0	0	0	0
004h	USART_DAT		Reserved													DA	TV[8	[8:0]															
	Reset Value																								0	0	0	0	0	0	0	0	0
008h	USART_BRCF		DIV_Integer[11:0] Reserved											D	IV_D [3:	ecima	ıl																
	Reset Value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Nanshan District, Shenzhen, 518057, P.R.China

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
00Ch	USART_CTRL1		Reserved						UEN	WL	WUM	PCEN	PSEL	PEIEN	TXDEIEN	TXCIEN	RXDNEIEN	IDLEIEN	TXEN	RXEN	RCVWU	SDBRK											
	Reset Value												0	0	0	0	0	0	0	0	0	0	0	0	0	0							
010h	USART_CTRL2		Reserved								LINMEN LINMEN CLKEN [0:1]				CLKPOL	CLKPHA	LBCLK	Reserved	LINBDIEN	LINBDL	Reserved	,	ADDI	R[3:0]									
	Reset Value										0	0	0	0	0	0	0	I	0	0	1	0	0	0	0								
014h	USART_CTRL3			Reserved											CTSIEN	CTSEN	RTSEN	DMATXEN	DMARXEN	SCMEN	SCNACK	HDMEN	IRDALP	IRDAMEN	ERRIEN								
	Reset Value													0	0	0	0	0	0	0	0	0	0	0									
018h	USART_GTP		Reserved						GTV[7:0] P:						PSCV	CV[7:0]																	
	Reset Value							0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0										

23.7.2 USART Status register (USART_STS)

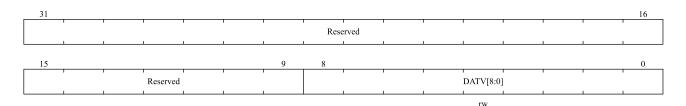
Address offset: 0x00

Reset value: 0x0000 00C0

31															16
	1	'	'	1	'	'	Rese	rved	•			'	'		
	1	l .	1	1		1			1		1	l .	1		
15					10	9	8	7	6	5	4	3	2	1	0
	1	Rese	erved			CTSF	LINBDF	TXDE	TXC	RXDNE	IDLEF	OREF	NEF	FEF	PEF
		•	•		•	rc w0	rc w0	r	rc w0	rc w0	r	r	r	r	r

Bit field	Name	Description
31:10	Reserved	Reserved, the reset value must be maintained
9	CTSF	CTS flag
		If USART_CTRL3.CTSEN bit is set, this bit is set by hardware when the nCTS input
		changes. If USART_CTRL3.CTSIEN bit is set, an interrupt will be generated.
		This bit is cleared by software.
		0:nCTS status line has not changed.
		1:nCTS status line changes.
		Note: This bit is invalid for UART4/5/6/7.
8	LINBDF	LIN break detection flag.
		If USART_CTRL2.LINMEN bit is set, this bit is set by hardware when LIN
		disconnection is detected. If USART_CTRL2.LINBDIEN bit is set, an interrupt will be
		generated.
		This bit is cleared by software.
		0: LIN break character not detected.
		1: LIN break character detected.
7	TXDE	The Transmit data register empty.
		Set to 1 after power-on reset or data to be sent has been sent to the shift register. Setting

Bit field	Name	Description
		USART_CTRL1.TXDEIEN will generate an interrupt.
		This bit is cleared to 0 when the software writes the data to be sent into USART_DAT.
		0: Send data buffer is not empty.
		1: The transmitting data buffer is empty.
6	TXC	Transmission complete.
		This bit is set to 1 after power-on reset. If USART_STS.TXDE is set, this bit is set when
		the current data transmission is completed.
		Setting USART_CTRL1.TXCIEN bit will generate an interrupt.
		This bit is cleared by software.
		0: Transmitting did not complete.
		1: Send completed.
5	RXDNE	The Read data register not empty.
		This bit is set when the read data buffer receives data from the shift register. When
		USART_CTRL1.RXDNEIEN bit is set, an interrupt will be generated.
		Software can clear this bit by writing 0 to it or reading the USART_DAT register.
		0: The read data buffer is empty.
		1: The read data buffer is not empty.
4	IDLEF	IDLE line detected flag.
		Within one frame time, the idle state is detected at the RX pin, and this bit is set to 1.
		When USART_CTRL1.IDLEIEN bit is set, an interrupt will be generated.
		The software can clear this bit by reading USART_STS first and then reading
		USART_DAT.
		0: No idle frame detected.
		1: idle frame detected.
		Note: IDLEF bit will not be set high again until USART_STS.RXDNE bit is set (that is,
		an idle line is detected again).
3	OREF	Overrun error
		With RXDNE set, this bit is set if the USART_DAT register receives data from the shift
		register. When USART_CTRL3.ERRIEN bit is set, an interrupt will be generated.
		The software can clear this bit by reading USART_STS first and then reading
		USART_DAT.
		0: No overrun error was detected.
		1: Overflow error detected.
2	NEF	Noise error flag.
		When noise is detected in the received frame, this bit is set by hardware. It is cleared by
		the software sequence (read first USART_STS, read USART_DAT again).
		0: No noise error detected.
		1: Noise error detected.
		Note: this bit will not generate an interrupt because it appears with
		USART_STS.RXDNE, and the hardware will generate an interrupt when setting the
		USART_STS.RXDNE flag. In the multi-buffer communication mode, if the
		USART_CTRL3.ERRIEN bit is set, an interrupt will be generated when the NEF flag is



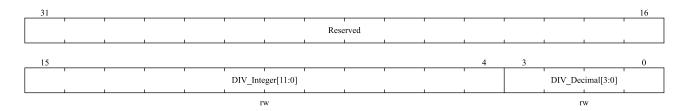
Bit field	Name	Description
		set.
1	FEF	Framing error.
		When the data is not synchronized or a large amount of noise is detected, and the stop
		bit is not received and recognized at the expected time, it will be judged that a framing
		error has been detected, and this bit will be set to 1. First read USART_STS, then read
		USART_DAT can cleared this bit.
		0: No framing errors were detected.
		1: A framing error or a Break Character is detected.
		Note: this bit will not generate an interrupt because it appears with
		USART_STS.RXDNE, and the hardware will generate an interrupt when setting the
		USART_STS.RXDNE flag. If the currently transmitted data has both framing errors and
		overload errors, the hardware will continue to transmit the data and only set the
		USART_STS.OREF flag bit.
		In the multi-buffer communication mode, if the USART_CTRL3.ERRIEN bit is set, an
		interrupt will be generated when the FEF flag is set.
0	PEF	Parity error.
		This bit is set when the parity bit of the received data frame is different from the
		expected check value.
		The software can clear this bit by reading USART_STS first and then reading
		USART_DAT.
		0: No parity error was detected.
		1: Parity error detected.

23.7.3 USART Data register (USART_DAT)

Address offset: 0x04

Reset value: undefined (uncertain value)

Bit field	Name	Description
31:9	Reserved	Reserved, the reset value must be maintained
8:0	DATV[8:0]	Data value
		Contains the data sent or received; Software can change the transmitted data by writing
		these bits, or read the values of these bits to obtain the received data.
		If parity is enabled, when the transmitted data is written into the register, the highest bit
		of the data (the 7th or 8th bit depends on USART_CTRL1.WL bit) will be replaced by
		the parity bit.

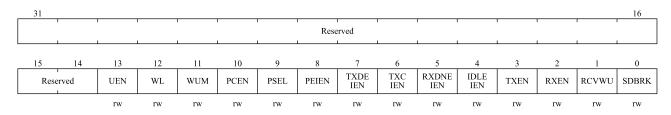


23.7.4 USART Baud rate register (USART_BRCF)

Address offset: 0x08

Reset value: 0x0000 0000

Note: When USART_CTRL1.UEN=1, this register cannot be written; The baud counter stops counting if USART_CTRL1.TXEN or USART_CTRL1.RXEN are disabled respectively.



Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained
15:4	DIV_Integer[11:0]	Integer part of baud rate divider.
3:0	DIV_Decimal[3:0]	Fractional part of baud rate divider.

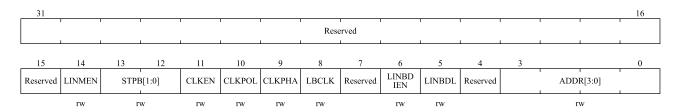
23.7.5 USART control register 1 register (USART_CTRL1)

Address offset: 0x0C

Reset value: 0x0000 0000

Bit field	Name	Description
31:14	Reserved	Reserved, the reset value must be maintained
13	UEN	USART enable
		When this bit is cleared, the divider and output of USART stop working after the current
		byte transmission is completed to reduce power consumption. Software can set or clear
		this bit.
		0:USART is disabled.
		1:USART is enabled.
12	WL	Word length.
		0:8 data bits.
		1:9 data bits.
		Note: If data is in transit, this bit cannot be configured.
11	WUM	Wake up mode from mute mode.

Bit field	Name	Description
		0: Idle frame wake up.
		1: Address identifier wake up.
10	PCEN	Parity control enable
		0: Parity control is disabled.
		1: Parity control is enabled.
9	PSEL	Parity selection.
		0: even check.
		1: odd check.
8	PEIEN	PE interrupt enable
		If this bit is set to 1, an interrupt is generated when USART_STS.PEF bit is set.
		0: Parity error interrupt is disabled.
		1: Parity error interrupt is enabled.
7	TXDEIEN	TXDE interrupt enable
		If this bit is set to 1, an interrupt is generated when USART_STS.TXDE bit is set.
		0: Send buffer empty interrupt is disabled.
		1: Send buffer empty interrupt is enabled.
6	TXCIEN	Transmit complete interrupt enable.
		If this bit is set to 1, an interrupt is generated when USART_STS.TXC is set.
		0: Transmission completion interrupt is disabled.
		1: Transmission completion interrupt is enabled.
5	RXDNEIEN	RXDNE interrupt enable
		If this bit is set to 1, an interrupt is generated when USART_STS.RXDNE or
		USART_STS.OREF is set.
		0: Data buffer non-empty interrupt o and overrun error interrupt are disabled.
		1: Data buffer non-empty interrupt o and overrun error interrupt are enabled.
4	IDLEIEN	IDLE interrupt enable.
		If this bit is set to 1, an interrupt is generated when USART_STS.IDLEF is set.
		0:IDLE line detection interrupt is disabled.
		1: IDLE line detection interrupt is enabled.
3	TXEN	Transmitter enable.
		0: The transmitter is disabled.
		1: the transmitter is enabled.
2	RXEN	Receiver enable
		0: The receiver is disabled.
		1: the receiver is enabled.
1	RCVWU	The receiver wakes up
		Software can set this bit to 1 to make USART enter mute mode, and clear this bit to 0
		to wake up USART.
		In idle frame wake-up mode (USART_CTRL1.WUM=0), this bit is cleared by hardware
		when an idle frame is detected. In address wake-up mode (USART_CTRL1.WUM=1),
		when an address matching frame is received, this bit is cleared by hardware. Or when
		an address mismatch frame is received, it is set to 1 by hardware.



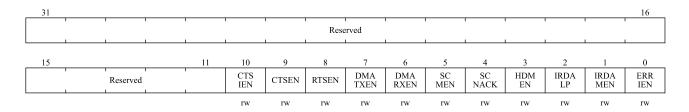
Bit field	Name	Description
		0: The receiver is in normal operation mode.
		1: The receiver is in mute mode.
0	SDBRK	Send Break Character.
		The software transmits a break character by setting this bit to 1.
		This bit is cleared by hardware during stop bit of the break frame transmission.
		0: No break character was sent.
		1: Send a break character.

23.7.6 USART control register 2 register (USART_CTRL2)

Address offset: 0x10

Reset value: 0x0000 0000

Bit field	Name	Description
31:15	Reserved	Reserved, the reset value must be maintained
14	LINMEN	LIN mode enable
		0:LIN mode is disabled
		1:LIN mode enabled
13:12	STPB[1:0]	STOP bits.
		00:1 stop bit.
		01:0.5 stop bit.
		10:2 stop bit.
		11:1.5 stop bit.
		Note: For UART4/5/6/7, only one stop bit and two stop bits are valid.
11	CLKEN	Clock enable
		0:CK pin is disabled
		1:CK pin enabled
		Note: This bit cannot be used for UART4/5/6/7.
10	CLKPOL	Clock polarity.
		This bit is used to set the polarity of CK pin in synchronous mode.
		0: CK pin remains low when it is not transmitted to the outside.
		1: CK pin remains high when it is not sent to the outside.
		Note: This bit is invalid for UART4/5/6/7.
9	CLKPHA	Clock phase.
		This bit is used to set the phase of CK pin in synchronous mode.
		0: Sample the first data at the first clock edge.



Bit field	Name	Description
		1: Sample the first data at the second clock edge.
		Note: This bit cannot be used for UART4/5/6/7.
8	LBCLK	The Last bit clock pulse.
		This bit is used to set whether the clock pulse corresponding to the last transmitted data
		byte (MSB) is output on CK pin in synchronous mode.
		0: The clock pulse of the last bit of data is not output from CK.
		1: The clock pulse of the last bit of data will be output from CK.
		Note: This bit cannot be used for UART4/5/6/7.
7	Reserved	Reserved, the reset value must be maintained
6	LINBDIEN	LIN break detection interrupt enable.
		If this bit is set to 1, an interrupt will be generated when USART_STS.LINBDF bit is
		set.
		0: Disconnect signal detection interrupt is disabled.
		1: Turn-off signal detection interrupt enabled
5	LINBDL	LIN break detection length.
		This bit is used to set the length of the break frame.
		0:10 bit break detection
		1:11 bit break detection
		Note: LINBDL can be used to control the detection length of Break Characters in LIN
		mode and other modes, and the detection length is the same as that in LIN mode.
4	Reserved	Reserved, the reset value must be maintained
3:0	ADDR[3:0]	USART address.
		Used in the mute mode of multiprocessor communication, using address identification
		to wake up a USART device.
		In address wake-up mode (USART_CTRL1.WUM=1), if the lower four bits of the
		received data frame are not equal to the ADDR[3:0] value, USART will enter the mute
		mode; If the lower four bits of the received data frame are equal to the ADDR[3:0]
		value, USART will be awakened.

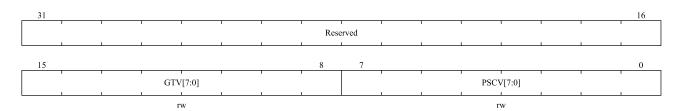
23.7.7 USART control register 3 register (USART_CTRL3)

Address offset: 0x14

Reset value : 0x0000 0000

Bit field	Name	Description
31:11	Reserved	Reserved, the reset value must be maintained

Bit field	Name	Description
10	CTSIEN	CTS interrupt enable.
		If this bit is set to 1, an interrupt will be generated when USART_STS.CTSF bit is set.
		0:CTS interrupt is disabled.
		1:CTS interrupt is enabled.
		Note: This bit cannot be used for UART4/5/6/7
9	CTSEN	CTS enable.
		This bit is used to enable the CTS hardware flow control function.
		0:CTS hardware flow control is disabled.
		1:CTS hardware flow control is enabled.
		Note: This bit cannot be used for UART4/5/6/7
8	RTSEN	RTS enable.
		This bit is used to enable RTS hardware flow control function.
		0:RTS hardware flow control is disabled.
		1:RTS hardware flow control is enabled.
		Note: This bit cannot be used for UART4/5/6/7
7	DMATXEN	DMA transmitter enable.
		0:DMA transmission mode is disabled.
		1:DMA transmission mode is enabled.
6	DMARXEN	DMA receiver enable.
		0:DMA receive mode is disabled.
		1:DMA receive mode is enabled.
5	SCMEN	Smartcard mode enable.
		This bit is used to enable Smartcard mode.
		0: Smartcard mode is disabled.
		1: Smartcard mode is enabled.
		Note: This bit cannot be used for UART4/5/6/7
4	SCNACK	Smartcard NACK enable.
		This bit is used for Smartcard mode to enable transmitting NACK when parity error
		occurs.
		0: Do not send NACK when there is a parity error.
		1: send NACK when there is a parity error.
		Note: This bit cannot be used for UART4/5/6/7
3	HDMEN	Half-duplex mode enable.
		This bit is used to enable half-duplex mode.
		0: Half-duplex mode is disabled.
		1: Half-duplex mode is enabled.
2	IRDALP	IrDA low-power mode.
		This bit is used to select the low power consumption mode for IrDA mode.
		0: Normal mode.
		1: Low power mode.
	IDDANEN	
1	IRDAMEN	IrDA mode enable.



Bit field	Name	Description
		1:IrDA is enabled.
0	ERRIEN	Error interrupt enable.
		When DMA receive mode (USART_CTRL3.DMARXEN=1) is enabled, an interrupt
		will be generated when USART_STS.FEF, USART_STS. OREF or USART_STS. NEF
		bit is set.
		0: Error interrupt is disabled.
		1: Error interrupt enabled.

23.7.8 USART guard time and prescaler register (USART_GTP)

Address offset: 0x18

Reset value: 0x0000 0000

Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained
15:8	GTV[7:0]	Guard time value in Smartcard mode.
		This bit field specifies the guard time in baud clock. In Smartcard mode, this function
		is required. The setting time of USART_STS.TXC flag is delayed by GTV[7:0] baud
		clock cycles.
		Note: This bit is invalid for UART4/5/6/7.
7:0	PSCV[7:0]	Prescaler value.
		In IrDA low power consumption mode:
		these bits are used to set the frequency division coefficient for dividing the peripheral
		clock (PCLK1/PCLK2) to generate low power consumption frequency.
		00000000: reserved-do not write this value.
		00000001: divide the source clock by 1.
		11111111: divide the source clock by 255.
		In IrDA normal mode:
		PSCV can only be set to 00000001.
		In Smartcard mode:
		PSCV[7:5] is reserved, PSCV[4:0] is used to set the frequency division factor of the
		peripheral clock (APB1/APB2) to generate the smart card clock. The actual frequency
		division factor is twice the set value of PSCV[4:0].
		0000: reserved - do not write this value.
		0001: Divide the source clock by 2.

Bit field	Name	Description
		0010: Divide the source clock by 4.
		1111: Divide the source clock by 62.
		Note: This bit is invalid for UART4/5/6/7.

24 Quad Serial Peripheral Interface (QSPI)

24.1 Introduction

QSPI is an interface for single,dual or quad SPI peripheral communication. It can work in indirect or memory mapped modes.

Indirect Mode: All operations are performed using QSPI registers.

Memory Mapped Mode: The external flash memory is mapped into the microcontroller address space, and the system treats it as internal storage space.

24.2 QSPI Main features

The main features of the QSPI controller are as follows:

- Support Single SPI/Dual SPI/Quad SPI mode. In Single mode, it supports standard SPI operation and can work in half-duplex and full-duplex modes;
- Support indirect mode and memory mapped mode;
- 8-bit, 16-bit, 32-bit data access mode support;
- Support Individual RX FIFO and TX FIFO that are depth is 32 and width is 32bit;
- Support DMA operation;
- Support FIFO interrupt, operation completion interrupt, timeout interrupt, data access error interrupt;
- Maximum speed 4 × 36Mbps;
- In indirect mode or memory-mapped mode, operations are divided into Instruction phase, Address phase, Mode
 bits phase, wait cycles phase, and Data phase. These phase can be configured to be skipped, but at least one
 phase remains.

Note: The Mode bits phase is only used in XIP mode.

Note: In XIP mode, only read operations are supported to external memory, and write operations are not supported.

Note: Only big endian mode is supported when reading external memory data in XIP mode.

24.3 Function description

Master

QSPI

| I/O Buffer | IO [3] | Slave | IO [3] | I/O Buffer | IO [3] | I/O Buffer | IO [3] | I/O [3] | I

IO [2]

IO [1]/DO

IO [0]/DI

Figure 24-1 QSPI block diagram

I/O Buffer

I/O Buffer

I/O Buffer

24.4 QSPI command sequence

Txd[2

rxd[1

txd[1]

rxd[0]

txd[0]

QSPI communicates with peripherals through commands. Each command includes five phase: Instruction phase, Address phase, Mode bits phase, Wait cycles phase and Data phase. Any phase can be skipped, but at least remains one of Instruction phase, Address phase, Mode bits phase or the Data phase.

629

Note: The Mode bits phase is only used in XIP mode.

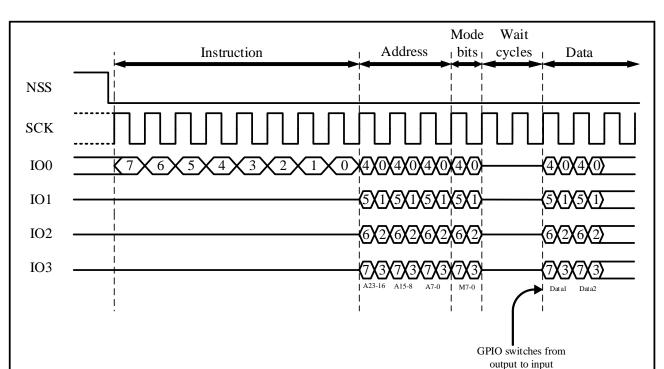


Figure 24-2 QSPI command sequence

24.5 Operating procedures

24.5.1 QSPI indirect mode

In indirect mode, instruction are initiated by writing to the QSPI registers, and data is transferred by reading and writing to the data registers, in the same manner as other communication peripherals.

When QSPI_CTRL0.TMOD[1:0] = 00, it is working in Tx and Rx mode, both transmit and receive data is valid. Transmission of data continues until the transmit FIFO is empty. The data received from the external device is stored in the receive FIFO memory and can be accessed by the host processor.

Note: Tx and Rx modes are only available in Single SPI mode (OSPI CTRL0.SPI FRF[1:0] = 00)

When QSPI_CTRL0.TMOD[1:0] = 01, the QSPI is in indirect transmission mode, and the byte to be transmitted is sent to the flash memory during the data transmission phase, and the data is provided by writing the QSPI_DATx register.

When QSPI_CTRL0.TMOD[1:0] = 10, the QSPI is in indirect receive mode, the data to be received is received from the flash memory in the data receive phase, and the data is obtained by reading the QSPI_DATx register.

When QSPI_CTRL0.TMOD[1:0] = 11, EEPROM read mode, transmit data is used to send opcode or address to EEPROM device.

630

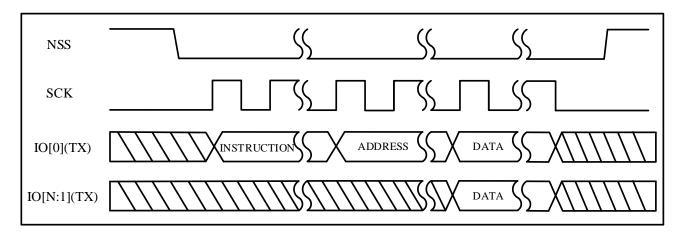
Note: EEPROM read mode is only available in Single SPI mode (QSPI_CTRL0.SPI_FRF[1:0] = 00)

The number of bytes to read is specified in QSPI_CTRL1.NDF[15:0].


24.5.2 QSPI Indirect send operation

- 1 QSPI_CTRL0.SPI_FRF[1:0] specifies the frame transmission format (standard/dual-wire/quad-wire mode)
- 2 QSPI_CTRL0.DFS[4:0] specifies the data length ($4\sim$ 32bit)
- 3 QSPI_ENH_CTRL0.ADDR_LEN[3:0] specifies the address length (4bit ~ 60bit, configurable to skip the Address phase)
- 4 QSPI_ENH_CTRL0.INST_L[1:0] specifies the instruction length (4bit, 8bit, 16bit, configurable to skip the Instruction stage)

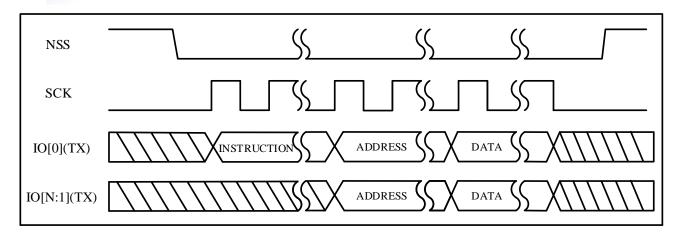
Note: One instruction occupies one FIFO address, and the address can occupy multiple FIFO locations. Both instructions and addresses must be programmed in the QSPI_DATx registers.


The write operation can be divided into three phase: the Instruction phase, the Address phase, and the Data phase.

■ Typical Write Timing

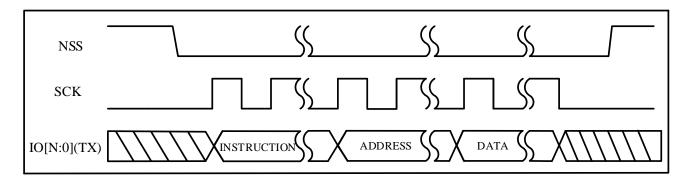
In Quad mode N=3, for 1 write operation, the instruction and address are sent only once, then the data frame stored in QSPI_DATx registers, until the send FIFO is empty.

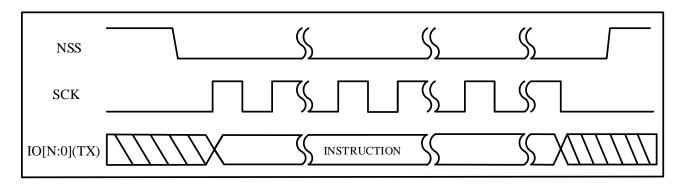
■ When both instruction and address are sent in standard SPI format



QSPI_ENH_CTRL0.TRANS_TYPE[1:0] shall be configured as 0. When QSPI_CTRL0.SPI_FRF[1:0] is configured as 0x02 (Quad mode), N=3; when QSPI_CTRL0.SPI_FRF[1:0] is configured as 0x01 (Dual mode), N=1.

631

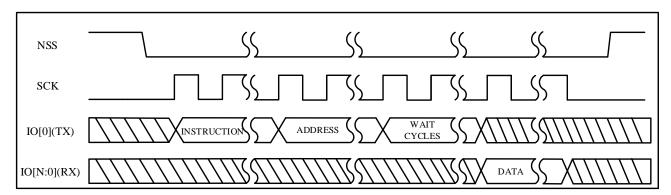

■ The instruction is sent in standard SPI mode, and the address is sent in the CTRL0.SPI_FRF mode.


QSPI_ENH_CTRL0.TRANS_TYPE[1:0] shall be configured as 0x01. When QSPI_CTRL0.SPI_FRF[1:0] is configured as 0x02 (Quad mode), N=3; when QSPI_CTRL0.SPI_FRF[1:0] is configured as 0x01 (Dual mode), N=1.

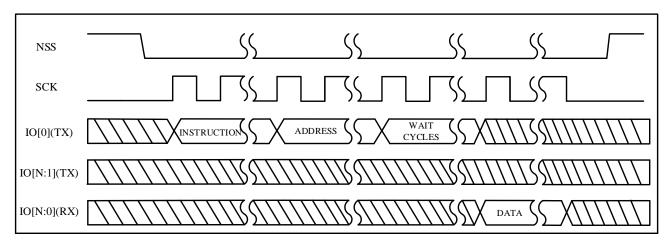
■ Instruction and address are sent timing in CTRL0.SPI_FRF specified mode

QSPI_ENH_CTRL0.TRANS_TYPE[1:0] shall be configured as 0x02. When QSPI_CTRL0.SPI_FRF[1:0] is configured as 0x02 (Quad mode), N=3; when QSPI_CTRL0.SPI_FRF[1:0] is configured as 0x01 (Dual mode), N=1.

Only the send timing of the Instruction phase


Regardless of the QSPI_ENH_CTRL0.TRANS_TYPE[1:0] configuration. When QSPI_CTRL0.SPI_FRF[1:0] is configured as 0x02 (Quad mode), N=3; when QSPI_CTRL0.SPI_FRF[1:0] is configured as 0x01 (Dual mode), N=1.

24.5.3 QSPI indirect receive operation

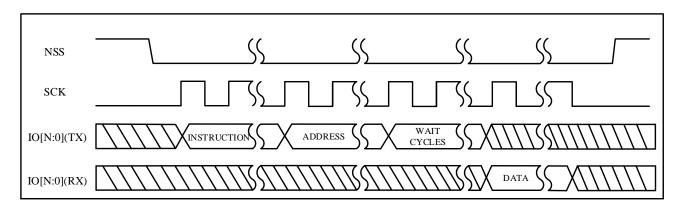

For a read operation, QSPI sends the command and control data once until it receives data equal to the number of NDF (QSPI_CTRL1[15:0]), and then cancels the slave select signal. The read operation can be divided into 4 phase: Instruction phase, Address phase, Wait cycles phase and Data phase.

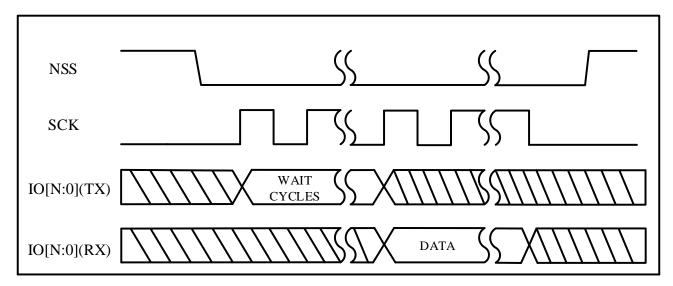
■ Typical Read Operation Timing

In quad mode N=3, each read command data will be transmitted in the format configured by QSPI_CTRL0.SPI_FRF[1:0]. Configured as 0x2 for quad mode.


■ Both address and instruction receive timing in standard SPI format

QSPI_ENH_CTRL0.TRANS_TYPE[1:0] should be configured as 0x0, QSPI_ENH_CTRL0.WAIT_CYCLES[4:0] configure the cycle of WAIT. When QSPI_CTRL0.SPI_FRF[1:0] is configured as 0x02 (Quad mode), N=3; when QSPI_CTRL0.SPI_FRF[1:0] is configured as 0x01 (Dual mode), N=1.


■ The instruction is sent in standard SPI mode, and the address is received in the mode specified by QSPI_CTRL0.SPI_FRF.


QSPI_ENH_CTRL0.TRANS_TYPE[1:0] should be configured as 0x1, QSPI_ENH_CTRL0.WAIT_CYCLES[4:0] configure the cycle of WAIT. When QSPI_CTRL0.SPI_FRF[1:0] is configured as 0x02 (Quad mode), N=3; when QSPI_CTRL0.SPI_FRF[1:0] is configured as 0x01 (Dual mode), N=1.

Instruction and address are received timing in QSPI_CTRL0.SPI_FRF specified mode

The QSPI_ENH_CTRL0.TRANS_TYPE[1:0] configuration should be 0x2. When QSPI_CTRL0.SPI_FRF[1:0] is configured as 0x02 (Quad mode), N=3; when QSPI_CTRL0.SPI_FRF[1:0] is configured as 0x01 (Dual mode), N=1.

Only the receive timing of the Wait cycles phase

QSPI_ENH_CTRL0.ADDR_LEN[3:0] is configured to 0, QSPI_ENH_CTRL0.INST_L[1:0] is configured to 0, and QSPI_ENH_CTRL0.WAIT_CYCLES[4:0] is configured to wait cycles. When QSPI_CTRL0.SPI_FRF[1:0] is configured as 0x02 (Quad mode), N=3; when QSPI_CTRL0.SPI_FRF[1:0] is configured as 0x01 (Dual mode), N=1.

24.6 QSPI register

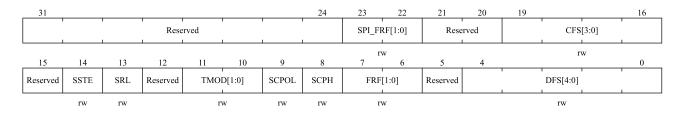
24.6.1 QSPI register overview

Table 24-1 QSPI register overview

Offset	Register	31	29	28	27	2	97	25	24	23	22	21	20	19	18	17	16	15	14	13	12		= 5	OT	6	8	L	9	9	4	ε	2	-	0	
000h	QSPI_CTRL0			Res			SPI_FRF[1:0]	Reserved	-		T	5[3:0		Reserved	SSTE	SRL	Reserved				SCPOL	SCPH	to trade	FRF[1:0]	Reserved			DFS[4	:0]						
	Reset Value									1	0			0	0	0	0		1	0		() 1	()	0	0	0		0	0	1	1	1	
004h	QSPI_CTRL1							1	Rese	rved															N	DF[15:0	l							
	Reset Value																	0	0	0	0	(0	()	0	0	0	0	0	0	0	0		
008h	QSPI_EN															I	Reserv	/ed																QEN	
	Reset Value																																Т	0	
00Ch	QSPI_MW_CTRL														R	leser	ved															MHS EN	- AC DIP	MWMOD	
	Reset Value																															0	0	0	
	QSPI_SLAVE_E																																	SEN	
010h	N															I	Reser	/ed																	-
	Reset Value																																	0	-
014h	QSPI_BAUD							1	Rese	rved														(CLK.	_DI	V[15	5:0]							
	Reset Value																	0	0	0	0	(0	()	0	0	0	0	0	0	0	0	0	
018h	QSPI_TXFT				R	Reser	rved						,	ГХF	T_S	Γ[4:0]						Rese	ved						,	TXF	T_TI	EI[4:	0]	
	Reset Value												0	0	0	0	0													0	0	0	0	0	
01Ch	QSPI_RXFT													R	eserv	ved															RXF	T_TI	FI[4:	0]	
	Reset Value																													0	0	0	0	0	
020h	QSPI_TXFN													Rese	erved																	N[5:0			
05.11	Reset Value																												0	0	0	0	0	0	
024h	QSPI_RXFN													Rese	erved]	RXF	N[5:0)]		

Offset	Register	31	ν ν 4 κ α	0 1
	Reset Value			0 0
	QSPI_STS	Reserved	erved RXFF RXFNE TXFE	TXFNF
028h			မှု	
	Reset Value	0		1 0 ≥ ≥
02Ch	QSPI_IMASK	Reserved ××	MMCIM RXFFIM RXFOIM RXFUIM	TXFOIM
	Reset Value	1	1 1 1 1	1 1
	QSPI_ISTS	Reserved S	MMCIS RXFFIS RXFOIS RXFUIS	TXFOIS
030h	Reset Value	Reserved 0		0 0
	QSPI_RISTS	Reserved ××	MMCRIS RXFFRIS RXFORIS RXFURIS	TXFORIS
034h	QSF1_KISTS	Reserved	MM RXF RXF	TXF
	Reset Value	0	0 0 0 0	0 0
	QSPI_TXFOI_CL			TXFOIC
038h	R	Reserved		-
	Reset Value QSPI_RXFOI_CL			0
03Ch	QSPI_RAFOI_CL R	Reserved		RXFOIC
03CII	Reset Value	reserveu		0
	QSPI_RXFUI_CL			
040h	R	Reserved		RXFUIC
	Reset Value			0
	QSPI_MMC_CLR			MMCIC
044h	Reset Value	Reserved		0 W
	QSPI_ICLR			INTC
048h	Reset Value	Reserved		0
	QSPI_DMA_CTR			A A E
04Ch	L	Reserved		TX_DMA_E RX_DMA_E
	Reset Value			0 0
	QSPI_DMATDL_			
050h	CTRL	Reserved	DMATDL[5:0]
	Reset Value		0 0 0 0	0 0
	QSPI_DMARDL_		DMARDU (5.0	1
054h	CTRL	Reserved	DMARDL[5:0) J
	Reset Value		0 0 0 0	0 0
060h+004h*x(x	QSPI_DATx	DATx[31:0]		
=0~31)	Reset Value		0 0 0 0	0 0
	QSPI_RS_DELA	SES	SDCN[7:0]	
0F0h	Y	Reserved		
	Reset Value	0 0	0 0 0 0	0 0

Offset	Register	31	30	29	28	27	56	25	23	67	22	21	20	19	18	17	16		15	ţ	13	12	11	10	6	∞	7	9	v	9	2	. 2	-	0
0F4h	QSPI_ENH_CTR L0	Reserved	Reserved CLK_STRETCH_EN Bossess INST_DDR_EN SPL_DDR_EN														1	WAIT_CYCLES[4:0]							INST_L[1:0]		Reserved	A	DDR_	LEN	[[3:0]	TD A NG TEXPERIOR	IKANS_ITE[1:0]	
	Reset Value		0 0 0 0 0 0														1	0			0	0	0	0	0	0								
	QSPI_DDR_TXD	Reserved															TXD																	
0F8h	Е	<u>-</u>															L		ı	1				ı										
	Reset Value	XIP_MD_BT														0	0	0	0	0	0	0	0											
0FCh	XIP_MODE Reset Value		Reserved 0														0 0	T	0	0	0	0	0	MD_ 0	0	0) 0	0	0	0	0	0		
	XIP_INCR_TOC																	ITOC[15:0]										U						
100h	Reset Value							Res	erve	d								-	0 0	Ī	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	XIP_WRAP_TOC																	ľ					-			VTO	<u> </u>							
104h	Reset Value							Res	erve	d								(0 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
108h	XIP_CTRL		Document	Neset ved		XIP_MBL[1:0]		Reserved	XIP CT EN	AIF_CI_EN	XIP_INST_EN	Reserved	INST_DDR_EN	DDR_EN	DES HC	M M	AIT_0	CY	CLES	[4:	0]	MD_BITS_EN	Reserved	10 11 11 11 11	[0:1]7_1eni	Reserved	AΓ	DDR_	LEN	I[3:0]		TRANS_TYPE[1:0]	10.11.00	FKF[1:0]
	Reset Value					1 (0		1	1	1		0	0	0	0	0	(0		0	0		1	0		0	0	0	0	0	0	1	0
10Ch	XIP_SLAVE_EN															1	Reserv	æd																SEN
roen	Reset Value																CCSCI V	rcu																0
110h	XIP_RXFOI_CLR]	Reserv	/ed																XRXFOI
	Reset Value																																	0
114h	XIP_TOUT												Rese	rved													L	1	T	XTOU	1	1		
	Reset Value																										0	0	0	0	0	0	0	0


24.6.2 QSPI Control 0 Register (QSPI_CTRL0)

QSPI_CTRL0 register controls the serial data transfer.

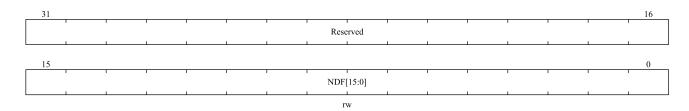
Note: This register cannot be written when the QSPI_EN.QEN = 1.

Address offset: 0x00

Reset value: 0x0080 4407

Bit field	Name	Description
31:24	Reserved	Reserved, the reset value must be maintained

Bit field	Name	Description
23:22	SPI_FRF[1:0]	SPI Frame Format
		00: Standard SPI Format
		01: Dual SPI Format
		10: Quad SPI Format
		11: Reserved
21:20	Reserved	Reserved, the reset value must be maintained
19:16	CFS[3:0]	Control Frame Size
		Selects the length of the control word for the Microwire frame format.
		0000: 1bit Control Word
		0001: 2bit Control Word
		0010: 3bit Control Word
		0011: 4bit Control Word
		1110: 15bit Control Word
		1111: 16bit Control Word
15	Reserved	Reserved, the reset value must be maintained
14	SSTE	Slave Select Toggle Enable
		While operating in SPI mode with clock phase (SCPH) set to 0, this bit controls
		the behavior of the NSS between data frames.
		0: NSS will stay low and serial clock will run continuously for the duration of the
		transfer.
		1: NSS will toggle between consecutive data frames, with the serial clock being
		held to its default value while NSS is high.
13	SRL	Shift Register Loop
		Used for testing purposes only. When active, connects the transmit shift register
		output to the receive shift register input.
		0: Disable
		1: Enable
12	Reserved	Reserved, the reset value must be maintained
11:10	TMOD[1:0]	Transfer Mode
		00: Tx and Rx
		01: Tx only
		10: Rx only
		11: EERPOM read
9	SCPOL	Serial Clock Polarity
		0: low
		1: high
8	SCPH	Serial Clock Phase
		0: Capture data on the first edge of the serial clock;
		1: Toggles one cycle after activation of the select line and captures data on the
		second edge of the serial clock.
7:6	FRF[1:0]	Frame Format
	1	



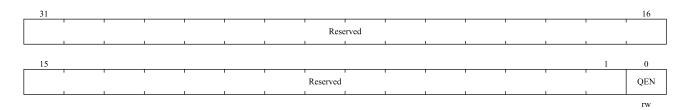
Bit field	Name	Description
		00: Motorola SPI
		01: TI SSP
		10: National Semiconductors Microwire
		11: Reserved
5	Reserved	Reserved, the reset value must be maintained
4:0	DFS[4:0]	Data Frame Size
		Selects the data frame length. When the data frame size is programmed to be less
		than 32 bits, the data is automatically right-aligned.
		0x0/0x01/0x02: Reserved
		0x03: 4bit
		0x04: 5bit
		0x05: 6bit
		0x1D: 30bit
		0x1E: 31bit
		0x1F: 32bit

24.6.3 QSPI Control 1 Register (QSPI_CTRL1)

Address offset: 0x04

Reset value: 0x0000 0000

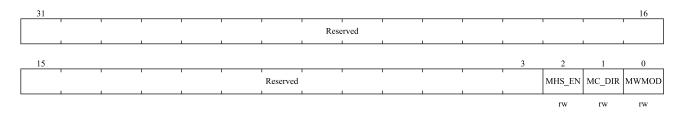
Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained
15:0	NDF[15:0]	Number of Data Frames.
		When QSPI_CTRL0.TMOD[1:0] = 10 or 11, this register configures the number of
		consecutively received data frames


639

24.6.4 QSPI Enable Register (QSPI_EN)

Address offset: 0x08

Reset value: 0x0000 0000


Bit field	Name	Description
31:1	Reserved	Reserved, the reset value must be maintained
0	QEN	QSPI Enable
		0: Disabled. when QSPI is disabled, all serial transfers stop immediately.
		1: Enable QSPI.

24.6.5 QSPI Microwire Control Register (QSPI_MW_CTRL)

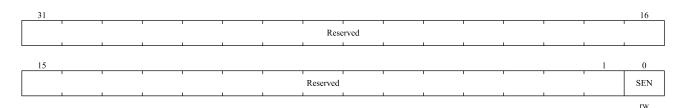
Note: This register cannot be written when the $QSPI_EN.QEN = 1$.

Address offset: 0x0C

Reset value: 0x0000 0000

Bit field	Name	Description
31:3	Reserved	Reserved, the reset value must be maintained
2	MHS_EN	Microwire Handshaking Enable
		0: Handshaking diable
		1: Handshaking enable. When enabled, the QSPI checks for a ready status from the
		target slave, after the transfer of the last data or control bit, before clearing the
		QSPI_STS.BUSY status.
1	MC_DIR	Direction of Data when Microwire Control
		0: Rx
		1: Tx
0	MWMOD	Microwire Transfer Mode
		0: Non-Sequential Transfer. A control word must be specified for each transmitted or
		received block of data;
		1: Sequential Transfer. Only one control word is required to send or receive data
		bytes.

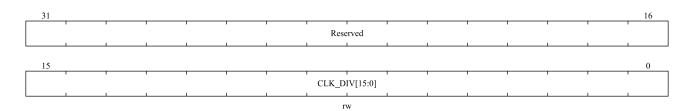
24.6.6 QSPI Slave Enable Register (QSPI_SLAVE_EN)


Note: Enable the QSPI_EN register, the QSPI_SLAVE_EN register will be enabled for external slave device selection

to enable chip select.

Address offset: 0x10

Reset value: 0x0000 0000



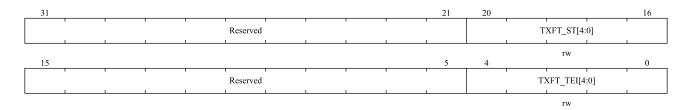
Bit field	Name	Description
31:1	Reserved	Reserved, the reset value must be maintained
0	SEN	Slave Enable
		0: Disable
		1: Enable
		Note: You cannot write to this register when QSPI is busy and when QSPI_EN.QEN =
		1.

24.6.7 QSPI Baud Rate Select Register (QSPI_BAUD)

Address offset: 0x14

Reset value: 0x0000 0000

Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained
15:0	CLK_DIV[15:0]	Clock Divider
		Bit 0 of this register is always configured as 0 and is not affected by write operations,
		which ensures that even values are preserved in this register. The serial output clock is
		disabled if CLK_DIV[15:0]=0x0000. Serial output clock frequency =
		AHB/CLK_DIV[15:0], the value range of CLK_DIV[15:0] is an even number
		between 2 and 65534.


641

24.6.8 QSPI Transmit FIFO Threshold Level Register (QSPI_TXFT)

Address offset: 0x18

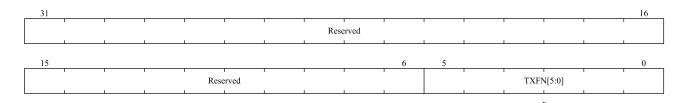
Reset value: 0x0000 0000

Bit field	Name	Description
31:21	Reserved	Reserved, the reset value must be maintained
20:16	TXFT_ST[4:0]	Transmit FIFO Threshold to Start to Transfer.
		Tx transmission threshold, after reaching this value, start Tx transmission.
15:5	Reserved	Reserved, the reset value must be maintained
4:0	TXFT_TEI[4:0]	Transmit FIFO Threshold to Trigger Empty Interrupt.
		Tx transmission threshold, when the number of transmit FIFOs is less than this
		value, an empty interrupt is triggered.

24.6.9 QSPI Receive FIFO Threshold Level Register (QSPI_RXFT)

Address offset: 0x1C

Reset value: 0x0000 0000



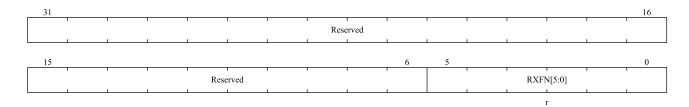
Bit field	Name	Description
31:5	Reserved	Reserved, the reset value must be maintained
4:0	RXFT_TFI[4:0]	Receive FIFO Threshold to Trigger Full Interrupt.
		Rx transmission threshold, when the number of receive FIFO is greater than this
		value plus 1, a full interrupt is triggered.

24.6.10 QSPI Transmit FIFO Level Register (QSPI_TXFN)

Address offset: 0x20

Reset value: 0x0000 0000

642

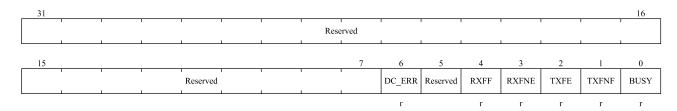


Bit field	Name	Description
31:6	Reserved	Reserved, the reset value must be maintained
5:0	TXFN[5:0]	Number of Transmit FIFO.

24.6.11 QSPI Receive FIFO Level Register (QSPI_RXFN)

Address offset: 0x24

Reset value: 0x0000 0000



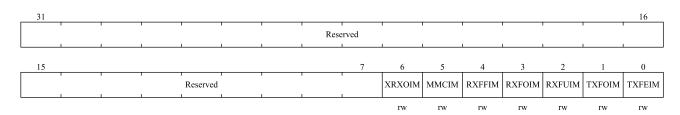
Bit field	Name	Description
31:6	Reserved	Reserved, the reset value must be maintained
5:0	RXFN[5:0]	Number of Receive FIFO.

24.6.12 QSPI Status Register (QSPI_STS)

Address offset: 0x28

Reset value: 0x0000 0006

Bit field	Name	Description
31:7	Reserved	Reserved, the reset value must be maintained
6	DC_ERR	Data Conflict Error
		0: No Error
		1: Transmit Data Collision Error
5	Reserved	Reserved, the reset value must be maintained
4	RXFF	Receive FIFO Full.
		0: Receive FIFO is not full
		1: Receive FIFO is full
		When the receive FIFO is completely full, this bit is set. When the receive FIFO
		contains one or more empty location, this bit is cleared.
3	RXFNE	Receive FIFO Not Empty.
		0: Receive FIFO is empty



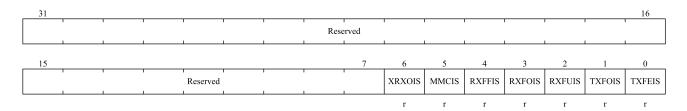
Bit field	Name	Description
		1: Receive FIFO is not empty
		Set when the receive FIFO contains one or more entries and is cleared when the
		receive FIFO is empty.
2	TXFE	Transmit FIFO Empty.
		0: Transmit FIFO is not empty
		1: Transmit FIFO is empty
		When the transmit FIFO is completely empty, this bit is set. When the transmit
		FIFO contains one or more valid entries, this bit is cleared.
1	TXFNF	Transmit FIFO Not Full.
		0: Tx FIFO is full
		1: Tx FIFO is not Full
		Set when the transmit FIFO contains one or more empty locations, and is cleared
		when the FIFO is full.
0	BUSY	Transfer Busy Flag.
		0: QSPI is idle or disabled
		1: QSPI is actively transferring data

24.6.13 QSPI Interrupt Mask Register (QSPI_IMASK)

Address offset: 0x2C

Reset value: 0x0000 007F

Bit field	Name	Description
31:7	Reserved	Reserved, the reset value must be maintained
6	XRXOIM	XIP Receive FIFO Overflow Interrupt Mask.
		0: Mask
		1: Not mask
5	MMCIM	Multi-Master Contention Interrupt Mask.
		0: Mask
		1: Not mask
4	RXFFIM	Receive FIFO Full Interrupt Mask.
		0: Mask
		1: Not mask
3	RXFOIM	Receive FIFO Overflow Interrupt Mask.
		0: Mask
		1: Not mask



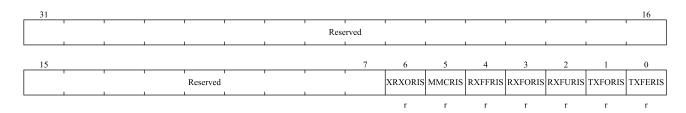
Bit field	Name	Description						
2	RXFUIM	Receive FIFO Underflow Interrupt Mask.						
		0: Mask						
		1: Not mask						
1	TXFOIM	Transmit FIFO Overflow Interrupt Mask.						
		0: Mask						
		1: Not mask						
0	TXFEIM	Transmit FIFO Empty Interrupt Mask.						
		0: Mask						
		1: Not mask						

24.6.14 QSPI Interrupt Status Register (QSPI_ISTS)

Address offset: 0x30

Reset value: 0x0000 0000

Bit field	Name	Description	
31:7	Reserved	Reserved, the reset value must be maintained	
6	XRXOIS	XIP Receive FIFO Overflow Interrupt Status.	
		0: Invalid, after masking.	
		1: Validafter, after masking.	
5	MMCIS	Multi-Master Contention Interrupt Status.	
		0: Invalid, after masking.	
		1: Valid, after masking.	
4	RXFFIS	Receive FIFO Full Interrupt Status.	
		0: Invalid, after masking.	
		1: Valid, after masking.	
3	RXFOIS	Receive FIFO Overflow Interrupt Status.	
		0: Invalid, after masking.	
		1: Valid, after masking.	
2	RXFUIS	Receive FIFO Underflow Interrupt Status.	
		0: Invalid, after masking.	
		1: Valid, after masking.	
1	TXFOIS	Transmit FIFO Overflow Interrupt Status.	
		0: Invalid, after masking.	
		1: Valid, after masking.	
0	TXFEIS	Transmit FIFO Empty Interrupt Status.	



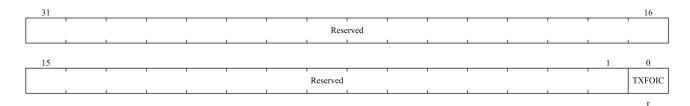
Bit field	Name	Description
		0: Invalid, after masking.
		1: Valid, after masking.

24.6.15 QSPI Raw Interrupt Status Register (QSPI_RISTS)

Address offset: 0x34

Reset value: 0x0000 0000

Bit field	Name	Description
31:7	Reserved	Reserved, the reset value must be maintained
6	XRXORIS	XIP Receive FIFO Overflow Raw Interrupt Status.
		0: Invalid, prior to masking.
		1: Valid, prior to masking.
5	MMCRIS	Multi-Master Contention Raw Interrupt Status.
		0: Invalid, prior to masking.
		1: Valid, prior to masking.
4	RXFFRIS	Receive FIFO Full Raw Interrupt Status.
		0: Invalid, prior to masking.
		1: Valid, prior to masking.
3	RXFORIS	Receive FIFO Overflow Raw Interrupt Status.
		0: Invalid, prior to masking.
		1: Valid, prior to masking.
2	RXFURIS	Receive FIFO Underflow Raw Interrupt Status.
		0: Invalid, prior to masking.
		1: Valid, prior to masking.
1	TXFORIS	Transmit FIFO Overflow Raw Interrupt Status.
		0: Invalid, prior to masking.
		1: Valid, prior to masking.
0	TXFERIS	Transmit FIFO Empty Raw Interrupt Status.
		0: Invalid, prior to masking.
		1: Valid, prior to masking.

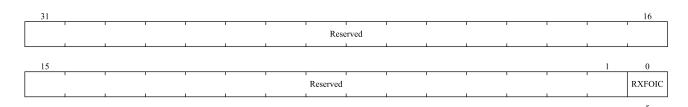


24.6.16 QSPI Transmit FIFO Overflow Interrupt Clear Register

(QSPI_TXFOI_CLR)

Address offset: 0x38

Reset value: 0x0000 0000


Bit field	Name	Description
31:1	Reserved	Reserved, the reset value must be maintained
0	TXFOIC	Clear Transmit FIFO Overflow Interrupt.
		After reading this register, clear the Tx FIFO overflow interrupt status.

24.6.17 QSPI Receive FIFO Overflow Interrupt Clear Register

(QSPI_RXFOI_CLR)

Address offset: 0x3C

Reset value: 0x0000 0000

Bit field	Name	Description
31:1	Reserved	Reserved, the reset value must be maintained
0	RXFOIC	Clear Receive FIFO Overflow Interrupt.
		After reading this register, clear the Rx FIFO overflow interrupt status.

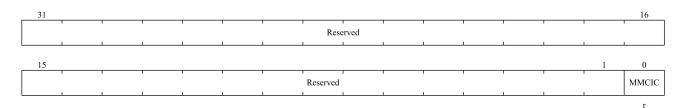
647

24.6.18 QSPI Receive FIFO Underflow Interrupt Clear Register

$(QSPI_RXFUI_CLR)$

Address offset: 0x40

Reset value: 0x0000 0000


31												16
					Rese	rved						<u>'</u>
15	'		1					1	1		1	0
				1	Reserved		1		1	1		RXFUIC

Bit field	Name	Description
31:1	Reserved	Reserved, the reset value must be maintained
0	RXFUIC	Clear Receive FIFO Underflow Interrupt.
		After reading this register, clear the Rx Fifo underflow interrupt status.

24.6.19 QSPI Multi-Master Interrupt Clear Register (QSPI_MMCI_CLR)

Address offset: 0x44

Reset value: 0x0000 0000

 Bit field
 Name
 Description

 31:1
 Reserved
 Reserved, the reset value must be maintained

 0
 MMCIC
 Clear Multi-Master Contention Interrupt.
 After reading this register, clear the multi-master conflict interrupt status.

24.6.20 QSPI Interrupt Clear Register (QSPI_ICLR)

Address offset: 0x48

Reset value: 0x0000 0000

31														16
	1	ı	'	•	ı	Rese	rved	'	ı	'	ı	ı	'	
					1							1		
15													1	0
						Reserved								INTC
-														

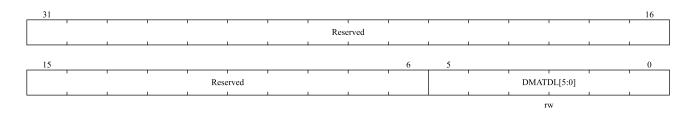
Bit field	Name	Description	
31:1	Reserved	Reserved, the reset value must be maintained	
0	INTC	Clear Interrupts.	
		After reading this register, clear transmit FIFO overflow interrupt, receive FIFO	
		overflow interrupt, receive FIFO underflow interrupt, and multi-master conflict	

Bit field	Name	Description
		interrupt status.

24.6.21 QSPI DMA Control Register (QSPI_DMA_CTRL)

Address offset: 0x4C

Reset value: 0x0000 0000



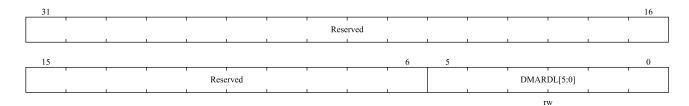
Bit field	Name	Description		
31:2	Reserved	Reserved, the reset value must be maintained		
1	TX_DMA_EN	Transmit DMA Enable.		
		0: Disable		
		1: Enable		
0	RX_DMA_EN	Receive DMA Enable.		
		0: Disable		
		1: Enable		

24.6.22 QSPI DMA Transmit Data Level Register (QSPI_DMATDL_CTRL)

Address offset: 0x50

Reset value: 0x0000 0000

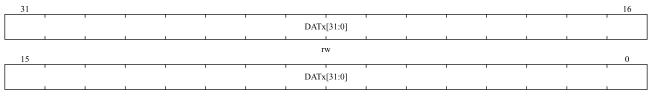
Bit field	Name	Description
31:6	Reserved	Reserved, the reset value must be maintained
5:0	DMATDL[5:0]	DMA Transmit Data Level.


649

24.6.23 QSPI DMA Receive Data Level Register (QSPI_DMARDL_CTRL)

Address offset: 0x54

Reset value: 0x0000 0000

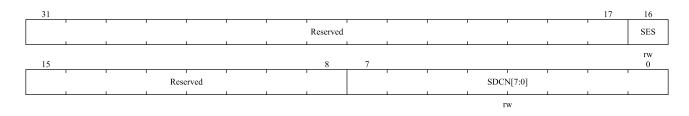


Bit field	Name	Description
31:6	Reserved	Reserved, the reset value must be maintained
5:0	DMARDL[5:0]	DMA Receive Data Level.

24.6.24 QSPI Data Register (QSPI_DATx)

Address offset: $0x60+0x04 \times x \quad (x=0~31)$

Reset value: 0x0000 0000


rw

Bit field	Name	Description
31:0	DATx[31:0]	In the Rx state, it is the receive buffer, and the read data is automatically right-
		aligned; in the Tx state, it is the send buffer, and the write data must be right-
		aligned.
		<i>Note: a total of 32 register addresses are</i> $0x60+(0:31) \times 0x04$.

24.6.25 QSPI RX Sample Delay Register (QSPI_RS_DELAY)

Address offset: 0xF0

Reset value: 0x0000 0000

Bit field	Name	Description	
31:17	Reserved	Reserved, the reset value must be maintained	
16	SES	Sampling Edge Select of Receive Data	
		0: rising edge sampling	
		1: falling edge sampling	

650

Bit field	Name	Description		
		Note: The sampling edge selection bit configures the QSPI to sample on the rising		
		or falling edge of the core clock AHB		
15:8	Reserved	Reserved, the reset value must be maintained		
7:0	SDCN[7:0]	Sample Delay Cycle Number		
		This bit configures the number of AHB cycles to delay sampling.		
		Note: When 0x6 is exceeded, 0-delay sampling will be used.		

24.6.26 QSPI Enhanced SPI Mode Control 0 Register (QSPI_ENH_CTRL0)

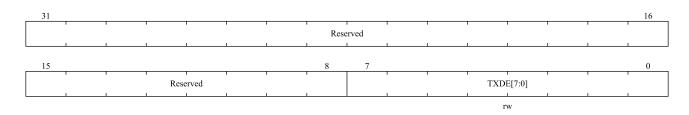
This register is used to control serial data transfer in Enhanced SPI mode of operation. Configuring this register is valid only when QSPI_CTRL0.SPI_FRF ≠ 00. This register cannot be written to after the QSPI_EN register is enabled.

Address offset: 0xF4

Reset value: 0x0000 0200

31	30	29											18	17	16
Reserved	CLK_ I STRETCH EN		1	ı	1	ı	Rese	erved	1	1	1	1	1	INST_ DDR_EN	SPI_ DDR_EN
15	rw			11	10	9	8	7	6	5			2	rw 1	rw 0
	WAI	T_CYCLES	S[4:0]	1	Reserved	INST_	_L[1:0]	Rese	erved		ADDR_	LEN[3:0]	1	TRA TYP	ANS E[1:0]
		rw				r	w	•			r	w		r	w

Bit field	Name	Description
31	Reserved	Reserved, the reset value must be maintained
30	CLK_STRETCH_EN	Clock Stretch Enable in SPI transfers.
		In case of write, if the FIFO becomes empty QSPI will stretch the clock
		until FIFO has enough data to continue the transfer. In case of read, if the
		receive FIFO becomes full QSPI will stop the clock until data has been
		read from the FIFO.
		0: Disable
		1: Enable
29:18	Reserved	Reserved, the reset value must be maintained
17	INST_DDR_EN	Instruction DDR enable bit.
		0: Disable
		1: Enable
16	SPI_DDR_EN	SPI DDR Enable bit.
		This will enable Dual-data rate transfers in Dual/Quad frame formats of
		SPI
		0: Disable
		1: Enable
15:11	WAIT_CYCLES[4:0]	Wait Cycles in Dual/Quad mode between control frames transmit and data
		reception.
10	Reserved	Reserved, the reset value must be maintained



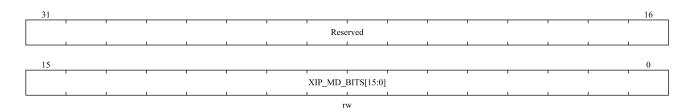
Bit field	Name	Description
9:8	INST_L[1:0]	Dual/Quad mode instruction length in bits.
		00: No Instruction
		01: 4bit
		10: 8 bit
		11: 16 bit
7:6	Reserved	Reserved, the reset value must be maintained
5:2	ADDR_LEN[3:0]	Length of Address to transmit.
		0x0: No Address
		0x1: 4bit
		0x2: 8bit
		0x3: 12bit
		0xE: 56bit
		0xF: 60bit
1:0	TRANS_TYPE[1:0]	Address and instruction transfer format.
		00: Instruction and Address will be sent in Standard SPI Mode.
		01: Instruction will be sent in Standard SPI Mode and Address will be sent
		in the mode specified by QSPI_CTRL0.SPI_FRF.
		10: Both Instruction and Address will be sent in the mode specified by
		QSPI_CTRL0.SPI_FRF.
		11: Reserved

24.6.27 QSPI DDR Transmit Drive Edge Register (QSPI_DDR_TXDE)

Address offset: 0xF8

Reset value: 0x0000 0000

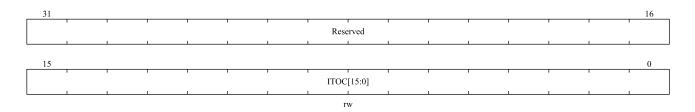
Bit field	Name	Description	
31:8	Reserved	Reserved, the reset value must be maintained	
7:0	TXDE[7:0]	Transmit Drive Edge.	
		Determines the driving edge of the core clock to transmit data in DDR mode, th	
		maximum value of this register = QSPI_BAUD/2 - 1.	


652

24.6.28 QSPI XIP Mode bits Register (QSPI_XIP_MODE)

Address offset: 0xFC

Reset value: 0x0000 0000



Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained
15:0	XIP_MD_BITS [15:0]	XIP mode bits to be sent after address phase of XIP transfer.

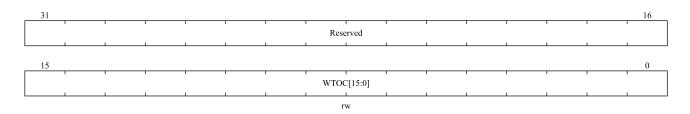
24.6.29 QSPI XIP INCR transfer opcode Register (QSPI_XIP_INCR_TOC)

Address offset: 0x100

Reset value: 0x0000 0000

 Bit field
 Name
 Description

 31:16
 Reserved
 Reserved, the reset value must be maintained


 15:0
 ITOC[15:0]
 XIP INCR transfer OpCode.

 When QSPI_XIP_CTRL.XIP_INST_EN=1, QSPI sends XIP INCR type
 transmission instruction code. The number of bits to be sent during the command phase is determined by the QSPI_XIP_CTRL.INST_L field.

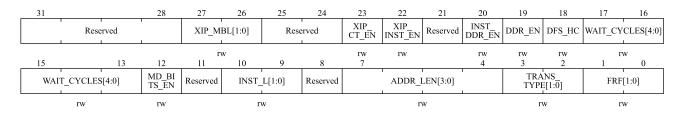
24.6.30 QSPI XIP WRAP transfer opcode Register (QSPI_XIP_WRAP_TOC)

Address offset: 0x104

Reset value: 0x0000 0000

Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained

653



Bit field	Name	Description
15:0	WTOC[15:0]	XIP WRAP transfer OpCode.
		When QSPI_XIP_CTRL.XIP_INST_EN=1, QSPI sends XIP WRAP type
		transmission instruction code. The number of bits to be sent during the command
		phase is determined by the QSPI_XIP_CTRL.INST_L field.

24.6.31 QSPI XIP Control Register (QSPI_XIP_CTRL)

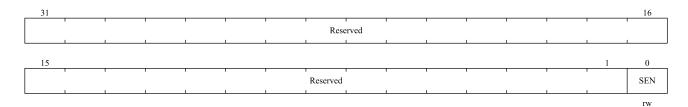
Address offset: 0x108

Reset value: 0x28C0 0402

Bit field	Name	Description
31:28	Reserved	Reserved, the reset value must be maintained
27:26	XIP_MBL [1:0]	XIP Mode bits length.
		00: Mode bits length equal to 2
		01: Mode bits length equal to 4
		10: Mode bits length equal to 8
		11: Mode bits length equal to 16
25:24	Reserved	Reserved, the reset value must be maintained
23	XIP_CT_EN	Enable continuous transfer in XIP mode.
22	XIP_INST_EN	XIP instruction enable.
		XIP instruction enabled. When enabled, XIP transfers will also have an
		instruction phase. The instruction opcode will be selected from the
		XIP_INCR_TOC or XIP_WRAP_TOC registers depending on the AHB
		transfer type.
		0: Disable
		1: Enable
21	Reserved	Reserved, the reset value must be maintained
20	INST_DDR_EN	Instruction DDR enable bit.
19	DDR_EN	SPI DDR Enable bit.
		This bit configure Dual-data rate transfers in Dual/Quad frame formats of
		SPI.
		0: Disable
		1: Enable
18	DFS_HC	Fix DFS for XIP transfers.
		0: The size and number of data frames depend on the HSIZE and HBURST
		signals of the AHB bus

Bit field	Name	Description
		1: The XIP data frame size is fixed to the configuration value of
		QSPI_CTRL0.DFS
17:13	WAIT_CYCLES[4:0]	Wait Cycles in Dual/Quad mode between control frames transmit and data
		reception.
12	MD_BITS_EN	Mode bits enable in XIP mode.
		When enabled, XIP mode will insert Mode bits after the Address phase.
		These bits are configured in register XIP_MODE. The length of Mode bits
		is usually 8 bits.
11	Reserved	Reserved, the reset value must be maintained
10:9	INST_L[1:0]	Dual/Quad mode instruction length in bits.
		00: No Instruction
		01: 4bit
		10: 8 bit
		11: 16 bit
8	Reserved	Reserved, the reset value must be maintained
7:4	ADDR_LEN[3:0]	Length of Address to transmit.
		0x0: No Address
		0x1: 4bit
		0x2: 8bit
		0x3: 12bit
		0xE: 56bit
		0xF: 60bit
3:2	TRANS_TYPE[1:0]	Address and instruction transfer format.
		00: Instruction and Address will be sent in Standard SPI Mode.
		01: Instruction will be sent in Standard SPI Mode and Address will be sent
		in the mode specified by QSPI_XIP_CTRL.FRF[1:0]
		10: Both Instruction and Address will be sent in the mode specified by
		QSPI_XIP_CTRL.FRF[1:0].
		11: Reserved
1:0	FRF[1:0]	SPI Frame Format
		00: Reserved
		01: Dual SPI Format
		10: Quad SPI Format
		11: Reserved

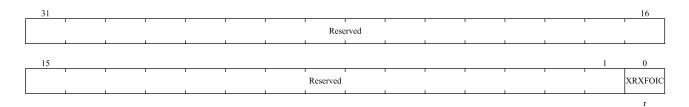
24.6.32 QSPI XIP Slave Enable Register (QSPI_XIP_SLAVE_EN)


Enable the QSPI_EN register, the QSPI_XIP_SLAVE_EN register will be enabled for external slave device selection to enable chip select.

655

Address offset: 0x10C

Reset value: 0x0000 0000

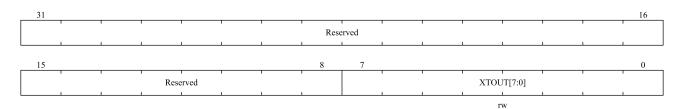

Bit field	Name	Description
31:31	Reserved	Reserved, the reset value must be maintained
0	SEN	Slave Select Enable
		0: Not Selected
		1: Selected

24.6.33 QSPI XIP Receive FIFO Overflow Interrupt Clear Register

(QSPI_XIP_RXFOI_CLR)

Address offset: 0x110

Reset value: 0x0000 0000


Bit field	Name	Description
31:1	Reserved	Reserved, the reset value must be maintained
0	XRXFOIC	Clear XIP Receive FIFO Overflow Interrupt.
		After reading this register, clear the Rx FIFO overflow interrupt status

24.6.34 QSPI XIP time out for continuous transfers register

(QSPI_XIP_TOUT)

Address offset: 0x114

Reset value: 0x0000 0000

Nations Technologies Inc.

Tel: +86-755-86309900 Email: info@nationstech.com

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

Bit field	Name	Description
31:8	Reserved	Reserved, the reset value must be maintained
7:0	XTOUT[7:0]	XIP time out value in terms of AHB.
		XIP time out value in terms of APB. Once slave is selected in continuous XIP
		mode this counter will be used to de-select the slave if there is no request for the
		time specified in the counter

25 DVP Interface

25.1 Introduction

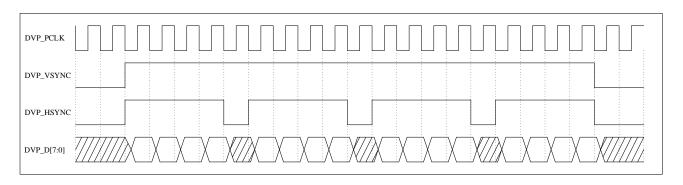
DVP is a flexible and powerful CMOS optical sensor interface, which can easily achieve the customer's image capture requirements, and the entire capture process does not require CPU intervention.

The functional characteristics of the DVP interface module are as follows:

- Pure hardware capture method;
- Pure input interface;
- Support clock output (output through MCO, typical value is 24MHz) to provide clock to external CMOS sensor;
- The polarity of input pixel clock DVP_PCLK, frame synchronization signal DVP_VSYNC, and horizontal synchronization signal DVP_HSYNC can be independently configured.
- Support 8x 32bit FIFO;
- FIFO transmits 4 bytes at a time, and the transmission speed is extremely fast;
- Support DMA, no CPU intervention is required in the whole process of image capture;
- The size of the captured image must be an integer multiple of 4 bytes;
- Support hardware inversion of captured image data

25.2 Hardware Interface

25.2.1 Pin Multiplexing


Table 25-1 DVP Pin Multiplexing

Signal	Default Mapping
DVP_HSYNC	PA1
DVP_VSYNC	PA2
DVP_PCLK	PA3
DVP_D0	PA4
DVP_D1	PA5
DVP_D2	PA6
DVP_D3	PA7
DVP_D4	PC4
DVP_D5	PC5
DVP_D6	PB0
DVP_D7	PB1

25.2.2 Interface Timing

Figure 25-1 DVP Interface Timing

As shown in above figure:

- DVP_PCLK is the pixel clock, and capture 1 byte (8bit) of valid data per clock cycle;
- DVP VSYNC is a vertical sync (frame sync) signal, active high;
- DVP_HSYNC is the horizontal sync signal, active high;
- When DVP_VSYNC and DVP_HSYNC are both high level, the data is valid;
- There is a gap of at least one pixel clock cycle between every two lines;
- According to the timing in the above figure, the user needs to configure DVP_VSYNC and DVP_HSYNC in the DVP module to be active high and capture data on the falling edge of DVP_PCLK to receive data correctly;
- DVP data is only valid when the capture enable bit (register DVP_CTRL.CAPTURE) is 1, and the capture enable bit must be 1 at least 4 pixel clock cycles earlier than the DVP_VSYNC valid signal (high level), otherwise the current frame will be discarded.

Note: The DVP_VSYNC and DVP_HSYNC signals in the above figure are active high, and may also be active low in practical applications. It is necessary to configure the signal polarity in the DVP module according to the actual situation.

25.3 Operating Instructions

25.3.1 General operation process

- 1. Turn on the clock of the CMOS optical sensor, enable the relevant control port (usually the I2C interface), and configure the sensor parameters;
- 2. DVP port and parameter configuration (for example: capture mode, window mode, DMA, etc.);
- 3. Configure the capture enable bit (register DVP_CTRL.CAPTURE), ready to receive data;
- 4. Turn on the CMOS sensor and start sending data.

25.3.2 DMA application

- 1. Configure and enable the corresponding DMA channel (DMA2 channel 8);
- 2. Configure the DVP FIFO watermark value (register DVP_CTRL.FWM) to 1 (DMA mode only supports transfers with a watermark of 1);
- 3. Enable DMA transfer (register DVP_INTEN.DMAEN);
- 4. When the FIFO receives 1 WORD data, it will send a DMA request;
- 5. The DMA moves the FIFO data to the designated SRAM area.

25.3.3 Image size

The image size can be configured according to the user's needs (register DVP_WSIZE), corresponding to the data size that the user can read, among which:

- VLINE is the number of valid data lines of each image frame;
- HCNT is the effective data length of each line, in bytes.

25.3.4 Image area

The capture area of image can be configured (register DVP_WST), in each image frame, the user can intercept part of the data to retain as needed. The DVP module only stores the area data that needs to be reserved into the FIFO, and other data are automatically discarded:

- VST configures the starting line of the capture area;
- In the valid line, HST configures the data position of the starting pixel, calculated in bytes;
- Each register is allowed to be configured as 0.

25.3.5 Data scaling

The DVP module can reduce the captured image and save it (registers DVP_CTRL.LSM, DVP_CTRL.BSM). The first data must be the required data, and then select the data that needs to be retained as required.

- LSM is the line selection configuration bits. When LSM is set to 3, only keep 1 line of each 3 lines: first keep the 1st line as a valid line, and discard the 2nd and 3rd line, then keep the 4th line, discard the 5th and 6th lines, and so on, until the end of one frame.
- BSM is the pixel selection configuration bits calculated in bytes. Similar to LSM, when BSM is set to 4, only keep 1 byte data of each 4 bytes: first keep the 1st byte as valid data, and discard the 2nd, 3rd, 4th byte, then keep the 5th byte, discard the 6th,7th,8th byte, and so on, until the end of the line.

660

For specific configuration, please refer to the register list.

25.3.6 Soft reset

The FFSWRST bit of DVP_CTRL controls the soft reset. The soft reset is a synchronous reset. Write 1 to reset. Because it is a synchronous reset, it must be ensured that the input pixel clock (DVP_PCLK) and the DVP module clock (APB2 clock PCLK2) exist at the same time.

The soft reset requires 8 PCLK2 clock cycles to synchronize. Do not operate the registers during the soft reset. The soft reset only resets the state machine, not the registers. It is recommended that users use a soft reset before each image capture.

Note: The CAPTURE of DVP_CTRL must be set to 0 before soft reset, and the pixel clock (DVP_PCLK) must be clocked during this period.

25.3.7 Interrupts

There are three registers related to interrupts, DVP_INTSTS, DVP_INTEN, DVP_MINTSTS:

- DVP_INTEN is the interrupt enable register.
- DVP_INTSTS is the interrupt status register. Even if the interrupt is not enabled, the interrupt status will change, but the interrupt will not be reported to the system. The corresponding interrupt will be reported only after the corresponding interrupt enable bit in DVP_INTEN is turned on.
- DVP_MINTSTS is the register of interrupt status that reported to system, and users generally only use this status to check the interrupt status.
- When the user wants to use an interrupt, the corresponding flag in the register DVP_INTSTS must be cleared (write 0 to clear) first, in order to avoid the previous state affecting of the interrupt reporting.
- There are two special flag bits in the DVP_INTSTS register: FIFO watermark flag FWIS, FIFO full flag FFIS. These two flag bits are related to the real-time status of the FIFO and cannot be cleared by writing 0, only cleared by reading the FIFO.

25.3.8 Read FIFO data

FIFO data can be read directly by software, and also supports DMA or interrupt mode.

- DMA mode: when the FIFO data reaches the waterline value (FWM, must be 1), a DMA request will be generated, and the DMA will move the data to the configured SRAM;
- Interrupt mode: When the FIFO data reaches the watermark value (FWM), an interrupt will be generated, and the user will read the data through the register DVP_FIFO

Note: Because the data from the interface is 8 bits, but the data in the FIFO is 32 bits, the module will put the first data in the high order.

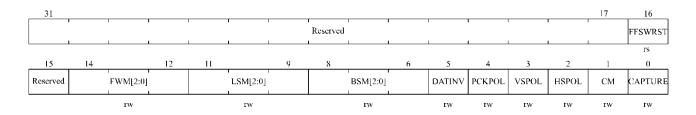
25.3.9 Notes

■ It must be ensured that the external CMOS optical sensor clock is turned on first, that is, DVP PCLK is valid.

- It must be ensured that the valid data to be captured is an integer multiple of 4 bytes.
- The configuration of watermark can only be configured as 1 when using DMA mode. (The system only supports reading one data at a time).

25.4 DVP register

25.4.1 DVP register overview


Table 25-2 DVP register overview

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	∞	7	9	5	4	3	2	1	0
000h	DVP_CTRL	Reserved FWM[2:0] LSM[2:0] BSM[2:0] AND								VSPOL	HSPOL	CM	CAPTURE																				
	Reset Value		0 0 0 1 0 0 0 0 0 0 0									0	0	0	0																		
004h	DVP_STS		Reserved										FC	FNE																			
	Reset Value																													0	0	0	0
008h	DVP_INTSTS											Rese	ervec	i										HERRIS	VERRIS	FOIS	SIMH	FFIS	FEIS	LEIS	TSIS	FMEIS	FMSIS
	Reset Value		0 0 0 0 1								0	0	0	0																			
00Ch	DVP_INTEN		DMAEN POIR FUIL FUIL FUIL FUIL FUIL FUIL FUIL FUIL									LEIE	LSE	FMEIE	FMSIE																		
	Reset Value		$\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $									0	0	0	0																		
010h	DVP_MINTSTS		HERRMIS FOMIS FWMIS FWMIS FEMIS FEMIS								LEMIS	LSMIS	FMEMIS	FMSMIS																			
	Reset Value																							0	0	0	0	0	0	0	0	0	0
	DVP_WST								VST[10:0]							ved					HS				5T[10:	T[10:0]							
014h	Reset Value	Reserved					0	0	0	0	0	0	0	0	0	0	0		Reserved	0	0	0	0	0	0	0	0	0	0	0			
04.01	DVP_WSIZE		Reserved VLINE[10:0] B HCNT[10:0] O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																														
018h	Reset Value	Reserved					0	0	0	0	0	0	0	0	0	0	0		Rese	0	0	0	0	0	0	0	0	0	0	0			
016	DVP_FIFO	DAT3[7:0]				DAT2[7:0]						DAT1[7:0]								1	DATO	0[7:0]											
01Ch	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

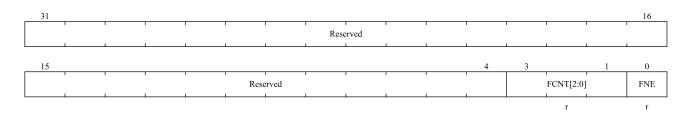
25.4.2 DVP Control Register(DVP_CTRL)

Address offset: 0x00

Reset value: 0x0000 1000

662

Bit Field	Name	Description
31:17	Reserved	Reserved, the reset value must be maintained.
16	FFSWRST	FIFO soft reset enable bit.
		Set to 1 by software and cleared to 0 by hardware. When resetting, it must be ensured
		that both DVP_PCLK and PCLK2 are provided normally, at least 8 PCLK2 clock
		cycles can be guaranteed to reset successfully, and the DVP module register can be
		operated after the reset is completed. Soft reset only resets the internal logic of the
		DVP module, not the registers.
		0: No effect
		1: enable soft reset
15	Reserved	Reserved, the reset value must be maintained.
14:12	FWM[2:0]	FIFO watermark value.
		DMA or interrupt is triggered when the data length in the FIFO reaches this value.
11:9	LSM[2:0]	Line selection mode.
		000: capture all lines
		001: Capture 1 line of each 2 lines
		010: Capture 1 line of each 3 lines
		011: Capture 1 line of each 4 lines
		100: Capture 1 line of each 5 lines
		101: Capture 1 line of each 6 lines
		110: Capture 1 line of each 7 lines
		111: Capture 1 line of each 8 lines
8:6	BSM[2:0]	Byte selection mode.
		Indicates the proportion of valid pixels extracted and retained in each line of data,
		calculated in bytes, only applicable to the case where the pixel data does not exceed 1
		byte. For example, when the input data is in RGB565 format, 1 pixel occupies 2
		bytes, and the byte selection mode is not supported.
		000: capture all pixels
		001: Capture 1 pixel of each 2 pixels
		010: Capture 1 pixel of each 3 pixels
		011: Capture 1 pixel of each 4 pixels
		100: Capture 1 pixel of each 5 pixels
		101: Capture 1 pixel of each 6 pixels
		110: Capture 1 pixel of each 7 pixels
		111: Capture 1 pixel of each 8 pixels
5	DATINV	Data inversion.
		0: Data is not inversed
		1: Data is inversed
4	PCKPOL	Pixel clock polarity.
		This bit is used to configure the capture edge of the pixel clock.
		0: Capture on falling edge
		1: Capture on rising edge
3	VSPOL	Vertical sync signal polarity.

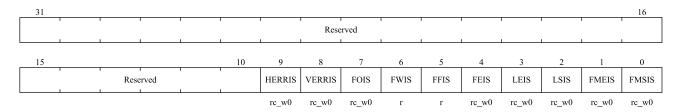


Bit Field	Name	Description
		This bit indicates the level of the VSYNC pin when there is valid data on the parallel
		interface.
		0: VSYNC active low
		1: VSYNC active high
2	HSPOL	Horizontal sync polarity.
		This bit indicates the level of the HSYNC pin when there is valid data on the parallel
		interface.
		0: HSYNC active low
		1: HSYNC active high
1	CM	capture mode.
		0: Single frame mode. Once activated, the interface waits for the frame sync signal to
		be valid, and then starts transmitting data. After a frame of data is transmitted, the
		CAPTURE bit is automatically cleared.
		1: Continuous mode. After transmitting a frame of data, the CAPTURE bit is not
		cleared and continues to wait for the next frame synchronization signal.
0	CAPTURE	Capture enable.
		In single frame mode, this bit is automatically cleared to 0 after the first frame is
		received. In continuous mode, it needs to be cleared by software. If the software
		clears 0 while the capture is in progress, this bit is not cleared until the current frame
		is captured.
		0: Disable capture function
		1: Enable capture function
		Note: Before enabling capture, the DMA controller and DVP configuration registers
		must be properly configured as required.

25.4.3 DVP Status Register (DVP_STS)

Address offset: 0x04

Reset value: 0x0000 0000

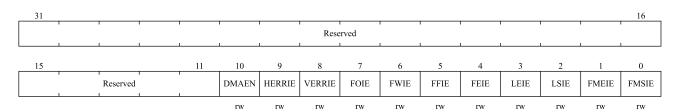

Bit Field	Name	Description
31:4	Reserved	Reserved, the reset value must be maintained.
3:1	FCNT[2:0]	Length of data in FIFO.
0	FNE	FIFO not empty flag.
		0: FIFO is empty
		1: There is valid data in the FIFO

25.4.4 DVP Interrupt And Status Register (DVP_INTSTS)

Address offset: 0x08

Reset value: 0x0000 0010

Bit Field	Name	Description
31:10	Reserved	Reserved, the reset value must be maintained.
9	HERRIS	HSYNC error status.
		Software write 0 to clear. When the received row data is smaller than the configured
		data size per line, an HSYNC error is generated (HSYNC arrives early).
		0: No error
		1: There is an HSYNC error
8	VERRIS	VSYNC error status.
		Software write 0 to clear. When the number of received data lines is less than the
		configured number of data lines per frame, a VSYNC error is generated (VSYNC
		arrives early)
		0: No error
		1: There is a VSYNC error
7	FOIS	FIFO overflow status.
		Software write 0 to clear. This bit needs to be cleared manually.
		0: FIFO has not overflowed
		1: FIFO overflow
6	FWIS	FIFO watermark status.
		This bit is related to the real-time status of the FIFO and can only be cleared by
		reading the FIFO.
		0: The data length in the FIFO has not reached FWM[2:0]
		1: The data length in the FIFO has reached FWM[2:0]
5	FFIS	FIFO full status.
		This bit is related to the real-time status of the FIFO and can only be cleared by
		reading the FIFO.
		0: FIFO is not full
		1: FIFO is full
4	FEIS	FIFO is empty.
		Software write 0 to clear. This bit needs to be cleared manually.
		0: FIFO is not empty
		1: FIFO is empty



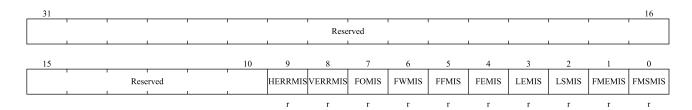
Bit Field	Name	Description
3	LEIS	End of line status.
		Software write 0 to clear.
		0: Line not ended.
		1: Line has ended.
2	LSIS	row start state.
		Software write 0 to clear.
		0: Line not started.
		1: Line has started.
1	FMEIS	Frame end state.
		Software write 0 to clear.
		0: Frame not ended.
		1: Frame has ended.
0	FMSIS	Frame start state.
		Software write 0 to clear.
		0: Frame not started.
		1: Frame has started.

25.4.5 DVP Interrupt Enable Register (DVP_INTEN)

Address offset: 0x0C

Reset value: 0x0000 0000

Bit Field	Name	Description
31:11	Reserved	Reserved, the reset value must be maintained.
10	DMAEN	DMA enable bit.
		When this bit is enabled, a DMA request will be generated when the data length of the
		FIFO reaches the watermark.
		0: DMA is not enabled.
		1: DMA is enabled.
9	HERRIE	HSYNC error interrupt enable.
		0: Disable HSYNC error interrupt
		1: Enable HSYNC error interrupt
8	VERRIE	VSYNC error interrupt enable.
		0: Disable VSYNC error interrupt
		1: Enable VSYNC error interrupt
7	FOIE	FIFO overflow interrupt enable.


Bit Field	Name	Description
		0: Disable FIFO overflow interrupt
		1: Enable FIFO overflow interrupt
6	FWIE	FIFO watermark interrupt enable.
		0: Disable FIFO watermark interrupt
		1: Enable FIFO waterline interrupt
5	FFIE	FIFO full interrupt enable.
		0: Disable FIFO full interrupt
		1: Enable FIFO full interrupt
4	FEIE	FIFO empty interrupt enable.
		0: Disable FIFO empty interrupt
		1: Enable FIFO empty interrupt
3	LEIE	End of line interrupt enable.
		0: End-of-line interrupt is not enabled
		1: Enable end-of-line interrupt
2	LSIE	Line start interrupt enable.
		0: Disable line start interrupt
		1: Enable line start interrupt
1	FMEIE	End of frame interrupt enable.
		0: End-of-frame interrupt is not enabled
		1: Enable end-of-frame interrupt
0	FMSIE	Start of Frame Interrupt Enable.
		0: Disable start of frame interrupt
		1: Enable frame start interrupt

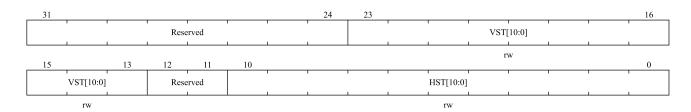
25.4.6 DVP Interrupt Trigger Status Register (DVP_MINTSTS)

Address offset: 0x10

Reset value: 0x0000 0000

When there is an interrupt in the system, this register should be polled to determine which interrupt it is. The corresponding interrupt flag in this register is valid only when both the interrupt enable and interrupt status bits are valid. The interrupt flag can be cleared by clearing the corresponding bit in the interrupt status register DVP_INTSTS.

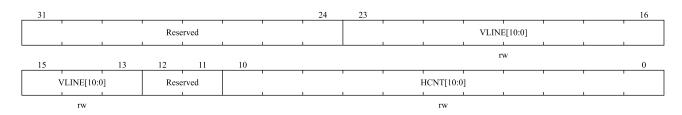
Bit Field	Name	Description
31:10	Reserved	Reserved, the reset value must be maintained.
9	HERRMIS	HSYNC error interrupt trigger status.
		0: No HSYNC error.


Bit Field	Name	Description
		1: HSYNC error interrupt triggered.
8	VERRMIS	VSYNC error interrupt trigger status.
		0: No VSYNC error.
		1: VSYNC error interrupt triggered.
7	FOMIS	FIFO overflow interrupt trigger status.
		Software write 0 to clear. This bit needs to be cleared manually.
		0: FIFO has not overflowed.
		1: FIFO overflow interrupt triggered.
6	FWMIS	FIFO watermark interrupt status.
		This bit is related to the real-time status of the FIFO and can only be cleared by
		reading the FIFO.
		0: The data length in the FIFO has not reached FWM[2:0].
		1: The data length in the FIFO has reached FWM[2:0] and interrupt triggered.
5	FFMIS	FIFO full interrupt status.
		This bit is related to the real-time status of the FIFO and can only be cleared by
		reading the FIFO.
		0: FIFO is not full.
		1: FIFO is full and interrupt triggered.
4	FEMIS	FIFO empty interrupt state.
		Software write 0 to clear. This bit needs to be cleared manually.
		0: FIFO is not empty
		1: FIFO is empty and interrupt triggered.
3	LEMIS	End of line interrupt status.
		Software write 0 to clear.
		0: Line not ended.
		1: Line has ended and interrupt triggered.
2	LSMIS	Line start interrupted state.
		Software write 0 to clear.
		0: Line not started.
		1: Line has started and interrupt triggered.
1	FMEMIS	End of frame interrupt status.
		Software write 0 to clear.
		0: Frame not ended.
		1: Frame has ended and interrupt triggered.
0	FMSMIS	Frame start interrupted state.
		Software write 0 to clear.
		0: Frame not started.
		1: Frame has started and interrupt triggered.

25.4.7 DVP Figure Start Register (DVP_WST)

Address offset: 0x14

Reset value: 0x0000 0000

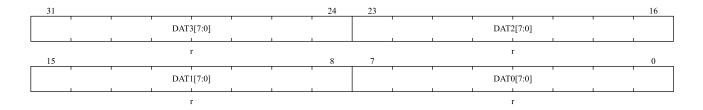


Bit Field	Name	Description
31:24	Reserved	Reserved, the reset value must be maintained.
23:13	VST[10:0]	Start line number, the first line starts at 0.
12:11	Reserved	Reserved, the reset value must be maintained.
10:0	HST[10:0]	Starting pixel number, the first pixel starts at 0.

25.4.8 DVP Figure Size Register (DVP_WSIZE)

Address offset: 0x18

Reset value: 0x0000 0000



Bit Field	Name	Description
31:24	Reserved	Reserved, the reset value must be maintained.
23:13	VLINE[10:0]	The number of lines per frame.
12:11	Reserved	Reserved, the reset value must be maintained.
10:0	HCNT[10:0]	The number of pixels per line, calculated in bytes.

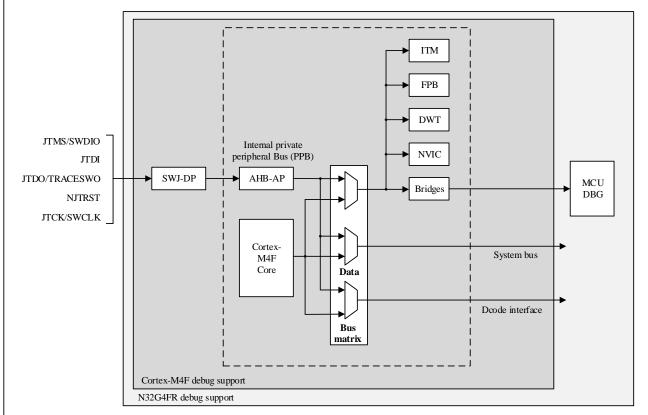
25.4.9 DVP FIFO Register (DVP_FIFO)

Address offset: 0x1C

Reset value: 0x0000 000

Bit Field	Name	Description
31:24	DAT3[7:0]	Data byte 3
23:16	DAT2[7:0]	Data byte 2
15:8	DAT1[7:0]	Data byte 1
7:0	DAT0[7:0]	Data byte 0

26 Debug support (DBG)


26.1 Overview

N32G4FR uses CortexTM-M4F core, which integrates hardware debugging module. Support instruction breakpoint (stop when instruction fetches value) and data breakpoint (stop when data access). When the kernel is stopped, the user can view the internal state of the kernel and the external state of the system. After the user's query operation is completed, the kernel and peripherals can be restored, and the corresponding program can continue to be executed. The hardware debugging module of the N32G4FR kernel can be used when it is connected to the debugger (when it is not disabled).

Figure 26-1 N32G4FR level and CortexTM-M4F level debugging block diagram

N32G4FR supports the following debugging interfaces:

- Serial wire
- JTAG debugging interface

The ARM CortexTM-M4F core hardware debugging module can provide the following debugging functions:

- SWJ-DP: serial /JTAG debug port
- AHP-AP:AHB access port
- ITM: execution tracking unit

■ FPB: Flash instruction breakpoint

■ DWT: data trigger

Reference:

■ CortexTM-M4 Technical Reference Manual (TRM)

■ ARM debugging interface V5 structure specification

■ ARM CoreSight development tool set (r1p0 version) technical reference manual

The system supports low-power mode debugging and debugging of some peripherals. The peripherals supporting debugging include: CAN, I2C interface and TIMER, WWDG and IWDG modules. The user needs to set the corresponding bit of the debug control register (DBG_CTRL) to 1 when debugging with low power consumption or peripherals.

26.2 JTAG/SWD function

The debugging tool can call the debugging function through the SWD debugging interface or JTAG debugging interface mentioned above.

26.2.1 Switch JTAG/SWD interface

The chip uses JTAG debug interface by default. If you need to switch the debug interface, you can switch between SW interface and JTAG interface through the following operations:

JTAG debug to SWD debug switch:

1. Sending JTMS = 1 signals with more than 50 JTCK cycles;

2. Send 16-bit JTMS = 1110011110011110(0xE79E LSB) signal;

3. Send JTMS = 1 signal with more than 50 JTCK cycles.

Switch from SWD debugging to JTAG debugging:

1. Sending JTMS = 1 signals with more than 50 JTCK cycles;

2. Send 16-bit JTMS = 1110011100111100(0xE73C LSB) signal;

3. Send JTMS = 1 signal with more than 50 JTCK cycles.

26.2.2 Pin allocation

JTAG debugging interface includes five pins: JTCK(JTAG clock pin), JTMS(JTAG mode selection pin), JTDI(JTAG data input pin), JTDO(JTAG data output pin) and NJTRST(JTAG data reset pin, low level reset pin).

SWD (serial debugging) interface includes two pins: SWCLK (clock pin) and SWDIO (data input and output pin), which provide the interface of two pins: data input and output pin (SWDIO) and clock pin (SWCLK).

See the following Table for the pin allocation of JTAG debugging interface and SWD debugging interface (SWDIO is multiplexed with JTMS, SWCLK is multiplexed with JTCK):

Table 26-1 Debug port p

Debug port	Pin allocation
JTMS/SWDIO	PA13
JTCK/SWCLK	PA14
JTDI	PA15
JTDO	PB3
NJTRST	PB4

- When both JTAG debugging interface and SWD debugging interface are enabled, the 5-wire JTAG debugging interface will be used by default after reset.
- When using JTAG interface, users can not use NJTRST pin. In this case, NJTRST pin (PB4, internal hardware pull-up) can be used as a general-purpose GPIO.
- When SWD interface is used, three pins JTDI(PA15), JTDO(PB3) and NJTRST(PB4) can be used as general GPIO.
- When the debugging function is not used, the above five pins can be used as general-purpose GPIO.

26.3 MCU debugging function

26.3.1 Low power mode support

N32G4FR can provide a variety of low power consumption modes (refer to Power control (PWR) for details). When debugging, ensure that the FCLK and HCLK of the kernel are on, and provide the necessary clock for kernel debugging. Users can debug MCU in low power mode according to specific operation (ensuring the output of FCLK or HCLK in low power mode).

If users want to debug MCU in low power mode, they first need the debugger to configure registers related to low power mode:

■ DBG SLEEP mode:

The DBG_CTRL.SLEEP bit needs to be configured to provide HCLK with the same clock as provided to FCLK (ie: the original configured system clock).

■ DBG_STOP mode:

The DBG_CTRL.STOP bit needs to be configured to start the internal RC oscillator to provide the clock for HCLK and FCLK.

■ DBG_STANDBY mode:

The DBG_CTRL.STDBY bit needs to be configured to start the internal RC oscillator to provide the clock for HCLK and FCLK.

26.3.2 Peripheral debugging support

When the corresponding bit of the peripheral control bit in the DBG_CTRL register is set to 1, the corresponding

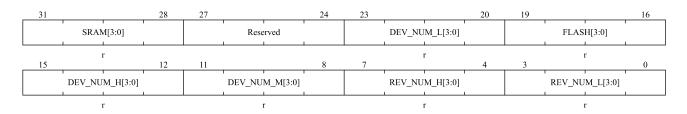
peripheral enters the debugging state after the kernel stops:

- Timer peripheral: the timer counter stops and debugs;
- I2C peripheral: the SMBUS of I2C keeps the state and carries out debugging;
- WWDG/IWDG peripheral: WWDG/IWDG counter clock stops and debugs;
- CAN peripheral: the CAN interface receiving register stops counting and debugs.

26.4 DBG registers

26.4.1 DBG register overview

These peripheral registers must be operated as words (32 bits). The base address of the register is 0xE004 2000.


Table 26-2 DBG register overview

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
000h	DBG_ID		EQ CONTACTO	SKA M[5:0]			Res	erved				DEV_NUM_L[3:0]			IO. CILLO.	rLA3n[5:0]			DEV MIN HEAD				DEV NITM MI2.01					KEV_NUM_H[3:0]			REV NIIM LI3:01		
	Reset Value	х	x	x	x					х	x	x	x	х	x	x	x	х	x	x	х	x	x	x	x	х	х	x	х	x	x	x	x
004h	DBG_CTRL					R	eserv	/ed					CAN2_STOP	TIM7_STOP	TIM6_STOP	TIM5_STOP	TIM8_STOP	12C2SMBUS_TIMEOUT	12C1SMBUS_TIMEOUT	CAN1_STOP	TIM4_STOP	TIM3_STOP	TIM2_STOP	TIM1_STOP	WWDG_STOP	IWDG_STOP		£	Nesel ved		STDBY	STOP	SLEEP
	Reset Value												0	0	0	0	0	0	0	0	0	0	0	0	0	0					0	0	0

26.4.2 ID register (DBG_ID)

Address offset: 0x04

Only 32-bit access is supported, and fixed values cannot be modified

Bit field	Name	Description
31:28	SRAM[3:0]	SRAM capacity.
		The chip SRAM capacity is (SRAM[3:0] + 1) * 16KB
27:24	Reserved	Reserved, must keep the reset value.
23:20	DEV_NUM_L[3:0]	Lower 4 digits of device model.
		Device model consists of 12 bits, including high, medium and low, representing the

674

Bit field	Name	Description
		model of MCU. The values are as follows:
		0x45A: N32G4FR series
19:16	FLASH[3:0]	FLASH capacity.
		Chip FLASH capacity is FLASH[3:0] * 64KB
15:12	DEV_NUM_H[3:0]	The upper 4 digits of the device model.
		See the description of DEV_NUM_L[3:0].
11:8	DEV_NUM_M[3:0]	The middle 4 digits of the device model.
		See the description of DEV_NUM_L[3:0].
7:4	REV_NUM_H[3:0]	High 4 bits of MCU version number
3:0	REV_NUM_L[3:0]	Low 4 bits of MCU version number

${\bf 26.4.3~Debug~control~register~(DBG_CTRL)}$

Address offset: 0x04

POR reset value: 0x0000 0000 (not reset by system reset)

31									22	21	20	19	18	17	16
			ı	Rese	erved	1		ı	1	CAN2 _STOP	TIM7 _STOP	TIM6 _STOP	TIM5 _STOP	TIM8 _STOP	I2C2 SMBUS_ TIMEOUT
15	14	13	12	11	10	9	8	7		rw	rw	rw 3	rw 2	rw 1	rw 0
I2C1 SMBUS_ TIMEOUT	CAN1 _STOP	TIM4 _STOP	TIM3 _STOP	TIM2 _STOP	TIM1 _STOP	WWDG _STOP	IWDG _STOP		1	Reserved		I	STDBY	STOP	SLEEP
rw	rw	rw	rw	rw	rw	rw	rw						rw	rw	rw

Bit field	Name	Description
31:22	Reserved	Reserved, the reset value must be maintained.
21	CAN2_STOP	When the kernel enters the debugging state, CAN2 stops running.
		Set or cleared by software.
		0: CAN2 is still running normally;
		1: The receiving register of CAN2 does not continue to receive data
20:17	TIMx_STOP	Stop the timer counter when the core stops $(x=7,6,5,8)$.
		Set or cleared by software.
		0: When the core stops, the clock is still provided to the counter of the related timer,
		and the timer output works normally;
		1: When the core stops, turn off the clock of the counter of the related timer and
		turn off the output of the timer at the same time.
16:15	I2CxSMBUS_TIMEOUT	Stop the SMBUS timeout mode when the core stops $(x=2,1)$.
		Set or cleared by software.
		0: Same as normal mode operation;
		1: Freeze the timeout control of SMBUS.
14	CAN1_STOP	When the kernel enters the debugging state, CAN1 stops running.
		Set or cleared by software.
		0: CAN1 is still running normally;
		1: The receiving register of CAN1 does not continue to receive data

Bit field	Name	Description
13:10	TIMx_STOP	When the kernel enters the debugging state, the counter stops working $(x=4,3,2,1)$.
		Set or cleared by software.
		0: The counter of the selected timer still works normally;
		1: The counter of the selected timer stops working.
9	WWDG_STOP	When the kernel enters the debug state, the debug window watchdog stops
		working.
		Set or cleared by software.
		0: The window watchdog counter still works normally;
		1: Window watchdog counter stops working.
8	IWDG_STOP	The watchdog stops working when the kernel enters the debugging state.
		Set or cleared by software.
		0: Watchdog counter still works normally;
		1: Watchdog counter stops working.
7:3	Reserved	Reserved, must keep the reset value.
2	STDBY	Debug standby mode.
		Set or cleared by software.
		0:(FCLK OFF, HCLK OFF) The whole digital circuit is powered off. From the
		software point of view, exiting the STANDBY mode is the same as resetting
		(except that some status bits indicate that the microcontroller has just exited from
		the STANDBY state).
		1:(FCLK ON, HCLK ON) The digital circuit part is not powered down, and the
		FCLK and HCLK clocks are clocked by the internal RLD oscillator. In addition, it
		is the same as resetting that the microcontroller exits the STANDBY mode by
		generating a system reset.
1	STOP	Debug stop mode.
		Set or cleared by software.
		0:(FCLK OFF, HCLK OFF) In stop mode, the clock controller disables all clocks
		(including HCLK and FCLK). When exiting from STOP mode, the configuration of
		the clock is the same as that after reset (the microcontroller is clocked by the 8MHz
		internal RC oscillator (HSI)). Therefore, the software must reconfigure the clock
		control system to start PLL, crystal oscillator, etc.
		1:(FCLK ON, HCLK ON) In stop mode, the FCLK and HCLK clocks are provided
		by the internal RC oscillator. When exiting the stop mode, the software must
		reconfigure the clock system to start PLL, crystal oscillator, etc. (the same
		operation as when this bit is set to 0).
0	SLEEP	Debug sleep mode.
		Set or cleared by software.
		0:(FCLK ON, HCLK OFF) In sleep mode, FCLK is provided by the previously
		configured system clock, while HCLK is off. Since sleep mode does not reset the
		configured clock system, the software does not need to reconfigure the clock
		system when exiting from sleep mode.
		1:(FCLK ON, HCLK ON) In sleep mode, both the FCLK and HCLK clocks are

Bit field	Name	Description
		provided by the previously configured system clock.

27 Unique device serial number (UID)

27.1 Introduction

MCU series products have two built-in unique device serial numbers with different lengths, namely 96-bit UID (Unique device ID) and 128-bit UCID (Unique Customer ID). These two device serial numbers are stored in the system configuration block of the flash memory, and the information is programmed during manufacture, and any MCU microcontroller is guaranteed to be unique under any circumstances. It can be read by user applications or external devices through CPU or SWD interface and cannot be modified.

UID is 96 bits, which is usually used as serial number or password. When writing flash memory, this unique identifier is combined with software encryption and decryption algorithm to further improve the security of code in flash memory.

UCID is 128 bits and complies with the definition of the Nations Technologies chip serial number. It contains information about chip production and version.

678

27.2 UID register

Start address: 0x1FFF_F7F0, 96 bits in length.

27.3 UCID register

Start address: 0x1FFF F7C0, 128 bits in length.

28 Version history

Date	Version	Modified
2022.07.08	V3.0	initial version
2022.09.08	V3.1.0	Delete RTC periodic wake-up support Standby mode.
		2. Modfiy PVD threshold gear information description error.
		3. Modfiy Figure 21-25 I ² S clock generator structure
		4. Modfiy ADC sampling clock and sampling rate
		5. Add Clock Tree Figure note: When PLL is selected as system clock source, PLL minimum clock output is 32MHz
		6. Added comments to the I2C master send/receive mode chapter.

29 Notice

This document is the exclusive property of Nations Technologies Inc. (Hereinafter referred to as NATIONS). This document, and the product of NATIONS described herein (Hereinafter referred to as the Product) are owned by NATIONS under the laws and treaties of the People's Republic of China and other applicable jurisdictions worldwide.

NATIONS does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. Names and brands of third party may be mentioned or referred thereto (if any) for identification purposes only.

NATIONS reserves the right to make changes, corrections, enhancements, modifications, and improvements to this document at any time without notice. Please contact NATIONS and obtain the latest version of this document before placing orders.

Although NATIONS has attempted to provide accurate and reliable information, NATIONS assumes no responsibility for the accuracy and reliability of this document.

It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. In no event shall NATIONS be liable for any direct, indirect, incidental, special, exemplary, or consequential damages arising in any way out of the use of this document or the Product.

NATIONS Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at user's risk. User shall indemnify NATIONS and hold NATIONS harmless from and against all claims, costs, damages, and other liabilities, arising from or related to any customer's Insecure Usage.

Any express or implied warranty with regard to this document or the Product, including, but not limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement are disclaimed to the fullest extent permitted by law.

Unless otherwise explicitly permitted by NATIONS, anyone may not use, duplicate, modify, transcribe or otherwise distribute this document for any purposes, in whole or in part.