

N32WB03x Bluetooth® Low Energy wireless SoC Family

User manual V1.3

Contents

1 ABBREVIATIONS IN THE TEXT	23
1.1 LIST OF ABBREVIATIONS FOR REGISTERS	23
1.2 Available peripherals	23
2 MEMORY AND BUS ARCHITECTURE	24
2.1 System architecture	24
2.1.1 Architecture of system bus	
2.1.1 Atemaceute of system ous 2.1.2 Bus address mapping	
2.1.2.1 Start address and configuration	
2.2 MEMORY SYSTEM	
2.2.1 SRAM	
3 POWER SUPPLY CONTROL (PWR)	29
3.1 INTRODUCTION	
3.1.1 Power supply	32
3.2 POWER SUPPLY MANAGEMENT.	32
3.3 LOW POWER CONSUMPTION MODE	
3.3.1 Active mode	35
3.3.2 Idle mode	
3.3.2.1 Entering Idle mode	
3.3.2.2 Exiting Idle mode	
3.3.3 Standby mode	
3.3.3.1 Entering Standby mode	
3.3.3.2 Exiting Standby mode	
3.3.4 Sleep mode	
3.3.4.1 Entering Sleep mode	
3.3.4.2 Exiting Sleep mode	
3.3.5 PD mode	
3.3.5.1 Entering PD mode	
3.3.5.2 Exiting PD mode	
3.4 PWR register	
3.4.1 Diagram of PWR register	
3.4.2 Power control register1 (PWR_CR1)	
3.4.3 Power control register2 (PWR_CR2)	
3.4.4 Interrupt vector address Remap register (VTOR_REG)	
4 RESET AND CLOCK CONTROL (RCC)	41
4.1 Reset control unit	
4.1.1 Power reset	
4.1.2 System reset	
-	

4.2 CLOCK	CONTROL UNIT	42
4.2.1	HSE clock	44
4.2.2	HSI clock	44
4.2.3	HSI calibration	45
4.2.4	LSE clock	45
4.2.5	External clock source (LSE bypass)	45
4.2.6	LSI clock	46
4.2.7	LSI calibration	46
4.2.8	Selection of system clock (SYSCLK)	47
4.2.9	RTC clock	47
4.2.10	Watchdog clock	47
4.2.11	LPUART clock	47
4.2.12	Clock output	47
4.3 RCC RE	EGISTER	48
4.3.1	Register overview	48
4.3.2	Clock control register (RCC_CTRL)	49
4.3.3	Clock configuration register (RCC_CFG)	51
4.3.4	Clock interrupt register (RCC_CLKINT)	52
4.3.5	APB2 peripheral reset register (RCC_APB2PRST)	54
4.3.6	APB1 peripheral reset register (RCC_APB1PRST)	56
4.3.7	AHB peripheral clock enable register (RCC_AHBPCLKEN)	57
4.3.8	APB2 peripheral clock enable register (RCC_APB2PCLKEN)	58
4.3.9	APB1 peripheral clock enable register (RCC_APB1PCLKEN)	59
4.3.10	Low speed clock control register (RCC_LSCTRL)	60
4.3.11	Control/status register (RCC_CTRLSTS)	62
4.3.12	AHB peripheral reset register (RCC_AHBPRST)	63
4.3.13	Clock configuration register 2 (RCC_CFG2)	63
4.3.14	OSCFC control register (OSCFCCR)	64
4.3.15	OSCFC status register (OSCFCSR)	64
4.3.16	Counter register (OSCFCLSICNT)	65
4.3.17	Counter register (OSCFCHSICNT)	65
4.3.18	DBGMCU_CR register	65
5 GPIO AND	AFIO	66
5 1 SUINANA	ARY	66
	ary	
5.2 FUNCT	I/O mode configuration	
5.2.1	Status after reset	
5.2.2	Individual bit setting and bit clearing	
5.2.3 5.2.4	External interrupt /wakeup line	
5.2.4	Alternate function	
5.2.5	I/O configuration of peripherals	
5.2.6	GPIO Locking mechanism	
3.2.1		

5.3 GPIO	REGISTERS	81
5.3.1	GPIO register overview	
5.3.2	GPIO port mode description register (GPIOx_PMODE)	
5.3.3	GPIO port type definition (GPIOx_POTYPE)	
5.3.4	GPIO slew rate configuration register (GPIOx_SR)	
5.3.5	GPIO port pull-up/pull-down register (GPIOx_PUPD)	
5.3.6	GPIO port input data register (GPIOx_PID)	
5.3.7	GPIO port output data register (GPIOx_POD)	
5.3.8	GPIO port bit set/clear register (GPIOx_PBSC)	
5.3.9	GPIO port configuration lock register (GPIOx_PLOCK)	
5.3.10	GPIO alternate function low register (GPIOx_AFL)	
5.3.11	GPIO alternate function high register (GPIOx_AFH)	
5.3.12	GPIO port bit clear register (GPIOx_PBC)	
5.3.13	GPIO driver strength configuration register (GPIOx_DS)	
5.4 AFIO	REGISTERS	89
5.4.1	AFIO register overview	
5.4.2	AFIO configuration register (AFIO_CFG)	
5.4.3	AFIO external interrupt configuration register 1 (AFIO_EXTI_CFG1)	
5.4.4	AFIO external interrupt configuration register 2 (AFIO_EXTI_CFG2)	91
6 INTERRU	PTS AND EVENTS	93
C 1 N		03
6.1.1	SysTick calibration value register	
6.1.2	Interrupt and exception vectors	
	NAL INTERRUPT/EVENT CONTROLLER (EXTI)	
6.2.1	Introduction	
6.2.2	Main features	
6.2.3	Functional description	
6.2.4	EXTI line mapping	
6.3 EXTT	REGISTERS	
6.3.2	EXTI register overview Interrupt mask register(EXTI IMASK)	
6.3.2	Event mask register(EXTI EMASK)	
6.3.4	Rising edge trigger selection register(EXTI_RT_CFG)	
6.3.4	Falling edge trigger selection register(EXTI_FT_CFG)	
6.3.6	Software interrupt enable register(EXTI_SWIE)	
	Interrupt request pending register(EXTI_SWIE)	
6.3.7	Interrupt request pending register(EXII_PEND)	
7 DMA COM	NTROLLER	
7.1 INTRO	DUCTION	
7.2 MAIN	FEATURES	
7.3 BLOCK	(DIAGRAM	
7.4 Func ⁻	TION DESCRIPTION	

7.4.1	DMA operation	
7.4.2	Arbiter	
7.4.3	DMA channels	
7.4.3.	1 Programmable data bit width	
7.4.3.	2 Address pointer incrementation	
7.4.3.	3 Channel configuration procedure	
7.4.3.	4 Circular mode	
7.4.3.	5 Memory-to-memory mode	
7.4.4	Programmable data transfer width, alignment, and data endianness	
7.4.4.	1 Operate an AHB device that does not support byte or halfword write	
7.4.5	Error management	
7.4.6	Interrupt	
7.4.7	DMA request mapping	
7.5 DMA	A REGISTERS	
7.5.1	DMA register overview	
7.5.2	DMA interrupt status register (DMA_INTSTS)	
7.5.3	DMA interrupt flag clear register (DMA_INTCLR)	
7.5.4	DMA channel x configuration register (DMA_CHCFGx)	
7.5.5	DMA channel x transfer number register (DMA_TXNUMx)	
7.5.6	DMA channel x peripheral address register (DMA_PADDRx)	
7.5.7	DMA channel x memory address register (DMA_MADDRx)	
7.5.8	DMA channel x channel request select register (DMA_CHSELx)	
8 CRC CAL	CULATION UNIT	
8.1 CRC	INTRODUCTION	
8.2 CRC	MAIN FEATURES	
8.2.1	CRC32 module	
8.2.2	CRC16 module	
8.3 CRC	FUNCTION DESCRIPTION	
8.3.1	CRC32	
8.3.2	CRC16	
8.4 CRC	REGISTERS	
8.4.1	CRC register overview	
8.4.2	CRC32 data register (CRC_CRC32DAT)	
8.4.3	CRC32 independent data register (CRC_CRC32IDAT)	
8.4.4	CRC32 control register (CRC_CRC32CTRL)	
8.4.5	CRC16 control register (CRC_CRC16CTRL)	121
8.4.6	CRC16 input data register (CRC_CRC16DAT)	
8.4.7	CRC cyclic redundancy check code register (CRC_CRC16D)	
8.4.8	LRC result register (CRC_LRC)	
9 ADVANCE	D-CONTROL TIMERS (TIM1)	
9 1 TIN/1	INTRODUCTION	174
2.7 111417		

9.2 Main f	EATURES OF TIM1	124
9.3 TIM1 F	UNCTION DESCRIPTION	125
9.3.1	Time-base unit	125
9.3.2	Counter mode	126
9.3.3	Repetition counter	132
9.3.4	Clock selection	135
9.3.5	Capture/compare channels	138
9.3.6	Input capture mode	141
9.3.7	PWM input mode	142
9.3.8	Forced output mode	143
9.3.9	Output compare mode	144
9.3.10	PWM mode	145
9.3.11	One-pulse mode	148
9.3.12	Clearing the OCxREF signal on an external event	149
9.3.13	Complementary outputs with dead-time insertion	150
9.3.14	Break function	152
9.3.15	Debug mode	154
9.3.16	TIMx and external trigger synchronization	154
9.3.17	Timer synchronization	158
9.3.18	6-step PWM generation	158
9.3.19	Encoder interface mode	159
9.3.20	Interfacing with Hall sensor	162
9.4 TIMx r	EGISTER DESCRIPTION(X=1)	164
9.4.1	Register Overview	164
9.4.2	Control register 1 (TIMx_CTRL1)	165
9.4.3	Control register 2 (TIMx_CTRL2)	167
9.4.4	Slave mode control register (TIMx_SMCTRL)	169
9.4.5	DMA/Interrupt enable registers (TIMx_DINTEN)	171
9.4.6	Status registers (TIMx_STS)	173
9.4.7	Event generation registers (TIMx_EVTGEN)	175
9.4.8	Capture/compare mode register 1 (TIMx_CCMOD1)	176
9.4.9	Capture/compare mode register 2 (TIMx_CCMOD2)	179
9.4.10	Capture/compare enable registers (TIMx_CCEN)	181
9.4.11	Counters (TIMx_CNT)	184
9.4.12	Prescaler (TIMx_PSC)	184
9.4.13	Auto-reload register (TIMx_AR)	185
9.4.14	Repeat count registers (TIMx_REPCNT)	185
9.4.15	Capture/compare register 1 (TIMx_CCDAT1)	186
9.4.16	Capture/compare register 2 (TIMx_CCDAT2)	186
9.4.17	Capture/compare register 3 (TIMx_CCDAT3)	187
9.4.18	Capture/compare register 4 (TIMx_CCDAT4)	187
9.4.19	Break and Dead-time registers (TIMx_BKDT)	188

9.4.20	DMA Control register (TIMx_DCTRL)	
9.4.21	DMA transfer buffer register (TIMx_DADDR)	
10 GENERAL-P	PURPOSE TIMERS (TIM3)	
10.1 GENERA	AL-PURPOSE TIMERS INTRODUCTION	
10.2 MAIN FI	EATURES OF GENERAL-PURPOSE TIMERS	
10.3 Genera	AL-PURPOSE TIMERS DESCRIPTION	
10.3.1	Time-base unit	
10.3.2	Counter mode	
10.3.3	Clock selection	
10.3.4	Capture/compare channels	
10.3.5	Input capture mode	
10.3.6	PWM input mode	
10.3.7	Forced output mode	
10.3.8	Output compare mode	
10.3.9	PWM mode	
10.3.10	One-pulse mode	
10.3.11	Clearing the OCxREF signal on an external event	
10.3.12	Debug mode	
10.3.13	TIMx and external trigger synchronization	
10.3.14	Timer synchronization	
10.3.15	Encoder interface mode	
10.3.16	Interfacing with Hall sensor	
10.4 TIMx r	EGISTER DESCRIPTION(X=3)	220
10.4.1	Register Overview	
10.4.2	Control register 1 (TIMx_CTRL1)	
10.4.3	Control register 2 (TIMx_CTRL2)	
10.4.4	Slave mode control register (TIMx_SMCTRL)	
10.4.5	DMA/Interrupt enable registers (TIMx_DINTEN)	
10.4.6	Status registers (TIMx_STS)	
10.4.7	Event generation registers (TIMx_EVTGEN)	
10.4.8	Capture/compare mode register 1 (TIMx_CCMOD1)	
10.4.9	Capture/compare mode register 2 (TIMx_CCMOD2)	
10.4.10	Capture/compare enable registers (TIMx_CCEN)	
10.4.11	Counters (TIMx_CNT)	
10.4.12	Prescaler (TIMx_PSC)	
10.4.13	Auto-reload register (TIMx_AR)	
10.4.14	Capture/compare register 1 (TIMx_CCDAT1)	
10.4.15	Capture/compare register 2 (TIMx_CCDAT2)	
10.4.16	Capture/compare register 3 (TIMx_CCDAT3)	
10.4.17	Capture/compare register 4 (TIMx_CCDAT4)	
10.4.18	DMA Control register (TIMx_DCTRL)	
10.4.19	DMA transfer buffer register (TIMx_DADDR)	

11 BASIC TIM	ERS (TIM6)	241
11.1 BASIC T	IMERS INTRODUCTION	
11.2 MAIN F	eatures of Basic timers	
11.3 BASIC T	IMERS DESCRIPTION	
11.3.1	Time-base unit	
11.3.2	Counter mode	
11.3.3	Clock selection	
11.3.4	Debug mode	
11.4 TIMX R	register description(x=6)	245
11.4.1	Register overview	
11.4.2	Control Register 1 (TIMx_CTRL1)	
11.4.3	Control Register 2 (TIMx_CTRL2)	
11.4.4	DMA/Interrupt Enable Registers (TIMx_DINTEN)	
11.4.5	Status Registers (TIMx_STS)	
11.4.6	Event Generation registers (TIMx_EVTGEN)	
11.4.7	Counters (TIMx_CNT)	
11.4.8	Prescaler (TIMx_PSC)	
11.4.9	Automatic reload register (TIMx_AR)	
12 INDEPEND	DENT WATCHDOG (IWDG)	252
12.1 INTRO	DUCTION	252
12.2 MAIN	FEATURES	252
12.3 FUNCT	ION DESCRIPTION	
12.3.1	Register access protection	
12.3.2	Debug mode	
12.4 USER I	NTERFACE	254
12.4.1	Operate flow	
12.5 IWDG	REGISTERS	255
12.5.1	IWDG register overview	
12.5.2	IWDG key register (IWDG_KEY)	
12.5.3	IWDG pre-scaler register (IWDG_PREDIV)	
12.5.4	IWDG reload register (IWDG_RELV)	
12.5.5	IWDG status register (IWDG_STS)	
13 WINDOW	WATCHDOG (WWDG)	258
13.1 INTROI	DUCTION	258
13.2 MAIN	FEATURES	258
13.3 FUNCT	ION DESCRIPTION	258
13.4 TIMINO	G FOR REFRESH WATCHDOG AND INTERRUPT GENERATION	259
13.5 DEBUG	G MODE	
13.6 USER I	NTERFACE	
13.6.1	WWDG configuration flow	

13.7 WWD0	G REGISTERS	261
13.7.1	WWDG register overview	
13.7.2	WWDG control register (WWDG_CTRL)	
13.7.3	WWDG config register (WWDG_CFG)	
13.7.4	WWDG status register (WWDG_STS)	
14 BLE SUBSYS	TEM	263
14.1 INTROD	UCTION TO BLE SUBSYSTEM	
14.1.1	Introduction to Baseband	
14.1.2	Introduction to RF Control	
14.1.3	Introduction to Modem	
14.2 MAIN F	eatures of the BLE subsystem	263
14.2.1	Main features of BLE Baseband	
14.2.2	Modem main features	
15 VOICE CON	ITROL AND ADC	265
	UCTION	
	ATURES	
	NPUT CHANNEL	
	DNTROL	
15.5 DIGITAL	VOICE CONTROL	
15.5.1	Low-pass decimation filter LPF	
15.5.2	Energy detection and zero crossing rate detection	
15.6 FUNCTIO	ON DESCRIPTION OF ADC	
15.6.1	Input channel and range of input voltage	
15.6.2	ADC switch control	
15.6.3	Conversion mode	
15.6.3.1	Single conversion mode	
15.6.3.2	Continuous conversion mode	
15.6.4	Analog watchdog	
15.7 Data al	IGNMENT	270
15.8 DMA r	EQUEST	270
15.9 TEMPER	ATURE SENSOR	270
15.9.1	Read temperature	271
15.10 ADC F	REGISTER	271
15.10.1	ADC register overview	
15.10.2	ADC control register (ADC_CTRL)	
15.10.3	ADC status register(ADC_SR)	
15.10.4	ADC oversample control register (ADC_OVR_SAMP_CNT)	
15.10.5	ADC data register (ADC_DAT)	
15.10.6	ADC watchdog threshold control register (ADC_WDT_THRES)	
15.10.7	PGA&BIAS control register (PGA_CFG)	
15.10.8	Voice detection control register (VOICE_DET_CR)	

15.10.9	Voice zero crossing rate detection threshold register (VOICE_ZCR_THRES)	277
15.10.10	Voice energy detection threshold register (VOICE_ED_THRES)	
15.10.11	Voice energy detection underflow register (VOICE_ED_DWN_THRES)	
15.10.12	Voice energy detection overflow register (VOICE_ED_UP_THRES)	
16 I ² C INTERF	ACE	280
16.1 INTROD	UCTION	
16.2 MAIN FI	EATURES	
16.3 FUNCTIO	DN DESCRIPTION	
16.3.1	Mode selection	
16.3.2	I2C Slave mode	
16.3.3	I2C master mode	
16.3.4	Error conditions description	
16.3.5	SDA/SCL line control	
16.3.6	SMBus	
16.3.7	DMA requests	
16.3.8	Packet error check(PEC)	
16.4 Interru	JPT REQUEST	296
16.5 I2C DEB	BUG MODE	296
16.6 I2C REG	ISTERS DESCIPTION	297
16.6.1	I2C register overview	
16.6.2	I2C Control register 1 (I2C_CTRL1)	
16.6.3	I2C Control register 2 (I2C_CTRL2)	
16.6.4	I2C Own address register 1 (I2C_OADDR1)	
16.6.5	I2C Own address register 2 (I2C_OADDR2)	
16.6.6	I2C Data register (I2C_DAT)	
16.6.7	I2C Status register 1 (I2C_STS1)	
16.6.8	I2C Status register 2 (I2C_STS2)	
16.6.9	I2C Clock control register (I2C_CLKCTRL)	
16.6.10	I2C Rise time register (I2C_TMRISE)	
17 UNIVERSAI	L SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)	
17.1 INTROD	UCTION	
17.2 MAIN FI	EATURES	
17.3 FUNCTIO	DNAL BLOCK DIAGRAM	
17.4 FUNCTIO	DN DESCRIPTION	
17.5 USART	FRAME FORMAT	
17.5.1	Transmitter	
17.5.2	Receiver	
17.5.3	Generation of fractional baud rate	
17.5.4	Receiver's tolerance clock deviation	
17.5.5	Parity control	
17.5.6	Multiprocessor communication	

17.5.7	LIN mode	
17.5.8	Usart Synchronous mode	
17.5.9	Single-wire half-duplex mode	
17.5.10	Smartcard mode (ISO7816)	
17.5.11	IrDA SIR ENDEC mode	
17.5.12	DMA communication mode	
17.5.13	Hardware flow control	
17.6 INTERR	UPT REQUEST	
17.7 USART	MODE CONFIGURATION	
17.8 USAR1	REGISTER	
17.8.1	USART register overview	
17.8.2	USART Status register (USART_STS)	
17.8.3	USART Data register (USART_DAT)	
17.8.4	USART Baud rate register (USART_BRCF)	
17.8.5	USART control register 1 register (USART_CTRL1)	
17.8.6	USART control register 2 register (USART_CTRL2)	
17.8.7	USART control register 3 register (USART_CTRL3)	
17.8.8	USART guard time and prescaler register (USART_GTP)	
18 LOW POW	ER UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (LPUART)	352
18.1 INTROD	UCTION	
18.2 Main f	EATURES	
18.3 FUNCTI	ONAL BLOCK DIAGRAM	
18.4 FUNCTI	ON DESCRIPTION	
18.4.1	LPUART frame format	
18.4.2	Transmitter	
18.4.3	Receiver	
18.4.4	Fractional baud rate generation	
18.4.5	Parity control	
18.4.6	DMA application	
18.4.7	Hardware flow control	
18.4.8	Low power wake up	
18.5 INTERR	UPT REQUEST	
18.6 LPUAF	RT REGISTERS	
18.6.1	LPUART register overview	
18.6.2	LPUART status register (LPUART_STS)	
18.6.3	LPUART interrupt enable register (LPUART_INTEN)	
18.6.4	LPUART control register (LPUART_CTRL)	
18.6.5	LPUART baud rate configuration register 1 (LPUART_BRCFG1)	
18.6.6	LPUART data register (LPUART_DAT)	
18.6.7	LPUART baud rate configuration register 2 (LPUART_BRCFG2)	
18.6.8	LPUART wake up data register (LPUART_WUDAT)	

19 SERIAL PE	RIPHERAL INTERFACE/INTER-IC SOUND (SPI/ I2S)	371
19.1 INTROD		
19.2 SPI ANI	D I2S MAIN FEATURES	
19.2.1	SPI features	
19.2.2	I2S features	
19.3 SPI FUN	NCTION DESCRIPTION	
19.3.1	General description	
19.3.2	SPI work mode	
19.3.3	Status flag	
19.3.4	Turn off the SPI	
19.3.5	SPI communication using DMA	
19.3.6	CRC calculation	
19.3.7	Error flag	
19.3.8	SPI interrupt	
19.4 I2S FUN	NCTION DESCRIPTION	
19.4.1	Supported audio protocols	
19.4.2	Clock generator	
19.4.3	I2S send and receive sequence	
19.4.4	Status flag	
19.4.5	Error flag	
19.4.6	I2S interrupt	
19.4.7	DMA function	
19.5 SPI ANI	D I2S REGISTER DESCRIPTION	
19.5.1	SPI register overview	
19.5.2	SPI control register 1 (SPI_CTRL1) (not used in I2S mode)	
19.5.3	SPI control register 2 (SPI_CTRL2)	400
19.5.4	SPI status register (SPI_STS)	401
19.5.5	SPI data register (SPI_DAT)	
19.5.6	SPI CRC polynomial register (SPI_CRCPOLY) (not used in I ² S mode)	
19.5.7	SPI RX CRC register (SPI_CRCRDAT) (not used in I ² S mode)	
19.5.8	SPI TX CRC register (SPI_CRCTDAT)	
19.5.9	SPI_I ² S configuration register (SPI_I2SCFG)	404
19.5.10	SPI_I ² S prescaler register (SPI_I2SPREDIV)	
20 REAL-TIME	E CLOCK (RTC)	407
20.1 RTC De	ESCRIPTION	407
20.2 Specifi	CATION	407
20.3 RTC FU	INCTION DESCRIPTION	408
20.3.1	RTC block diagram	
20.3.2	RTC clock and prescaler	
20.3.3	RTC calendar	
20.3.4	Programmable alarms	410

20.3.5	Periodic automatic wakeup	410
20.3.6	RTC register write protection	411
20.3.7	Calendar initialization and configuration	411
20.3.8	Daylight saving time configuration	411
20.3.9	Alarm configuration	411
20.3.10	Wakeup timer configuration	412
20.3.11	Calendar reading	412
20.3.12	RTC sub-second register shift	413
20.3.13	RTC digital clock precision calibration	413
20.3.14	RTC low power mode	415
20.4 RTC RE	GISTERS	416
20.4.1	RTC register Address Map	416
20.4.2	RTC Calendar Time Register (RTC_TSH)	417
20.4.3	RTC Calendar Date Register (RTC_DATE)	417
20.4.4	RTC Control Register (RTC_CTRL)	418
20.4.5	RTC Initial Status Register (RTC_INITSTS)	419
20.4.6	RTC Prescaler Register (RTC_PRE)	421
20.4.7	RTC Wakeup Timer Register (RTC_WKUPT)	
20.4.8	RTC Alarm A Register (RTC_ALARMA)	
20.4.9	RTC Write Protection register (RTC_WRP)	
20.4.10	RTC Sub-second Register (RTC_SUBS)	424
20.4.11	RTC Shift Control Register (RTC_SCTRL)	424
20.4.12	RTC Calibration Register (RTC_CALIB)	
20.4.13	RTC Alarm A sub-second register (RTC_ALRMASS)	
21 INFRARED	CONTROLLER (IRC)	428
21.1 INTROD	UCTION TO IRC	428
21.2 MAIN F	EATURES OF IRC	428
21.3 FUNCTI	ON DESCRIPTION OF IRC	428
21.3.1	Input user interface	430
21.3.2	Carrier generator	430
21.3.3	Modulator	430
21.4 IRC REG	SISTER	431
21.4.1	IRC register overview	431
21.4.2	IRC carrier clock high-duration register (FREQ_CARR_ON)	431
21.4.3	IRC carrier clock low-duration register (FREQ_CARR_OFF)	432
21.4.4	IRC logic 1 time configuration register (LOGIC_ONE_TIME)	
21.4.5	IRC logic 0 time configuration register (LOGIC_ZERO_TIME)	
21.4.6	IRC Control register (IR_CTRL)	433
21.4.7	IRC status register (IR_STATUS)	434
21.4.8	IRC repeat time register (IR_REPEAT_TIME)	
21.4.9	IRC CODE FIFO data register (IR_CODE_FIFO)	
21.4.10	IRC REPEAT FIFO data register (IR_REPEAT_FIFO)	

22 KEY DETEC	TION (KEYSCAN)	436
22.1 INTROD	DUCTION TO KEYSCAN	436
22.2 MAIN F	EATURES OF KEYSCAN	436
22.3 FUNCTI	ON DESCRIPTION OF KEYSCAN	436
22.4 DESCRI	PTION OF KEYSCAN REGISTER	439
22.4.1	KEYSCAN register overview	
22.4.2	KEYSCAN control register (KEYCR)	
22.4.3	KEYSCAN INFO register 0 (KEYDATA0)	
22.4.4	KEYSCAN INFO register 1 (KEYDATA1)	
22.4.5	KEYSCAN INFO register 2 (KEYDATA2)	
22.4.6	KEYSCAN INFO register 3 (KEYDATA3)	
22.4.7	KEYSCAN INFO register 4 (KEYDATA4)	
23 DEBUG SU	PPORT (DBG)	
23.1 Overv	IEW	
23.2 SWD F	UNCTION	
23.2.1	Pin assignment	
24 VERSION H	HSTORY	
25 NOTICE		

List of Table

Table 2-1 Address List of Peripheral Register	. 26
Table 3-1 Working Mode	. 33
Table 3-2 PWR register overview	. 38
Table 4-1 RCC register overview	. 48
Table 5-1 I/O port configuration table	. 68
Table 5-2 I/O List of functional features of the pin	. 69
Table 5-3 I/O List of functional features of the pin	. 74
Table 5-4 TIM1 alternate function I/O remapping	. 74
Table 5-5 TIM3 alternate function I/O remapping	. 74
Table 5-6 USART1 alternate function I/O remapping	. 75
Table 5-7 USART2 alternate function I/O remapping	. 75
Table 5-8 LPUART alternate function I/O remapping	. 75
Table 5-9 I2C1 alternate function I/O remapping	. 76
Table 5-10 SPI1/I2S alternate function I/O remapping	. 76
Table 5-11 SPI2 alternate function I/O remapping	. 76
Table 5-12 IRC alternate function I/O remapping	. 76
Table 5-13 KEYSCAN alternate function I/O remapping	. 77
Table 5-14 BLE alternate function I/O remapping	. 77
Table 5-15 RCC alternate function I/O remapping	. 77
Table 5-16 OSC32_IN/OSC32_OUT alternate function I/O remapping	. 77
Table 5-17 PB8/PB9 alternate function remapping	. 78
Table 5-18 ADC	. 78
Table 5-19 TIM1	. 78
Table 5-20 TIM3	. 78
Table 5-21 USART	. 78
Table 5-22 LPUART	. 79
Table 5-23 I2C	. 79
Table 5-24 SPI	. 79
Table 5-25 IIS	. 80

Table 5-26 IRC	. 80
Table 5-27 KEYSCAN	. 80
Table 5-28 BLE	. 80
Table 5-29 Other	. 80
Table 5-30 GPIO register overview	. 81
Table 5-31 AFIO register voverview	. 89
Table 6-1 Vector table	. 93
Table 6-2 EXTI Register overview	100
Table 7-1 Programmable data width and endian operation (when PINC = MINC = 1)	108
Table 7-2 DMA interrupt request.	110
Table 7-3 Overview of DMA requests for each channel	110
Table 7-4 DMA Register overview	.111
Table 8-1 CRC register overview	120
Table 9-1 Counting direction versus encoder signals	160
Table 9-2 Register overview	164
Table 9-3 TIMx internal trigger connection	171
Table 9-4 Output control bits of complementary OCx and OCxN channels with break function	183
Table 10-1 Relationship between countingdirection and encoder signals	218
Table 10-2 Register overview	220
Table 10-3 TIMx internal trigger connection	226
Table 10-4 Output control bits of standard OCx channel	236
Table 11-1 Register overview	246
Table 12-1 IWDG counting maximum and minimum reset time	255
Table 12-2 IWDG register overview	255
Table 13-1 Maximum and minimum counting time of WWDG	260
Table 13-2 WWDG register overview	261
Table 15-1 ADC register overview	271
Table 16-16-1 Comparison between SMBus and I2C	291
Table 16-16-2 I ² C interrupt request	296
Table 16-16-3 I2C register overview	297
Table 17-17-1 Stop bit configuration	314

Table 17-17-2 Data sampling for noise detection	319
Table 17-3 Error calculation when setting baud rate	322
Table 17-17-4 when DIV_Decimal = 0. Tolerance of USART receiver	323
Table 17-17-5 when DIV_Decimal != 0. Tolerance of USART receiver	323
Table 17-17-6 Frame format	323
Table 17-17-7 USART interrupt request	340
Table 17-8 USART mode setting ⁽¹⁾	341
Table 17-17-9 USART register overview and reset value	342
Table 18-18-1 Data sampling for noise detection	358
Table 18-2 Parity frame format	360
Table 18-18-3 LPUART interrupt requests	364
Table 18-18-4 LPUART register overview	365
Table 19-19-1 SPI interrupt request	385
Table 19-19-2 Use the standard 8MHz HSE clock to get accurate audio frequency	394
Table 19-19-3 I ² S interrupt request	397
Table 19-19-4 SPI register overview	397
Table 20-1 RTC Register Address Map and Reset Value	416
Table 21-1 IRC Register overview	431
Table 22-1 Key Information Sheet of KEYSCAN	438
Table 22-2 KEYSCAN register overview	439

List of Figure

Figure 2-1 Architecture Diagram of System Bus
Figure 2-2 Bus Address Mapping
Figure 3-1 Diagram of Power Supply
Figure 4-1 Reset Circuit
Figure 4-2 Clock Tree Directory
Figure 5-1 Basic structure of I/O ports
Figure 5-2 Input floating / pull-up / pull-down configuration mode
Figure 5-3 Output mode
Figure 5-4 Alternate function mode
Figure 5-5 Analog function mode with high impedance
Figure 6-1 Extenal interrupt/event controller block diagram
Figure 6-2 External interrupt generic I/O mapping
Figure 7-1 DMA block diagram
Figure 8-1 CRC calculation unit block diagram
Figure 9-1 Block diagram of TIM1 125
Figure 9-2 Counter timing diagram with prescaler division change from 1 to 4 126
Figure 9-3 Timing diagram of up-counting. The internal clock divider factor = $2/N$ 128
Figure 9-4 Timing diagram of the up-counting, update event when ARPEN=0/1 129
Figure 9-5 Timing diagram of the down-counting, internal clock divided factor = $2/N$ 130
Figure 9-6 Timing diagram of the Center-aligned, internal clock divided factor =2/N 131
Figure 9-7 A center-aligned sequence diagram that includes counter overflows and underflows (ARPEN = 1)
Figure 9-8 Repeat count sequence diagram in down-counting mode
Figure 9-9 Repeat count sequence diagram in up-counting mode
Figure 9-10 Repeat count sequence diagram in center-aligned mode
Figure 9-11 Control circuit in normal mode, internal clock divided by 1 135
Figure 9-12 TI2 external clock connection example
Figure 9-13 Control circuit in external clock mode 1
Figure 9-14 External trigger input block diagram

Figure 10-9 TI2 external clock connection example	201
Figure 10-8 Control circuit in normal mode, internal clock divided by 1	
Figure 10-7 A center-aligned sequence diagram that includes counter overflows and underflows (ARPEN	,
Figure 10-6 Timing diagram of the Center-aligned, internal clock divided factor =2/N	198
Figure 10-5 Timing diagram of the down-counting, internal clock divided factor = $2/N$	197
Figure 10-4 Timing diagram of the up-counting, update event when ARPEN=0/1	196
Figure 10-3 Timing diagram of up-counting. The internal clock divider factor = $2/N$	195
Figure 10-2 Counter timing diagram with prescaler division change from 1 to 4	194
Figure 10-1 Block diagram of TIMx (x=3)	193
Figure 9-35 Example of Hall sensor interface	163
Figure 9-34 Encoder interface mode example with IC1FP1 polarity inverted	161
Figure 9-33 Example of counter operation in encoder interface mode	160
Figure 9-32 6-step PWM generation, COM example (OSSR=1)	159
Figure 9-31 Control circuit in Trigger Mode + External Clock Mode2	158
Figure 9-30 Control circuit in Gated mode	157
Figure 9-29 Control circuit in Trigger mode	156
Figure 9-28 Control circuit in reset mode	155
Figure 9-27 Output behavior in response to a break	154
Figure 9-26 Complementary output with dead-time insertion	151
Figure 9-25 Clearing the OCxREF of TIMx	150
Figure 9-24 Example of One-pulse mode	148
Figure 9-23 Edge-aligned PWM waveform (APR=8)	147
Figure 9-22 Center-aligned PWM waveform (AR=8)	146
Figure 9-21 Output compare mode, toggle on OC1	145
Figure 9-20 PWM input mode timing	143
Figure 9-19 Output part of channelx (x= 4)	141
Figure 9-18 Output part of channelx (x= 1,2,3, take channel 1 as example)	140
Figure 9-17 Capture/compare channel 1 main circuit	140
Figure 9-16 Capture/compare channel (example: channel 1 input stage)	139
Figure 9-15 Control circuit in external clock mode 2	138

Figure 10-10 Control circuit in external clock mode 1	202
Figure 10-11 Capture/compare channel (example: channel 1 input stage)	202
Figure 10-12 Capture/compare channel 1 main circuit	203
Figure 10-13 Output part of channels $(x = 1,2,3,4; take channel 4 as an example)$	204
Figure 10-14 PWM input mode timing	206
Figure 10-15 Output compare mode, toggle on OC1	208
Figure 10-16 Center-aligned PWM waveform (AR=8)	209
Figure 10-17 Edge-aligned PWM waveform (APR=8)	210
Figure 10-18 Example of One-pulse mode	211
Figure 10-19 Control circuit in reset mode	212
Figure 10-20 Block diagram of timer interconnection	213
Figure 10-21 TIM3 gated by OC1REF of TIM1	215
Figure 10-22 TIM3 gated by enable signal of TIM1	216
Figure 10-23 Trigger TIM3 with an update of TIM1	217
Figure 10-24 Triggers timers 1 and 3 using the TI1 input of TIM1	218
Figure 10-25 Example of counter operation in encoder interface mode	219
Figure 11-1 Block diagram of TIMx $(x = 6)$	241
Figure 11-2 Counter timing diagram with prescaler division change from 1 to 4	242
Figure 11-3 Timing diagram of up-counting. The internal clock divider factor = 2/N	243
Figure 11-4 Timing diagram of the up-counting, update event when ARPEN=0/1	244
Figure 11-5 Control circuit in normal mode, internal clock divided by 1	245
Figure 12-1 Functional block diagram of the independent watchdog module	253
Figure 13-1 Watchdog block diagram	258
Figure 13-2 Refresh window and interrupt timing of WWDG	259
Figure 15-1 Architecture diagram of voice control and ADC	266
Figure 15-2 Analog watchdog warning area	270
Figure 15-3 Right alignment of data	270
Figure 16-16-1 Slave transmitter transfer sequence diagram	283
Figure 16-2 Master transmitter transfer sequence diagram	287
Figure 16-16-3 Master receiver transfer sequence diagram	288
Figure 17-17-1 USART block diagram	310

Figure 17-17-2 word length = 8 setting
Figure 17-3 configuration stop bit
Figure 17-4 Mute mode detected using address mark
Figure 18-18-1 LPUART block diagram
Figure 18-18-2 frame format
Figure 18-18-3 TXC changes during transmission
Figure 18-18-4 Data sampling for noise detection
Figure 18-18-5 Sending using DMA
Figure 18-18-6 Receiving with DMA
Figure 18-18-7 Hardware flow control between two LPUART
Figure 18-8 RTS flow control
Figure 18-18-9 CTS flow control
Figure 19-19-1 SPI block diagram
Figure 19-19-2 Selective management of hardware/software
Figure 19-19-3 Master and slave applications
Figure 19-19-4 Data clock timing diagram
Figure 19-19-5 Schematic diagram of the change of TE/RNE/BUSY when the host is continuously transmitting in full duplex mode
Figure 19-19-6 Schematic diagram of TE/BUSY change when the host transmits continuously in one-way only mode
Figure 19-19-7 Schematic diagram of RNE change when continuous transmission occurs in receive-only mode (BIDIRMODE = 0 and RONLY = 1)
Figure 19-19-8 Schematic diagram of the change of TE/RNE/BUSY when the slave is continuously transmitting in full duplex mode
Figure 19-19-9 Schematic diagram of TE/BUSY change during continuous transmission in slave unidirectional transmit-only mode
Figure 19-19-10 Schematic diagram of TE/BUSY change when BIDIRMODE = 0 and RONLY = 0 are transmitted discontinuously
Figure 19-19-11 Transmission using DMA
Figure 19-19-12 Reception using DMA
Figure 19-19-13 I ² S block diagram
Figure 19-19-14 I ² S Philips protocol waveform ($16/32$ -bit full precision, CLKPOL = 0)

Figure 19-19-15 I ² S Philips protocol standard waveform (24-bit frame, $CLKPOL = 0$)	388
Figure 19-19-16 I ² S Philips protocol standard waveform (16-bit extended to 32-bit packet frame, CLKPO	L=0)
	389
Figure 19-19-17 The MSB is aligned with 16-bit or 32-bit full precision, CLKPOL = 0	389
Figure 19-18 MSB aligns 24-bit data, CLKPOL = 0	390
Figure 19-19 MSB-aligned 16-bit data is extended to 32-bit packet frame, CLKPOL = 0	390
Figure 19-19-20 LSB alignment 16-bit or 32-bit full precision, CLKPOL = 0	390
Figure 19-21 LSB aligns 24-bit data, CLKPOL = 0	391
Figure 19-19-22 LSB aligned 16-bit data is extended to 32-bit packet frame, CLKPOL = 0	391
Figure 19-23 PCM standard waveform (16 bits)	392
Figure 19-24 PCM standard waveform (16-bit extended to 32-bit packet frame)	392
Figure 19-19-25 I ² S clock generator structure	393
Figure 19-19-26 Audio sampling frequency definition	393
Figure 20-1 RTC block diagram	408
Figure 21-1 IRC Schematic Diagram of Module	428
Figure 21-2 Schematic Diagram of Commands Corresponding to NEC Code	429
Figure 22-1 Configurable IOs- Wakeup Key Area in Low Power Consumption Mode	437
Figure 22-2 Configurable IOs- Wakeup Key Area in Low Power Consumption Mode	437
Figure 22-3 Configurable IOs- Wakeup Key Area in Low Power Consumption Mode	437
Figure 23-1 N32WB031x level and Cortex®-M0 level debugging block diagram	444

1 Abbreviations in the text

1.1 List of abbreviations for registers

The following abbreviations are used in register descriptions:

read/write(rw)	Software can read and write these bits.	
read-only(r)	Software can only read these bits.	
write-only(w)	Software can only write this bit, and reading this bit will return the reset	
	value.	
read/clear(rc_w1)	Software can read this bit or clear it by writing' 1', and writing' 0' has no	
	effect on this bit.	
read/clear(rc_w0)	Software can read this bit or clear it by writing' 0', and writing' 1' has no	
	effect on this bit.	
read/clear by read(rc_r)	Software can read this bit. Reading this bit will automatically clear it to' 0'.	
	Writing' 0' has no effect on this bit.	
read/set(rs)	Software can read or set this bit. Writing' 0' has no effect on this bit.	
read-only write trigger(rt_w)	Software can read this bit and write' 0' or' 1' to trigger an event, but it has no	
	effect on this bit value.	
toggle(t)	Software can only flip this bit by writing' 1', and writing' 0' has no effect on	
	this bit.	
Reserved(Res.)	Reserved bit, must be kept at reset value.	

1.2 Available peripherals

For all models of N32G031 microcontroller series, the existence and number of a peripheral, please refer to the data sheet of the corresponding model.

2 Memory and Bus Architecture

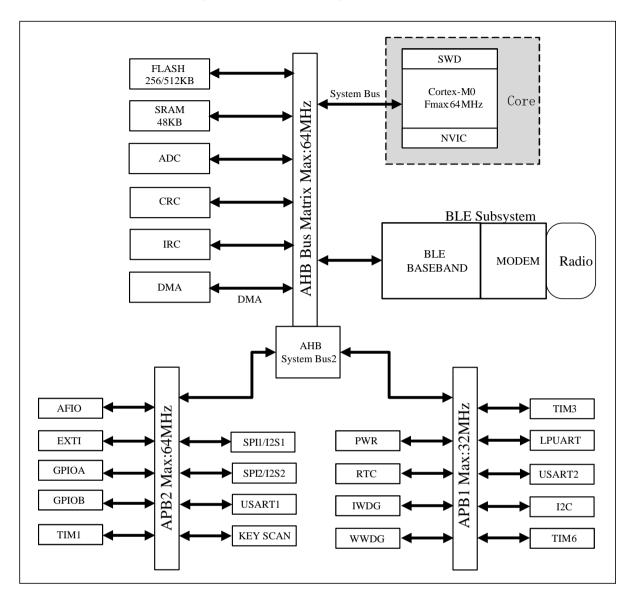
2.1 System architecture

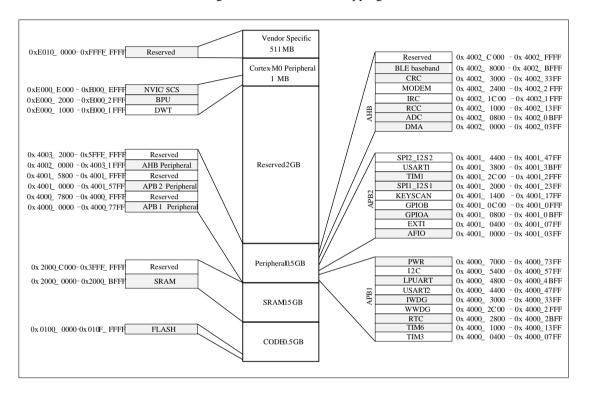
2.1.1 Architecture of system bus

The main system consists of the following parts:

- Two main drive units:
- 1 Cortex ®- M0 core system bus
- 2 General DMA
- Multiple passive units:
- 3 Internal SRAM
- 4 Low power Bluetooth BLE subsystem
- 5 ADCCTRL
- 6 Bridge from AHB to AHB, connecting some AHB equipment
- 7 Bridge from AHB to APB (AHB2APBx), connecting all APB equipment

These are interconnected through a multi-level AHB bus architecture, as shown in Figure 2-1:




Figure 2-1 Architecture Diagram of System Bus

- 1. CPU system bus: connecting the ICode/DCode bus of Cortex[™]-M0 core to the bus matrix, used for instruction prefetch, data loading (constant loading and debugging access) and AHB/APB peripheral access.
- 2. DMA bus: connecting the AHB master interface of DMA to the bus matrix which coordinates the access of core and DMA to SRAM, flash memory and peripherals.
- 3. The bus matrix coordinates the access arbitration, based on the rotation algorithm, between the core system bus and the DMA master bus, and consists of 2 driver components (CPU system bus, DMA bus) and multiple slave components (SRAM, BLE (SRAM and registers), ADCCTRL and AHB system bus 1/2). Some peripheral devices of AHB are connected with system bus 1 through bus matrix, while system bus 2 connects two AHB2APB bridges.

4. The system includes two AHB2APB bridges, namely AHB2APB1 and AHB2APB2. Among them, APB1 contains 9 APB peripherals, and the maximum speed of PCLK is 32MHz, as compared to APB2's 9 APB peripherals and 64MHz.

2.1.2 Bus address mapping

Bus address mapping covers all AHB and APB peripherals: AHB peripherals, APB1 peripherals, APB2 peripherals, FLASH, SRAM, etc., and the mapping is specifically presented as follows.

Figure 2-2 Bus Address Mapping

Table 2-1 Address List of Peripheral Register

Address Range	Peripheral	Bus
0x4002_C000 - 0x4002_FFFF	Reserved	АНВ
0x4002_8000 - 0x4002_BFFF	BLE baseband	
0x4002_3000 - 0x4002_33FF	CRC	
0x4002_2400 - 0x4002_2FFF	MODEM	
$0x4002_1C00 - 0x4002_1FFF$	IRC	
0x4002_1000 - 0x4002_13FF	RCC	
0x4002_0800 - 0x4002_0BFF	ADC	
0x4002_0000 - 0x4002_03FF	DMA	
0x4001_4400 - 0x4001_47FF	SPI2_I2S2	APB2
0x4001_3800 - 0x4001_3BFF	USART1	
0x4001_2C00 - 0x4001_2FFF	TIM1	

Address Range	Peripheral	Bus
0x4001_2000 - 0x4001_23FF	SPI1_I2S1	
$0x4001_0C00 - 0x4001_0FFF$	GPIOB	
0x4001_0800 - 0x4001_0BFF	GPIOA	
0x4001_0400 - 0x4001_07FF	EXTI	
0x4001_0000 - 0x4001_03FF	AFIO	
0x4000_7000 - 0x4000_73FF	PWR	
0x4000_5400 - 0x4000_57FF	I2C	
0x4000_4800 - 0x4000_4BFF	LPUART	
0x4000_4400 - 0x4000_47FF	USART2	
0x4000_3000 - 0x4000_33FF	IWDG	APB1
0x4000_2C00 - 0x4000_2FFF	WWDG	
0x4000_2800 - 0x4000_2BFF	RTC	
0x4000_1000 - 0x4000_13FF	TIM6	
0x4000_0400 - 0x4000_07FF	TIM3	

2.1.2.1 Start address and configuration

The system starts operation after jumping from ROM to the start address of FLASH 0x0100 0000 constantly.

The system vector table is included in the ROM address by default.

In order to run the interrupt service program in FLASH or SRAM, the software can map VECTOR to the corresponding space through configuration by the register PWR VTOR REG.

2.2 Memory System

Program memory, data memory, register and I/O ports are incorporated in the same 4GB linear address space. Data bytes are stored in the memory in little-endian format. The lowest address byte in a word is considered to be the least significant byte of the word, while the highest address byte is the most significant byte. The specification of program memory and data memory is illustrated as follows.

2.2.1 SRAM

SRAM is mainly used for code running, storing variables and data or stacks, with a maximum capacity of 48KB, during program execution.

SRAM supports byte, halfword, and word read and write access..

SRAM supports code running and can run programs at full speed in SRAM. The maximum address range of SRAM is 0x2000 0000~0x2000 BFFF.

SRAM can maintain data normally in many working modes (Active/Idle/Standby/Sleep) except PD mode.

PowerSwitch power off can be configured in SRAM Standby/Sleep mode.

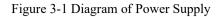
The main characteristics include:

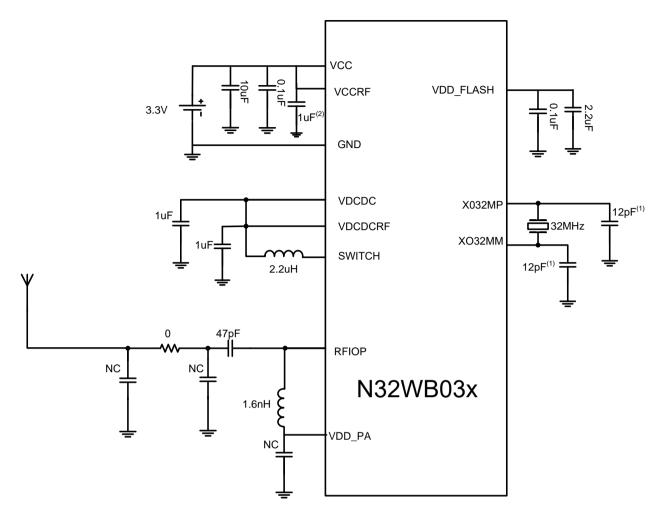
- a. The maximum capacity is 48KB in total;
- b. Support read and write byte/half word/word;
- c. Both CPU and DMA are accessible;
- d. Support retention function under low power consumption;
- e. Run at system clock frequency;

3 Power Supply Control (PWR)

3.1 Introduction

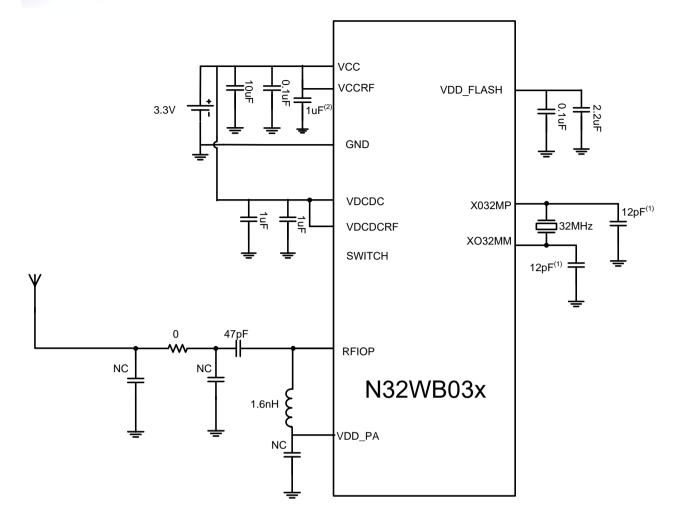
The working voltage (VCC) of this MCU is 1.8/2.32V~3.6V, and mainly has 2 analog/digital power supply areas (VCC, VCCRF). Please refer to Figure 3-1 Power Supply Diagram for details.


As the power control module of the whole device, PWR is primarily used to control the MCU to enter different power modes and enable it to be awakened by other events or interrupts. This MCU supports Active, Idle, Standby, Sleep, and PD mode.


This MCU power supply architecture is designed with Buck DC/DC cascaded LDO two-stage power supply structure, and is suitable for low power consumption application scenarios since it allows for the high efficiency of DC/DC and the low noise/small ripple voltage of LDO.

DC/DC supports PCD peak current control mode and PFM modulation mode and can work in DCM discontinuous current mode (with small load).

LDO supplies power to each module based on distributed power supply mode, so as to improve the communication quality of BLE TX&RX and the power isolation between radio modules.



(a) VDCDC/VDCDCRF provided with internal DCDC power supply

(b) VDCDC/VDCDCRF provided with external power supply

(1) Different crystals or resonators usually require different load capacitance C_L , and the C_L selected must match the crystal or resonator used.

(2) In the case of a low requirement of ripple, welding is unnecessary for the 1uF capacitor.

DC/DC: Buck DC level converter supplies power to the internal LDO_SYS and LDOs_RF by maintaining the external power input voltage in the range of $1.8/2.32V \sim 3.6V$, improving the system power conversion efficiency, and saving dynamic power consumption.

Digital system power supply: The voltage regulator supports three running modes: normal mode, low power consumption mode and power down mode.

Normal mode (Active, Idle, Standby)

Voltage regulator is powered by LDO_SYS, mainly used in Active mode, Idle mode and Standby mode.

DCDC, LDO_SYS, and LDO_RET are ON.

■ Low power consumption mode (Sleep)

LDO RET in VCC domain of voltage regulator is used in low power consumption mode and Sleep mode.

DCDC OFF and LDO_SYS are OFF, LDO_RET is ON.

Power down mode (PD)

In PD mode, the voltage regulator is in Power down mode.

DCDC, LDO_SYS and LDO_RET are completely OFF.

3.1.1 Power supply

Introduction of different power domains as below.

- VCC: the input voltage range of 1.8/2.32 V~3.6 V, mainly providing power input for DCDC, LDO, IO, clock and reset system.
- VCCRF: the input voltage range of 1.8/2.32 V~3.6 V, supplying power for most analog and RF peripherals.
- VDD_FLASH: No external power supply is required, except a 2.2µF external capacitance.

3.2 Power supply management

This MCU supports five power modes: Active, Idle, Standby, Sleep, and PD. Different modes have different performance and power consumption.

Power Supply		Working Mode					
		Active	Idle	Standby	Sleep	PD	
Power supply system		ON	ON	Partially ON	Run in small numbers	OFF	
Clock	HSE/HSI	ON	ON	HSE ON HSI OFF	OFF	OFF	
	LSE/LSI	Available	Available	Available	Available	OFF	
CPU CORE		ON	Stop the core clock	OFF	OFF	OFF	
SYS_CLK		ON	ON	OFF	OFF	OFF	
Periphery interface		Available	Available	OFF	OFF	OFF	
FLASH		ON	Standby	Standby	Deep Power-down	OFF	
RAM ^{[1] [2]} RETENTION		Hold	Hold	Hold/Partially hold/OFF	Hold/Partially hold/OFF	OFF	
Register		Hold	Hold	Partially hold	Partially hold	OFF	

The system operation or shutdown under different working modes is presented in the figure below:

RF		Available	Available	Available	OFF	OFF
Wakeup	Interrupt	Available	Available	OFF	OFF	OFF
	EXTI					
	(RTC+LPUA	Available	Available	Available	Available	OFF
	RT+KEYSCA					
	N+8IO)					
	WKUP1	Available	Available	Available	Available	Available
	RESET Pin					
	(wakeup +	Available	Available	Available	Available	Available
	reset)					

Note [1]: 48KB SYS SRAM, 8KQSPIC SRAM and 16KB EM SRAM are used for RAM.

Note [2]: SD/DS mode can be selected for 32KB SYS SRAM and 16KB SYS SRAM under sleep and standby mode;

Please refer to the table below for the working modes:

Mode	Condition	Entry	Exit	
Active	CPU startup	Power-on, system reset, low	Enter Idle, Standby, Sleep and PD mode	
Active	All peripherals are configurable	power consumption wake-up		
Idle	CPU enters sleep mode and the core stops. All peripherals are configurable. The voltage regulator operates in normal mode. FLASH is in Standby state. Wakeup source: Any NVIC interrupt, EXTI interrupt or event, and RESET can wake up the CPU.	1) SLEEPING = 1, SLEEPDEEP = 0, SLEEPONEXIT = 0, WFI/WFE 2) SLEEPING = 1, SLEEPDEEP = 0, SLEEPONEXIT = 1, No interrupt waiting when ISR returns	 Wakeup: 1) If entering through WFI or ISR return, any NVIC interrupt allows to exit CPU 2) If entering through WFE, SEVEONPEND=0, any event from the external interrupt/event line EXTI can wake up CPU. 3) If entering through WFE, SEVONPEND=1, any peripheral interrupt (include disabled in NVIC) can wake up EXTI events 	
Standby ^[1]	CPU deep sleep mode. Voltage regulator operates in normal mode. Both CPU and peripheral interfaces are shut down. Optionally SRAM can hold all or part of the data. HSE/HSI/LSE/LSI switch can be configured. The register is partially held. BB and RF are available. All IO Retention and all GPIO states	WFI/WFE: 1) SLEEPDEEP = 1 2) PDSTANDBY = 0 3) No interrupt (WFI) or event (WFE) is set	 Wakeup: 1) When MCU entering STANDBY mode with WFI instruction, it can be waken up by any interrupt from the external interrupt event line EXTI, which may be external GPIO interrupt or internal peripherals. Corresponding NVIC interrupt enable needs to be activated. When MCU entering STANDBY mode with WFE instruction, can be waken up by any event from the external interrupt event line EXTI as long as SEVEONPEND=0. 	

Mode	Condition	Entry	Exit
	are retained.		3)When MCU entering STANDBY mode
	Wakeup source: EXTI interrupt or		with WFE instruction, can be waken up by
	event and RESET can wake up		any external interrupt (include disabled in
	CPU.		NVIC) as long as SEVEONPEND=1.
	After wakeup, start HSI and HSE		The peripheral interrupt status bit and EXTI
	and activate the code from the place		interrupt pending bit should be cleared
	where it is suspended.		through the software.
			EXTI events can wake it up.
	CPU deep sleep mode.		Wakeup:
	Voltage regulator operates in		1) N32WB03x, when entering SLEEP mode
	normal mode.		with WFI instruction, can be waken up by any
	Both CPU and peripheral interfaces		interrupt from the external interrupt event
	are shut down.		line EXTI, which may be external GPIO
l	Optionally SRAM can hold all or		interrupt or internal peripherals.
	part of the data.		Corresponding NVIC interrupt enable needs
	HSE/HSI OFF, and /LSE/LSI		to be activated.
	ON/OFF can be configured.	WFI/WFE:	N32WB03x, when entering SLEEP mode
l	The register is partially held.	1) SLEEPDEEP = 1	with WFE instruction, can be waken up by
Sleep ^[1]	VDDD_BB, LDOs_RF, BB and RF	2) SLEEPS $= 1$	any event from the external interrupt event
	are OFF.	3) No interrupt (WFI) or event	line EXTI as long as SEVEONPEND=0.
	FLASH is powered off.	(WFE) is set	3) N32WB03x, when entering SLEEP mode
	All IO Retention and all GPIO states		with WFE instruction, can be waken up by
	are retained.		any external interrupt (include disabled in
	Wakeup source: EXTI interrupt or		NVIC) as long as SEVEONPEND=1.
	event and RESET can wake up		The peripheral interrupt status bit and EXTI
	CPU.		interrupt pending bit should be cleared
	After wakeup, start HSI and HSE		through the software.
l	and activate the code from the place		EXTI events can wake it up.
l	where it is suspended.		
	The voltage regulator is closed.		
	CPU and peripheral interfaces are		
l	closed.		
PD	SRAM data is lost.	WFI/WFE:	
	HSE/HSI/LSI/LSI is closed.	3) SLEEPDEEP = 1	
	The register is not held.	4) PDSTANDBY = 1	WKUP1 rising edge, RESET
	BB and RF off.	 4) PDSTANDBY - 1 3) No interrupt (WFI) or event 	WROLL ISING CUGC, NESEL
	FLASH is powered off.	(WFE) is set	
	Except for the wake-up source	(1112) 15 501	
	RESET/WKUP1, other IO ports are		
	in high impedance state.		
	BB and RF off.		

Mode	Condition	Entry	Exit
	FLASH is powered off.		
	Except for the wake-up source		
	RESET/WKUP1, other IO ports are		
	in high impedance state.		

Note:1. In the Standby and Sleep modes, the code can continue to run from the stop position after wakeup.

3.3 Low power consumption mode

By default, MCU is in active mode after system or power reset. When it is unnecessary to run the CPU (for example, when waiting for external events), several low power consumption modes can be used to save power. Users can select the optimum low power consumption mode based on low power consumption, short start time and available wake-up sources.

Four characteristics of low power consumption modes:

- Idle mode (the core stops, and all peripherals, including Cortex ®- M0 core peripherals, such as NVIC, system tick clock (SysTick) are still running).
- Standby mode (voltage regulator still operates in normal mode, CORE is powered off, and BLE and RF can operate).
- Sleep mode (most clocks are turned off, voltage regulators operate in low power consumption mode, and CORE, BLE and RF are powered off).
- PD mode (VDDD power down mode, VCC hold, a WAKEUP IO and RESET can wake up).

In addition, one of the following methods can be used to reduce the power consumption in running mode:

- Lower the system clock
- Turn off unused peripheral clocks on the APB and AHB bus

3.3.1 Active mode

After entering the User mode for the first time, the core system and BLE subsystem remain Active, and CORE system working mode is controlled by the CPU.

The working mode of BLE subsystem is controlled by CPU and baseband.

SYS RAM/FLASH is activated by default after power on.

3.3.2 Idle mode

3.3.2.1 Entering Idle mode

Enter Idle mode by executing WFI (Wait Interrupt) or WFE (Wait Event) instructions and SLEEPDEEP=0. According

to SLEEPONEXIT bit value in the control register of Cortex[®]-M0 system, two options can be used to select the Idle mode entry mechanism:

- Sleep now: If the SLEEPONEXIT bit is cleared, WFI or WFE instructions will be executed immediately, and the system will enter Idle mode promptly.
- Sleep on exit: If SLEEPONEXIT is in position 1, the system will enter Idle mode immediately when exiting from the lowest priority interrupt handler.

In Idle mode, all I/O pins remain in the same state/function as in running mode.

3.3.2.2 Exiting Idle mode

If WFI instruction is used to enter Idle mode, any peripheral interrupts responded by the Nested Vector Interrupt Controller (NVIC) can wake the device from Idle mode.

If WFE instruction is used to enter Idle mode, MCU will exit Idle mode immediately when an event occurs. Wakeup events can be generated in the following ways:

- Enable an interrupt in the peripheral control register instead of in NVIC, and enable SEVONPEND bit in the control register of Cortex[®]-M0 system. When MCU recovers from WFE, peripheral interrupt pending bit and peripheral NVIC interrupt channel pending bit (in NVIC interrupt clear pending register) must be cleared.
- Configure an external or internal EXTI event mode. When the CPU recovers from WFE, because the pending bit corresponding to the event line is not set, it is unnecessary to clear the peripheral interrupt pending bit and the peripheral NVIC interrupt channel pending bit (in the NVIC interrupt clear pending register). This mode provides the shortest wake-up time, because there is no time lost in interrupt entry or exit.

3.3.3 Standby mode

CPU and peripheral interfaces are closed in Standby mode.

In Standby mode, only LSI, LSE and HSE can be used. However, SRAM data can be retained, and the register contents are partially saved.

In Standby mode, all I/O pins remain in the same state and function as in running mode.

3.3.3.1 Entering Standby mode

When entering Standby mode, you need to set SLEEPDEEP=1.

Configure PWR_CR1. PMU_MODE_EN=1 and PWR_CR1. PMU_MODE=3'b001 $_{\circ}$

Execute WFI or WFE instruction to enter Standby mode.

Users can enable the relevant EXTI wake-up source in advance.

In Standby mode, the following characteristics can be selected by programming each control bit:

- RTC: It can be activated through the RTCEN bit in register RCC_LSCTRL
- Internal RC oscillator (LSI RC): it can be activated through the LSIEN bit in register RCC_LSCTRL

External crystal oscillator (LSE OSC): it can be activated through the LSEEN in register RCC_LSCTRL

3.3.3.2 Exiting Standby mode

When MCU enter STANDBY mode with WFI instruction, it can be waken up by any interrupt from the external interrupt event line EXTI, which may be external GPIO interrupt or internal peripherals. Corresponding NVIC interrupt enable needs to be activated.

When MUC enter STANDBY mode with WFE instruction, it can be waken up by any event from the external interrupt event line EXTI as long as SEVEONPEND=0.

When MCU enter STANDBY mode with WFE instruction, it can be waken up by any external interrupt (include disabled in NVIC) as long as SEVEONPEND=1.

RESET falling edge as EXTI interrupt line wakes up CPU, and the system will not reset.

After the Standby mode is waken up, the program will continue to execute from the sleep location.

3.3.4 Sleep mode

In Sleep mode CPU, peripheral interfaces, and BLE subsystem are closed.

In Sleep mode, the system stops running, and only part of the wake-up logic and registers are reserved to respond to wake-up operations. Users can choose to hold SRAM or not.

High speed clock stops and 32KHz low speed clock works.

FLASH enters deep sleep mode or power off.

In Sleep mode, all I/O pins remain in the same state and function as in running mode.

3.3.4.1 Entering Sleep mode

Configure the value of BLE DEEPSLEEP control register (address: 0x4002_8030) to 0x07 (with BB in Sleep mode).

Read PWR_CR1. BLE_OSC_EN=0x0, and confirm that BLE has entered Sleep mode.

Configure PWR_CR1. PMU_MODE_EN=0x1 and PWR_CR1. PMU_MODE=0x2.

Execute WFI or WFE instruction. When FLASH and APB are idle, enter the Sleep mode.

The user can enable the wake-up source of relevant EXTI in advance.

3.3.4.2 Exiting Sleep mode

When MCU enter SLEEP mode with WFI instruction, it can be waken up by any interrupt from the external interrupt event line EXTI, which may be external GPIO interrupt or internal peripherals. Corresponding NVIC interrupt enable needs to be activated.

When MCU entering SLEEP mode with WFE instruction, it can be waken up by any event from the external interrupt event line EXTI as long as SEVEONPEND=0.

When MCU entering SLEEP mode with WFE instruction, it can be waken up by any external interrupt (disabled in NVIC) as long as SEVEONPEND=1. It is required to clear the peripheral interrupt status bit and EXTI interrupt pending bit with the software, and the EXTI event can wake up CPU.

The RESET falling edge as the EXTI interrupt line wakes up the CPU on the Sleep mode, the system will not reset.

After Sleep mode is waken up, the program will continue to execute from the sleep position.

The system is waken up, followed by BLE, and the CPU runs in Active mode.

3.3.5 PD mode

PD mode allows for lower power consumption and is based on Cortex[®]-M0 deep sleep mode, in which mode CPU and all peripherals are OFF.

The main voltage regulator and HSE/HSI/LSI/LSI clock source are OFF.

Except RESET/WKUP1, other IO ports are in high resistance state.

3.3.5.1 Entering PD mode

When entering PD mod, set SLEEPDEEP=1.

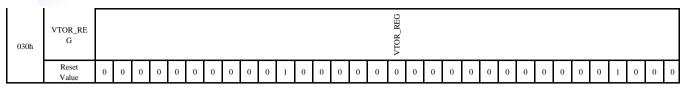
Configure PWR_CR1. PMU_MODE_EN=0x1 and PWR_CR1. PMU_MODE=0x4.

3.3.5.2 Exiting PD mode

In case of external reset (RESET pin) and rising edge event of WKUP1 pin, MCU exits PD mode, and all registers will reset after waking from PD state.

After wake-up from PD mode, code execution is equivalent to the execution after reset (reading reset vector, etc.).

3.4 PWR register

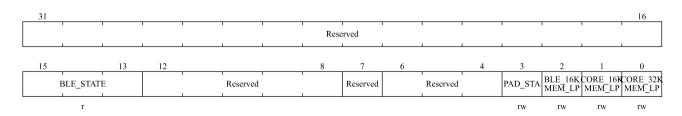

3.4.1 Diagram of PWR register

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
000h	PWR_CR1														Reserved													BLE_OSC_EN	Reserved	PWR_MODE_EN		PWR_MODE	
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
004h	PWR_CR2									Reserved									BLE_STATE				Reserved				Decomicad	5		PAD_STA	Reserved	CORE_16KM	CORE 32KM
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	1	0	0	0	0

Table 3-2 PWR register overview

3.4.2 Power control register1 (PWR_CR1)

Offset address: 0x00


Reset value: 0x0000 0020

31														16
	1	1	1			1	Rese	erved	1	1	1			
15									6	5	4	3	2	0
				Rese	rved				1	BLE OSC_EN	Reserved	PWR_ MODE_EN	PW	R_MODE[2:0]
										r		rs		rw

Bit-field	Name	Description
[31:6]	Reserved	Retention
[5]	BLE_OSC_EN	Before the CPU enters Sleep mode, it is required to query that the
		bit is 0, ensuring that BLE has entered Sleep mode.
		1: BLE system has exited Sleep mode;
		0: BLE system is in Sleep mode.
[4]	Reserved	Retention
[3]	PWR_MODE_EN	Enable bit for entering low power consumption mode.
[2:0]	PWR_MODE	Selection of system low power consumption mode
		000: Active mode
		001: Standby mode
		010: Sleep mode
		100: PD mode
		Others: reserved

3.4.3 Power control register2 (PWR_CR2)

Offset address: 0x04

Bit-field	Name	Description
[31:16]	Reserved	Retention
[15:13]	BLE_STATE	BLE system status
		000:ble_power_On power on status;
		001:ble_active normal run status;
		100:ble_sleep ble in Sleep state;
		Others: reserved
[12:8]	Reserved	Retention
[7]	Reserved	Must be maintained as: 1
[6:4]	Reserved	Retention
[3]	PAD_STA	Status control bit of PAD in Standby/Sleep mode
		0: PAD hold
		1: PAD high resistance
[2]	Reserved	Reserved, the value is 0 by default
[1]	CORE_16KMEM_LP	Mode selection of core_16K RAM in Standby/Sleep mode
		0:core_Ram 16K in SRAM DeepSleep mode (data retention)
		1:core_Ram 16K in power-off mode (data not retained)
[0]	CORE_32KMEM_LP	Mode selection of core_32K RAM in Standby/Sleep mode
		0:core_Ram 32K in SRAM DeepSleep mode (data retention)
		1:core_Ram 32K in power-off mode (data not retained)

3.4.4 Interrupt vector address Remap register (VTOR_REG)

Offset address: 0x30

31										_	16
	1	1	 1		VTOF	R_REG		1	1	1	
15					r	w					0
					VTOF	R_REG				1	
					r	w					

Bit-field	Name	Description
[31:0]	VTOR_REG	Interrupt vector address Remap
		[31]: VTOR Remap enable;
		[30:0]: Remap address;

4 Reset and Clock Control (RCC)

4.1 Reset control unit

N32WB03x supports the following three reset modes:

- 1. Power reset
- 2. System reset
- 3. Low power reset

4.1.1 Power reset

A power reset will occur in case of any one of the following events:

- Power on/down reset VDDD_POR (POR/PDR reset)
- Return from PD power down mode

Power reset will reset all registers.

The reset source will eventually act on the RESET pin and a low level will remain during the reset process. The reset entry vector is fixed at the address 0x0000_0004. For more details, refer to Table 6.1 Vector Table.

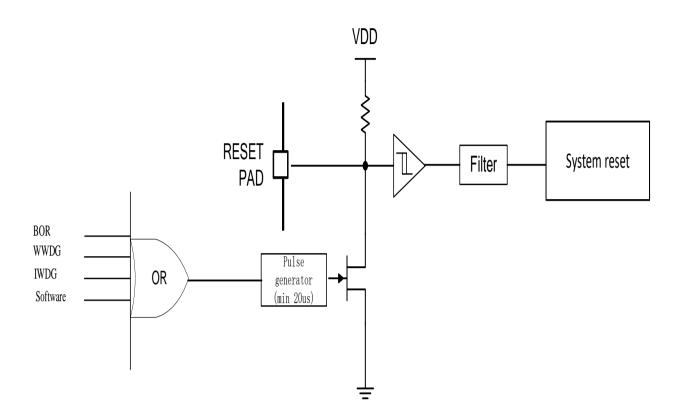
4.1.2 System reset

Except for some specific registers in the RCC and VDDD_AON power domain (PWR/RTC/RCC/AFIO/AFEC), system reset will reset all registers to their reset state.

Any one of the following events will lead to a system reset:

- Low level on RESET pin (external reset)
- Window watchdog count termination (WWDG reset)
- Independent watchdog count termination (IWDG reset)
- Software reset (SCLKSW reset)
- BOR reset (FLASH version)

The source of reset event can be identified by checking the reset status flag bit in the RCC_CTRLSTS control status register.


1.1.1.1 Software reset

Software reset can be generated by setting the SYSRESETREQ bit in Cortex[®]-M0 Application Interrupt and Reset Control Register. Refer to Cortex[®]-M0 technical reference manual for further information.

Reset signals inside the chip will be output on the RESET pin, and the pulse generator ensures that each (external or internal) reset source has at least 20 µs pulse delay, and will generate reset pulse when RESET pin is pulled down to generate external reset.

Figure 4-1 Reset Circuit

4.2 Clock control unit

Two different clock sources can be used to drive the system clock (SYSCLK):

- HSI oscillator clock (64MHz)
- HSE oscillator clock (32MHz)

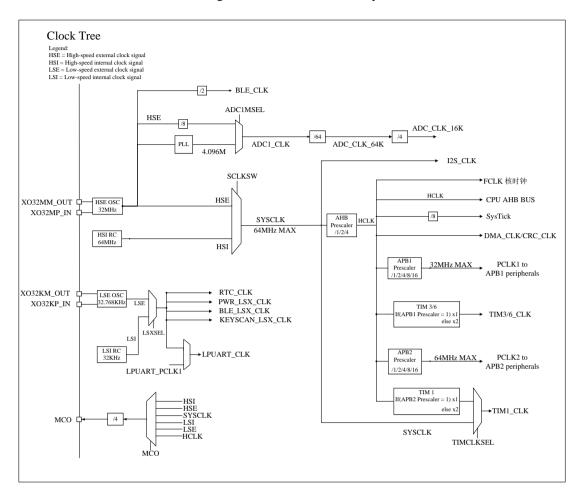
Two secondary clock sources are used by these devices:

- LSI oscillator clock (32KHz)
- LSE oscillator clock (32.768KHz)

LSI can be used to drive independent watchdog IWDG and drive RTC, KEYSCAN and LPUART through program selection.

LSE can be used to drive RTC, KEYSCAN and LPUART through program selection.

LSI/LSE is also used to wake up the system automatically from Idle/BLE_SLEEP/Standby/Sleep/PD mode.


Any of the clock sources, when not in use, can be independently turned on or off to optimize system power consumption.

After the system is powered on and reset, HSI and HSE are enabled by default, and HSI is selected by default as the

system clock.

Figure 4-2 Clock Tree Directory

1. Refer to the chapter "Electrical characteristics" in the corresponding product datasheet for the characteristics of internal and external clock sources.

Users can configure the frequencies of AHB and APB (APB1 and APB2) domains through multiple prescalers. The maximum allowable frequency of AHB, APB1 and APB2 domain is 64MHz.

Except for the following cases, all peripheral clocks are derived from the system clock (SYSCLK)

- ADC clock is obtained by dividing the AHB clock.
- LPUART working clock may come from one of the following three sources, which can be configured by the software:
 - LSI clock
 - ♦ LSE clock
 - ♦ APB1 clock (PCLK)
- RTCCLK clock source can be provided by LSE or LSI clock
 - ♦ LSE clock

LSI clock

■ The clock source of IWDG is LSI oscillator.

RCC serves as the external clock of Cortex system timer (SysTick) after 8 frequency division through AHB clock (HCLK). By controlling SysTick and setting status register, users can select the above clock or Cortex (HCLK) clock as SysTick clock.

The frequency allocation of timer clock is automatically set by the hardware according to the following 2 conditions:

- If the corresponding APB pre-scale coefficient is 1, the timer's clock frequency is consistent with the frequency of APB bus,
- otherwise the timer's clock frequency is set to twice the frequency of APB bus connected to it.

4.2.1 HSE clock

High speed external clock signal (HSE) is generated by the following two clock sources: HSE external crystal or external clock.

In order to reduce the distortion of clock output and shorten the stability time of startup, the crystal and load capacitor must be as close to the oscillator pin as possible, and the load capacitance value must be adjusted according to the oscillator selected.

32MHz external oscillator can provide more accurate master clock input for system clock. Users can refer to the Electrical Characteristics section of the datasheet for further information.

The HSERDF bit in the clock control register RCC_CTRLCTRL (directly from analog HSE) is used to indicate whether the high-speed external oscillator is stable. During startup, the clock is not released until this bit is set to 1 by the hardware. If interrupt is allowed in the clock interrupt register RCC_CLKINT, corresponding interrupt will be generated.

By setting the HSEEN bit in RCC_CTRL in the clock control register, HSE crystal can be enabled and disabled, and it is enabled by default.

4.2.2 HSI clock

The HSI clock signal, which is generated by the internal RC oscillator, can directly serve as the system clock input.

Without any external devices, HSI RC oscillator can provide a system clock with shorter starting time than HSE crystal oscillator. However, the former system clock still has a relatively poor frequency accuracy even after calibration.

The manufacturing process determines that different chips differ in RC oscillator frequency, which is typically calibrated to 0.5% (25°C) and less 5% within the full temperature range.

The accuracy of RC oscillator will be affected when the application by users is based on different voltages or ambient temperatures, and HSI frequency can be adjusted through the HSITRIM [6:0] bit in the clock control register.

The HSIRDF bit in the clock control register is used to indicate whether the HSI RC oscillator is stable. In the process of clock startup, 128 HSI cycle startup counts are generated, and HSI RC output clock is not released until this bit is

set to 1 by the hardware.

The startup and shutdown of HSI RC can be implemented by the HSIEN bit in the clock control register.

Note 1: HSI or HSI/2 can be selected internally and HSI/2 is used by default, users start HSI TRIM to 64M through software.

4.2.3 HSI calibration

HSE clock calibrates HSI clock (HSI or HSI/2 optionally):

1. Startup condition: after each system reset release or low power consumption wake-up, and when HSE output maintains stable, the hardware automatically performs a correction count and stores the count result in a register. Software initialization calibrates HSI (the count result is read when count is done, and the software rewrites the TRIM value of HSI clock frequency according to the frequency conversion relationship with RC clock, and the hardware then performs correction count).

It also supports HSI calibration when the system is active. By configuring different TRIM values or START bits of HSI, the software starts a correction count (the corresponding clock should be started and the clock output is confirmed stable).

2. Working principle of HSI clock calibration counter

Two counters are used. When the correction starts, the first counter starts counting by using HSE clock, ends counting after 1,024 beats, and generates the counting done signal.

During this counting period, the second counter starts counting by using HSI clock, and when counting is Done, stores counting result in the register for query by CPU.

3. Frequency conversion relationship between counting results and RC clock

Actual frequency of HSI clock (HSI or HSI/2 optionally) (unit: MHz)=(RC64M_Cnt/1024) * 32

4.2.4 LSE clock

LSE crystal, a 32.768KHz low-speed external crystal, provides a low-power and accurate clock source for real-time clock or other timing functions.

The startup and shutdown of LSE crystal is implemented by the LSEEN bit in the low speed clock control register (RCC LSCTRL).

LSERD in the low-speed clock control register (RCC_LSCTRL) indicates whether the LSE crystal oscillator is stable. In the startup phase, during the clock startup, 1024 LSE cycle startup counts are generated,. The LSE clock signal is not released until this bit is set to 1 by the hardware. If interrupt is allowed in the clock interrupt register, an interrupt request can be generated.

4.2.5 External clock source (LSE bypass)

In this mode, an external clock source with a maximum frequency of 1MHz must be provided. Users can select this mode by setting LSEBP bit and LSEEN=0 in the low speed clock control register (CC LSCTRL). The external clock

signal (square wave, sine wave or triangle wave) with 50% duty cycle must be connected to OSC32K_ IN pin.

4.2.6 LSI clock

LSI can provide clock for IWDG and AWU in STANDBY or Sleep mode. LSI clock frequency is about 32KHz. Refer to the Electrical Characteristics section of the datasheet for further information.

The startup and shutdown of LSI can be implemented through the LSIEN bit in the control/status register (RCC_CTRLSTS).

LSIRD bit in the control/status register (RCC_CTRLSTS) indicates whether low speed internal oscillation is stable. During clock startup, 8 LSE cycle startup counts are generated, and the clock signal is not released until this bit is set to 1 by the hardware. If interrupt is allowed in the clock interrupt register (RCC_CLKINT), corresponding LSI interrupt will be generated.

4.2.7 LSI calibration

Frequency offset can be compensated by calibrating the internal low-speed oscillator LSI, so as to obtain the RTC time base with acceptable accuracy and the timeout of independent watchdog (IWDG) (when these peripherals use LSI as the clock source).

LSE clock calibrates by HSI clock:

1. Startup condition: It supports LSI calibration when the system is active. By configuring different TRIM values or START bits of LSI, the software starts a correction count (the corresponding clock should be started and the clock output is confirmed stable).

The hardware automatically performs a correction count and stores the count result in a register. Software initialization calibrates LSI (the count result is read when count is done, and the software rewrites the TRIM value of LSI clock frequency according to the frequency conversion relationship with RC clock, and the hardware then performs correction count).

Note: For LSI correction, the software shall query the count done flag after configuring TRIM value or START.

2. Working principle of LSI clock calibration counter

Two counters are used. When the correction starts, the first counter starts counting by using LSI clock, ends counting after 20 beats for LSI_TRIM_CFG, and generates the counting done signal.

During this counting period, the second counter starts counting by using HSE clock, and when counting is done, stores counting result in the register for query by CPU.

3. Frequency conversion relationship between counting results and RC clock

Actual frequency of LSI clock (unit: KHz)=32000 * LSI_TRIM_CFG/ RC32K_Cnt

4.2.8 Selection of system clock (SYSCLK)

After system reset, HSI oscillator is selected as the system clock. The software selects clock source through CFG control bit SCLKSW, and the clock source, when being directly used as the system clock, cannot be stopped.

The switch from one clock source to another will only occur when the target clock source is ready (after the delay in the startup and stabilization phase). When the selected clock source is not ready, the system clock switching will not occur until the target clock source is ready.

The status bit in the clock control register (RCC_CTRL) indicates which clock is ready and which is currently used as the system clock.

4.2.9 RTC clock

By setting the LSXSEL bit in low speed clock control register (RCC_LSCTRL), RTCCLK clock can be provided by LSE or LSI clock.

4.2.10 Watchdog clock

If the independent watchdog has been started by the software, the LSI oscillator will be forced to open and cannot be closed. The clock is supplied to IWDG after LSI oscillator is stabilized.

4.2.11 LPUART clock

In normal operation mode LPUART clock supports two clock sources: LSI_LSE_CLK and LPUART_PCLK. Because PCLK will be closed in the low power consumption mode, the software should switch LPUART clock to LSI_LSE_CLK before entering the low power consumption mode.

4.2.12 Clock output

The microcontroller allows for outputting clock signal to the external MCO pin.

The corresponding GPIO port register must be configured with the corresponding function, and the following seven clock signals can be selected as MCO clock:

- SYSCLK
- HCLK
- HSI
- HSE
- LSI
- LSE
- AUDIOPLL

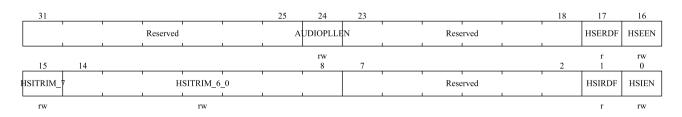
Clock selection is controlled by the MCO bit in the clock configuration register (RCC_CFG). For the MCO pin output,

the clock is fixed with 4 frequency division output.

4.3 RCC register

4.3.1 Register overview

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
000h	RCC_CT RL				Reserved				AUDIOPLLEN				Keserved			HSERDF	HSEEN	HSITRIM_7				HSITRIM_6_0							Reserved			HSIRDF	HSIEN
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	1	0	1	0	0	0	0	0	0	1	1
004h	RCC_CF G		Reserved			000	MCO						Keserved				HSISRC	Dammind	Reserved		APB2PRES			APB1PRES		Dammed	naviasan	9200011V	AUDINES	Reserved	SCLKSTS	Reserved	SCLKSW
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
008h	RCC_CL KINT						-	Keserved						HSERDICLR	HSIRDICLR	LSERDICLR	LSIRDICLR		r	Keserved		HSERDIEN	HSIRDIEN	LSERDIEN	LSIRDIEN			Keserved		HSERDIF	HSIRDIF	LSERDIF	LSIRDIF
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00Ch	RCC_AP B2PRST									Reserved									USARTIRST	Reserved	TIMIRST	Reserved	SP12RST	SPI1RST			Reserved			IOPBRST	IOPARST	Reserved	AFIORST
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
010h	RCC_AP B1PRST		Reserved	•	PWRRST		<u> </u>	r r	Keserved			12CRST		Reserved		USART2RST			Reserved			WWDGRST			Damand	Neserven			TIM6RST	, P	Keserved	TIM3RST	Reserved
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
014h	RCC_AH BPCLKE N				-					Reserved			-						IRCTRLEN	Reserved	ADCEN			Reserved			CRCEN	Reserved	Reserved	Reserved	SRAMEN	Reserved	DMAEN
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0
018h	RCC_AP B2PCLK EN		<u> </u>			<u>.</u>				Reserved			<u>.</u>						USARTIEN	Reserved	TIMIEN	Reserved	SP12EN	SPI1EN			Reserved			IOPBEN	IOPAEN	Reserved	AFIOEN
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01Ch	RCC_AP B1PCLK EN		Reserved		PWREN			- F	Keserved			12CEN		Reserved		US ART2EN			Reserved			WWDGEN			Dagamend	nav iasan			TIM6EN		reserved	TIM3EN	Reserved
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
020h	RCC_LS CTRL	Reserved	KEYSCAN	Reserved	LPUARTRST	LPUARTEN	LPUARTSEL	RTCRST	RTCEN			Reserved								LSITRIM						Dammed	Reserved	LSXSEL	LSEBP	LSERD	LSEEN	LSIRD	LSIEN
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	1	1


Table 4-1 RCC register overview

024h	RCC_CT RLSTS												-	Reserved												WWDGRST	IWDGRSTF	SFIRSTF	PORRSTF	PINRSTF	Received	NCSCI VCU	RMRSTF
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
28h	RCC_AH BPRST									Reserved									IRCTRLRST	Reserved	ADCRST						Recerved	INCOM NO					
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02Ch	RCC_CF G2	TIMCLK											Reserved													Reserved			ADCSEL		Reserved	DA DOM	
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
030h	OSCFCC R									Reserved												LSI_TRIM_CFG							Reserved			HSI_CalibStart	LSI CalibStart
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0
34h	OSCFCS R		-	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>		-		<u>.</u>	<u>.</u>	<u>.</u>	ŗ	Keserved						-	<u>.</u>	<u>.</u>	<u>.</u>						HSICNTDONE	LSICNTDONE
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
38h	OSCFCL SICNT							-	Keserved															LINUIS I	TNICIAL								
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
03Ch	OSCFCH SICNT										-	Keserved															HSICNE	INFORM					
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
044h	DBGMC U_CR													-	Keserved													12C1_TIMEO	TIM6_STOP	TIM3_STOP	TIM1_STOP	WWDG_STOP	IWDG STOP
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

4.3.2 Clock control register (RCC_CTRL)

Offset address: 0x00

Bit field	Name	Description
31:25	Reserved	Always read as 0.
24	AUDIOPLLEN	AUDIOPLL enable bit
		Set to 1 or clear to zero by software.
		0: Close AUDIOPLL
		1: Open AUDIOPLL
23:18	Reserved	Always read as 0.
17	HSERDF	External high-speed clock ready bit.
		Hardware will be set to 1 after HSE is ready. After the HSEEN bit is cleared, 100ns is
		needed to clear.
		0: HSE not ready
		1: HSE ready
16	HSEEN	External high-speed clock enable.
		Set to 1 or clear to zero by software.
		Cleared by hardware when entering Sleep or PD mode.
		When returning from Sleep mode, the hardware will set 1 to start HSE oscillator.
		This bit cannot be cleared when HSE serves as the system clock.
		0: Turn off HSE oscillator
		1: Turn on HSE oscillator
15	HSITRIM_7	Select HSI frequency 0: 64MHz
14:8	HSITRIM_6_0	The correction value of internal high-speed clock, written by the software, is used to
		calibrate the frequency of internal HSI RC oscillator.
		See HSI Calibration section for details
		HSITRIM <7:0>:
		0000000:37.62MHz;
		00000001:37.8MHz;
		00001101:40.13MHz;
		01010010:63.41 MHz;
		01010011:63.97 MHz;
		01010100:64.44 MHz;
		01111110:101.1MHz;
		01111111:102.6MHz;
7:2	Reserved	Always read as 0.
1	HSIRDF	Internal high-speed clock ready flag bit.
		The hardware will be set to 1 after HSI stabilization. The bit requires 6 internal oscillator
		clock cycles for clearing after the HSIEN bit is cleared.
0	HSIEN	Internal high-speed clock enable bit.
		Set to 1 or clear to zero by software.

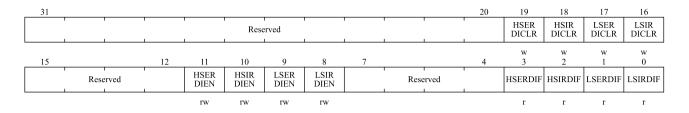
Bit field	Name	Description
		Cleared by hardware when entering Sleep or PD mode.
		The hardware will set 1 to start the HSI oscillator when returning from Sleep mode.
		This bit cannot be cleared when HSI is used as the system clock;
		0: Turn off HSI oscillator
		1: Turn on HSI oscillator

4.3.3 Clock configuration register (RCC_CFG)

Offset address: 0x04

31		29	28			25	24							17	16
	Reserved			М	co	1		I	I	Rese	rved	I		I	HSISRC
15	14	13	II	r 11	w 10	1	8	7	6	5	4	3	2	1	rw 0
Reso	erved		APB2PRES			APB1PRES		Rese	erved	AHB	PRES	Reserved	SCLKSTS	Reserved	SCLKSW
			rw			rw				r	N		r		rw

Bit field	Name	Description
31:29	Reserved	Always read as 0.
28:25	МСО	MCU clock output
		Set and clear by software.
		000: No clock
		001: LSI clock
		010: LSE clock
		011: System clock (SYSCLK) selected
		100: HSI frequency division clock
		101: HSE clock
		110: HCLK bus clock
		111: AUDIOPLL clock
		Notes:
		The clock output may be truncated when the MCO clock source is started and switched.
		When the system clock is output to the MCO pin, ensure that the output clock frequency
		does not exceed 50MHz (the highest frequency of I/O port).
24:17	Reserved	Always read as 0.
16	HSISRC	HSI clock source of the system.
		Set to 1 or clear to zero by software. This bit can only be written when HSI is off.
		0: HSI 2 frequency division as system clock input
		1: HSI non frequency division as system clock input
15:14	Reserved	Always read as 0.
13:11	APB2PRES	High speed APB (APB2) prescale.
		Set or reset by the software, configure the prescale coefficient of APB2 clock PCLK2.



Bit field	Name	Description
		The clock frequency of APB2 must not exceed 64MHz.
		0xx: HCLK non frequency division
		100: HCLK 2 frequency division
		101: HCLK 4 frequency division
		110: HCLK 8 frequency division
		111: HCLK 16 frequency division
10:8	APB1PRES	Low speed APB (APB1) prescale.
		Set or reset by the software, configure the prescale coefficient of APB1 clock PCLK1.
		The clock frequency of APB1 must not exceed 32MHz.
		0xx: HCLK non frequency division
		100: HCLK 2 frequency division
		101: HCLK 4 frequency division
		110: HCLK 8 frequency division
		111: HCLK 16 frequency division
7:6	Reserved	Always read as 0.
5:4	AHBPRES	AHB prescale.
		Set or reset by the software, configure the prescale coefficient of HCLK of AHB clock.
		0x: SYSCLK non frequency division
		10: SYSCLK 2 frequency division
		11: SYSCLK 4 frequency division
3	Reserved	Always read as 0.
2	SCLKSTS	System clock switching status
		It is set and cleared by the hardware to indicate which clock source is used as the system
		clock.
		0: HSI oscillator is used as system clock
		1: HSE oscillator is used as system clock
1	Reserved	Always read as 0.
0	SCLKSW	System clock switch
		Set or cleared by the software, select the SYSCLK source.
		0: HSI is selected as system clock
		1: HSE is selected as system clock

4.3.4 Clock interrupt register (RCC_CLKINT)

Offset address: 0x08

Bit field	Name	Description
31:20	Reserved	Always read as 0.
19	HSERDICLR	HSE ready interrupt clear bit.
		Set 1 by the software to clear the HSERDIF flag bit.
		0: Not used
		1: Clear HSERDIF interrupt flag bit
18	HSIRDICLR	HSI ready interrupt clear bit.
		Set 1 by the software to clear the HSERDIF flag bit.
		0: Not used
		1: Clear HSIRDIF interrupt flag bit
17	LSERDICLR	LSE ready interrupt clear bit.
		Set 1 by the software to clear the HSERDIF flag bit.
		0: Not used
		1: Clear LSERDIF interrupt flag bit
16	LSIRDICLR	LSI ready interrupt clear bit.
		Set 1 by the software to clear the HSERDIF flag bit.
		0: Not used
		1: Clear LSIRDIF interrupt flag bit
15:12	Reserved	Always read as 0.
11	HSERDIEN	HSE ready interrupt enable bit.
		Set to 1 or clear by the software and enable or disable HSE Ready Interrupt.
		0: Disable HSE ready interrupt
		1: Enable HSE ready interrupt
10	HSIRDIEN	HSI ready interrupt enable bit.
		Set to 1 or clear by the software and enable or disable HSI Ready Interrupt.
		0: Disable HSI ready interrupt
		1: Enable HSI ready interrupt

Bit field	Name	Description
9	LSERDIEN	LSE ready interrupt enable bit.
		Set to 1 or clear by the software and enable or disable LSE Ready Interrupt.
		0: Disable LSE ready interrupt
		1: Enable LSE ready interrupt
8	LSIRDIEN	LSI ready interrupt enable bit.
		Set to 1 or clear by the software and enable or disable LSI Ready Interrupt.
		0: Disable LSI ready interrupt
		1: Enable LSI ready interrupt
7:4	Reserved	Always read as 0.
3	HSERDIF	HSE ready interrupt enable bit.
		When HSERDIEN is set to 1 and the external high-speed clock is ready, the hardware
		will set this bit to 1.
		This bit is cleared by software by setting the HSERDICLR bit.
		0: No clock ready interrupt is generated by HSE oscillator
		1: Clock ready interrupt is generated by HSE oscillator
2	HSIRDIF	HSI ready interrupt enable bit.
		When HSIRDIEN is set to 1 and the external high-speed clock is ready, the hardware
		will set this bit to 1.
		The HSIRDICLR bit 1 is cleared by the software.
		0: No clock ready interrupt is generated by HSI oscillator
		1: Clock ready interrupt is generated by HSI oscillator
1	LSERDIF	LSE ready interrupt enable bit.
		When LSERDIEN is set to 1 and the external high-speed clock is ready, the hardware
		will set this bit to 1.
		The LSERDICLR bit 1 is cleared by the software.
		0: No clock ready interrupt is generated by LSE oscillator
		1: Clock ready interrupt is generated by LSE oscillator
0	LSIRDIF	LSI ready interrupt enable bit.
		When LSIRDIEN is set to 1 and the external high-speed clock is ready, the hardware
		will set this bit to 1.
		The LSIRDICLR bit 1 is cleared by the software.
		0: No clock ready interrupt is generated by LSI oscillator
		1: Clock ready interrupt is generated by LSI oscillator

4.3.5 APB2 peripheral reset register (RCC_APB2PRST)

Offset address: 0x0c

31														16
	I	I	I	I	I		Rese	rved			I	I		'
	I	ı	ı					I			I			
15	14	13	12	11	10	9	8			 4	3	2	1	0
Reserved	USART1 RST	Reserved	TIM1RST	Reserved	SPI2RST	SPI1RST		1	Reserved		IOPBRST	IOPARST	Reserved	AFIORST
	rw		rw		rw	rw					rw	rw		rw

Bit field	Name	Description
31:15	Reserved	Always read as 0.
14	USART1RST	USART1 reset
		Set to 1 or clear to zero by software.
		0: No effect
		1: Reset USART1
13	Reserved	Always read as 0.
12	TIM1RST	TIM1 timer reset
		Set to 1 or clear to zero by software.
		0: No effect
		1: Reset TIM1
11	Reserved	Always read as 0.
10	SPI2RST	SPI2 reset
		Set and clear by software.
		0: Clear reset
		1: reset SPI2
9	SPI1RST	SPI1 reset
		Set and clear by software.
		0: Clear reset
		1: Reset SPI1
8:4	Reserved	Always read as 0.
3	IOPBRST	GPIO port B reset.
		Set to 1 or clear to zero by software.
		0: No effect
		1: Reset GPIO Port B
2	IOPARST	GPIO port A reset.
		Set to 1 or clear to zero by software.
		0: No effect
		1: Reset GPIO Port A
1	Reserved	Always read as 0.
0	AFIORST	Auxiliary function IO reset.
		Set to 1 or clear to zero by software.
		0: No effect
		1: Reset auxiliary function IO

4.3.6 APB1 peripheral reset register (RCC_APB1PRST)

Offset address: 0x10

31		29	28	27					22	21	20		18	17	16
	Reserved		PWRRST			Rese	rved			I2CRST		Reserved	1	USART2RS	TReserved
rw								1	rw				rw		
15			12	11	10					5	4	3	2	1	0
	Rese	erved	1	WWDGRS:			Rese	erved	1	1	TIM6RST	Rese	rved	TIM3RST	Reserved
	rw										rw			rw	

Bit field	Name	Description
31:29	Reserved	Always read as 0.
28	PWRRST	PWR reset.
		Set to 1 or clear to zero by software.
		0: No effect
		1: Reset PWR
27:22	Reserved	Always read as 0.
21	I2CRST	I2C reset.
		Set to 1 or clear to zero by software.
		0: No effect
		1: Reset I2C1
20:18	Reserved	Always read as 0.
17	USART2RST	USART2 reset.
		Set to 1 or clear to zero by software.
		0: No effect
		1: Reset USART2
16:12	Reserved	Always read as 0.
11	WWDGRST	Window watchdog reset.
		Set to 1 or clear to zero by software.
		0: No effect
		1: Reset window watchdog
10:5	Reserved	Always read as 0.
4	TIM6RST	TIM6 timer reset.
		Set to 1 or clear to zero by software.
		0: No effect
		1: Reset TIM6 timer
3:2	Reserved	Always read as 0.
1	TIM3RST	TIM3 timer reset.
		Set to 1 or clear to zero by software.
		0: No effect

Bit field	Name	Description
		1: Reset TIM3 timer
0	Reserved	Always read as 0.

4.3.7 AHB peripheral clock enable register (RCC_AHBPCLKEN)

Offset address: 0x14

Reset value: 0x0000 0014

31															16
				I			Rese	rved	1	1	I				
	I	I	L	I	1			L	I	I	I	L			I]
15	14	13	12	11				7	6	5	4	3	2	1	0
Reserved	IR CTRLEN	Reserved	ADCEN		1	Reserved			CRCEN	Reserved	Reserved	Reserved	SRAMEN	Reserved	DMAEN
	rw		rw						rw				rw		rw

Bit field	Name	Description
31:15	Reserved	Always read as 0.
14	IRCTRLEN	IRCTRL clock enable.
		Set to 1 or clear to zero by software.
		0: Disable IRCTRL clock
		1: Enable IRCTRL clock
13	Reserved	Always read as 0.
12	ADCEN	ADC clock enable.
		Set to 1 or clear to zero by software.
		0: Disable ADC clock
		1: Enable ADC clock
11:7	Reserved	Always read as 0.
6	CRCEN	CRC clock enable.
		Set to 1 or clear to zero by software.
		0: Disable CRC clock
		1: Enable CRC clock
5	Reserved	It defaults to 0.
4	Reserved	Always read as 1.
3	Reserved	Always read as 0.
2	SRAMEN	SRAM clock enable.
		Set to 1 or clear to zero by software.
		0: Disable SRAM clock during Idle mode
		1: Enable SRAM clock during Idle mode
1	Reserved	Always read as 0.
0	DMAEN	DMA clock enable.
		Set to 1 or clear to zero by software.
		0: Disable DMA clock

Bit field	Name	Description
		1: Enable DMA clock

4.3.8 APB2 peripheral clock enable register (RCC_APB2PCLKEN)

Offset address: 0x18

31										 				16
							Rese	erved						
15	14	13	12	11	10	9	8			4	3	2	1	0
Reserved	USART1 EN	Reserved	TIM1EN	Reserved	SPI2EN	SPI1EN		1	Reserved		IOPBEN	IOPAEN	Reserved	AFIOEN
	rw		rw		rw	rw					rw	rw		rw

Bit field	Name	Description
31:15	Reserved	Always read as 0.
14	USART1EN	USART1 clock enable.
		Set to 1 or clear to zero by software.
		0: Disable USART1 clock
		1: Enable USART1 clock
13	Reserved	Always read as 0.
12	TIM1EN	TIM1 timer clock enable.
		Set to 1 or clear to zero by software.
		0: DisableTIM1 timer clock
		1: Enable TIM1 timer clock
11	Reserved	Always read as 0.
10	SPI2EN	SPI2 clock enable.
		Set to 1 or clear to zero by software.
		0: Disable SPI2 clock
		1: Enable SPI2 clock
9	SPI1EN	SPI1 clock enable.
		Set to 1 or clear to zero by software.
		0: Turn off SPI1 clock
		1: Enable SPI1 clock
8:4	Reserved	Always read as 0.
3	IOPBEN	GPIO port B clock enable.
		Set to 1 or clear to zero by software.
		0: Disable the clock of GPIO port B
		1: Enable the clock of GPIO port B
2	IOPAEN	GPIO port A clock enable.
		Set to 1 or clear to zero by software.
		0: Disable the clock of GPIO port A

Bit field	Name	Description
		1: Enable the clock of GPIO port A
1	Reserved	Always read as 0.
0	AFIOEN	Auxiliary function IO clock enable.
		Set to 1 or clear to zero by software.
		0: Disable the auxiliary function IO clock
		1: Enable the auxiliary function IO clock

4.3.9 APB1 peripheral clock enable register (RCC_APB1PCLKEN)

Offset address: 0x1C

31		29	28	27					22	21	20		18	17	16
	Reserved	1	PWREN			Rese	erved	1		I2CEN		Reserved		USART2EN	Reserved
			rw							rw				rw	
15			12	11	10					5	4	3	2	1	0
	Rese	erved	1	WWDGEN		1	Reso	erved		1	TIM6EN	Rese	rved	TIM3EN	Reserved
				rw							rw			rw	

Bit field	Name	Description
31:29	Reserved	Always read as 0.
28	PWREN	Power interface clock enable.
		Set to 1 or clear to zero by software.
		0: Disable power interface clock
		1: Enable power interface clock
27:22	Reserved	Always read as 0.
21	I2CEN	I2C clock enable.
		Set to 1 or clear to zero by software.
		0: Disable I2C clock
		1: Enable I2C clock
20:18	Reserved	Always read as 0.
17	USART2EN	USART2 clock enable.
		Set to 1 or clear to zero by software.
		0: Disable USART2 clock
		1: Enable USART2 clock
16:12	Reserved	Always read as 0.
11	WWDGEN	Window watchdog clock enable.
		Set to 1 or clear to zero by software.
		0: Disable window watchdog clock
		1: Enable window watchdog clock
10:5	Reserved	Always read as 0.
4	TIM6EN	TIM6 timer clock enable.

Bit field	Name	Description
		Set to 1 or clear to zero by software.
		0: Disable TIM6 timer clock
		1: Enable TIM6 timer clock
3:2	Reserved	Always read as 0.
1	TIM3EN	TIM3 timer clock enable.
		Set to 1 or clear to zero by software.
		0: Disable TIM3 timer clock
		1: Enable TIM3 timer clock
0	Reserved	Always read as 0.

4.3.10 Low speed clock control register (RCC_LSCTRL)

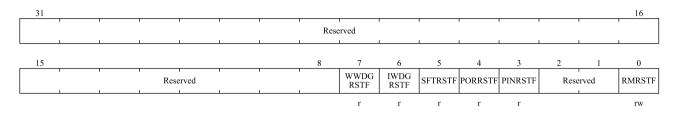
Offset address: 0x20

Reset value: 0x0006 0F03

31	30	29	28	27	26	25	24	23				19	18		16
Reserved	KEY SCANEN	Reserved	LPUART RST	LPUART EN	LPUART SEL	RTCRST	RTCEN			Reserved				LSITRIM	
15	rw		rw	rw	rw	rw	rw 8	7	6	5	4	3	2	rw 1	0
			LSIT	RIM	1			Rese	rved	LSXSEL	LSEBP	LSERD	LSEEN	LSIRD	LSIEN
			r	w	•					rw	rw	r	rw	r	rw

Bit field	Name	Description
31	Reserved	Always read as 0.
30	KEYSCANEN	KEYSCAN clock enable.
		Set to 1 or clear to zero by software.
		0: Disable KEYSCAN clock
		1: Enable KEYSCAN clock
29	Reserved	Always read as 0.
28	LPUARTRST	LPUART reset.
		Set to 1 or clear to zero by software.
		0: No effect
		1: Reset LPUART
27	LPUARTEN	LPUART clock enable.
		Set to 1 or clear to zero by software.
		0: Disable LPUART clock
		1: Enable LPUART clock
26	LPUARTSEL	LPUART clock source selection bit
		This bit is set and cleared by the software
		0: APB1 clock is selected
		1: LSI_LSE_CLK clock
25	RTCRST	RTC software reset

Bit field	Name	Description
		0: No effect
		1: Reset RTC
24	RTCEN	RTC clock enable
		Set to 1 and clear by software.
		0: RTC clock disabled
		1: RTC clock enabled
23:19	Reserved	Always read as 0.
18:8	LSITRIM	LSI frequency trimming control bit
7:6	Reserved	Always read as 0.
5	LSXSEL	Low speed clock source selection.
		The software set the bit to select LSI_LSE_CLK clock source.
		0: Select LSI oscillator
		1: Select LSE oscillator
		Note: This bit affects the low speed clock of RTC, PWR, BLE, KEY and LPUART;
4	LSEBP	External low speed clock oscillator bypass.
		The software sets 1 bypass LSE.
		0: LSE clock is not bypassed
		1: LSE clock is bypassed
3	LSERD	External low speed clock oscillator is ready.
		Set to 1 or clear by the hardware and indicate whether the LSE oscillator is ready. After
		LSEEN is cleared, this bit has to be cleared by 6 cycles of external low-speed oscillator.
		0: External 32KHz oscillator is not ready
		1: External 32KHz oscillator has been ready
2	LSEEN	External low speed clock oscillator enable bit.
		Set to 1 or clear to zero by software.
		0: Turn off the external 32KHz oscillator
		1: Turn on the external 32KHz oscillator
1	LSIRD	Internal low speed clock oscillator is ready.
		Set to 1 or clear by the hardware and indicate whether the LSI oscillator is ready. After
		LSIEN is cleared, This bit requires 3 periods of the internal low-speed oscillator to be
		cleared
		0: Internal 32KHz oscillator is not ready
		1: Internal 32KHz oscillator has been ready
0	LSIEN	Internal low speed clock oscillator enable bit.
		Set to 1 or clear to zero by software.
		0: Turn off the internal 32KHz oscillator
		1: Turn on the internal 32KHz oscillator


Note: If RCC_CFG register needs to be written after Sleep mode wake-up, RCC_LSCTRL register must be rewritten first, that is, read and write the read value.

4.3.11 Control/status register (RCC_CTRLSTS)

Offset address: 0x24

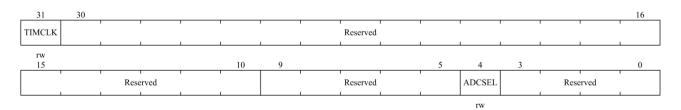
Reset value: 0x0000018

Bit field	Name	Description
31:8	Reserved	Always read as 0.
7	WWDGRSTF	Window watchdog reset flag
		Set 1 when the window watchdog is reset by the hardware.
		Reset and clear by writing the RMRSTF bit.
		0: Without window watchdog reset
		1: With window watchdog reset
6	IWDGRSTF	Independent watchdog reset flag
		Set 1 when the independent watchdog is reset by the hardware.
		Reset and clear by writing the RMRSTF bit.
		0: Without independent watchdog reset
		1: With independent watchdog reset
5	SFTRSTF	Software reset flag
		Set 1 when software is reset by hardware.
		Reset and clear by writing the RMRSTF bit.
		0: Without software reset
		1: With software reset
4	PORRSTF	POR/PDR reset flag
		Set 1 when POR/PDR is reset by hardware.
		Clear by writing the RMRSTF bit
		0: Without POR/PDR reset
		1: POR/PDR reset occurs. When this bit value is 1, other reset flags are ignored
3	PINRSTF	PIN reset flag
		Set 1 when RESET pin is RESET by hardware.
		Reset and clear by writing the RMRSTF bit.
		0: Without RESET pin reset
		1: With RESET pin reset
2:1	Reserved	Always read as 0.
0	RMRSTF	REMOVE reset flag
		The reset flag is cleared by the software.

Bit field	Name	Description
		0: No effect
		1: Clear these reset flags
		Software clearing+cancel clear (RMRSTF writes 1 and then 0) is required

4.3.12 AHB peripheral reset register (RCC_AHBPRST)

Offset address: 0x28


Reset value: 0x0000 0000

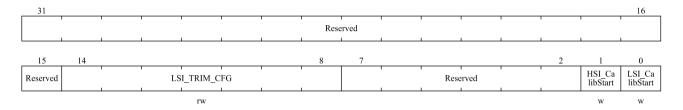
31														-	16
							Rese	erved							
15	14	13	12	11	1	1	1			1	1		1	1	0
	D		ADCRST						Rese	erved		1			
	rw		rw												

Bit field	Name	Description
31:15	Reserved	Always read as 0.
14	IRCTRLRST	IRCTRL interface reset
		Set and clear by software.
		0: Clear reset
		1: Reset IRCTRL interface
13	Reserved	Always read as 0.
12	ADCRST	ADC interface reset
		Set and clear by software.
		0: Clear reset
		1: Reset ADC interface
11:0	Reserved	Always read as 0.

4.3.13 Clock configuration register 2 (RCC_CFG2)

Offset address: 0x2c

Bit field	Name	Description
31	TIMCLK	TIMCLK: Timer1 clock source selection



Bit field	Name	Description
		0: APB2 frequency division clock is selected as TIM1_CLK input clock
		1: SYSCLK clock is selected as TIM1_CLK input clock
30:10	Reserved	Always read as 0.
9:5	Reserved	Always read as 0.
4	ADCSEL	ADC CLK clock source selection.
		Set to 1 or clear to zero by software.
		0: Select AUDIOPLL clock as the input clock of ADC
		1: Select HSE_ DIV8 clock as the input clock of ADC
		Note: Disable clock source before modifying the ADC clock source
3:0	Reserved	Always read as 0.

4.3.14 OSCFC control register (OSCFCCR)

Offset address: 0x30

Reset value: 0x0000 1400

Bit field	Name	R/W	Description
[31:15]	Reserved	R	Always read as 0.
[14:8]	LSI_TRIM_CFG	WR	LSI TRIM count times configuration
[7:2]	Reserved	R	Always read as 0.
[1]	HSI_CalibStart	W	Start HSI calibration, read back to 0
[0]	LSI_CalibStart	W	Start LSI calibration, read back to 0

4.3.15 OSCFC status register (OSCFCSR)

Offset address: 0x34

31					 							16
	1	1		1	 1	Rese	erved					
	1			1							1	<u> </u>
15										2	1	0
	1	1	1	1	Rese	rved	1		1		HSI CNTDONE	LSI CNTDONE

	Bit field	Name	R/W	Description
--	-----------	------	-----	-------------

[31:2]	Reserved	R	Always read as 0.
			HSI count completes flag bit output
[1]	HSICNTDONE	R	Note: After enabling HSI_CalibStart, it takes 2µs to the HSICNTDONE bit of
			OSCFCSR.
[0]	LSICNTDONE	R	LSI count completes flag bit output

4.3.16 Counter register (OSCFCLSICNT)

Offset address: 0x38

Reset value: 0x0000 0000

31						_	_				18	17	16
	1	1	1	1	Rese	erved	1	1	1	1		LSIG	CNT
15												1	. 0
	i	1				LSI	CNT	1	1		1		
	•						r						

Bit	Name	R/W	Function
[31:18]	Reserved	R	Always read as 0.
[17:0]	LSICNT	R	Count result of LSI clock correction

4.3.17 Counter register (OSCFCHSICNT)

Offset address: 0x3C

Reset value: 0x0000 0000

31				-	-		-			 	 	16
						Rese	erved					
15			12			1					 	0
	Rese	erved						HSI	CNT			

Bit field	Name	R/W	Description
[31:12]	Reserved	R	Always read as 0.
[11:0]	HSICNT	R	Count result of HSI clock correction

4.3.18 DBGMCU_CR register

Offset address: 0x44

31													16
	1				Rese	erved							
15							6	5	4	3	2	1	0
	1	Rese	rved	1	1			I2C1_ TIMEOUT	TIM6 STOP	TIM3 STOP	TIM1_ STOP	WWDG_ STOP	IWDG_ STOP
								rw	rw	rw	rw	rw	rw

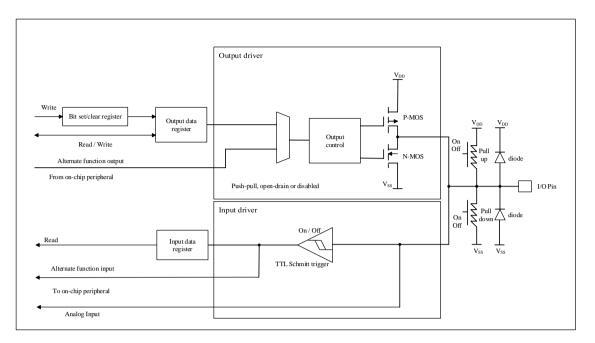
Bit field	Name	R/W	Description
[31:6]	Reserved	R	Always read as 0.
			Stop SMBUS timeout mode when the core stops.
[6]	12C1 TIMEOUT	RW	Set to 1 or clear to zero by software.
[5]	I2C1_TIMEOUT	KW	0: Same as operation in normal mode;
			1: Freeze the timeout control of SMBUS.
			The counter stops working when the core enters the debug state.
٢ ٨ ٦	TIM6 STOD	RW	Set to 1 or clear to zero by software.
[4]	TIM6_STOP	KW	0: The counter of the selected timer still works normally;
			1: The counter of the selected timer stops working.
			The counter stops working when the core enters the debug state.
[2]	TIM3 STOP	RW	Set to 1 or clear to zero by software.
[3]	11WI5_510P	KW	0: The counter of the selected timer still works normally;
			1: The counter of the selected timer stops working.
			The counter stops working when the core enters the debug state.
[2]	TIM1 STOP	RW	Set to 1 or clear to zero by software.
[2]	11W1_510F	KW	0: The counter of the selected timer still works normally;
			1: The counter of the selected timer stops working.
			The debug window watchdog stops working when the core enters
			the debug state.
[1]	WWDG_STOP	RW	Set to 1 or clear to zero by software.
			0: The window watchdog counter still works normally;
			1: The window watchdog counter stops working.
			The watchdog stops working when the core enters the debug state.
[0]	IWDG STOP	RW	Set to 1 or clear to zero by software.
[0]	IWDG_STOP	17.44	0: The watchdog counter still works normally;
			1: The watchdog counter stops working.

5 GPIO and AFIO

5.1 Summary

GPIO Stands for "General Purpose Input/Output", AFIO Stands for "Alternate Function Input/Output". This design supports up tp 21 GPIOs, divided into 2 groups (GPIOA/GPIOB), GPIOA have 7 pins, GPIOB has 14 pins, GPIO

ports share pins with other peripherals, users can flexibly configure according to their needs. Each GPIO pin can be configured by software as output (push-pull or open drain), input (with or without pull-up or pull-down) or alternate peripheral function ports (output/input). Except for ports with analog input function, all GPIO pins have the ability to pass through a large current.


GPIO ports have the following characteristics:

- Each GPIO port can be individually configured into multiple modes by software
 - ♦ Input floating
 - ♦ Input pull-up
 - ♦ Input pull-down
 - Analog function
 - Open drain output and pull-up/pull-down can be configured
 - Push-pull output and pull-up/pull-down can be configured
 - Push-pull alternate function and pull-up/pull-down can be configured
 - Open-drain alternate function and pull-up/pull-down can be configured
- Individual bit set or bit clear function
- All I/O supports external interrupt function
- All I/O supports low power mode wake-up, rising or falling edge configurable
 - 8 EXTIs can be used to wake up from SLEEP mode, and all I/Os can be reused as EXTIs
 - PB3 wake-up I/O can be used for PD mode wake-up, the maximum I/O filter time is 1us
- Support software remapping I/O alternate function
- Support GPIO lock mechanism, reset the lock state to clear

Each I/O port bit can be programmed arbitrarily, but I/O port registers must be accessed as 32-bit words (16-bit half-word or 8-bit byte access is not allowed). The following figure shows the basic structure of an I/O port.

Figure 5-1 Basic structure of I/O ports

5.2 Function description

5.2.1 I/O mode configuration

The mode control of I/O is set by the configuration registers GPIOx_PMODE, GPIOx_POTYPE and GPIOx_PUPD (x=A,B). The configuration in different operation modes is shown in the following table:

PMODE[1:0]	РОТУРЕ	PUPD[1:0]		I/O configuration
01	0	0	0	General-purpose output push-pull
	0	0	1	General-purpose output push-pull + pull-up
	0	1	0	General-purpose output push-pull + pull-down
	0	1	1	Reserved
	1	0	0	General-purpose output open-drain
	1	0	1	General-purpose output open-drain + pull-up
	1	1	0	General-purpose output open-drain + pull-down
	1	1	1	Reserved
10	0	0	0	Alternate function + push-pull
	0	0	1	Alternate function + push-pull + pull-up
	0	1	0	Alternate function + push-pull + pull-down
	0	1	1	Reserved
	1	0	0	Alternate function open-drain
	1	0	1	Alternate function open-drain + pull-up

Table 5-1 I/O port configuration table

PMODE[1:0]	РОТҮРЕ	PUPD[1:0]		I/O configuration	
	1	1	0	Alternate function open-drain + pull-down	
	1	1	1	Reserved	
00	Х	0	0	Input floating	
	Х	0	1	Input pull-up	
	Х	1	0	Input pull-down	
	Х	1	1	Reserved	
	Х	0	0	Analog	
11	Х	0	1	Reserved	
	Х	1	0		
	Х	1	1		

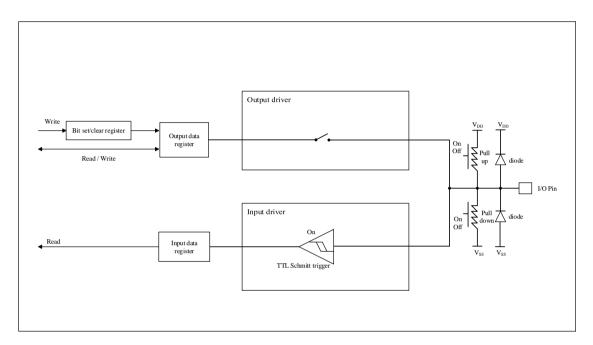
In addition, the GPIOx_DS.DSy bit can be used to configure the high/low drive strength, and the GPIOx_SR.SRy bit can be used to configure the high/low slew rate.

The input and output characteristics of I/O under different configurations are shown in the following table:

Feature	GPIO Input	GPIO Output	Analog function	Alternate function
Output buffer	Disabled	Enabled	Disabled	Configuration according to peripheral function
Schmitt trigger	Enabled	Enabled	Disabled,Output is forced to 0	Enable
PULL UP/DOWN/FLOATING	Configured	Configured	Disabled	Configuration according to peripheral function
OPEN DRAIN	Disabled	Can be configured, GPIO output 0 when output data is "0", high resistance of GPIO when "1"	Disabled	Can be configured, GPIO output 0 when output data is "0", high resistance of GPIO when "1"
PUSH PULL MODE	Disabled	Can be configured, GPIO output 0 when output data is "0", GPIO output 1 when output data is "1"	Disabled	Can be configured, GPIO output 0 when output data is "0", GPIO output 1 when output data is "1"
Input data register (I/O status) Readable		Readable	Reads out 0	Readable
Output data register(Output value)	Invalid	Readable and written	Invalid	Readable

Table 5-2 I/O List of functional feature	s of the pin
--	--------------

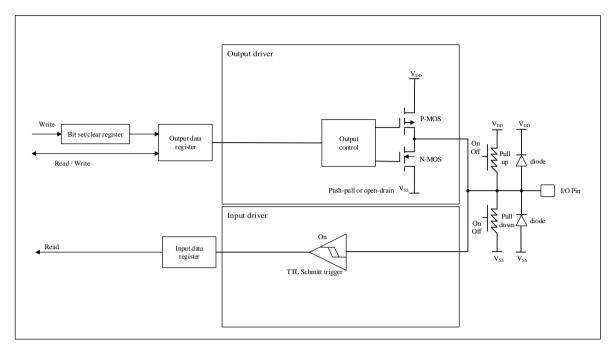
5.2.1.1 Input mode


When the I / O port is configured as input mode:

• Output buffer is disabled

- The schmitt trigger input is activated.
- Whether the pull-up and pull-down resistors are connected depends on the configuration of the GPIOx_PUPD register.
- The data appearing on the I/O pins is sampled into the input data register on every APB2 clock
- I/O status is obtained by read access to the input data register

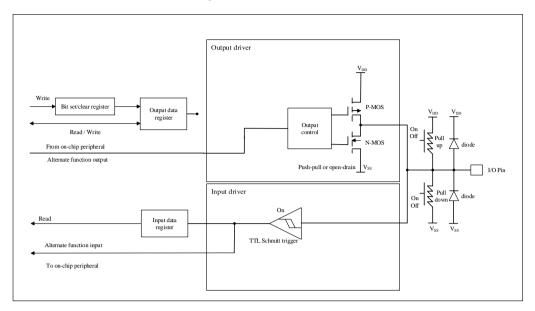
Figure 5-2 Input floating / pull-up / pull-down configuration mode.


5.2.1.2 Output mode

When the I/O port is configured as output mode:

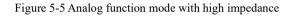
- The schmitt trigger input is activated.
- Whether the pull-up and pull-down resistors are connected depends on the configuration of the GPIOx_PUPD register
- The output buffer is activated
 - Open drain mode: '0' on the output register activates the N-MOS, the pin outputs a low level. while '1' on the output register puts the port in a high resistance state (PMOS is never activated).
 - Push-pull mode: '0' on the output register activates the N-MOS, the pin outputs a low level. While '1' on the output register activates the P-MOS, the pin outputs a high level.
- The data appearing on the I/O pins is sampled into the input data register every APB2 clock.
- Read access to input data register to get I/O status.
- Read access to the output data register to get the last written value.

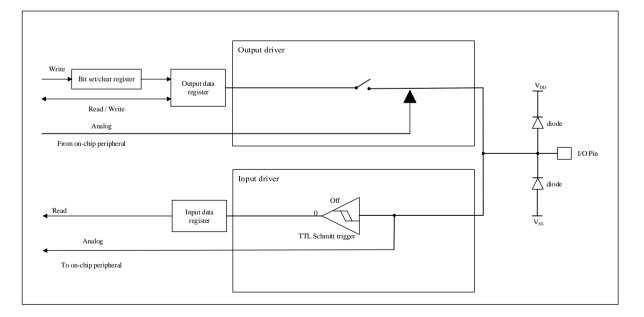
Figure 5-3 Output mode


5.2.1.3 Alternate function mode

When the I/O port is configured as alternate function mode:

- The schmitt trigger input is activated.
- Whether the pull-up and pull-down resistors are connected, depending on the configuration of the GPIOx_PUPD register.
- In open-drain or push-pull configuration, the output buffer is controlled by the peripheral.
- Signal-driven output buffers for built-in peripherals.
- At each APB2 clock cycle, the data appearing on the I/O pin is sampled into the input data register.
- Read access to input data register to get I/O status.
- Read access to the output data register to get the last written value.


Figure 5-4 Alternate function mode



5.2.1.4 Analog function mode

When the I/O Port is configured as analog function mode:

- The pull-up and pull-down resistors are disabled.
- Read access to the input data register gets the value "0".
- The output buffer is disabled.
- Schmitt trigger input is disabled and output value is forced to '0' (achieves zero consumption on each analog I/O pin).

Nations Technologies Inc. Tel: +86-755-86309900 Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

5.2.2 Status after reset

During and just after reset, the alternate function mapping is not turned on, and the I / O port is configured as analog function mode ($GPIOx_PMODE.PMODEx [1:0] = 11b$). However, there are the following exceptions to the signal.

- RESET default non-GPIO functions:
 - ♦ RESET pull-up input
- After reset, the default configuration of the pins related to the debugging system is the SWD interface I/O configuration:
 - PA4: SWCLK is placed in input pull-down mode
 - PA5: SWDIO is placed in input pull-up mode

5.2.3 Individual bit setting and bit clearing

By writing '1' to the bit to be changed in the set register (GPIOx_PBSC) and reset register (GPIOx_PBC), the individual bit operation of the data register (GPIOx_POD) can be realized, and one or more bits can be set/reset. The bit written with '1' is set or cleared accordingly, and the bit not written with '1' will not be changed. The software does not need to disable interrupts, and is completed in a single APB2 write operation.

5.2.4 External interrupt /wakeup line

All ports have external interrupt capability, which can be configured in the EXTI module:

- The port must be configured in input mode.
- All ports can be configured for IDLE/STANDBY/SLEEP mode wake-up, supporting rising or falling edge configurable.
- PB3, can be used for PD mode wake-up
- General purpose I/O ports are connected to 8 external interrupt/event lines as shown in Figure 6-2, configured by registers AFIO_EXTI_CFGx.

5.2.5 Alternate function

When the port is configured as AFIO, the port are used as peripheral alternate function mode. The port bit configuration register (GPIOx_AFL/GPIOx_AFH, GPIOx_PMODE, GPIOx_POTYPE and GPIOx_PUPD) must be configured before use, reuse input or output is determined by the peripheral.

5.2.5.1 Software remapping I/O alternate function

To expand the flexibility of alternate peripheral functions under different device packages, some peripheral alternate functions can be remapped to other pins. Each I/O has up to 8 alternate functions (AF0~AF7). After reset, AFSELy is selected as AF0 by default. The I/O alternate function can be remapped by software configuring the corresponding registers (GPIOx_AFL/ GPIOx_AFH).

At this time, the alternate functions are no longer mapped to their original pins(For the I/O alternate function of the peripheral, if it is remapped to a different pin, then the input is remapping choose one of multiple, and the output will be connected to the remapped position, and the original position will be disconnected).

5.2.5.1.1 SWD alternate function I/O remapping

Table 5-3 I/O List of functional features of the	pin
--	-----

Alternate function	I/O	Remapping
SWDIO	PA5	AF0
	PB7	AF6
SWCLK	PA4	AF0
	PB6	AF6

5.2.5.1.2 TIMx alternate function I/O remapping

5.2.5.1.2.1 TIM1 alternate function I/O remapping

Table 5-4 TIM1 alternate function I/O remapping

Alternate function	I/O	Remapping
TIM1_ETR	PA5	AF1
TIM1_BKIN	PA6	AF1
TIM1_CH1	PB0	AF1
TIMI_CHI	PB8	AF1
TIM1 CHO	PB1	AF1
TIM1_CH2	PB9	AF1
TIM1 CH2	PB2	AF1
TIM1_CH3	PB10	AF1
TIM1 CII4	PB3	AF1
TIM1_CH4	PB11	AF1
TIM1_CH1N	PB12	AF1
TIM1_CH2N	PB13	AF1
TIM1_CH3N	PA4	AF1

5.2.5.1.2.2 TIM3 alternate function I/O remapping

Table 5-5 TIM3 alternate function I/O remapping

Alternate function	I/O	Remapping
TIM3_CH1	PB4	AF2
TIM3_CH2	PB5	AF2
TIM3_CH3	PB6	AF2
TIM3_CH4	PB7	AF2

5.2.5.1.3 USARTx alternate function I/O remapping

5.2.5.1.3.1 USART1 alternate function I/O remapping

Alternate function	I/O	Remapping
	PB1	AF3
USART1_CTS	PB9	AF3
	PB0	AF3
USART1_RTS —	PB8	AF3
	PA4	AF3
USART1_TX	PB6	AF4
UCADTI DV	PA5	AF3
USART1_RX	PB7	AF4
USART1_CK	PA6	AF3

Table 5-6 USART1 alternate function I/O remapping

5.2.5.1.3.2 USART2 alternate function I/O remapping

Table 5-7 USART2 alternate function I/O remapping

Alternate function	I/O	Remapping
LICADTO TV	PB4	AF3
USART2_TX	PA6	AF2
LICADTO DV	PB5	AF3
USART2_RX	PB10	AF3
USART2_CK	PB13	AF3
USART2_RTS	PB11	AF3
USART2_CTS	PB12	AF3

5.2.5.1.3.3 LPUART alternate function I/O remapping

Table 5-8 LPUART alternate function I/O remapping

Alternate function	I/O	Remapping
L DUADT CTS	PB13	AF2
LPUART_CTS	PB3	AF4
	PB10	AF2
LPUART_RTS	PB0	AF4
LDUADT TY	PB12	AF2
LPUART_TX	PB1	AF4
LDUADT DV	PB11	AF2
LPUART_RX	PB2	AF4

5.2.5.1.4 I2C alternate function I/O remapping

Table 5-9	12C1 alternate	function	I/O remapping
Tuble 5 7		runction	1/O I CITIUPPING

Alternate function	I/O	Remapping
	PB7	AF3
I2C_SCL	PB9	AF2
	PB6	AF3
I2C_SDA	PB8	AF2
LOC SMDA	PB10	AF4
I2C_SMBA	PB11	AF4

5.2.5.1.5 SPI/I2S alternate function I/O remapping

5.2.5.1.5.1 SPI1/I2S1 alternate function I/O remapping

Table 5-10 SPI1/I2S alternate function I/O remapping

Alternate function	I/O	Remapping
SPI1_I2S1_NSS_WS	PA0	AF1
SPI1_I2S1_SCK_CK	PA1	AF1
SPI1_I2S1_MISO_MCK	PA3	AF1
SPI1_I2S1_MOSI_SD	PA2	AF1

5.2.5.1.5.2 SPI2 alternate function I/O remapping

Table 5-11 SPI2 alternate function I/O remapping

Alternate function	I/O	Remapping
SDIA IASA NGG WG	PB0	AF2
SPI2_I2S2_NSS_WS	PB7	AF1
SDIA IASA SCH CH	PB1	AF2
SPI2_I2S2_SCK_CK	PB4	AF1
SDI2 1252 MISO MCV	PB3	AF2
SPI2_I2S2 _MISO_MCK	PB5	AF1
	PB2	AF2
SPI2_I2S2_MOSI_SD	PB6	AF1

5.2.5.1.6 IRC alternate function I/O remapping

Table 5-12 IRC alternate function I/O remapping

Alternate function	I/O	Remapping
IRC_TX	PB4	AF2

• PB4 can be used as IRC_TX or TIM3_CH1 pin(default).

• Turn on IRC by setting the IR_ENABLE bit of the IR_CTRL register.

5.2.5.1.7 KEYSCAN alternate function I/O remapping

Alternate function	I/O	Remapping
KEY1	PA0	AF5
KEY2	PA1	AF5
KEY3	PA2	AF5
KEY4	PA3	AF5
KEY5	PA6	AF5
KEY6	PB10	AF5
KEY7	PB8	AF5
KEY8	PB9	AF5
KEY9	PA4	AF5
KEY10	PA5	AF5
KEY11	PB0	AF5
KEY12	PB1	AF5
KEY13	PB2	AF5

Table 5-13 KEYSCAN alternate function I/O remapping

5.2.5.1.8 **BLE alternate function I/O remapping**

Alternate function	I/O	Remapping
PA_LDO_EN	PB3	AF6
ANT_SW1	PB3	AF7
ANT_SW2	PB6	AF7
ANT_SW3	PB7	AF7
ANT_SW4	PB1	AF7
ANT_SW5	PB2	AF7
ANT_SW6	PB4	AF7
ANT_SW7	PB5	AF7

5.2.5.1.9 RCC alternate function I/O remapping

Table 5-15 RCC alternate function I/O remapping

Alternate function	I/O	Remapping
МСО	PB5	AF4

5.2.5.2 OSC32K_IN/OSC32K_OUT alternate function I/O remapping

Table 5-16 OSC32_IN/OSC32_OUT alternate function I/O remapping

Alternate function	I/O	Remapping
OSC32_IN	PB8	AF0
OSC32_OUT	PB9	AF0

PB8~PB9 two pins can be used as LSE crystal/external clock mode or other alternate function mode:

- PB8 and PB89 can be used for LSE (OSC32_IN, OSC32_OUT) pins.
- Turn on the LSE function by setting the RCC_LSCTRL.LSEEN and RCC_LSCTRL.LSEBP bits.

Table 5-17 PB8/PB9 alternate function remapping

PB8 and PB9	Condition	PAD mode configure
LSE crystal mode	RCC_LSCTRL.LSEEN bit is enabled, alternate mode is on	Analog function mode
LSE external clock mode	RCC_LSCTRL.LSEEN bit is disabled, RCC_LSCTRL.LSEBP is enabled, alternate mode is enabled	Analog function mode(PB8)
Other function mode	It can only be used in GPIO mode when the LSE is turned off and the VDDD power supply is turned off without entering the low power mode (PD).	The mode of the other function is determined by the application

The default is analog function mode; PB8 and PB9 decide which mode and I/O function they are in according to RCC_LSCTRL.LSEEN, RCC_LSCTRL.LSEBP, chip mode signal, GPIOx_PMODE, GPIOx_POTYPE and GPIOx_PUPD.

5.2.6 I/O configuration of peripherals

Table 5-18 ADC

ADC	PAD configuration
ADC	Analog function mode

Table 5-19 TIM1

TIM1 pin	Configuration	PAD configuration mode
TIML CU	Channel x input capture	Input floating
TIM1_CHx	Output compare channel x	Alternate function push-pull
TIM1_CHxN	Complementary output channel x	Alternate function push-pull
TIM1_BKIN	Brake input	Input floating
TIM1 ETR	External trigger clock input	Input floating

Table 5-20 TIM3

TIM3 pin	Configuration	PAD configuration mode
TIM3_CHx	Input capture channel x	Input floating
	Output compare channel x	Alternate function push-pull

Table 5-21 USART

USART pin	Configuration	PAD configuration
USART_TX	Full duplex mode	Alternate function push-pull
	Half duplex mode	Alternate function push-pull
USART_RX	Full duplex mode	Input floating or Input pullup
	Half duplex mode	Unused, can be used as general I/O.

USART pin	Configuration	PAD configuration
USART_CK	Synchronous mode	Alternate function push-pull
USART_RTS	Hardware flow control	Alternate function push-pull
USART_CTS	Hardware flow control	Input floating or Input pullup

Table 5-22 LPUART

LPUARTx pin	Configuration	PAD configuration
LPUART_TX	Full duplex mode	Alternate function push-pull
LPUART_RX	Full duplex mode	Input floating or Input pullup
LPUART_RTS	Hardware flow control	Alternate function push-pull
LPUART_CTS	Hardware flow control	Input floating or Input pullup

Table 5-23 I2C

I2C pin	Configuration	PAD configuration
I2C_SCL	I2C clock	Alternate function open-drain
I2C_SDA	I2C data	Alternate function open-drain
I2C_SMBA	SMBA data	Alternate function push-pull

Table 5-24 SPI

SPI pin	Configuration	PAD configuration					
	Master mode	Alternate function push-pull					
SPIx_SCLK	Slave mode	Input floating					
	Full duplex mode / Master mode	Alternate function push-pull					
	Full durlar mode / Slave mode	Input floating or Input pullup or Alternate					
SPIx_MOSI	Full duplex mode / Slave mode	function push-pull					
	Simple bidirectional data line / Master mode	Alternate function push-pull					
	Simple bidirectional data line / Slave mode	Unused, can be used as general I/O.					
	Euli dun lan mada / Mastan mada	Input floating or Input pullup or Alterna					
	Full duplex mode / Master mode	function push-pull					
SPIx_MISO	Full duplex mode / Slave mode	Alternate function push-pull					
	Simple bidirectional data line / Master mode	Unused, can be used as general I/O.					
	Simple bidirectional data line / Slave mode	Alternate function push-pull					
	Hardware Master/ Slave mode	Alternate function push-pull(no pull-down					
	Hardware Master/ Slave mode	or pull-up/pull-up/pull-down)					
CDL. NCC		Alternate function push-pull (When acting					
SPIx_NSS	Hardware Master /NSS output enable	as the master, NSS can choose idle high					
		impedance or idle as 1)					
	Software mode	Unused, can be used as general I/O.					

Table 5-25 IIS

IIS pin	Configuration	PAD configuration					
IISx WS	Master mode	Alternate function push-pull					
IISX_WS	Slave mode	Input floating					
	Master mode	Alternate function push-pull					
I2Sx_CK	Slave mode	Input floating					
	Transmitter	Alternate function push-pull					
I2Sx_SD	Receiver	Input floating or Input pullup or Input					
	Receiver	pulldown					
LOST MCK	Master mode	Alternate function push-pul					
I2Sx_MCK	Slave mode	Unused, can be used as general I/O.					

Table 5-26 IRC

IRC	PAD configuration
IRC_TX	Alternate function push-pull

Table 5-27 KEYSCAN

KEYSCAN	PAD configuration
KEYx	Input pullup or Input pulldown or Alternate function push-pull

Table 5-28 BLE

BLE	PAD configuration
PA_LDO_EN	Alternate function push-pull
ANT_SWx	Alternate function push-pull

Table 5-29 Other

Pin	Alternate function	PAD configuration
МСО	Clock output	Alternate function push-pull
EXTI input line	External interrupt input	Input floating or input with pull-up or input with pull-down

5.2.7 GPIO Locking mechanism

The locking mechanism is used to freeze the I/O configuration to prevent accidental changes. When a lock (LOCK) procedure is executed on a port bit, the configuration of the port cannot be changed until the next reset, refer to the port configuration lock register GPIOx_PLOCK.

- PLOCKK is GPIOx_PLOCK[16],only after the PLOCKK is operated in the correct sequence w1->w0->w1->r0 (where r0 must be), it will become 1; after that, it will only become 0 after a system reset.
- PLOCKy is GPIOx_PLOCK[15:0], can only be modified when PLOCKK = 0

- PLOCKK is only written simultaneously with non-zero GPIOx_PLOCK[15:0], the sequence w1->w0->w1->r0 is valid; During the sequence writing process, GPIOx_PLOCK[15:0] remains unchanged.
- As long as PLOCKK = 0, the bits of GPIOx_PMODE / GPIOx_POTYPE / GPIOx_PUPD / GPIOx_AFL / GPIOx_AFH can be modified, they are not affected by GPIOx_PLOCK.PLOCK[15:0] configuration.
- PLOCKK = 1, GPIOx_PMODE/GPIOx_POTYPE/GPIOx_PUPD/GPIOx_AFL/GPIOx_AFH are controlled by GPIOx_PLOCK[15:0]. Corresponding to PLOCKy (y = 0...15) = 1, it is a lock configuration and cannot be modified; PLOCKy = 0, it can be modified.
- If the lock sequence operation is wrong, then it must be redone (w1->w0->w1->r0) to initiate the lock operation again.

5.3 GPIO Registers

These peripheral registers must be operated as 32-bit words.

5.3.1 GPIO register overview

Off set	Regis	ter	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
000 h	GPIOx _PMO DE	x=A, B	Reserved		Reserved		PMODE13[1:0]		PMODE12[1:0]		PMODE11[1:0]		PMODE10[1:0]		PMODE9[1:0]		PMODE8[1:0]		PMODE7[1:0]		PMODE6[1:0]		PMODE5[1:0]		PMODE4[1:0]		PMODE3[1:0]		PMODE2[1:0]		PMODEI[1:0]		PMODE0[1:0]	
	Reset Value	x=A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	1	0	1	1	1	1	1	1	1	1
		x=B	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
004 h	GPIOx _POT YPE	x=A, B	Reserved													•			Reserved	Reserved	POT13	POT12	POT11	POT10	POT9	POT8	POT7	POT6	POT5	POT4	POT3	POT2	POT1	POT0
	Reset Value	x=A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	v aiue	x=B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
008 h	GPIOx _SR	x=A, B	Reserved										<u> </u>			<u> </u>		<u></u>	Reserved	Reserved	SR13	SR12	SR11	SR10	SR9	SR8	SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0
	Reset	x=A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1
	Value	x=B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
00 Ch	GPIOx _PUP D	x=A, B	Reserved		Reserved		PUPD13[1:0]		PUPD12[1:0]		PUPD11[1:0]		PUPD10[1:0]		PUPD9[1:0]		PUPD8[1:0]		PUPD7[1:0]		PUPD6[1:0]		PUPD5[1:0]		PUPD4[1:0]		PUPD3[1:0]		PUPD2[1:0]		PUPD1[1:0]		PUPD0[1:0]	
	Reset Value	x=A	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
		x=B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
010 h	GPIOx _PID	x=A, B	Reserved													I		L	Reserved	Reserved	PID13	PID12	PID11	PID10	PID9	PID8	PID7	PID6	PID5	PID4	PID3	PID2	PID1	PID0
	Reset Value	x=A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	v inuc	x=B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 5-30 GPIO register overview

014 h	GPIOx _POD	x=A, B	Reserved																Reserved	Reserved	POD13	POD12	POD11	POD10	POD9	POD8	POD7	POD6	POD5	POD4	POD3	POD2	POD1	POD0
	Reset Value	x=A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		x=B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
018 h	GPIOx _PBSC	x=A, B	Reserved	Reserved	PBC13	PBC12	PBC11	PBC10	PBC9	PBC8	PBC7	PBC6	PBC5	PBC4	PBC3	PBC2	PBCI	PBC0	Reserved	Reserved	PBS13	PBS12	PBS11	PBS10	PBS9	PBS8	PBS7	PBS6	PBS5	PBS4	PBS3	PBS2	PBS1	PBS0
	Reset Value	x=A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	, and	x=B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01 Ch	GPIOx _PLO CK	x=A, B	Reserved											-				PLOCKK	Reserved	Reserved	PLOCK13	PLOCK12	PLOCK11	PLOCK10	PLOCK9	PLOCK8	PLOCK7	PLOCK6	PLOCK5	PLOCK4	PLOCK3	PLOCK2	PLOCK1	PLOCK0
	Reset Value	x=A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	, and	x=B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
020 h	GPIOx _AFL	x=A, B	AFSEL7[3:0]				AFSEL6[3:0]				AFSEL5[3:0]				AFSEL4[3:0]				AFSEL3[3:0]				AFSEL2[3:0]				AFSEL1[3:0]				AFSEL0[3:0]			
	Reset Value	x=A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	value	x=B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
024 h	GPIOx _AFH	x=B	Reserved				Reserved	-			AFSEL13[3:0]				AFSEL12[3:0]				AFSEL11[3:0]				AFSEL10[3:0]				AFSEL9[3:0]				AFSEL8[3:0]			
	Reset Value	x=B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
028 h	GPIOx _PBC	x=A, B	Reserved				DS13		DS12		DS11		DS10		DS9		DS8		DS7		DS6		DS5		DS4		DS3		DS2		DS1		DS0	
	Reset Value	x=A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	v mue	x=B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02 Ch	GPIOx _DS	x=A, B	Reserved																Reserved	Reserved	PID13	PID12	PID11	PID10	PID9	PID8	PID7	PID6	PID5	PID4	PID3	PID2	PID1	PID0
	Reset Value	x=A	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
		x=B	0	0	0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

5.3.2 GPIO port mode description register (GPIOx_PMODE)

Offset address : 0x00

Reset value : 0x00003AFF (x=A); 0x0FFF FFFF (x=B);

31			28	27	26	25	24	23	22	21	20	19	18	17	16
	Rese	rved	1	PMODI	E13[1:0]	PMODE	E12[1:0]	PMODI	E11[1:0]	PMODI	E10[1:0]	PMOD	E9[1:0]	PMOD	E8[1:0]
	-	1					1		1		1				
				r	W	rv	W	r	W	r	W	r	W	r	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PMOD	E7[1:0]	PMOD	E6[1:0]	PMOD	E5[1:0]	PMOD	E4[1:0]	PMOD	E3[1:0]	PMOD	E2[1:0]	PMOD	E1[1:0]	PMOD	E0[1:0]
r	rw rw rw		rv	w	r	w	r	w	r	w	r	w			

Bit field	Name	Description
31:30	PMODEy[1:0]	Mode of port GPIOx ($x = A,B$) pin PINy:
29:28		00: Input mode

www.nationstech.com

Bit field	Name	Description
27:26		01: General output mode
25:24		10: Alternate function mode
23:22		11: Analog function mode
21:20		<i>Note:</i> when $x = A$, $y = 06$;
19:18		When $x = B$, $y = 013$, the remaining bits are reserved, and the reserved bits are
17:16		read-only;
15:14		
13:12		
11:10		
9:8		
7:6		
5:4		
3:2		
1:0		

5.3.3 GPIO port type definition (GPIOx_POTYPE)

Offset address : 0x04

Reset value : 0x0000 0000 (x=A,B)

rw

rw

rw

rw

rw

31															16
	1	1	1	1		1	Rese	rved		1	1	1	1	1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	eserved	POT13	POT12	POT11	POT10	РОТ9	POT8	POT7	POT6	POT5	POT4	РОТ3	POT2	POT1	РОТ0

rw

rw

rw

rw

rw

rw

rw

rw

rw

Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained
15:0	РОТу	Output type of port GPIOx ($x = A,B$) pin PINy:
		0: Output push-pull mode (state after reset)
		1: Output open-drain mode
		<i>Note:</i> when $x = A$, $y = 06$;
		When $x = B$, $y = 013$, the remaining bits are reserved, and the reserved bits are
		read-only;

5.3.4 GPIO slew rate configuration register (GPIOx_SR)

Offset address : 0x08

Reset value : 0x0000 1FFF(x=A); 0x0000 3FFF(x=B)

31	1	1	1	1	1	1	1	1	1	1	1		1	1	16	
							Res	erved								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Rese	erved	SR13	SR12	SR11	SR10	SR9	SR8	SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0	
	1	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	
Bit field Name					De	Description										
31:16			Reserv	ved	Re	served,th	ie reset v	alue mu	st be ma	intained						
15:0			SRy		0:	w rate co Fast sle Slow sle	w rate	tion bits	for port	GPIOx ($\mathbf{x} = \mathbf{A}, \mathbf{B}$) pin PIN	√у			
						Note: when $x = A$, $y = 06$;										
						When $x = B$, $y = 013$, the remaining bits are reserved, and the reserved bits are read-only;										

5.3.5 GPIO port pull-up/pull-down register (GPIOx_PUPD)

Offset address : 0x0C

Reset value : 0x0015 0600(x=A); 0x0000 0000(x=B)

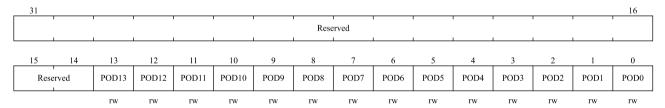
31			28	27	26	25	24	23	22	21	20	19	18	17	16
I	Reserved		PUPD13[1:0]		PUPD	PUPD12[1:0]		PUPD11[1:0]		10[1:0]	PUPD	9[1:0]	PUPD	8[1:0]	
		I	I												·]
15	14	13	12	11 rv	w 10	9 r	w 8	r 7	w 6	5 r	w 4	3	2	r 1	w 0
PUPD	PUPD7[1:0]		06[1:0]	PUPD5[1:0]		PUPD4[1:0]		PUPD3[1:0]		PUPD2[1:0]		PUPD1[1:0]		PUPD	0[1:0]
rv	rw		w	rw		r	w	r	N	r	w	rv	N	r	w

Bit field	Name	Description
31:30	PUPDy[1:0]	Pull-up and pull-down mode of port GPIOx ($x = A,B$) pin PINy:
29:28		00: no pull-up/pull-down
27:26		01: Pull up
25:24		10: Pull down
23:22		11: Reserved
21:20		<i>Note:</i> when $x = A$, $y = 06$;
19:18		When $x = B$, $y = 013$, the remaining bits are reserved, and the reserved bits are
17:16		read-only;
15:14		
13:12		
11:10		
9:8		
7:6		
5:4		
3:2		
1:0		

5.3.6 GPIO port input data register (GPIOx_PID)

Offset address : 0x10

Reset value : 0x0000 0000 (x=A,B)


31					-										16
	1	1	I	I	I	1	Rese	rved	I	I	I	I	I	I	'
	1	1		I	1		1	I	I	I			1	1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved	PID13	PID12	PID11	PID10	PID9	PID8	PID7	PID6	PID5	PID4	PID3	PID2	PID1	PID0
		r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained
15:0	PIDy	Input data of port GPIOx (x = A,B) pin PINy
		These bits are read-only, and the read value is the state of the corresponding I/O port.
		<i>Note:</i> when $x = A$, $y = 06$;
		When $x = B$, $y = 013$, the remaining bits are reserved, and the reserved bits are
		read-only;

5.3.7 GPIO port output data register (GPIOx_POD)

Offset address : 0x14

```
Reset value : 0x0000 0000 (x=A,B)
```


Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained
15:0	PODy	Output data of port GPIOx (x = A,B) pin PINy
		These bits are readable or writable by software, and the corresponding POD bits can
		be independently set/cleared.
		<i>Note:</i> when $x = A$, $y = 06$;
		When $x = B$, $y = 013$, the remaining bits are reserved, and the reserved bits are
		read-only;.

5.3.8 GPIO port bit set/clear register (GPIOx_PBSC)

Offset address : 0x18

Reset value : 0x0000 0000 (x=A,B)

31					1	1	1		1			1	1	16		
						Rese	erved									
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Reserved	PBSC13	PBSC12	PBSC11	PBSC10	PBSC9	PBSC8	PBSC7	PBSC6	PBSC5	PBSC4	PBSC3	PBSC2	PBSC1	PBSC0		
	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1		
Bit field	Name		Des	Description												
31:14		Reserv	ved	Res	Reserved, the reset value must be maintained											
13:0		PBSy		Set	Set bit y of port GPIOx $(x = A,B)$											
				The	These bits can only be written.											
				0: I	0: Does not affect the corresponding PODy bit											
						1: Set the corresponding PODy bit to 1										
					<i>Note:</i> when $x = A$, $y = 06$;											
						When $x = B$, $y = 013$, the remaining bits are reserved, and the reserved bits are										
	rea	read-only;														

5.3.9 GPIO port configuration lock register (GPIOx_PLOCK)

Offset address : 0x1C

Reset value : 0x0000 0000 (x=A,B)

31							-	-						17	16
							Reserved	1		1	1				PLOCKK
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	rw 0
Rese	erved	PLOCKy	PLOCK12	PLOCK11	PLOCK10	PLOCK9	PLOCK8	PLOCK7	PLOCK6	PLOCK5	PLOCK4	PLOCK3	PLOCK2	PLOCK1	PLOCK0
		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

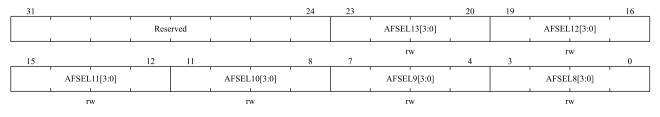
Bit field	Name	Description
31:17	Reserved	Reserved, the reset value must be maintained
16	PLOCKK	Lock key
		This bit can be read at any time, it can only be modified by the lock key write
		sequence.
		0: Port configuration lock key is not active
		1: The port configuration lock key bit is activated, and the GPIOx_PLOCK register is
		locked before the next system reset.
		Lock key write sequence:
		write 1 -> write 0 -> write 1 -> read 0 -> (read 1)
		The last read 1 can be omitted, but can be used to confirm that the lock key has been
		activated.
		Note: The value of PLOCK[15:0] cannot be changed while operating the lock key
		write sequence. Any errors in the operation lock key write sequence will not activate
		the lock key.
15:0	PLOCKy	Configuration lock bit for port GPIOx ($x = A,B$) pin PINy
		These bits are readable and writable but can only be written when the PLOCKK bit is

Bit field	Name	Description
		0.
		0: Do not lock the configuration of the port
		1: Lock the configuration of the port
		<i>Note:</i> when $x = A$, $y = 06$;
		When $x = B$, $y = 013$, the remaining bits are reserved, and the reserved bits are
		read-only;

5.3.10 GPIO alternate function low register (GPIOx_AFL)

Offset address : 0x20

Reset value : 0x00000000 (x = A,B)


31		28	27		24	23		20	19		16
	AFSEL7[3:0]			AFSEL6[3:0]			AFSEL5[3:0]	1		AFSEL4[3:0]	
	rw			rw			rw	-		rw	
15		12	11		8	7		4	3		0
15	AFSEL3[3:0]	12	11	AFSEL2[3:0]	8	7	AFSEL1[3:0]	4	3	AFSEL0[3:0]	0

Bit field	Name	Description
31:28	AFSELy[3:0]	Alternate function configuration bits for port GPIOx ($x = A,B$) pins PINy ($y = 07$)
27:24		0000: AF0
23:20		0001: AF1
19:16		0010: AF2
15:12		0011: AF3
11:8		0100: AF4
7:4		0101: AF5
3:0		0110: AF6
		0111: AF7
		Other:reserved
		<i>Note:</i> when $x = A$, $y = 06$;
		When $x = B$, $y = 07$, the remaining bits are reserved, and the reserved bits are
		read-only;

5.3.11 GPIO alternate function high register (GPIOx_AFH)

Offset address : 0x24

Reset value : 0x00000000 (x = B);

Bit field	Name	Description
31:28	AFSELy[3:0]	Alternate Function Configuration Bits for Port GPIOx ($x = B$) Pins PINy ($y = 813$)
27:24		0000: AF0
23:20		0001: AF1
19:16		0010: AF2
15:12		0011: AF3
11:8		0100: AF4
7:4		0101: AF5
3:0		0110: AF6
		0111: AF7
		<i>Note:</i> when $x = B$, $y = 813$;

5.3.12 GPIO port bit clear register (GPIOx_PBC)

Offset address : 0x28

Reset value : 0x0000 0000 (x=A,B)

31					-	-		-	-	-					16
	I	Ţ	1	1	I	I	Rese	erved			1	1	1	1	I
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	erved	PBC13	PBC12	PBC11	PBC10	PBC9	PBC8	PBC7	PBC6	PBC5	PBC4	PBC3	PBC2	PBC1	PBC0
		rc w1	rc wl	rc w1											

Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained
15:0	РВСу	Clear bit y of port GPIOx $(y = 015)$
		These bits can only be written.
		0: No effect on the corresponding PODy bit
		1: Clear the corresponding PODy bit to 0
		<i>Note:</i> when $x = A$, $y = 06$;
		When $x = B$, $y = 07$, the remaining bits are reserved, and the reserved bits are
		read-only;

5.3.13 GPIO driver strength configuration register (GPIOx_DS)

Offset address : 0x2C

Reset value : 0x0155 5555(x= A), 0x05555555(x= B)

31			28	27	26	25	24	23	22	21	20	19	18	17	16
	Rese	rved		DS	13	DS	12	DS	11	DS	10	DS	59	Ds	8
	L	I				L		L I						lı	
				rv		rv	v	rv	v	rv	V	rv	N	rw	/
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
D	DS7 DS6		56	DS5		DS4		DS3		DS2		DS1		DS	0
rv	rw rw		rv	v	rw	v									

Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained
15:0	DSy	Drive capability configuration bits for port GPIOx ($x = A,B$) pins PINy($y = 013$)
		00: 2mA drive capability
		10: 4mA drive capability
		01: 8mA drive capability
		11: 12mA drive capability
		<i>Note:</i> when $x = A$, $y = 06$;
		When $x = B$, $y = 07$, the remaining bits are reserved, and the reserved bits are
		read-only;

5.4 AFIO Registers

5.4.1 AFIO register overview

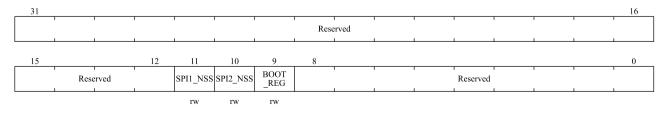

O ff se t	Regist er	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1
0 0 0	AFIO_ CFG										Doctored	NCSCI VCU										SPII_NSS	SP12_NSS	BOOT_REG					Reserved			
h	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
0 0 4 h	AFIO_ EXTI_ CFG1									ŗ	Reserved									EXVI3 CECILAI		Pd	Iresei veu	EVTRA CECIL-01			Keserved	EVEL VECTIVI	EALIL-CFULLO	Decomod	Nesel veu	EXT10_CFG[1:0]
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
0 0 8 h	AFIO_ EXTI_ CFG2										Reserved										EA 11/_CFG[1:0]	Dammad	reserven	EVTIK CECTI-01	[0:1]0.10 ⁻ 011 V7	PQ	Keserved	tortioao siana	EALD_CFU[1:0]	Decembed	neseiven	EXTI4_CFG[1:0]
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0

Table 5-31 AFIO register voverview

5.4.2 AFIO configuration register (AFIO_CFG)

Offset address : 0x00

Reset value : 0x0000 0000

89 / 447

Bit field	Name	Description
31:12	Reserved	Reserved, the reset value must be maintained
11	SPI1_NSS	NSS mode selection bit of SPI1 (NSS is configured in AFIO push-pull
		mode).
		0: NSS is high impedance when idle
		1: NSS is high level when idle
10	SPI2_NSS	NSS mode selection bit of SPI2 (NSS is configured in AFIO push-pull
		mode).
		0: NSS is high impedance when idle
		1: NSS is high level when idle
9	BOOT_REG	Indicates if the BOOT pin is tied to 0 or 1
8:0	Reserved	Reserved, the reset value must be maintained

5.4.3 AFIO external interrupt configuration register 1 (AFIO_EXTI_CFG1)

Offset address : 0x04

Reset value : 0x0000 0000

31	-				-	-									16
		1	1		I	I	Rese	erved							
	1	1	1		1	1		1							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved	EXTI3_0	CFG[1:0]	Rese	erved	EXTI2_0	CFG[1:0]	Rese	erved	EXTI1_0	CFG[1:0]	Rese	erved	EXTI0_0	CFG[1:0]
		r	w			r	N			r	N			r	w

Bit field	Name	Description
31:14	Reserved	Reserved, the reset value must be maintained
13:12	EXTI3_CFG[1:0]	EXTI3 configuration
		These bits are readable and writable by software and are used to select the input
		source for the EXTI3 external interrupt.
		00: PA[5] pin
		01: PB[3] pin
		10: Reserved
		11: Reserved
11:10	Reserved	Reserved, the reset value must be maintained
9:8	EXTI2_CFG[1:0]	EXTI2 configuration
		These bits are readable and writable by software and are used to select the input
		source for the EXTI2 external interrupt.
		00: PA[6] pin
		01: PB[2] pin
		10: Reserved
		11: Reserved
7:6	Reserved	Reserved, the reset value must be maintained
5:4	EXTI1_CFG[1:0]	EXTI1 configuration

Bit field	Name	Description
		These bits are readable and writable by software and are used to select the input
		source for the EXTI1 external interrupt.
		00: PA[2] pin
		01: PA[3] pin
		10: PB[1] pin
		11: Reserved
3:2	Reserved	Reserved, the reset value must be maintained
1:0	EXTI0_CFG[1:0]	EXTI0 configuration
		These bits are readable and writable by software and are used to select the input
		source for the EXTI0 external interrupt.
		00: PA[0] pin
		01: PA[1] pin
		10: PB[0] pin
		11: Reserved

5.4.4 AFIO external interrupt configuration register 2 (AFIO_EXTI_CFG2)

Offset address : 0x08

Reset value : 0x0000 0000

31						-									16
	1	I		1		I	Rese	rved		I	I	1			
			L					L		. <u> </u>					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved	EXTI7_0	CFG[1:0]	Rese	erved	EXTI6_0	CFG[1:0]	Rese	erved	EXTI5_0	CFG[1:0]	Rese	erved	EXTI4_0	CFG[1:0]
	ΓW				r	w			r	w			r	N	

Bit field	Name	Description
31:14	Reserved	Reserved, the reset value must be maintained
13:12	EXTI7_CFG[1:0]	EXTI7 configuration
		These bits are readable and writable by software and are used to select the input
		source for the EXTI7 external interrupt.
		00: PB[13] pin
		01: PB[7] pin
		10: PB[8] pin
		11: Reserved
11:10	Reserved	Reserved, the reset value must be maintained
9:8	EXTI6_CFG[1:0]	EXTI6 configuration
		These bits are readable and writable by software and are used to select the input
		source for the EXTI6 external interrupt.
		00: PB[12] pin
		01: PB[6] pin
		10: PA[4] pin

Bit field	Name	Description
		11: Reserved
7:6	Reserved	Reserved, the reset value must be maintained
5:4	EXTI5_CFG[1:0]	EXTI5 configuration
		These bits are readable and writable by software and are used to select the input
		source for the EXTI5 external interrupt.
		00: PB[10] pin
		01: PB[11] pin
		10: PB[5] pin
		11: Reserved
3:2	Reserved	Reserved, the reset value must be maintained
1:0	EXTI4_CFG[1:0]	EXTI4 configuration
		These bits are readable and writable by software and are used to select the input
		source for the EXTI4 external interrupt.
		00: PB[9] pin
		01: PB[4] pin
		10: Reserved
		11: Reserved

6 Interrupts and events

6.1 Nested vectored interrupt controller

Features

- 32 maskable interrupt channels (not including 16 Cortex[®]-M0 neutral line);
- 4 programmable priorities (using 2 interrupt priorities);
- Low latency exception and interrupt handling;
- Power management control;
- The realization of system control register;

The nested vector interrupt Controller (NVIC) is closely linked to the processor core, enabling low latency interrupt processing and efficient processing of late interrupts. The nested vector interrupt controller manages interrupts including core exceptions.

6.1.1 SysTick calibration value register

The system tick calibration value is fixed at 8000. When the system tick clock is set to 8MHz (the maximum value of HCLK/8), 1 ms time reference is generated.

6.1.2 Interrupt and exception vectors.

Position	Priority	Priority type	Name	Description	Address
-	-	-	-	Reserved	0x0000 0000
-	-3	Fixed	Reset	Reset	0x0000 0004
-	-2	Fixed	NMI	Non-maskable interrupt,BOR interrupt	0x0000 0008
-	-1	Fixed	HardFault	All types of errors (fault)	0x0000 000C
-	3	Settable	SVCall	System services invoked by SWI directives	0x0000 002C
-	5	Settable	PendSV	System service requests that can be pending	0x0000 0038
-	6	Settable	SysTick	System tick timer	0x0000 003C
0	7	Settable	WWDG	Window watchdog interrupt	0x0000 0040
1	8	Settable	BLE_SW_IRQ	BLE SW triggers interrupts, generated based on SW requests	0x0000 0044
2	9	Settable	RTC	RTC interrupt connected to EXTI lines 8 and 9	0x0000 0048
3	10	Settable	BLE_HSLOT_IRQ	BLE half-slot reference interrupts, generated every 312.5us in active	0x0000 004C

Table 6-1 Vector table

Position	Priority	Priority type	Name	Description	Address		
				mode			
4	11	Settable	FLASH	Flash global interrupt	0x0000 0050		
5	12	Settable	RCC	RCC global interrupt	0x0000 0054		
6	13	Settable	EXTI0_1	The EXTI line [1:0] interrupt	0x0000 0058		
7	14	Settable	EXTI2_3	The EXTI line [3:2] interrupt	0x0000 005C		
8	15	Settable	EXTI4_12	The EXTI line [12:4] interrupt	0x0000 0060		
9	16	Settable	BLE_FINETGT_IRQ	BLE fine target timer interrupt, value set by register	0x0000 0064		
10	17	Settable	BLE-FIFO_IRQ	BLE FIFO interrupt	0x0000 0068		
11	18	Settable	DMA_CH1_2_3_4	DMA channel 1/2/3/4 interrupt	0x0000 006C		
12	19	Settable	DMA_CH5	DMA channel 5 interrupt	0x0000 0070		
13	20	Settable	TIM1_BRK_UP_TRG_COM	TIM1 brakes, updates, triggers and communication interrupt	0x0000 0074		
14	21	Settable	TIM1_CC	TIM1 capture comparison interrupt	0x0000 0078		
15	22	Settable	-	Reserved	0x0000 007C		
16	23	Settable	TIM3	TIM3 global interrupt	0x0000 0080		
17	24	Settable	BLE_ERROR_IRQ	BLE error interrupt, generated when the CPU and RW_BT-LE systems attempt to access the same memory space at the same time	0x0000 0084		
18	25	Settable	BLE_CRYPT_IRQ	BLE encryption/decryption interrupt, generated when encryption/decryption terminates, and controlled by register	0x0000 0088		
19	26	Settable	BLE_TIMESTAMP_TGT1 _IRQ	BLE timestamp target 1 interrupt, generated at a defined instant, with an accuracy of 0.5us	0x0000 008C		
20	27	Settable	TIM6	/TIM6 global interrupt	0x0000 0090		
21	28	Settable	ADC	ADC global interrupt	0x0000 0094		
22	29	Settable	SPI2_I2S2	SPI2_I2S2 global interrupt	0x0000 0098		
23	30	Settable	I2C	I2C global interruption	0x0000 0090		
24	31	Settable	BLE_TIMESTAMP_TGT2_I RQ	BLE timestamp target 1 interrupt, generated at a defined instant, with an accuracy of 0.5us	0x0000 00A0		
25	32	Settable	SPI1_I2S1	SPI1_I2S1 global interrupt	0x0000 00A4		
26	33	Settable	BLE_SLP_IRQ	BLE sleep mode interrupt, generated at a predetermined wake-up time (connected to the EXTI line 11)	0x0000 00A8		
27	34	Settable	KEYSCAN	KEYSCAN interrupt	0x0000 00AC		
28	35	Settable	USART1	USART1 global interrupt	0x0000 00B0		

Position	Priority	Priority type	Name	Description	Address
29	36	Settable	LPUART	LPUART global interrupt (connected to EXTI line 10)	0x0000 00B4
30	37	Settable	USART2	USART2 global interrupt	0x0000 00B8
31	38	Settable	IRC	IRC global interrupt	0x0000 00BC

6.2 External interrupt/event controller (EXTI)

6.2.1 Introduction

The external interrupt/event controller contains 14 edge detection circuits that generate interrupt/event triggers. Each input line can be independently configured with pulse or pending input types, and three trigger event types including rising edge, falling edge or double edge, which can also be independently shielded. Interrupt requests that hold the state line in the pending register can be cleared by writing '1' in the corresponding bit of the pending register.

6.2.2 Main features

The main features of EXTI controller are as follows:

- Supports 14 software interrupt/event requests
- Interrupts/events corresponding to each input line can be configured to trigger or mask independently
- Each interrupt line has an independent state bit
- Support for pulse or pending input types
- 3 trigger events are supported: rising edge, falling edge, and double edge
- Can wake up to exit low power mode

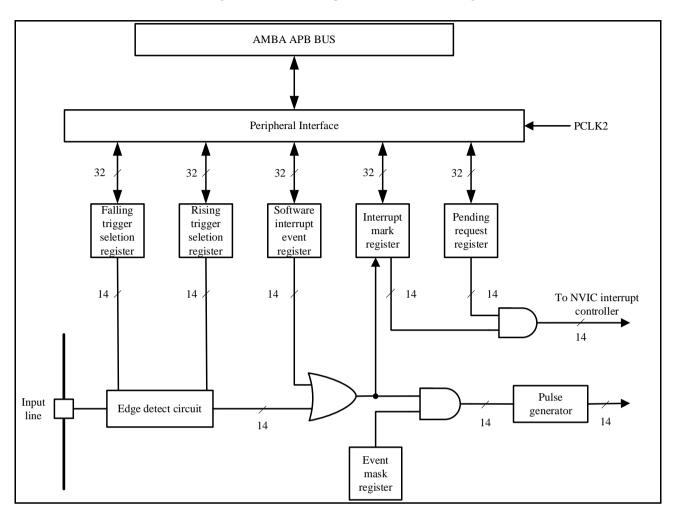
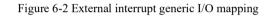
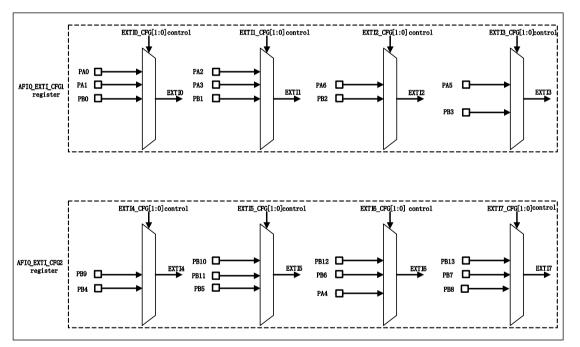


Figure 6-1 Extenal interrupt/event controller block diagram

6.2.3 Functional description

EXTI contains 14 interrupts, 8 from I/O pins and 6 from internal modules. To generate interrupts, the NVIC interrupt channel of the external interrupt controller must be configured to enable the appropriate interrupt line. Select rising edge, falling edge, or double edge trigger event types by edge trigger configuration registers EXTI_RT_CFG and EXTI_FT_CFG, and write '1' to the corresponding bit of interrupt masking register EXTI_IMASK to allow interrupt requests. When a preset edge trigger polarity is detected on the external interrupt line, an interrupt request is generated and the corresponding bit is set to '1'. Writing '1' to the corresponding bit of the pending register clears the interrupt request.


To generate events, the corresponding event line must be configured and enabled. According to the desired edge detection polarity, set up the rise/fall edge trigger configuration register, while writing '1' in the corresponding bit of the event masking register to allow interrupt requests. When a preset edge occurs on an event line, an event request pulse is generated and the corresponding pending bit is not set to '1'.


In addition, interrupt/event requests can also be generated by software by writing a '1' in the software interrupt/event register.

- Hardware interrupt configuration, select and configure 14 lines as interrupt sources as required:
 - Configure the mask bit (EXTI_IMASK) for 14 interrupt lines.
 - Configure the selected interrupt line trigger configuration bits (EXTI RT CFG and EXTI FT CFG);
 - Configure the enable and mask bits of the NVIC interrupt channel corresponding to the external interrupt controller so that the requests in the 14 interrupt lines can be correctly responded to.
- Hardware event configuration: Select 13 lines as event sources as required:
 - Configure the mask bit (EXTI_EMASK) for 13 event lines.
 - Configure the trigger configuration bits for the selected event line (EXTI_RT_CFG and EXTI_FT_CFG).
- Software interrupt/event configuration, select 13 lines as software interrupt/event lines as required:
 - Configure 13 interrupt/event line mask bits (EXTI_IMASK and EXTI_EMASK).
 - Configure the request bit of the software interrupt event register (EXTI_SWIE).

6.2.4 EXTI line mapping

To configure external interrupts/events on the GPIO line using AFIO_EXTI_CFG1~2, the AFIO clock must be enabled first. Universal I/O ports are connected to 8 external interrupt/event lines as shown above. The connection mode of the other 6 EXTI lines is as follows:

- EXTI line 8 is connected to the RTC alarm wake up event
- EXTI line 9 is connected to the RTC wake up event
- EXTI line 10 is connected to the LPUART wake up event

- EXTI line 12 is connected to the RESET wake up event, only rising edge triggering is supported
- EXTI line 13 is connected to the KEYSCAN wake up event

99 / 447

6.3 EXTI Registers

EXTI base address: 0x40010400

6.3.1 EXTI register overview

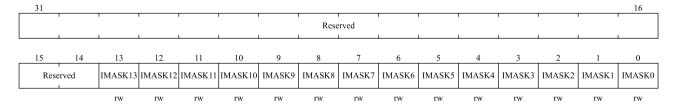

			r –	1	1	1	r				- T		1	1			1			r -													
Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
000h	EXTI_IMASK									Reser	ved									IMASK13	IMASK12	IMASK11	IMASK10	IMASK9	IMASK8	IMASK7	IMASK6	IMASK5	IMASK4	IMASK3	IMASK2	IMASK1	IMASK0
	Reset Value																			0	0	0	0	0	0	0	0	0	0	0	0	0	0
004h	EXTI_EMASK									Reser	ved									EMASK13	EMASK12	EMASK11	EMASK10	EMASK9	EMASK8	EMASK7	EMASK6	EMASK5	EMASK4	EMASK3	EMASK2	EMASKI	EMASK0
	Reset Value																			0	0	0	0	0	0	0	0	0	0	0	0	0	0
008h	EXTI_RT_CFG									Reser	ved									RT_CFG13	RT_CFG12	RT_CFG11	RT_CFG10	RT_CFG9	RT_CFG8	RT_CFG7	RT_CFG6	RT_CFG5	RT_CFG4	RT_CFG3	RT_CFG2	RT_CFG1	RT_CFG0
	Reset Value																			0	0	0	0	0	0	0	0	0	0	0	0	0	0
00Ch	EXTI_FT_CFG		Reserved										FT_CFG13	FT_CFG12	FT_CFG11	FT_CFG10	FT_CFG9	FT_CFG8	FT_CFG7	FT_CFG6	FT_CFG5	FT_CFG4	FT_CFG3	FT_CFG2	FT_CFG1	FT_CFG0							
	Reset Value																			0	0	0	0	0	0	0	0	0	0	0	0	0	0
010h	EXTI_SWIE									Reser	ved									SWIE13	SWIE12	SWIE11	SWIE10	SWIE9	SWIE8	SWIE7	SWIE6	SWIE5	SWIE4	SWIE3	SWIE2	SWIE1	SWIE0
	Reset Value																			0	0	0	0	0	0	0	0	0	0	0	0	0	0
014h	EXTI_PEND									Reser	ved									PEND13	PEND12	PEND11	PEND10	PEND9	PEND8	PEND7	PEND6	PEND5	PEND4	PEND3	PEND2	PEND1	PEND0
	Reset Value																			0	0	0	0	0	0	0	0	0	0	0	0	0	0
Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
000h	EXTI_IMASK									Reser	ved								-	IMA SK1	IMA sk1	IMA ski	IMA ski	IMA sko	IMA sk8	IMA sk7	IMA ska	IMA sks	IMA SK4	IMA SK3	IMA SK2	IMA SK1	IMA

Table 6-2 EXTI Register overview

6.3.2 Interrupt mask register(EXTI_IMASK)

Address offset : 0x00

Reset value : 0x0000000

Bit field	name	describe
31:14	Reserved	Reserved, the reset value must be maintained.
13:0	IMASKx	Interrupt mask on line x.
		0: Mask the interrupt request from line x;
		1: open the interrupt request from line x

6.3.3 Event mask register(EXTI_EMASK)

Address offset : 0x04

Reset value : 0x00000000

31															16
	1	1	1	1	1		Rese	erved							
	1	1	1	I			1	I	I	1		1		1	
15	14	12	10	11	10	0	0	7	(E	4	2	2	1	0
15	14	13	12		10	9	8	/	6	2	4	3	2	1	0
Res	erved	EMASK13	EMASK12	EMASK11	EMASK10	EMASK9	EMASK8	EMASK7	EMASK6	EMASK5	EMASK4	EMASK3	EMASK2	EMASK1	EMASK0
		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

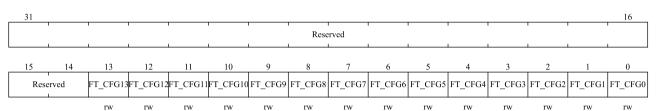
Bit field	name	describe
31:14	Reserved	Reserved, the reset value must be maintained.
13:0	EMASKx	Event masking on line x.
		0: Masking the event request from line x;
		1: open the event request from line x

6.3.4 Rising edge trigger selection register(EXTI_RT_CFG)

Address offset : 0x08

Reset value : 0x00000000

31															16
		'	I	1		I	Rese	erved	1	I	I	1	I	1	
	1	1	1	I		1	ı	ı	1	1			1	I	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	erved	RT_CFG13	RT_CFG12	RT_CFG11	RT_CFG10	RT_CFG9	RT_CFG8	RT_CFG7	RT_CFG6	RT_CFG5	RT_CFG4	RT_CFG3	RT_CFG2	RT_CFG1	RT_CFG0
		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw


Bit field	name	describe
31:14	Reserved	Reserved, the reset value must be maintained.
13:0	RT_CFGx	The rising edge trigger configuration bit.from line x
		0: Disable rising edge trigger on input line x (interrupts and events).
		1: Allow rising edge trigger on input line x (interrupts and events).

Falling edge trigger selection register(EXTI_FT_CFG) 6.3.5

Address offset : 0x0C

Reset value : 0x0000000

Bit field	name	describe
31:14	Reserved	Reserved, the reset value must be maintained.
13:0	FT_CFGx	The falling edge on line x triggers the configuration bit.
		0: Disable falling edge trigger on input line x. (interrupts and events)
		1: Allow falling edge trigger on input line x (interrupts and events)

Software interrupt enable register(EXTI_SWIE) 6.3.6

Address offset : 0x10

Reset value : 0x0000000

31															16
				I			Rese	erved	I		I	I	I		I
	1	1	1				1	1		1			1	L	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved	SWIE13	SWIE12	SWIE11	SWIE10	SWIE9	SWIE8	SWIE7	SWIE6	SWIE5	SWIE4	SWIE3	SWIE2	SWIE1	SWIE0
		rc w1	rc w1	rc w1	rc w1	rc w1	rc w1	rc w1	rc w1	rc w1	rc w1	rc w1	rc w1	rc w1	rc w1

Bit field	name	describe
31:14	Reserved	Reserved, the reset value must be maintained.
13:0	SWIEx	Software interrupt on line x
		When the bit is' 0 ', writing '1' sets the corresponding pending bit in EXTI_PEND. If
		this interrupt is allowed in EXTI_IMASK and EXTI_EMASK, an interrupt will be
		generated.
		Note: This bit can be cleared to '0' by writing '1' to clear the corresponding bit of
		EXTI_PEND.

Interrupt request pending register(EXTI_PEND) 6.3.7

Address offset : 0x14

Reset value : 0x0000000

31															16
							Rese	erved							
15	. 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved	PEND13	PEND12	PEND11	PEND10	PEND9	PEND8	PEND7	PEND6	PEND5	PEND4	PEND3	PEND2	PEND1	PEND0
		rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1

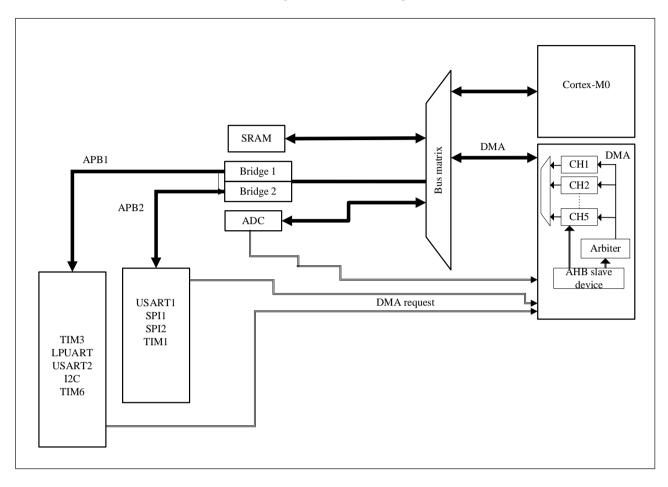
Bit field	name	describe
31:14	Reserved	Reserved, the reset value must be maintained.
13:0	PENDx	Pending bit on line x.
		0: No pending request occurred.
		1: A pending trigger request has occurred.
		This bit is set to '1' when a selected edge trigger event occurs on the external interrupt
		line. It can be cleared by writing '1' to the bit, or by changing the polarity of the edge
		detection.

7 DMA controller

7.1 Introduction

Direct memory access (DMA) is used to provide high-speed data transfers between peripheral and memory or between memory and memory. Data can be moved quickly through DMA without CPU intervention, which saves CPU resources for other operations.

DMA controller has 5 logic channels. Each logic channel is to serve memory access requests from single or multiple peripherals. Internal arbiter controls the priority of different DMA channels.


7.2 Main features

- 5 DMA channels which can be configured independently.
- Configurable data transmit number, The maximum value is 65535 bytes.
- Each channel is directly connected to a dedicated hardware DMA request with support for software triggering and configuration
- The priority among multiple requests can be set by software programming (four levels: highest, high, medium and low). When the priority setting is equal, it is determined by the hardware. The smaller the channel number, the higher the priority.
- Independent data source and transfer width (byte, halfword, fullword) of the destination data area, simulating the process of packing and unpacking. Source and destination addresses must be aligned to the data transfer width.
- Supports circular mode transfers (for handling buffers or continuous data transfers).
- Each channel has 3 independent event flags (Transfer complete, Half transfer, Transfer error), these 3 event flags generate a single interrupt request through XOR operation.
- Support two transfer types which are Memory-to-Peripheral and Peripheral-to-Memory.
- SRAM, APB1, APB2, CRC can be used as source and destination for access.

7.3 Block diagram

Figure 7-1 DMA block diagram

7.4 Function description

DMA controller and Cortex[™]-M0 core share the same system data bus, perform a direct memory data transfer When CPU and DMA access the same target (RAM or peripheral) at the same time, DMA request will suspend CPU from accessing the system bus for several cycles, and the bus arbiter will perform cyclic scheduling. This allows the CPU to get at least half of the system bus (memory or peripheral) bandwidth.

7.4.1 DMA operation

After an event occurs, the peripheral sends a request signal to the DMA controller. The DMA controller handles requests according to the channel's priority. When the DMA controller starts to access the requesting peripheral, the DMA controller immediately sends it an acknowledge signal. The peripheral immediately releases its request when it gets an acknowledgment signal from the DMA controller. Once the peripheral releases the request, the DMA

controller deactivates the acknowledge signal at the same time. The peripheral can start the next cycle if there are more requests.

Each DMA data transfer consists of three operations:

■ Data is fetched from the peripheral data register or from the memory address indicated by the current peripheral/memory address register. The starting bus matrix address for the first transfer is the peripheral base address or memory unit specified by the DMA_PADDRx or DMA_MADDRx register.

- Store data to the peripheral data register or the memory address indicated by the current peripheral/memory address register. The start address of the first transfer is the peripheral base address or memory unit specified by the DMA_PADDRx or DMA_MADDRx register.
- Perform a decrement of the DMA_TXNUMx register, which contains the number of outstanding operations.

7.4.2 Arbiter

The DMA controller has 5 channels, and each channel corresponds to DMA requests from different peripherals. Although each channel can receive multiple peripheral requests, it can only receive one at a time, and cannot receive multiple requests at the same time.

By default, the five channels have the same software priority, all of which are 0, and the smaller the hardware logical channel number, the higher the priority. The arbiter initiates peripheral/memory accesses based on the priority of channel requests. Priority management in 2 stages:

- Software: The priority of each channel can be set in DMA_CHCFGx registers, there are 4 levels:
 - Very high priority
 - ♦ High priority
 - Medium priority
 - Low priority
- Hardware: If 2 requests have the same software priority, the lower numbered lane has higher priority than the higher numbered lane. For example, channel 2 takes precedence over channel 4.

7.4.3 DMA channels

Each channel can perform DMA transfer between the peripheral register at the specified address and the memory address. The number of data transferred by DMA is programmable, and the maximum supported value is 65535. A register containing the number of data items to transfer, decremented after each transfer.

7.4.3.1 Programmable data bit width

Peripheral and memory transfer data bit width supports byte, half-word and word, which can be programmed through DMA_CHCFGx.PSIZE and DMA_CHCFGx.MSIZE.

7.4.3.2 Address pointer incrementation

Peripheral and memory pointers can optionally be auto-incremented after each transfer by setting the PINC and MINC flags in the DMA_CHCFGx registers. When set to Incremental mode, the next address to be transferred will be the previous address plus an increment value of 1, 2 or 4 depending on the selected data width. The address for the first transfer is the address stored in the DMA_PADDRx/DMA_MADDRx registers. During the transfer, these registers keep the initial value, software cannot change and read the address currently being transferred (it is in the internal current peripheral/memory address register).

When the channel is configured in acyclic mode, no DMA operations will occur after the transfer ends (the transfer count becomes 0). To start a new DMA transfer, the transfer number needs to be rewritten in the DMA_TXNUMx register with the DMA channel turned off.

In cyclic mode, at the end of the last transfer, the content of the DMA_TXNUMx register will be automatically reloaded to its initial value, and the internal current peripheral/memory address register will also be reloaded to the initial base address set by the DMA_PADDRx/DMA_MADDRx register.

7.4.3.3 Channel configuration procedure

The following is the process of configuring DMA channel x (x represents the channel number) :

- 1. Set the address of the peripheral register in the DMA_PADDRx register. When a peripheral data transfer request occurs, this address will be the source or destination of the data transfer.
- 2. Set the address of the data memory in the DMA_MADDRx registers. When a peripheral data transfer request occurs, the transferred data will be read from or written to this address.
- 3. Set the amount of data to transfer in the DMA_TXNUMx registers. After each data transfer, this value is decremented.
- 4. Set the priority of the channel in the PRIOLVL[1:0] bits of the DMA_CHCFGx register.
- 5. Set the direction of data transfer, cycle mode, incremental mode of peripherals and memory, data width of peripherals and memory, half-transfer interrupt or transfer complete interrupt in the DMA CHCFGx register.
- 6. Set the CHEN bit of the DMA_CHCFGx register to enable the channel.

Once a DMA channel is enabled, it can respond to DMA requests from peripherals connected to the channel

When half of the data is transferred, the half-transfer flag (HTXF) is set to 1, and an interrupt request will be generated when the half-transfer interrupt bit (HTXIE) is enabled. After the data transfer is completed, the transfer complete flag (TXCF) is set to 1, and when the transfer complete interrupt bit (TXCIE) is enabled, an interrupt request will be generated.

7.4.3.4 Circular mode

The circular mode is used to process circular buffers and continuous data transmission (such as ADC scan mode). The DMA_CHCFGx.CIRC is used to enable this function. When the cyclic mode is activated, if the number of data

107 / 447

to be transferred becomes 0, it will automatically be restored to the initial value when configuring the channel, and the DMA operation will continue.

If the user wants to turn off the circular mode, the user needs to write 0 to DMA_CHCFGx.CHEN to disable the DMA channel, and then write 0 to DMA_CHCFGx.CIRC (when DMA_CHCFGx.CHEN is 1, other bits in the DMA_CHCFGx register cannot be rewritten).

7.4.3.5 Memory-to-memory mode

The operation of the DMA channel can proceed without peripheral request, this operation is memory-to-memory mode.

After the MEM2MEM bit in the DMA_CHCFGx register is set, the DMA transfer will start as soon as the software starts the DMA channel by setting the CHEN bit in the DMA_CHCFGx register. The DMA transfer ends when the DMA_TXNUMx registers go to 0. Memory-to-memory mode cannot be used concurrently with cycle mode.

7.4.4 Programmable data transfer width, alignment, and data endianness

When DMA_CHCFGx.PSIZE and DMA_CHCFGx.MSIZE are different, the DMA module aligns the data according to the below.

Source width (bit)		Number of transfer (bit)	Source: Address / data	Transfer operations (R: Read, W: Write)	Destination: Address / data
8	8	4		1: R B0 [7:0] @0x0, W B0 [7:0] @0x0 2: R B1 [7:0] @0x1, W B1 [7:0] @0x1 3: R B2 [7:0] @0x2, W B2 [7:0] @0x2	0x0 / B0 0x1 / B1 0x2 / B2
8	16	4	0x0 / B0 0x1 / B1 0x2 / B2	4: R B3 [7:0] @0x3, W B3 [7:0] @0x3 1: R B0 [7:0] @0x0, W 00B0 [15:0] @0x0 2: R B1 [7:0] @0x1, W 00B1 [15:0] @0x2 3: R B2 [7:0] @0x2, W 00B2 [15:0] @0x4 4: R B3 [7:0] @0x3, W 00B3 [15:0] @0x6	0x3 / B3 0x0 / 00B0 0x2 / 00B1 0x4 / 00B2 0x6 / 00B3
8	32	4	0x0 / B0 0x1 / B1 0x2 / B2	1: R B0 [7:0] @0x0, W 000000B0 [31:0] @0x0 2: R B1 [7:0] @0x1, W 000000B1 [31:0] @0x4 3: R B2 [7:0] @0x2, W 000000B2 [31:0] @0x8 4: R B3 [7:0] @0x3, W 000000B3 [31:0] @0xC	0x0 / 000000B0 0x4 / 000000B1 0x8 / 000000B2 0xC / 000000B3
16	8	4	0x2 / B3B2 0x4 / B5B4	1: R B1B0 [15:0] @0x0, W B0 [7:0] @0x0 2: R B3B2 [15:0] @0x2, W B2 [7:0] @0x1 3: R B5B4 [15:0] @0x4, W B4 [7:0] @0x2 4: R B7B6 [15:0] @0x6, W B6 [7:0] @0x3	0x0 / B0 0x1 / B2 0x2 / B4 0x3 / B6

Table 7-1 Programmable data width and endian operation (when PINC = MINC = 1)

Source width (bit)	Destina- tion width (bit)	Number of transfer (bit)	Source: Address / data	Transfer operations (R: Read, W: Write)	Destination: Address / data
16	16	4	0x2 / B3B2 0x4 / B5B4	1: R B1B0 [15:0] @0x0, W B1B0 [15:0] @0x0 2: R B3B2 [15:0] @0x2, W B3B2 [15:0] @0x2 3: R B5B4 [15:0] @0x4, W B5B4 [15:0] @0x4 4: R B7B6 [15:0] @0x6, W B7B6 [15:0] @0x6	0x0 / B1B0 0x2 / B3B2 0x4 / B5B4 0x6 / B7B6
16	32	4	0x2 / B3B2 0x4 / B5B4	1: R B1B0 [15:0] @0x0, W 0000B1B0 [31:0] @0x0 2: R B3B2 [15:0] @0x2, W 0000B3B2 [31:0] @0x4 3: R B5B4 [15:0] @0x4, W 0000B5B4 [31:0] @0x8 4: R B7B6 [15:0] @0x6, W 0000B7B6 [31:0] @0xC	0x0 / 0000B1B0 0x4 / 0000B3B2 0x8 / 0000B5B4 0xC / 0000B7B6
32	8	4	0x4 / B7B6B5B4 0x8 / BBBAB9B8	1: R B3B2B1B0 [31:0] @0x0, W B0 [7:0] @0x0 2: R B7B6B5B4 [31:0] @0x4, W B4 [7:0] @0x1 3: R BBBAB9B8 [31:0] @0x8, W B8 [7:0] @0x2 4: R BFBEBDBC [31:0] @0xC, W BC [7:0] @0x3	0x0 / B0 0x1 / B4 0x2 / B8 0x3 / BC
32	16	4	0x4 / B7B6B5B4 0x8 / BBBAB9B8	1: R B3B2B1B0 [31:0] @0x0, W B1B0 [15:0] @0x0 2: R B7B6B5B4 [31:0] @0x4, W B5B4 [15:0] @0x2 3: R BBBAB9B8 [31:0] @0x8, W B9B8 [15:0] @0x4 4: R BFBEBDBC [31:0] @0xC, W BDBC [15:0] @0x6	0x0 / B1B0 0x2 / B5B4 0x4 / B9B8 0x6 / BDBC
32	32	4	0x4 / B7B6B5B4 0x8 / BBBAB9B8	1: R B3B2B1B0 [31:0] @0x0, W B3B2B1B0 [31:0] @0x0 2: R B7B6B5B4 [31:0] @0x4, W B7B6B5B4 [31:0] @0x4 3: R BBBAB9B8 [31:0] @0x8, W BBBAB9B8 [31:0] @0x8 4: R BFBEBDBC [31:0] @0xC, W BFBEBDBC [31:0] @0xC	0x0 / B3B2B1B0 0x4 / B7B6B5B4 0x8 / BBBAB9B8 0xC / BFBEBDBC

7.4.4.1 Operate an AHB device that does not support byte or halfword write

When the DMA module starts an AHB byte or halfword write operation, the data will be repeated in the unused portion of the HWDATA[31:0] bus. Therefore, if DMA writes in bytes or halfwords to an AHB device that does not support byte or halfword write operations (that is, HSIZE is not suitable for this module), no error will occur, and the DMA will write 32 bits as per the following two examples HWDATA data:

- When HSIZE=halfword, write halfword '0xABCD', DMA will set HWDATA bus to '0xABCDABCD'.
- When HSIZE=byte, write byte '0xAB', DMA will set HWDATA bus to '0xABABABAB.

Assuming that the AHB/APB bridge is an AHB 32-bit slave device, which does not handle the HSIZE parameter, it will transfer any byte or halfword on the AHB to the APB in 32 bits as follows:

- A write operation of byte data '0xB0' to address 0x0 (or 0x1, 0x2 or 0x3) on AHB will be converted to a write operation of word data '0xB0B0B0B0' to address 0x0 on APB.
- A write operation of half-word data '0xB1B0' to address 0x0 (or 0x2) on AHB will be converted to a write operation of word data '0xB1B0B1B0' to address 0x0 on APB.

For example, if you want to write to the APB backing register (16-bit register aligned with 32-bit address), you need

to configure the memory data source width (MSIZE) as '16-bit' and the peripheral target data width (PSIZE) as '32bit'

7.4.5 Error management

DMA access to a reserved address area will cause DMA transmission errors. When an error occurs, the hardware will automatically clear the EN bit of the channel configuration register (DMA_CHCFGx) corresponding to the error channel, and the channel operation is stopped. At this time, the transmission error interrupt flag (TEIF) corresponding to the channel in the DMA_IFR register will be set. If the transfer error interrupt enable bit is set in the DMA_CHCFGx register, an interrupt will be generated.

7.4.6 Interrupt

Each DMA channel can generate interrupts on DMA transfer halfway, transfer complete, and transfer errors. For application flexibility, these interrupts are enabled by setting different bits of the register.

Interrupt event	Event flag bit	Enable control bit
Half transfer	HTXF	HTXIE
Transfer complete	TXCF	TXCIE
Transfer error	ERRF	ERRIE

Table 7-2 DMA interrupt request

7.4.7 DMA request mapping

Totally there are 28 DMA requests from all the peripherals, available from peripherals (TIMx[x=1, 3, 6], ADC, SPI1/I2S1, SPI2/I2S2, I2C, LPUART and USART).

The DMA controller has 5 independent channels, and each channel is configurable to the request of the peripheral, implemented by configuring the DMA channel x channel select register.

When a channel CH_CHSEL[4:0]=NUM, the channel selects the peripheral request corresponding to Ch [NUM]

The following table shows the input request channels corresponding to the peripherals:

Table 7-3 Overview of DMA requests for each channel

DMAC Request channel	Peripheral DMA request
Ch0	Adc_dma
Ch1	reserved
Ch2	Usart1_tx
Ch3	Usart1_rx
Ch4	Lpuart_tx
Ch5	Lpuart_rx
Ch6	Usart2_tx
Ch7	Usart2_rx
Ch8	Spi1_tx

Ch9	Spi1_rx
Ch10	Spi2_tx
Ch11	Spi2_rx
Ch12	I2c_tx
Ch13	I2c_rx
Ch14	Tim1_ch1
Ch15	Tim1_ch2
Ch16	Tim1_ch3
Ch17	Tim1_ch4
Ch18	Tim1_com
Ch19	Tim1_up
Ch20	Tim1_trig
Ch21	Tim3_ch1
Ch22	Tim3_ch3
Ch23	Tim3_ch4
Ch24	Tim3_up
Ch25	Tim3_trig
Ch26	Tim6
Ch27	reserved

7.5 DMA registers

7.5.1 DMA register overview

Table 7-4 DMA Register overview

Offset	Register	31 30 229 228 225 225 225 222 222 222 222 222 222	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
000h	DMA_INTSTS	Reserved	ERRF5	HTXF5	TXCF5	GLBF5	ERRF4	HTXF4	TXCF4	GLBF4	ERRF3	HTXF3	TXCF3	GLBF3	ERRF2	HTXF2	TXCF2	GLBF2	ERRF1	HTXF1	TXCF1	GLBF1
	Reset Value		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
004h	DMA_INTCLR	Reserved	CERRF5	CHTXF5	CTXCF5	CGLBF5	CERRF4	CHTXF4	CTXCF4	CGLBF4	CERRF3	CHTXF3	CTXCF3	CGLBF3	CERRF2	CHTXF2	CTXCF2	CGLBF2	CERRF1	CHTXF1	CTXCF1	CGLBF1
	Reset Value		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
008h	DMA_CHCFG1	Reserved	·		MEM2MEM	PRIOLVL[1:	[0	IO-DEZEM	[0.1]212161M	to. marian	נט:וןפטופא	MINC	PINC	CIRC	DIR	ERRIE	HTXIE	TXCIE	CHEN			
	Reset Value							0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00Ch	DMA_TXNUM1	Decement								N	DTX	[15:0]									
oocn	Reset Value	Reserved					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
010h	DMA_PADDR1				Α	DDR	[31:0)]														
01011	Reset Value	0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
014h	DMA_MADDR1				Α	DDR	[31:0)]														
0141	Reset Value	0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
018h	DMA_CHSEL1		Rese	erved														C	H_SE	EL[4:0)]	
01011	Reset Value		neos													_	0	0	0	0	0	0
01Ch	DMA_CHCFG2	Reserved						MEM2MEM	PRIOLVL[1:	[0	IO-LIEZISIN		tv-1342134	וט:ו שבוכיו	MINC	PINC	CIRC	DIR	ERRIE	HTXIE	TXCIE	CHEN
	Reset Value							0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
020h	DMA_TXNUM2	Reserved											N	DTX	[15:0]						
020h	Reset Value	reserved							0	0	0	0	0	0	0	0	0	0	0	0	0	0
024h	DMA_PADDR2	ADDR[31:0]																				

Offset	Register	31	30	29	2	28	27	26	25	24	33	5 5	5	17	3	19	18	17	16	15	14	13	12	Ξ	10	6	×		9	5	4	3	2		0
Oliset	Reset Value	0	0		_	0	0	0	0	0	0	-	(_	_	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	DMA MADDR2	0		, 0		0	0	0	Ū	Ŭ	0			<u> </u>	,	0	0			R[31:		v	Ū	Ū	Ŭ	0	0	v	v	0	Ŭ	Ŭ	Ū	0	0
028h	Reset Value	0	0) 0		0	0	0	0	0	0	0 0	() ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02Ch	DMA CHSEL2	0			-		0	0	Ŭ				-	<u> </u>	-	<u> </u>		<u> </u>	Ŭ		, °	, °	Ŭ	Ŭ	Ŭ		Ŭ	, °	Ŭ				EL[4:0		0
0201	Reset Value														F	Reser	rved													0	0	0	0	0	0
	reset value																				Σ			:	_	1	-	Г		Ŭ	Ŭ	Ŭ	Ŭ		0
030h	DMA_CHCFG3									R	lese	rved									MEM2MEM	PRIOLVL[1:	0		MSIZE[1:0]		PSIZE[1:0]	MINC	PINC	CIRC	DIR	ERRIE	HTXIE	TXCIE	CHEN
	Reset Value																				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02.41	DMA_TXNUM3									D		. 1														1	NDTX	X[15:0)]						
034h	Reset Value									Rese	erve	ed								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0201	DMA_PADDR3																	Α	DDI	R[31:	[[
038h	Reset Value	0	0) 0		0	0	0	0	0	0	0 0	() ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0201	DMA_MADDR3																	Α	DDI	R[31:	D]														
03Ch	Reset Value	0	0) 0		0	0	0	0	0	0	0	() ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.401	DMA_CHSEL3																														C	H_SE	EL[4:0)]	
040h	Reset Value														ŀ	Reser	rved													0	0	0	0	0	0
044h	DMA_CHCFG4									R	lese	rved									MEM2MEM	PRIOLVL[1:	[0		MSIZE[1:0]		PSIZE[1:0]	MINC	PINC	CIRC	DIR	ERRIE	HTXIE	TXCIE	CHEN
	Reset Value																				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.401	DMA_TXNUM4									n																1	NDTX	X[15:0)]						
048h	Reset Value									Rese	erve	ed								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0401	DMA_PADDR4																	Α	DDI	R[31:	D]														
04Ch	Reset Value	0	0) 0		0	0	0	0	0	0	0	() ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.501	DMA_MADDR4																	Α	DDI	R[31:	D]														
050h	Reset Value	0	0) 0		0	0	0	0	0	0	0	() ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05.41	DMA_CHSEL4			Ċ												、 、													-		C	H_SE	EL[4:0)]	
054h	Reset Value														r	Reser	rvea													0	0	0	0	0	0
058h	DMA_CHCFG5									R	lese	rved									MEM2MEM	PRIOLVL[1:	[0		MSIZE[1:0]		PSIZE[1:0]	MINC	PINC	CIRC	DIR	ERRIE	HTXIE	TXCIE	CHEN
	Reset Value																				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05Ch	DMA_TXNUM5									Rese		ad														1	NDTX	K[15:0)]						
05Ch	Reset Value									Rese	erve	ed								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
060h	DMA_PADDR5																			R[31:	-														
0001	Reset Value	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0												
064h	DMA_MADDR5																	A	DDI	R[31:	0]														
00411	Reset Value	0	0) 0	T	0	0	0	0	0	0	0	() ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
068h	DMA_CHSEL5														F	Reser	rved														C	H_SE	EL[4:0)]	

7.5.2 DMA interrupt status register (DMA_INTSTS)

Address offset: 0x00

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	1	1		Res	erved			1	1		ERRF5	HTXF5	TXCF5	GLBF5
r 15	r 14	r 13	r 12	r 11	r 10	r 9	r 8	r 7	г 6	r 5	r 4	r 3	r 2	r 1	r 0
ERRF4	HTXF4	TXCF4	GLBF4	ERRF3	HTXF3	TXCF3	GLBF3	ERRF2	HTXF2	TXCF2	GLBF2	ERRF1	HTXF1	TXCF1	GLBF1
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bit field	Name	Description
19/15/11/7/3	ERRFx	Transfer error flag for channel x ($x=15$).
		Set by hardware, software writes DMA_INTCLR corresponding bit to 1 to clear.
		0: Transfer error no happened on channel x.
		1: Transfer error happened on channel x.
18/14/10/6/2	HTXFx	Half transfer flag for channel x (x=15).

Bit field	Name	Description
		Set by hardware, software writes DMA_INTCLR corresponding bit to 1 to clear.
		0: Half transfer not yet done on channel x.
		1: Half transfer was done on channel x.
17/13/9/5/1	TXCFx	Transfer complete flag for channel x ($x=15$).
		Set by hardware, software writes DMA_INTCLR corresponding bit to 1 to clear.
		0: Transfer not yet done on channel x.
		1: Transfer was done on channel x.
16/12/8/4/0	GLBFx	Global flag for channel x ($x=15$).
		Set by hardware, software writes DMA_INTCLR corresponding bit to 1 to clear.
		0: No transfer error, half transfer or transfer done event happen on channel x.
		1: One of transfer error, half transfer or transfer done event happen on channel x.

7.5.3 DMA interrupt flag clear register (DMA_INTCLR)

Address offset: 0x04

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese	rved						CERRF5	CHTXF5	CTXCF5	CGLBF5
rw 15	rw 14	rw 13	rw 12	rw 11	rw 10	rw 9	rw 8	rw 7	rw 6	rw 5	rw 4	rw 3	rw 2	rw 1	rw 0
CERRF4	CHTXF4	CTXCF4	CGLBF4	CERRF3	CHTXF3	CTXCF3	CGLBF3	CERRF2	CHTXF2	CTXCF2	CGLBF2	CERRF1	CHTXF1	CTXCF1	CGLBF1
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit field	Name	Description
19/15/11/7/3	CERRFx	Clear transfer error flag for channel x ($x=15$).
		Software can set this bit to clear ERRF of corresponding channel.
		0: No action.
		1: Reset DMA_INTSTS.ERRF bit of corresponding channel.
18/14/10/6/2	CHTXFx	Clear half transfer flag for channel x ($x=15$).
		Software can set this bit to clear HTXF of corresponding channel.
		0: No action.
		1: Reset DMA_INTSTS.HTXF bit of corresponding channel.
17/13/9/5/1	CTXCFx	Clear transfer complete flag for channel x ($x=15$).
		Software can set this bit to clear TXCF of corresponding channel.
		0: No action.
		1: Reset DMA_INTSTS.TXCF bit of corresponding channel.
16/12/8/4/0	CGLBFx	Clear global event flag for channel x ($x=15$).
		Software can set this bit to clear GLBF of corresponding channel.
		0: No action.
		1: Reset GLBFx,TXCFx,HTXFx,ERRFx bit of DMA_INTSTS.register

7.5.4 DMA channel x configuration register (DMA_CHCFGx)

Note: The x is channel number, x = 1...5

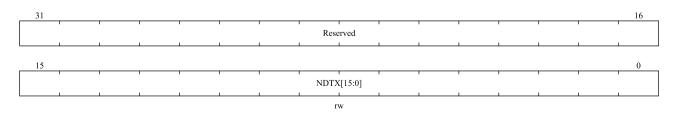
Address offset: 0x08+20 * (x-1)

Reset value: 0x0000 0000

31															16
					1		Rese	erved				1		1	
15	14	13	12	11	10	10 9		7	6	5	4	3	2	1	0
Reserved	MEM2 MEM	PRIOL	VL[1:0]	MSIZ	E[1:0]	PSIZI	PSIZE[1:0]		PINC	CIRC	DIR	ERRIE	HTXIE	TXCIE	CHEN
	rw	rv	w	r	w	r	w	rw	rw	rw	rw	rw	rw	rw	rw

Bit field	Name	Description
31:15	Reserved	Reserved, the reset value must be maintained.
14	MEM2MEM	Memory to memory mode.
		Software can enable/disable memory-to-memory mode.
		0: Non-memory-to-memory mode.
		1: Memory-to-memory mode.
13:12	PRIOLVL[1:0]	Channel priority.
		Software can configure channel priority.
		00: Low
		01: Medium
		10: High
		11: Very high
11:10	MSIZE[1:0]	Memory data size.
		Software can configure data size read/write from/to memory address.
		00: 8-bits
		01: 16-bits
		10: 32-bits
		11: Reserved
9:8	PSIZE[1:0]	Peripheral data size.
		Software can configure data size read/write from/to peripheral address.
		00: 8-bits
		01: 16-bits
		10: 32-bits
		11: Reserved
7	MINC	Memory increment mode.
		Software can enable/disable memory address increment mode.
		0: Memory address won't increase with each transfer.
		1: Memory address increase with each transfer.
6	PINC	Peripheral increment mode.

Bit field	Name	Description
		Software can enable/disable peripheral address increment mode.
		0: Peripheral address won't increase with each transfer.
		1: Peripheral address increase with each transfer.
5	CIRC	Circular mode.
		Software can set/clear this bit.
		0: Channel will stop after one round of transfer.
		1: Channel configure as circular mode.
4	DIR	Data transfer direction
		Software can set/clear this bit.
		0: Data transfer from Peripheral to Memory
		1: Data transfer from Memory to Peripheral.
3	ERRIE	Transfer error interrupt enable.
		Software can enable/disable transfer error interrupt.
		0: Disable transfer error interrupt of channel x.
		1: Enable transfer error interrupt of channel x.
2	HTXIE	Half transfer interrupt enable.
		Software can enable/disable half transfer interrupt.
		0: Disable half transfer interrupt of channel x.
		1: Enable half transfer interrupt of channel x.
1	TXCIE	Transfer complete interrupt enable.
		Software can enable/disable transfer complete interrupt.
		0: Disable transfer complete interrupt of channel x.
		1: Enable transfer complete interrupt of channel x.
0	CHEN	Channel enable.
		Software can set/reset this bit.
		0: Disable channel.
		1: Enable channel.


7.5.5 DMA channel x transfer number register (DMA_TXNUMx)

Note: The x is channel number, x = 1...5

Address offset: 0x0C+20 * (x-1)

Reset value: 0x0000 0000

This register cannot be written when the channel is enabled (CHEN=1 of DMA_CHCFGx).

Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained.
15:0	NDTX	Number of data to transfer.
		The value ranges from 0 to 65535. This register can only be written when the channel
		is disabled. This register becomes read-only after the channel is turned on and
		indicates the number of bytes remaining to be transferred. The register contents are
		decremented after each DMA transfer. After the data transfer is completed, the
		contents of the register will be automatically reloaded to the initial setting value.
		When the content of the register is 0, no data transfer will occur regardless of whether
		the channel is open or not.

7.5.6 DMA channel x peripheral address register (DMA_PADDRx)

Note: The x is channel number, x = 1...5

Address offset: 0x10+20 * (x-1)

Reset value: 0x0000 0000

This register can only be written if the channel is disabled ($DMA_CHCFGx.CHEN = 0$). In cycle mode, at the end of the last transfer, the internal current peripheral address register is also reloaded to the initial base address set by the DMA_PADDRx register

31															16
		1		1			ADDF	2[31·0]				I	1		
	ADDR[31:0]														
	TW														
15	.5												0		
		1		1	1			R[31:0]				1	1		
				1			ADDr	(51.0] I				ı	ı		

Bit field	Name	Description
31:0	ADDR	Peripheral address.
		If DMA_CHCFGx.PSIZE equal to 01(16 bits), DMA ignores bit 0 of
		ADDR.Operations are automatically aligned to halfword addresses.
		If DMA_CHCFGx.PSIZE equal to 10(32 bits) DMA will ignore bit [1:0] of
		ADDR.Operations are automatically aligned to word addresses.

7.5.7 DMA channel x memory address register (DMA_MADDRx)

Note: The x is channel number, x = 1...5

Address offset: 0x14+20 * (x-1)

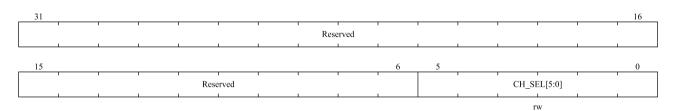
Reset value: 0x0000 0000

This register can only be written if the channel is disabled ($DMA_CHCFGx.CHEN = 0$). In cycle mode, when the last transfer ends, the internal current memory address register is also reloaded to the initial base address set by the DMA_MADDRx register.

31															16
		I	1	I		I 1	ADDR	' R[31:0]	I	I					
	ı														
	rw														
15												0			
	1				1		ADDR	R[31:0]							
	•														

rw

Bit field	Name	Description
31:0	ADDR	ADDR Memory address. The source or destination address of the data transfer.
		If DMA_CHCFGx.MSIZE equal to 01(16 bits), DMA ignores bit 0 of ADDR
		Operations are automatically aligned to halfword addresses.
		If DMA_CHCFGx.MSIZE equal to 10(32bits) DMA will ignore bit [1:0] of
		ADDR.Operations are automatically aligned to word addresses.


7.5.8 DMA channel x channel request select register (DMA_CHSELx)

Note: The x is channel number, x = 1...5

Address offset: 0x18+20 * (x-1)

Reset value: 0x0000 0000

This register is used to manage the DMA channel mapped by the DMA peripheral request.

Bit field	Name	Description
31:6	Reserved	Reserved, the reset value must be maintained.
5:0	CH_SEL[4:0]	DMA channel request selection
		0: dma_req0
		27: dma_req27
		For the mapping of peripheral DMA requests to DMA input request channel numbers,
		please refer to <u>Table7-3</u>

8 CRC calculation unit

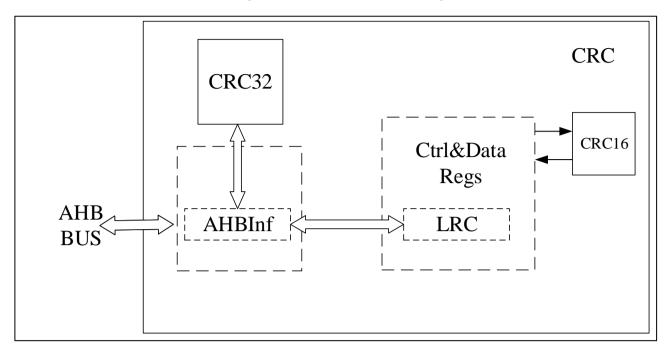
8.1 CRC introduction

This module integrates the functions of CRC32 and CRC16, and the cyclic redundancy check (CRC) calculation unit obtains any CRC calculation result according to a fixed generator polynomial. In other applications, CRC technology is mainly used to verify the correctness and integrity of data transmission or data storage. EN/IEC 60335-1 provides a method to verify the integrity of flash memory. CRC calculation unit can calculate the identifier of the software when the program is running, then compare it with the reference identifier generated during connection, and then store it in the specified memory space.

8.2 CRC main features

8.2.1 CRC32 module

- $CRC32(X^{32}+X^{26}+X^{23}+X^{22}+X^{16}+X^{12}+X^{11}+X^{10}+X^8+X^7+X^5+X^4+X^2+X^{+1})$
- 32 bits of data to be checked and 32 bits of output check code.
- CRC calculation time: 4 AHB clock cycles (HCLK)
- General-purpose 8-bit register (can be used to store temporary data)


8.2.2 CRC16 module

- CRC16($X^{16}+X^{15}+X^{2}+1$)
- There are 8 bits of data to be checked and 16 bits of output check code.
- CRC calculation time: 4 AHB clock cycle (HCLK)
- The verification initial value can be configured, and the size end of the data to be verified can be configured.
- Support 8bit LRC check value generation

The following figure is the block diagram of CRC unit.

Figure 8-1 CRC calculation unit block diagram

8.3 CRC function description

8.3.1 CRC32

CRC alculation unit contains one 32-bit data register:

- Writing this register to input CRC data.
- Reading this register to get the calculated CRC result.

Every writing operation of this data register triggers the calculation of this new data with the previous calculation result (CRC calculation is performed on the whole 32-bit word rather than byte by byte).

Supports back-to-back writes or sequential write-read operations.

CRC_CRC32DAT can be re-initialized to 0xFFFFFFF by setting CRC_CRC32CTRL.RESET. This operation does not affect the data in register CRC_CRC32IDAT.

8.3.2 CRC16

CRC_CRC16CTRL.ENDHL controls little endian or big endian.

To clear the result of the last CRC operation, set CRC_CRC16CTRL.CLR to 1 or CRC_CRC16D to 0.

The initial value of CRC calculation can be configured by writing the CRC_CRC16D register. By default, the initial value is the result of the last calculation.

LRC calculation is the same as CRC calculation. Both are carried out at the same time. CRC or LRC can be read out depending on needs. If the initial value needs to be set, the LRC register should be configured first.

8.4 CRC registers

8.4.1 CRC register overview

The following table lists the registers and reset values of CRC.

Table 8-1 CRC register overview

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	~	7	9	5	4	3	2	1	0
0.001	CRC32DAT						,		,						,	CR	C32D	AT[3	1:0]		,	,	,		,	,	,				,		
000h	Reset Value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
00.41	CRC32IDAT												D															CR	C32II	DAT[7:0]		
004h	Reset Value		Reserved 0 0 0 0 0 0 0 0														0	0	0														
008h	CRC32CTRL		Reserved																RESET														
	Reset Value																			0													
00Ch	CRC16CTRL		Reserved														CLR	ENDHL	Reserved														
	Reset Value																																Re
010h	CRC16DAT												D															CF	RC16I	DAT[7	7:0]		
010h	Reset Value												Res	erved												0	0	0	0	0	0	0	0
014h	CRC16D								Rese															С	RC16	D[15	:0]						
014n	Reset Value								Rese	rved								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0191	LRC	LRCDAT[7:0]																															
018h	Reset Value		Reserved 0 0 0 0 0 0 0 0												0	0																	

8.4.2 CRC32 data register (CRC_CRC32DAT)

Address offset: 0x00

Reset value: 0xFFFF FFFF

31													16
						CRC32D	AT[31:0]						
			1	1		r	w	L		1	1	1	
15					 								0
		1	1		1	CRC32D	AT[31:0]		1			1	
	•		•			rv	w						

Bit field	Name	Description
31:0	CRC32DAT[31:0]	CRC32 Data register.
		The written data is the CRC value to be checked. The read data is the CRC calculation result. Only 32-
		bit operations are supported.

8.4.3 CRC32 independent data register (CRC_CRC32IDAT)

Address offset: 0x04

Reset value: 0x0000 0000

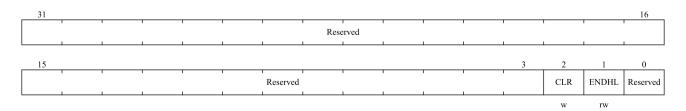
31													 16
'	I	I			I	Rese	erved	I	I	I	I	I	
L	1					1			I	1		1	
15					 	8	7						 0
			Rese	rved		1		1	1	CRC32I	DAT[7:0]		
										r	w		

Bit field	Name	Description
31:8	Reserved	Reserved, the reset value must be maintained
7:0	CRC32IDAT[7:0]	Independent 8-bit data register.
		General 8 bits data register. It is for temporary stored 1-byte data. CRC_ CRC32CTRL.RESET bit reset
		signal will not impact this register.

Note: This register is not a part of CRC calculation and can be used to store any data.

8.4.4 CRC32 control register (CRC_CRC32CTRL)

Address offset: 0x08

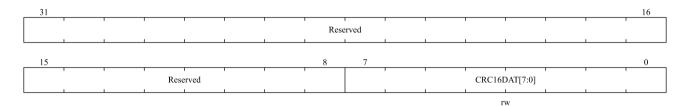

Reset value: 0x0000 0000

31							 			16
					Rese	rved				
15				 				 	 1	0
	1	1	1							1 1
					Reserved					RESET

Bit field	Name	Description
31:1	Reserved	Reserved, the reset value must be maintained
0	RESET	RESET signal.
		It can reset CRC32 module and set data register to be 0xFFFF_FFFF. This reset can only write 1, and
		hardware will clear to 0 automatically.

8.4.5 CRC16 control register (CRC_CRC16CTRL)

Address offset: 0x0C

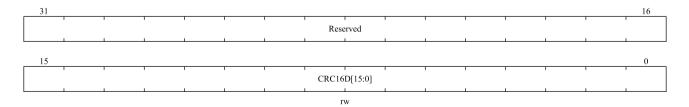

Bit field	Name	Description
31:3	Reserved	Reserved, the reset value must be maintained
2	CLR	Clear CRC16 results.
		0: Not clear.
		1: Clear to default value 0x0000. Set this bit to 1 will only maintain 1 clock cycle, hardware will
		clear automatically. (Software read always 0).
1	ENDHL	Data to be verified start to calculate from MSB or LSB.
		0: From MSB to LSB
		1: From LSB to MSB
		This bit is only for data to be verified.
0	Reserved	Reserved, the reset value must be maintained

Note: 8-bits, 16-bits and 32-bits operations are supported.

8.4.6 CRC16 input data register (CRC_CRC16DAT)

Address offset: 0x10

Reset value: 0x0000 0000

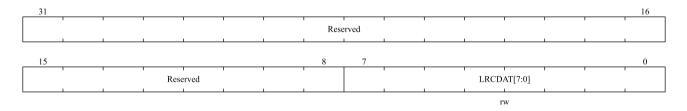


Bit field	Name	Description
31:8	Reserved	Reserved, the reset value must be maintained
7:0	CRC16DAT[7:0]	Data to be verified.

Note: 8-bits, 16-bits and 32-bits operations are supported.

8.4.7 CRC cyclic redundancy check code register (CRC_CRC16D)

Address offset: 0x14



Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained
15:0	CRC16D[15:0]	16-bit value of cyclic redundancy result data.
		Every time the software writes the CRC16DAT register, the 16-bit calculated data from
		CRC16 is updated in this register.

Note: 8-bits, 16-bits and 32-bits operations are supported (8-bit operations must be performed twice in a row to ensure that 16-bit initial values are configured properly)

8.4.8 LRC result register (CRC_LRC)

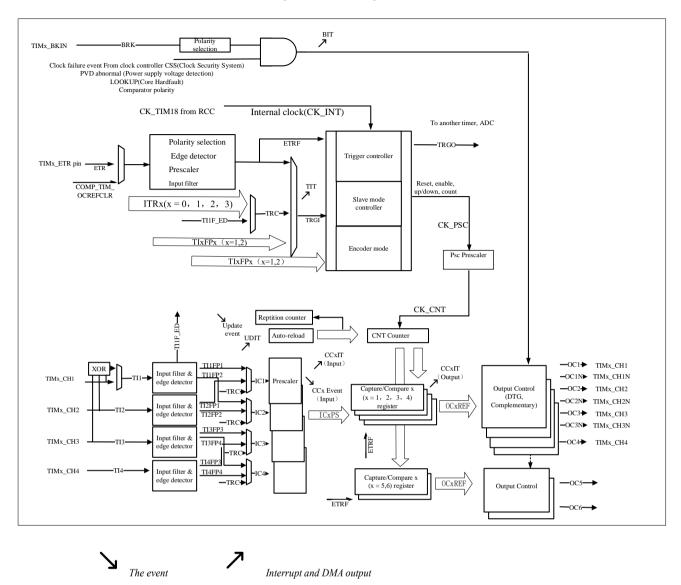
Address offset: 0x18

Bit field	Name	Description
31:8	Reserved	Reserved, the reset value must be maintained
7:0	LRCDAT[7:0]	LRC check value register.
		Software need to write initial value before use. And then each writing data to CRCDR will be
		XOR with LCR register value. The result will be stored in LRC. Software read the result. It
		should be cleared before next use.

9 Advanced-control timers (TIM1)

9.1 TIM1 introduction


The advanced control timers (TIM1) is mainly used in the following occasions: counting the input signal, measuring the pulse width of the input signal and generating the output waveform, etc.


Advanced timers have complementary output function with dead-time insertion and break function. Suitable for motor control.

9.2 Main features of TIM1

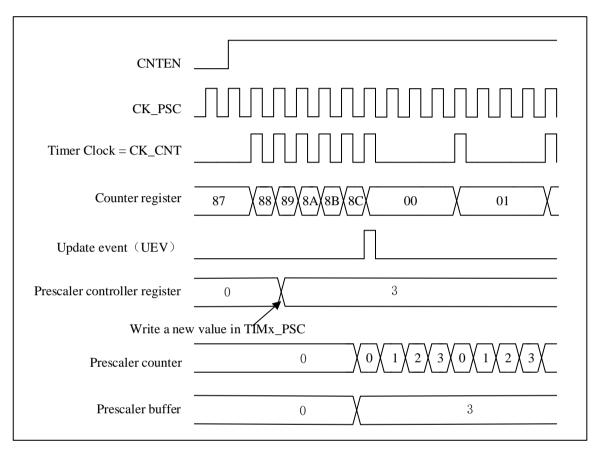
- 16-bit auto-reload counters. (It can realize up-counting, down-counting, up/down counting)
- 16-bit programmable prescaler. (The frequency division factor can be configured with any value between 1 and 65536)
- Programmable Repetition Counter
- TIM1 up to 6 channels.
- 4 capture/compare channels, the working modes are PWM output, ouput compare, one-pulse mode output, input capture.
- The events that generate the interrupt/DMA are as follows:
 - Update event
 - Trigger event
 - Input capture
 - Output compare
 - Break input
- Complementary outputs with adjustable dead-time
 - For TIM1, channel 1,2,3 support this feature
- Timer can be controlled by external signal
- Incremental (quadrature) encoder interface: used for tracking motion and resolving rotation direction and position
- Hall sensor interface: used to do three-phase motor control

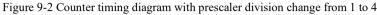
The capture channel 1 input can come from IOM or comparator output

9.3 TIM1 function description

9.3.1 Time-base unit

The advanced-control's time-base unit mainly includes: prescaler, counter, auto-reload and repetition counter. When the time base unit is working, the software can read and write the corresponding registers (TIMx_PSC, TIMx_CNT, TIMx_AR and TIMx_REPCNT) at any time.


Depending on the setting of the auto-reload preload enable bit (TIMx_CTRL1.ARPEN), the value of the preload register is transferred to the shadow register immediately or at each update event UEV. An update event is generated when the counter reaches the overflow/underflow condition and it can be generated by software when TIMx_CTRL1.UPDIS=0. The counter CK_CNT is valid only when the TIMx_CTRL1.CNTEN bit is set. The counter



starts counting one clock cycle after the TIMx_CTRL1.CNTEN bit is set.

9.3.1.1 Prescaler description

The TIMx_PSC register consists of a 16-bit counter that can be used to divide the counter clock frequency by any factor between 1 and 65536. It can be changed on the fly as it is buffered. The prescaler value is only taken into account at the next update event.

9.3.2 Counter mode

9.3.2.1 Up-counting mode

In up-counting mode, the counter will count from 0 to the value of the register TIMx_AR, then it resets to 0. And a counter overflow event is generated.

If the TIMx_CTRL1.UPRS bit (select update request) and the TIMx_EVTGEN.UDGN bit are set, an update event (UEV) will generate. And TIMx_STS.UDITF will not be set by hardware, therefore, no update interrupts or update DMA requests are generated. This setting is used in scenarios where you want to clear the counter but do not want to generate an update interrupt.

Depending on the update request source is configured in the TIMx_CTRL1.UPRS, When an update event occurs, all registers are updated and the TIMx_STS.UDITF is set:

■ The repetition counter reloads the contents of the TIMx_REPCNT

- Update auto-reload shadow registers with preload value(TIMx AR), when TIMx CTRL1.ARPEN = 1.
- The prescaler shadow register is reloaded with the preload value(TIMx PSC).

To avoid updating the shadow registers when new values are written to the preload registers, you can disable the update by setting TIMx CTRL1.UPDIS=1.

When an update event occurs, the counter will still be cleared and the prescaler counter will also be set to 0 (but the prescaler value will remain unchanged).

The figure below shows some examples of the counter behavior and the update flags for different division factors in the up-counting mode.

Internal clock		
divided by 2	CNTEN	
	CK_PSC	
	Timer clock = CK_CNT	
	Counter register	0034 0035 0036 0000 0001 0002 0003
	Counter overflow	
	Update interrupt flag(UDITF)	
	Update event(UEV)	
Internal clock divided by N	CK_PSC	
	Timer clock = CK_CNT	
	Counter register	1F 20 00
	Counter overflow	
	Update interrupt flag(UDITF)	
	Update event(UEV)	

Figure 9-3 Timing diagram of up-counting. The internal clock divider factor = 2/N

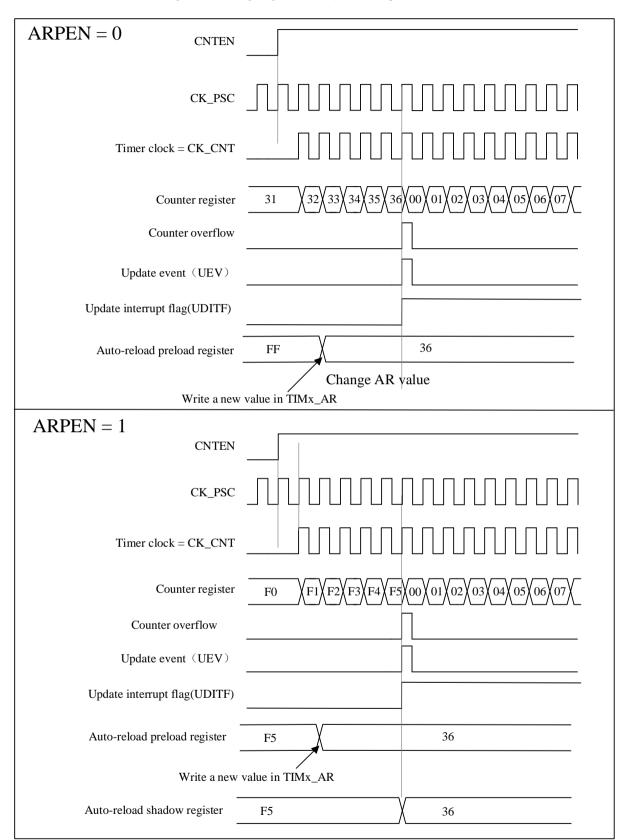


Figure 9-4 Timing diagram of the up-counting, update event when ARPEN=0/1

129 / 447

Nations Technologies Inc. Tel: +86-755-86309900 Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

9.3.2.2 Down-counting mode

In down-counting mode, the counter will decrement from the value of the register TIMx_AR to 0, then restart from the auto-reload value and generate a counter underflow event.

The process of configuring update events and updating registers in down-counting mode is the same as in up-counting mode, see 错误!未找到引用源。.

The figure below shows some examples of the counter behavior and the update flags for different division factors in the down-counting mode.

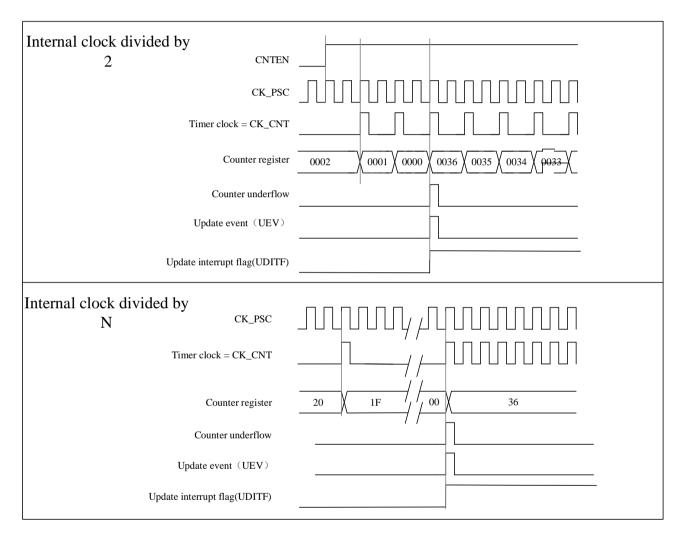


Figure 9-5 Timing diagram of the down-counting, internal clock divided factor = 2/N

9.3.2.3 Center-aligned mode

In center-aligned mode, the counter increments from 0 to the value $(TIMx_AR) - 1$, a counter overflow event is generated. It then counts down from the auto-reload value $(TIMx_AR)$ to 1 and generates a counter underflow event. Then the counter resets to 0 and starts counting up again.

In this mode, the TIMx_CTRL1.DIR direction bits have no effect and the count direction is updated and specified by hardware. Center-aligned mode is valid when the TIMx_CTRL1. CAMSEL bit is not equal to "00".

The update events can be generated each time the counter overflows and each time the counter underflows. Alternatively, an update event can also be generated by setting the TIMx_EVTGEN. UDGN bit (either by software or using a slave mode controller). In this case, the counter restarts from 0, as does the prescaler's counter.

Please note: if the update source is a counter overflow, auto-reload update before reloading the counter.

Figure 9-6 Timing diagram of the Center-aligned, internal clock divided factor =2/N

Internal clock divided by 2	CK_PSC	
	CNTEN	
	Timer clock = CK_CNT	
	Counter register	0003 0002 0001 0000 0001 0002 0003
	Counter underflow	
	Update event (UEV)	
Upd	ate interrupt flag(UDITF)	
Internal clock	divided	
by N	CK_PSC	
Tir	ner clock = CK_CNT	
	Counter register	20 1F 01 00
	Counter underflow	
τ	Jpdate event (UEV)	
Update i	nterrupt flag(UDITF)	

Counter			
underflow	CNTEN		
	CK_PSC		
	Timer clock = CK_CNT		
	Counter register	06 05 04 03 02 01	00001020304050607
	Counter underflow	1	
	Update event (UEV)		
	Update interrupt flag(UDITF)		
	Auto-reload preload register	FD	36
Write a new value in TIMx_AR			
	Auto-reload active register	FD	36
Counter overflow	CNTEN		
	CK_PSC		
	Counter register	F7 XF8XF9XFAXFBXFC	(36)(35)(34)(33)(32)(31)(30)(2F)(
	Counter overflow	/////	$\begin{bmatrix} & & & \\ & & \\ \end{bmatrix}$
	Update event (UEV)		
	Update interrupt flag(UDITF)		
	Auto-reload preload register	FD	36
Write a new value in TIMx_AR			
	Auto-reload active register	FD	36

Figure 9-7 A center-aligned sequence diagram that includes counter overflows and underflows (ARPEN = 1)

9.3.3 Repetition counter

The basic unit of Section 错误!未找到引用源。 describes the conditions for generating an update event (UEV). An update event (UEV) is actually only generated when the repeat counter reaches zero, which is valuable for generating

PWM signals.

This means that data is transferred from the preload registers to the shadow registers every N+1 counter overflow or underflow, where N is the value in the TIMx REPCNT.

The repetition counter is decremented:

- In the up-counting mode, each time the counter reaches the maximum value, an overflow occurs.
- In down-counting mode, each time the counter decrements to the minimum value, an underflow occurs.
- In center-aligned mode, each time the counter overflows or underflows.

Its repetition rate is defined by the value of the TIMx_REPCNT register.

Repetition counters feature automatic reloading. The update event (generated by setting TIMx_EVTGEN.UDGN or hardware through slave mode controller) occurs immediately, regardless of the value of the repeat counter.

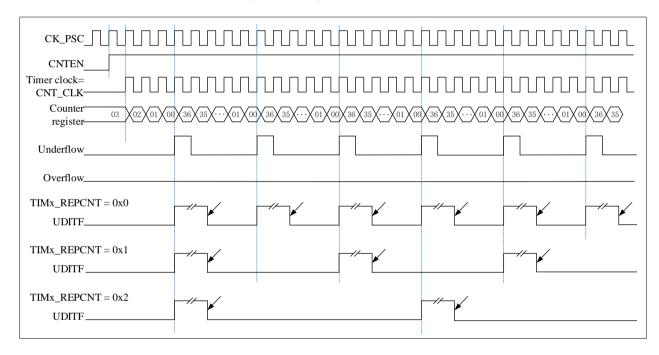
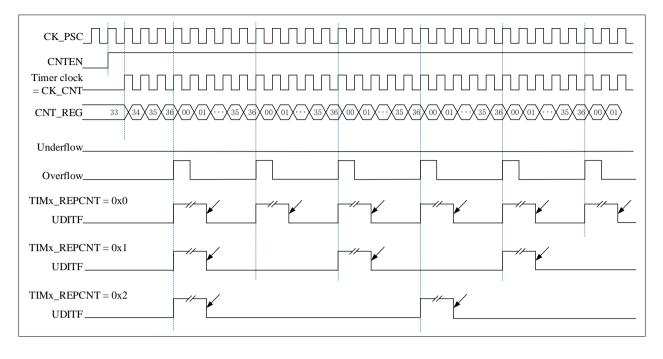



Figure 9-8 Repeat count sequence diagram in down-counting mode

Software clear

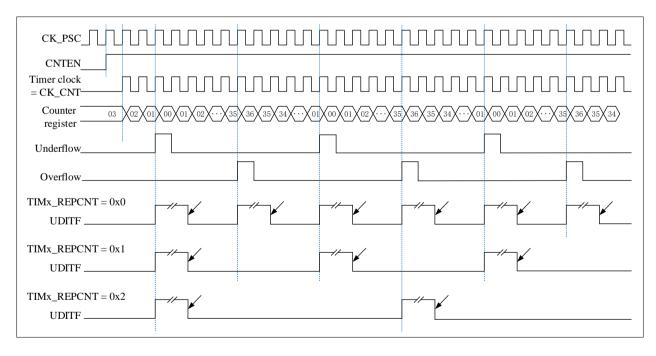


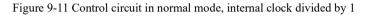
Figure 9-9 Repeat count sequence diagram in up-counting mode

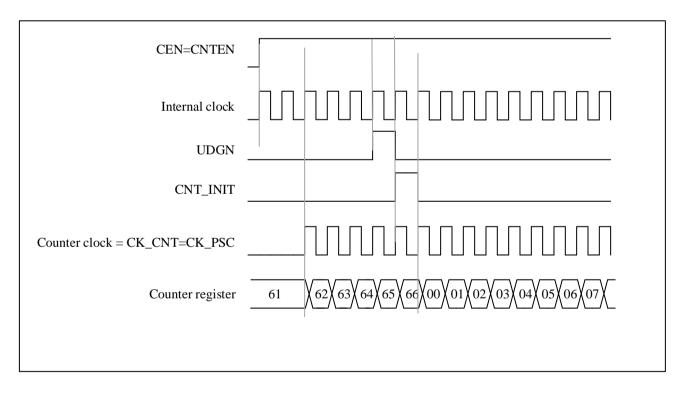
C Software clear

Figure 9-10 Repeat count sequence diagram in center-aligned mode

134 / 447

Nations Technologies Inc. Tel: +86-755-86309900 Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

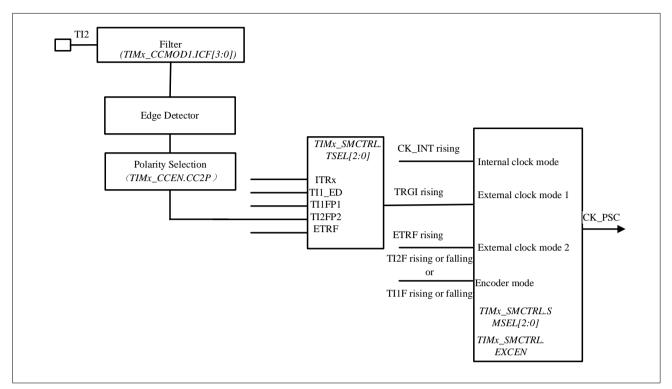



9.3.4 Clock selection

- The internal clock of Advanced-control timers : CK_INT
- Two kinds of external clock mode :
 - external input pin
 - external trigger input ETR
- Internal trigger input (ITRx): one timer is used as a prescaler for another timer.

9.3.4.1 Internal clock source (CK INT)

When the TIMx_SMCTRL.SMSEL is equal to "000", the slave mode controller is disabled. The three control bits (TIMx_CTRL1.CNTEN、TIMx_CTRL1.DIR、TIMx_EVTGEN.UDGN) can only be changed by software (except TIMx_EVTGEN.UDGN, which remains cleared automatically). It is provided that the TIMx_CTRL1.CNTEN bit is written as' 1 ' by soft, the clock source of the prescaler is provided by the internal clock CK_INT.

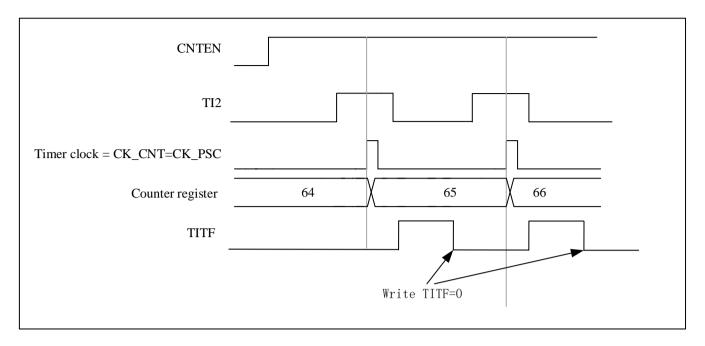


9.3.4.2 External clock source mode 1

This mode is selected by configuring TIMx_SMCTRL.SMSEL=111. The counter can be configured to count on the rising or falling edge of the clock at the selected input.

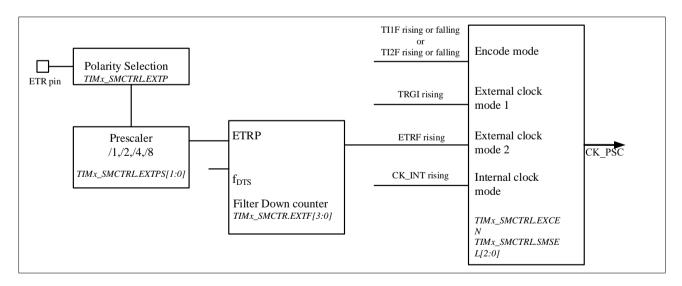
For example, to configure up-counting mode to count on the rising edge of the clock at the TI2 input, the configuration steps are as follows:

- Configure TIMx CCMOD1.CC2SEL equal to '01', CC2 channel is configured as input, IC2 is mapped to TI2
- Configure TIMx_CCEN.CC2P equal to '0', select clock rising edge polarity
- To select input filter bandwidth by configuring TIMx_CCMOD1.IC2F[3:0] (if filter is not needed, keep IC2F bit at '0000')
- Configure TIMx_SMCTRL.SMSEL equal to '111', select timer external clock mode 1
- Configure TIMx_SMCTRL.TSEL equal to '110', select TI2 as the trigger input source
- Configure TIMx CTRL1.CNTEN equal to '1' to start the counter


Note: The capture prescaler is not used for triggering, so it does not need to be configured

When the rising edge of the timer clock occurs at TI2=1, the counter counts once and the TIMx_STS .TITF flag is pulled high.

The delay between the rising edge of TI2 and the actual clock of the counter depends on the resynchronization circuit at the input of TI2.



9.3.4.3 External clock source mode 2

This mode is selected by TIMx_SMCTRL.EXCEN equal to 1. The counter can count on every rising or falling edge of the external trigger input ETR.

The following figure is a schematic diagram of the external trigger input module in External clock source mode 2

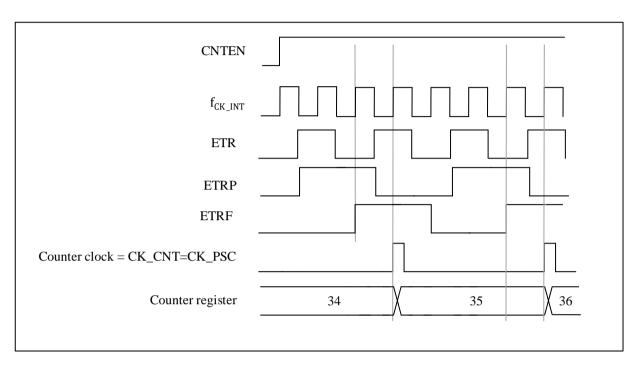
Figure 9-14 External trigger input block diagram

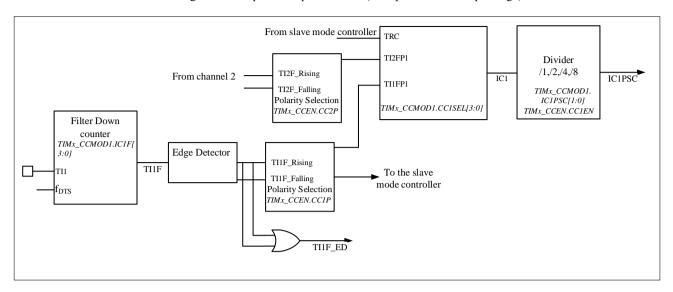
For example, use the following configuration steps to make the up counter count every 2 rising edges on ETR.

- Since no filter is needed in this case, make TIMx_SMCTRL .EXTF[3:0] equal to '0000'
- Configure the prescaler by making TIMx SMCTRL.EXTPS[1:0] equal to '01'
- Select the polarity on ETR pin by setting TIMx_SMCTRL.EXTP equal to '0', The rising edge of ETR is valid

- External clock mode 2 is selected by setting TIMx_SMCTRL .EXCEN equal to '1'
- Turn on the counter by setting TIMx CTRL1. CNTEN equal to '1'

The counter counts every 2 rising edges of ETR. The delay between the rising edge of ETR and the actual clock to the counter is due to a resynchronization circuit on the ETRP signal.




Figure 9-15 Control circuit in external clock mode 2

9.3.5 Capture/compare channels

Capture/compare channels include capture/compare registers and shadow registers. The input section consists of digital filters, multiplexers and prescalers. The output section includes comparators and output controls.

The input signal TIx is sampled and filtered to generate the signal TIxF. A signal (TIxF_rising or TIxF_falling) is then generated by the edge detector of the polarity select function, the polarity of which is selected by the TIMx_CCEN.CCxP bits. This signal can be used as a trigger input for the slave mode controller. At the same time, the signal ICx is sent to the capture register after frequency division. The following figure shows a block diagram of a capture/compare channel.

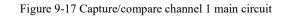


Figure 9-16 Capture/compare channel (example: channel 1 input stage)

The output part generates an intermediate waveform OCxRef (active high) as reference. The polarity acts at the end of the chain.

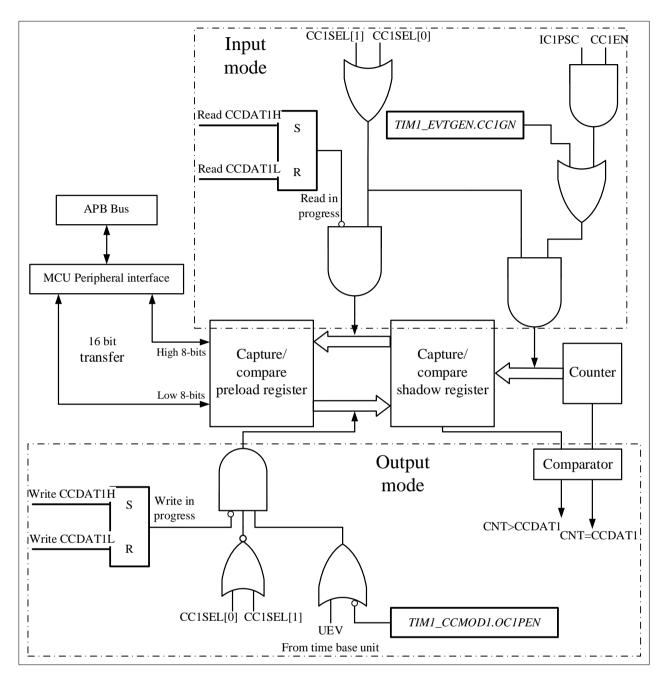


Figure 9-18 Output part of channelx (x= 1,2,3, take channel 1 as example)

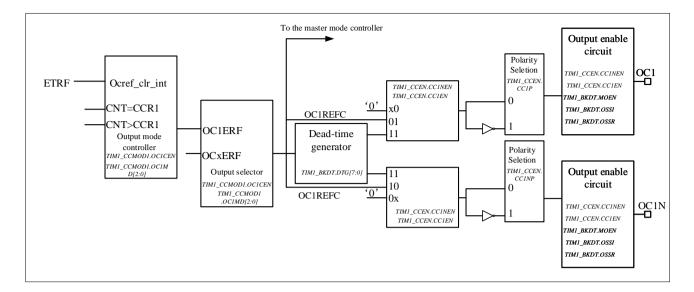
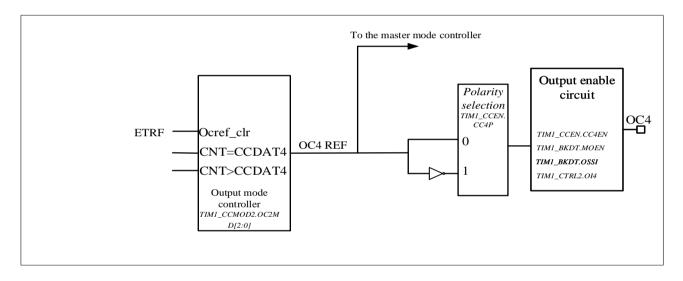



Figure 9-19 Output part of channels (x=4)

Reads and writes always access preloaded registers when capturing/comparing. The two specific working processes are as follows:

In capture mode, the capture is actually done in the shadow register, and then the value in the shadow register is copied into the preload register.

In compare mode, as opposed to capture mode, the value of the preload register is copied into the shadow register, which is compared with the counter.

9.3.6 Input capture mode

In capture mode, the TIMx_CCDATx registers are used to latch the counter value after the ICx signal detects.

There is a capture interrupt flag TIMx_STS.CCxITF, which can issue an interrupt or DMA request if the corresponding interrupt enable is pulled high.

Nations Technologies Inc. Tel: +86-755-86309900 Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

The TIMx_STS. CCxITF bit is set by hardware when a capture event occurs and is cleared by software or by reading the TIMx_CCDATx register.

The overcapture flag TIMx_STS.CCxOCF is set equal to 1 when the counter value is captured in the TIMx_CCDATx register and TIMx_STS.CC1ITF is already pulled high. Unlike the former, TIMx_STS.CCxOCF is cleared by writing 0 to it.

To achieve a rising edge of the TI1 input to capture the counter value into the TIMx_CCDAT1 register, the configuration flow is as follows:

■ To select a valid input:

Configure TIMx_CCMOD1.CC1SEL to '01'. At this time, the input is the CC1 channel, and IC1 is mapped to TI1.

• Program the desired input filter duration:

Define the sampling frequency of the TI1 input and the length of the digital filter by configuring the TIMx_CCMODx.ICxF bits. Example: If the input signal jitters up to 5 internal clock cycles, we must choose a filter duration longer than these 5 clock cycles. When 8 consecutive samples (sampled at f_{DTS} frequency) with the new level are detected, we can validate the transition on TI1. Then configure TIMx_CCMOD1. IC1F to '0011'.

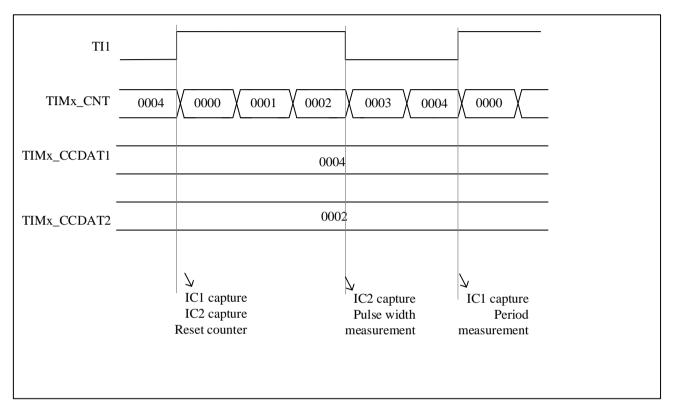
- By configuring TIMx_CCEN .CC1P=0, select the rising edge as the valid transition polarity on the TI1 channel.
- Configure the input prescaler. In this example, configure TIMx_CCMOD1.IC1PSC= '00' to disable the prescaler because we want to capture every valid transition.
- Enable capture by configuring TIMx_CCEN. CC1EN = '1'.

If you want to enable DMA request, you can configure TIMx_DINTEN.CC1DEN=1.If you want enable related interrupt request, you can configureTIMx_DINTEN.CC1IEN bit=1

9.3.7 PWM input mode

There are some differences between PWM input mode and normal input capture mode, including:

- Two ICx signals are mapped to the same TIx input.
- The two ICx signals are active on edges of opposite polarity.
- Select one of two TIxFP signals as trigger input.
- The slave mode controller is configured in reset mode.


For example, the following configuration flow can be used to know the period and duty cycle of the PWM signal on TI1 (It depends on the frequency of CK INT and the value of the prescaler).

- Configure TIMx_CCMOD1.CC1SEL equal to '01' to select TI1 as valid input for TIMx_CCDAT1.
- Configure TIMx_CCEN.CC1P equal to '0' to select the active polarity of filtered timer input 1(TI1FP1), valid on the rising edge.
- Configure TIMx_CCMOD1.CC2SEL equal to '10' select TI1 as valid input for TIMx_CCDAT2.

- Configure TIMx_CCEN.CC2P equal to 1 to select the valid polarity of filtered timer input 2(TI1FP2), valid on the falling edge.
- Configure TIMx SMCTRL.TSEL=101 to select Filtered timer input 1 (TI1FP1) as valid trigger input.
- Configure TIMx SMCTRL.SMSEL=100 to configure the slave mode controller to reset mode.
- Configure TIMx CCEN. CC1EN=1 and TIMx CCEN.CC2EN=1 to enable capture.

Figure 9-20 PWM input mode timing

Because of only filter timer input 1 (TI1FP1) and filter timer input 2 (TI2FP2) are connected to the slave mode controller, the PWM input mode can only be used with the TIMx_CH1/TIMx_CH2 signals.

9.3.8 Forced output mode

Software can force output compare signals to active or inactive level directly, in output mode (TIMx CCMODx.CCxSEL=00).

User can set TIMx_CCMODx. OCxMD=101 to force the output compare signal to active level. And the OCxREF will be forced high, OCx get opposite value to CCxP polarity bit. On the other hand, user can set TIMx_CCMODx. OCxMD=100 to force the output compare signal to inactive level.

The values of the TIMx CCDATx shadow register and the counter still comparing with each other in this mode.

The comparison between the output compare register TIMx_CCDATx and the counter TIMx_CNT has no effect on OCxREF. And the flag still can be set. Therefore, the interrupt and DMA requests still can be sent.

9.3.9 Output compare mode

User can use this mode to control the output waveform, or to indicate that a period of time has elapsed.

When the capture/compare register and the counter have the same value, the output compare function's operations are as follow:

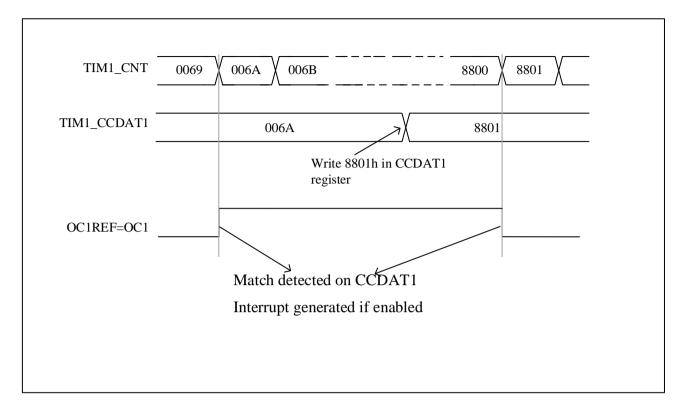
- TIMx_CCMODx.OCxMD is for output compare mode, and TIMx_CCEN.CCxP is for output polarity. When the compare matches, if set TIMx_CCMODx.OCxMD=000, the output pin will keep its level; if set TIMx_CCMODx.OCxMD=001, the output pin will be set active; if set TIMx_CCMODx.OCxMD=010, the output pin will be set inactive; if set TIMx_CCMODx.OCxMD=011, the output pin will be set to toggle.
- Set TIMx_STS.CCxITF.
- If user set TIMx_DINTEN.CCxIEN, a corresponding interrupt will be generated.
- If user set TIMx_DINTEN.CCxDEN and set TIMx_CTRL2.CCDSEL to select DMA request, and DMA request will be sent.

User can set TIMx_CCMODx.OCxPEN to choose capture/compare shawdow register using capture/compare preload registers(TIMx_CCDATx) or not.

The time resolution is one count of the counter.

In one-pulse mode, the output compare mode can also be used to output a single pulse.

Here are the configuration steps for output compare mode:


- First of all, user should select the counter clock.
- Secondly, set TIMx_AR and TIMx_CCDATx with desired data.
- If user need to generate an interrupt, set TIMx_DINTEN.CCxIEN.
- Then select the output mode by set TIMx CCEN.CCxP, TIMx CCMODx.OCxMD, TIMx CCEN.CCxEN, etc.
- At last, set TIMx_CTRL1.CNTEN to enable the counter.

User can update the output waveform by setting TIMx_CCDATx at any time, as long as the preload register is not enabled. Otherwise the TIMx_CCDATx shadow register will be updated at the next update event.

Here is an example.

9.3.10 PWM mode

User can use PWM mode to generate a signal whose duty cycle is determined by the value of the TIMx_CCDATx register and whose frequency is determined by the value of the TIMx_AR register. And depends on the value of TIMx_CTRL1.CAMSEL, the TIM can generate PWM signal in edge-aligned mode or center-aligned mode.

User can set PWM mode 1 or PWM mode 2 by setting TIMx_CCMODx. OCxMD=110 or setting TIMx_CCMODx. OCxMD=111. To enable preload register, user must set corresponding TIMx_CCMODx.OCxPEN. And then set TIMx_CTRL1.ARPEN to auto-reload preload register eventually.

User can set polarity of OCx by setting TIMx_CCEN.CCxP. On the other hand, to enable the output of OCx, user need to set the combination of the value of CCxEN, CCxNEN, MOEN, OSSI, and OSSR in TIMx_CCEN and TIMx BKDT.

The values of TIMx_CNT and TIMx_CCDATx are always compared with each other when the TIM is under PWM mode.

Only if an update event occurs, the preload register will transfer to the shadow register. Therefore user must reset all the registers by setting TIMx_EVTGEN.UDGN before the counter starts counting..

9.3.10.1 PWM center-aligned mode

If user set TIMx_CTRL1.CAMSEL equal 01, 10 or 11, the PWM center-aligned mode will be active. The setting of the compare flag depends on the value of TIMx_CTRL1.CAMSEL. There are three kinds of situation that the compare flag is set, only when the counter counts up, only when the counter counts down, or when the counter counts

up and counts down. User should not modified TIMx_CTRL1.DIR by software, it is updated by hardware.

Examples of center-aligned PWM waveforms is as follow, and the setting of the waveform are: TIMx_AR=8, PWM mode 1, the compare flag is set when the counter counts down corresponding to TIMx_CTRL1. CAMSEL=01.

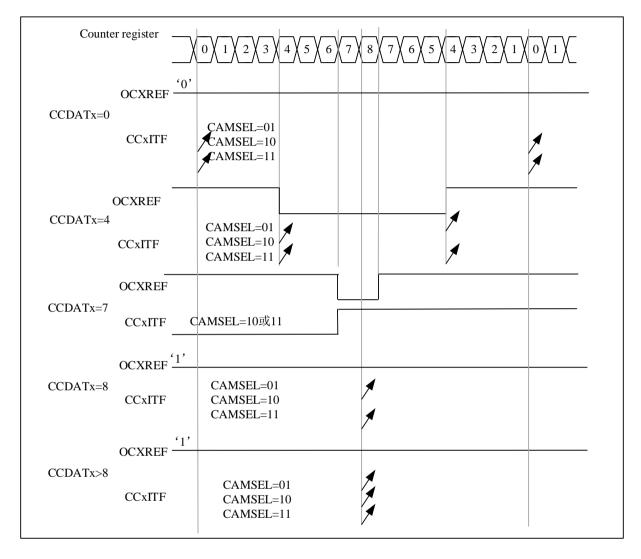


Figure 9-22 Center-aligned PWM waveform (AR=8)

Notes that user should know when using center-aligned mode are as follow:

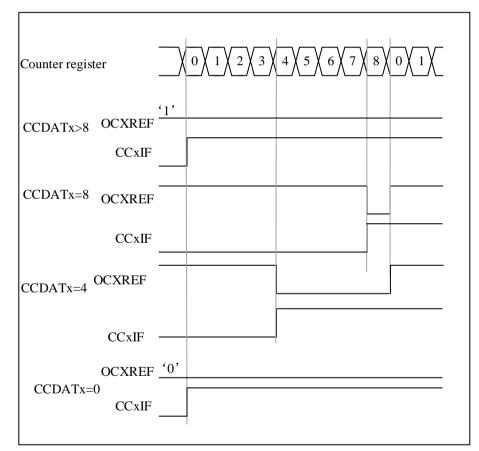
- It depends on the value of TIMx_CTRL1.DIR that the counter counts up or down. Cautions that the DIR and CAMSEL bits should not be changed at the same time.
- User should not write the counter while running in center-aligned mode, otherwise it will cause unexpected results. Here are some example:
 - If the value written into the counter is 0 or is the value of TIMx_AR, the direction will be updated but the update event will not be generated.
 - If the value written into the counter is greater than the value of auto-reload, the direction will not be updated.
- To be on the safe side, user is suggested setting TIMx_EVTGEN.UDGN to generate an update by software

before starting the counter, and not writing the counter while it is running.

9.3.10.2 PWM edge-aligned mode

There are two kinds of configuration in edge-aligned mode, up-counting and down-counting.

• Up-counting


User can set TIMx CTRL1.DIR=0 to make counter counts up.

Here is an example for PWM mode1.

When $TIMx_CNT < TIMx_CCDATx$, the reference PWM signal OCxREF is high. Otherwise it will be low. If the compare value in $TIMx_CCDATx$ is greater than the auto-reload value, the OCxREF will remains 1. Conversely, if the compare value is 0, the OCxREF will remains 0.

When TIMx AR=8, the PWM waveforms are as follow.

• Down-counting

User can set TIMx_CTRL1.DIR=1 to make counter counts down.

Here is an example for PWM mode1.

When $TIMx_CNT > TIMx_CCDATx$, the reference PWM signal OCxREF is low. Otherwise it will be high. If the compare value in TIMx_CCDATx is greater than the auto-reload value, the OCxREF will remains 1.

Note: If the nth PWM cycle CCDATx shadow register $\geq AR$ value, the shadow register value of CCDATx in the (n+1)th PWM cycle is 0. At the moment when the counter is 0 in the (n+1)th PWM cycle, although the value of the counter = CCDATx shadow register = 0 and OCxREF = '0', no compare event will be generated.

9.3.11 One-pulse mode

In the one-pulse mode (ONEPM), a trigger signal is received, and a pulse t_{PULSE} with a controllable pulse width is generated after a controllable delay t_{DELAY} . The output mode needs to be configured as output compare mode or PWM mode. After selecting one-pulse mode, the counter will stop counting after the update event UEV is generated.

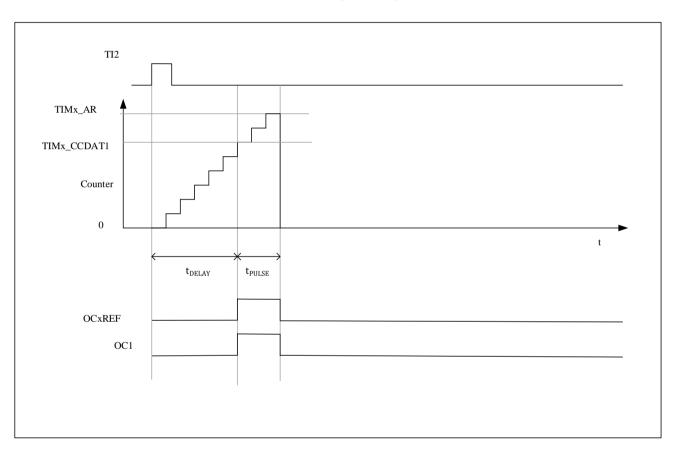


Figure 9-24 Example of One-pulse mode

The following is an example of a one-pulse mode:

A rising edge trigger is detected from the TI2 input, and a pulse with a width of t_{PULSE} is generated on OC1 after a delay of t_{DELAY} .

1. Counter configuration: count up, counter $TIMx_CNT < TIMx_CCDAT1 \le TIMx_AR$;

2. TI2FP2 is mapped to TI2, TIMx_CCMOD1.CC2SEL= '01'; TI2FP2 is configured for rising edge detection, TIMx_CCEN.CC2P= '0';

3. TI2FP2 acts as the trigger (TRGI) of the slave mode controller and starts the counter, TIMx_SMCTRL.TSEL= '110', TIMx_SMCTRL.SMSEL= '110' (trigger mode);

4. TIMx_CCDAT1 writes the count value to be delayed (t_{DELAY}), TIMx_AR - TIMx_CCDAT1 is the count value of

the pulse width t_{PULSE};

5. Configure TIMx_CTRL1.ONEPM=1 to enable single pulse mode, configure TIMx_CCMOD1.OC1MD = '111'to select PWM2 mode;

6. Wait for an external trigger event on TI2, and a one pulse waveform will be output on OC1;

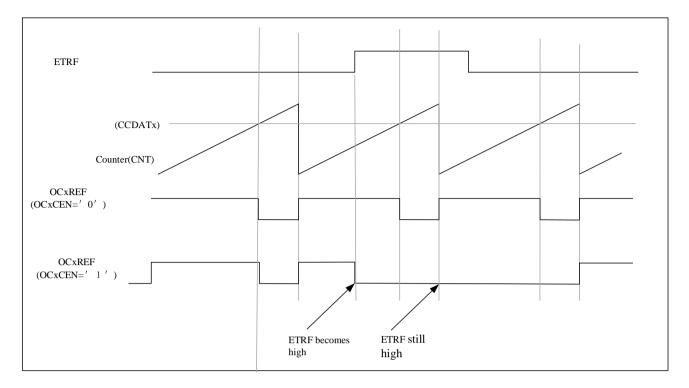
9.3.11.1 Special case: OCx fast enable:

In one-pulse mode, an edge is detected through the TIx input, and triggers the start of the counter to count to the comparison value and then output a pulse. These operations limit the minimum delay t_{DELAY} that can be achieved.

You can set TIMx_CCMODx.OCxFEN=1 to turn on OCx fast enable, after triggering the rising edge, the OCxREF signal will be forced to be converted to the same level as the comparison match occurs immediately, regardless of the comparison result. OCxFEN fast enable only takes effect when the channel mode is configured for PWM1 and PWM2 modes.

9.3.12 Clearing the OCxREF signal on an external event

If user set TIMx_CCMODx.OCxCEN=1, high level of ETRF input can be used to driven the OCxREF signal to low, and the OCxREF signal will remains low, until the next UEV happens. Only output compare and PWM modes can use this function. This cannot be used when it is in forced mode.


Here is an example for it. To control the current, user can connect the ETR signal to the output of a comparator, and the operation for ETR should be as follow:

- Set TIMx_SMCTRL.EXTPS=00 to disable the external trigger prescaler.
- Set TIMx SMCTRL.EXCEN=0 to disable the external clock mode 2.
- Set TIMx_SMCTRL.EXTP and TIMx_SMCTRL.EXTF to configure the external trigger polarity and external trigger filter according to the need.

Here is an example for the case that when ETRF input becomes high, the behavior of OCxREF signal for different value of OCxCEN. Timer is set to be in PWM mode in this case.

Figure 9-25 Clearing the OCxREF of TIMx

9.3.13 Complementary outputs with dead-time insertion

Advanced-control timer can output two complementary signals, and manage the switching-off and switching-on of outputs. This is called dead-time. User should adjust dead-time depending on the devices connected to the outputs and their characteristics.

User can select the polarity of outputs by setting TIMx_CCEN.CCxP and TIMx_CCEN.CCxNP. And this selection is independently for each output.

User can control the complementary signals OCx and OCxN by setting the combination of several control bits, which are TIMx_CCEN.CCxEN, TIMx_CCEN.CCxNEN, TIMx_BKDT.MOEN, TIMx_CTRL2.OIx, TIMx_CTRL2.OIxN, TIMx_BKDT.OSSI, and TIMx_BKDT.OSSR. When switching to the IDLE state, the dead-time will be activated.

If user set TIMx_CCEN.CCxEN and TIMx_CCEN.CCxNEN at the same time, a dead-time will be insert. If there is a break circuit, the TIMx_BKDT.MOEN should be set too. There are 10-bit dead-time generators for each channel.

Reference waveform OCxREF can generates 2 outputs OCx and OCxN. And if OCx and OCxN are active high, the OCx ouput signal is the same as the reference signal and the OCxN output signal is the opposite of the reference signal. However, OCx output signal will be delayed relative to the reference rising edge and the OCxN output signal will be delayed relative to the reference falling edge. If the delay is greater than the width of the active OCx or OCxN output, the corresponding pulse will not generated.

The relationships between the output signals of the dead-time generator and the reference signal OCxREF are as follow.

Assume that TIMx_CCEN.CCxP=0, TIMx_CCEN.CCxNP=0, TIMx_BKDT.MOEN=1, TIMx_CCEN.CCxEN=1, TIMx_CCEN.CCxNEN=1.

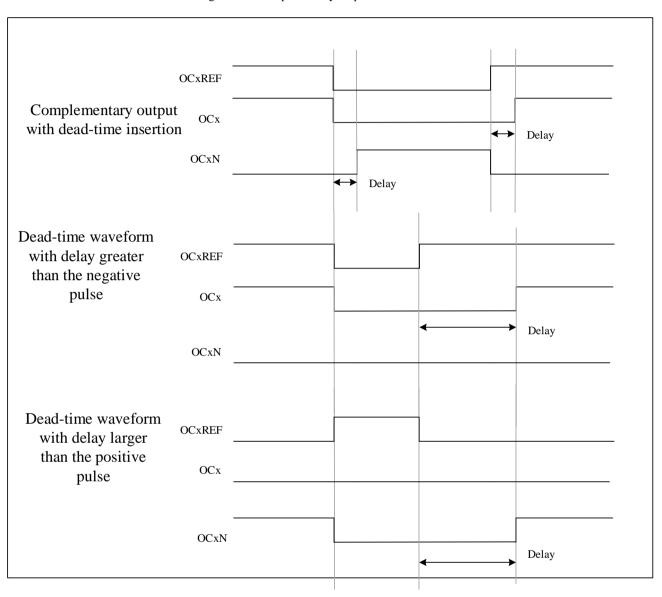


Figure 9-26 Complementary output with dead-time insertion

User can set TIMx_BKDT.DTGN to programme the dead-time delay for each of the channels.

9.3.13.1 Redirecting OCxREF to OCx or OCxN

User can set TIMx_CCEN.CCxEN and TIMx_CCEN.CCxNEN to re-directed OCxREF to the OCx output or to OCxN output, in output mode.

Here are two ways to use this function. When the complementary remains at its inactive level, user can use this function to send a specific waveform, such as PWM or static active level. User can also use this function to set both outputs in their inactive level or both outputs active and complementary with dead-time.

If user set TIMx_CCEN.CCxEN=0 and TIMx_CCEN.CCxNEN=1, it will not complemented, and OCxN will become active when OCxREF is high. On the other hand, if user set TIMx_CCEN.CCxEN=1 and

TIMx_CCEN.CCxNEN=1, OCx will become active when OCxREF is high. On the contrary, OCxN will become active when OCxREF is low.

9.3.14 Break function

The output enable signals and inactive levels will be modified when setting the corresponding control bits when using the break function. However, the output of OCx and OCxN cannot at the active level at the same time no matter when, that is, $(CCxP^OIx)^{(CCxNP^OIxN)!=0}$.

When multiple break signals are enabled, each break signal constitutes an OR logic. Here are some signal which can be the source of breaking.

- The break input pin
- A clock failure event, generated by the clock security system in the clock controller.
- A PVD failure event.
- Core Hardfault event.
- The output signal of the comparator (configured in the comparator module, high level break).
- By software through the TIMx_EVTGEN.BGN.

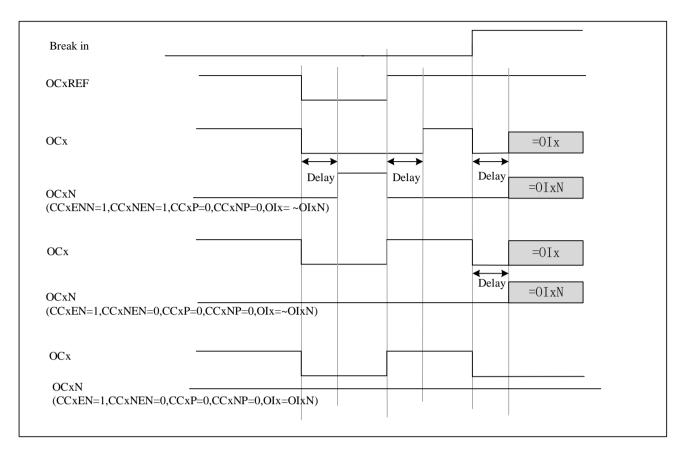
The break circuit will be disable after reset. And the MOEN bit will be low. User can set TIMx_BKDT.BKEN to enable the break function. The polarity of break input signal can be selected by setting TIMx_BKDT.BKP. User can modify the TIMx_BKDT.BKEN and TIMx_BKDT.BKP at the same time. After user set the TIMx_BKDT.BKEN and TIMx_BKDT.BKP, there is 1 APB clock cycle delay before the option take effect. Therefore, user need to wait 1 APB clock cycle to read back the value of the written bit.

The falling edge of MOEN can be asynchronous, so between the actual signal and the synchronous control bit, there set a resynchronization circuit. This circuit will cause a delay between the asynchronous and the synchronous signal. When user set TIMx_BKDT.MOEN while it is low, user need to insert a delay before reading the value. Because an asynchronous signal was written but user read the synchronous signal.

The behaviors that after a break occurs are as follow:

- TIMx_BKDT.MOEN will be cleared asynchronously, and then the outputs will be put in inactive state, idle state or reset state. The state of output is selected by setting TIMx_BKDT.OSSI. This will take effect even if the MCU oscillator is off.
- Once TIMx_BKDT.MOEN=0, the output of each output channel will be driven with the level programmed in TIMx_CTRL2.OIx. Timer will release the enable outputs(taken over by GPIO controller) if TIMx_BKDT.OSSI=0, otherwise it will remains high.
- If user choose to use complementary outputs, the behaviors of TIM are as follow
 - Depends on the polarity, the outputs will be set in reset state first. It is an asynchronous option so it still works even if there is no clock provided to the timer.
 - The dead-time generator will reactivated if the timer clock is still provided, and drive the outputs according to the value of TIMx_CTRL2.OIx and TIMx_CTRL2.OIxN after the dead-time when (CCxP ^ OIx) ^

 $(CCxNP^OIxN)! = 0$, that is, the OCx and OCxN still cannot be driven to active level at the same time. Note that the dead-time will be longer than usual because of the resynchronization on MOEN (almost 2 cycles of ck_tim).


- Timer will release the output control if TIMx_BKDT.OSSI=0. Otherwise, if the enable output was high, it will remain high. If it was low, it will become high when TIMx_CCEN.CCxEN or TIMx_CCEN.CCxNEN is high.
- If TIMx_DINTEN.BIEN=1, when TIMx_STS.BITF=1, an interrupt will be generated.
- If user set TIMx_BKDT.AOEN, the TIMx_BKDT.MOEN will be set automatically when the next UEV happened. User can use this to regulate. If user did not set TIMx_BKDT.AOEN, the TIMx_BKDT.MOEN will remain low until been set 1 again. At this situation, user can use this for security. User can connect the break input to thermal sensors, alarm for power drivers, or other security components.
- When the break input is active, TIMx_BKDT.MOEN cannot be set automatically or by software at the same time, and the TIMx_STS.BITF cannot be cleared. Because the break inputs are active on level.

To insure the security of application, the break circuit has the write protection function, and there is break input and output management too. It allow user to freeze some parameters, such as dead-time duration, OCx/OCxN polarities and state when disabled, OCxMD configurations, break enable and polarity. User can choose one of the 3 levels of protection to use by setting TIMx_BKDT.LCKCFG. However, the TIMx_BKDT.LCKCFG can only be written once after an MCU reset.

An example for output behavior in response to a break is as follow

Figure 9-27 Output behavior in response to a break

9.3.15 Debug mode

When the microcontroller is in debug mode (the Cortex-M0 core halted), depending on the DBG_CTRL.TIMx_STOP configuration in the PWR module, the TIMx counter can either continue to work normally or stop. For more details, see 错误!未找到引用源。(DBG_CTRL).

9.3.16 TIMx and external trigger synchronization

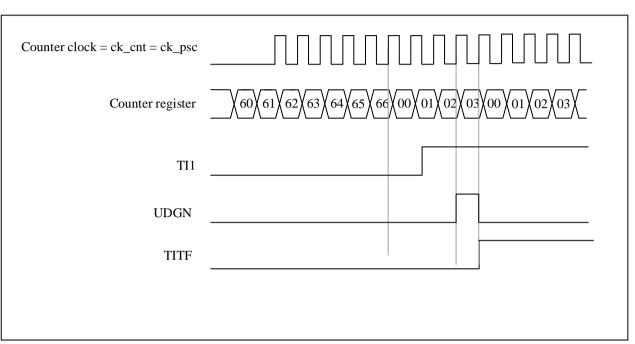
TIMx timers can be synchronized by a trigger in slave modes (reset, trigger and gated).

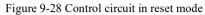
9.3.16.1 Slave mode: Reset mode

In reset mode, the trigger event can reset the counter and the prescaler updates the preload registers TIMx_AR, TIMx_CCDATx, and generates the update event UEV (TIMx_CTRL1.UPRS=0).

The following is an example of a reset mode:

1. Channel 1 is configured as input to detect the rising edge of TI1 (TIMx_CCMOD1.CC1SEL=01, TIMx CCEN.CC1P=0);


2. The slave mode is selected as reset mode (TIMx_SMCTRL.SMSEL=100), and the trigger input is selected as TI1 (TIMx_SMCTRL.TSEL=101);



3. Start counter(TIMx_CTRL1.CNTEN = 1).

After starting the timer, when TI1 detects a rising edge, the counter resets and restarts counting, and the trigger flag is set (TIMx STS.TITF=1);

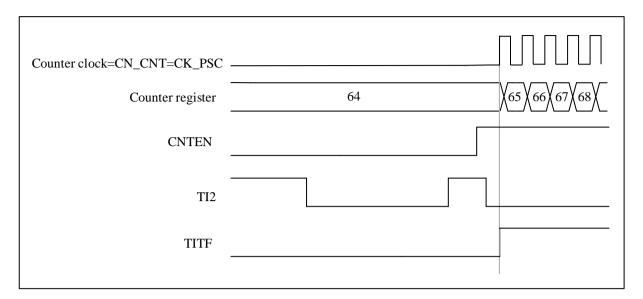
The delay between the rising edge on TI1 and the actual reset of the counter is due to the resynchronization circuit on TI1 input.

9.3.16.2 Slave mode: Trigger mode

In trigger mode, the trigger event (rising edge/falling edge) of the input port can trigger the counter to start counting.

The following is an example of a trigger pattern:

1. Channel 2 is configured as input to detect the rising edge of TI2 (TIMx_CCMOD1.CC2SEL=01, TIMx_CCEN.CC2P=0);


2. Select from mode to trigger mode (TIMx_SMCTRL.SMSEL=110), select TI2 for trigger input (TIMx_SMCTRL.TSEL=110);

When TI2 detects a rising edge, the counter starts counting, and the trigger flag is set (TIMx_STS.TITF=1);

The delay between the rising edge on TI2 and the actual start of the counter is due to the resynchronization circuit on TI2 input.

Figure 9-29	Control	circuit in	Trigger mode	
riguic <i>J-2</i>	Control	circuit in	ingger moue	/

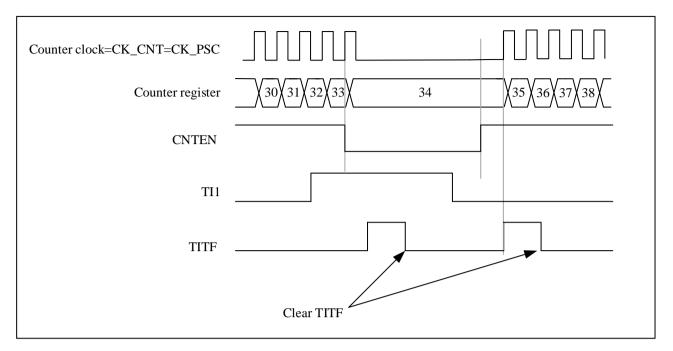
9.3.16.3 Slave mode: Gated mode

In gate control mode, the level polarity of the input port can control whether the counter counts.

The following is an example of a gated pattern:

1. Channel 1 is configured as input detection active low on TI1 (TIMx_CCMOD1.CC1SEL=01, TIMx CCEN.CC1P=1);

2. Select the slave mode as the gated mode (TIMx_SMCTRL.SMSEL=101), and select TI1 as the trigger input (TIMx_SMCTRL.TSEL=101);


3. Start counter(TIMx_CTRL1.CNTEN=1).

When TI1 detects that the level changes from low to high, the counter stops counting, and when TI1 detects that the level changes from high to low, the counter starts counting, and the trigger flag will be set when it starts or stops counting (TIMx_STS.TITF=1);

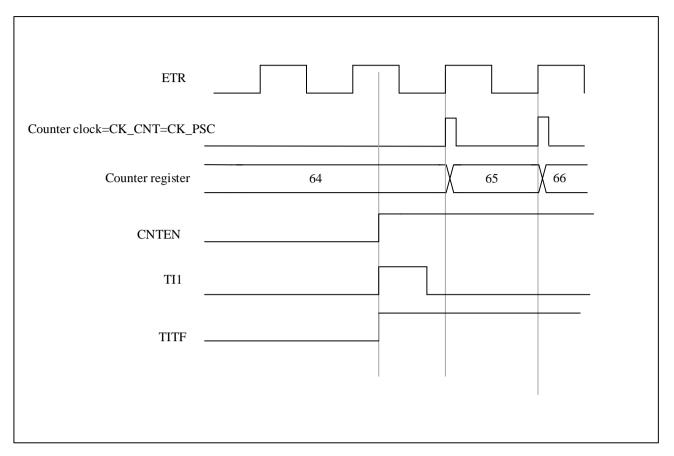
The delay between the rising edge on TI1 and the actual stop of the counter is due to the resynchronization circuit on TI1 input.

Figure 9-30 Control circuit in Gated mode

9.3.16.4 Slave mode: Trigger Mode + External Clock Mode 2

In reset mode, trigger mode and gate control mode, the counter clock can be selected as external clock mode 2, and the ETR signal is used as the external clock source input. At this time, the trigger selection needs to select non-ETRF (TIMx SMCTRL.TSEL=111).

Here is an example:


1. Channel 1 is configured as input to detect the rising edge of TI1 (TIMx_CCMOD1.CC1SEL=01, TIMx_CCEN.CC1P=0);

2. Enable external clock mode 2 (TIMx_SMCTRL.EXCEN=1), select rising edge for external trigger polarity (TIMx_SMCTRL.EXTP=0), select slave mode as trigger mode (TIMx_SMCTRL.SMSEL=110), select TI1 for trigger input (TIMx_SMCTRL.TSEL=101);

When TI1 detects a rising edge, the counter starts counting on the rising edge of ETR, and the trigger flag is set (TIMx_STS.TITF=1);

9.3.17 Timer synchronization

All TIM timers are internally connected for timer synchronization or chaining. For more details, see 10.3.14.

9.3.18 6-step PWM generation

In order to modify the configuration of all channels at the same time, the configuration of the next step can be set in advance (the preloaded bits are OCxMD, CCxEN and CCxNEN). When a COM commutation event occurs, the OCxMD, CCxEN, and CCxNEN preload bits are transferred to the shadow register bits.

COM commutation event generation method:

1. The software sets TIMx_EVTGEN.CCUDGN;

2. Generated by hardware on the rising edge of TRGI;

When a COM commutation event occurs, the TIMx_STS.COMITF flag will be set, enabling interrupts (TIMx_DINTEN.COMIEN) will generate interrupts, and enabling DMA requests (TIMx_DINTEN.COMDEN) will generate DMA requests.

The following figure shows the output timing diagram of OCx and OCxN when a COM commutation event occurs in three different configurations:

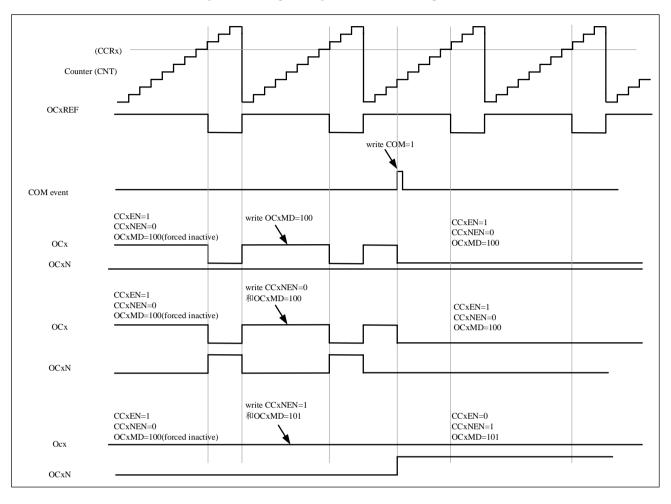


Figure 9-32 6-step PWM generation, COM example (OSSR=1)

9.3.19 Encoder interface mode

The encoder uses two inputs TI1 and TI2 as an interface and the counter counts on every edge change on TI1FP1 or TI2FP2. The counting direction is automatically controlled by hardware TIMx_CTRL1.DIR. There are three types of encoder counting modes:

1. The counter only counts on the edge of TI1, TIMx_SMCTRL.SMSEL = '001';

2. The counter only counts on the edge of TI2, TIMx_SMCTRL.SMSEL ='010';

3. The counter counts on the edges of TI1 and TI2 at the same time, TIMx_SMCTRL.SMSEL = '011';

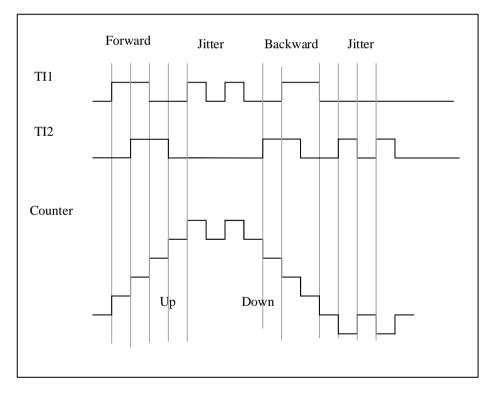
The encoder interface is equivalent to using an external clock with direction selection, and the counter only counts continuously between 0 and the auto-reload value (TIMx_AR.AR [15:0]). Therefore, it is necessary to configure the auto-reload register TIMx_AR in advance.

Note: Encoder mode and external clock mode 2 are not compatible and must not be selected together.

The relationship between the counting direction and the encoder signal is shown in 错误!未找到引用源。:

	Level on opposite signals	TI1FP	1 signal	TI2FP2	2 signal
Active edge	(TI1FP1 forTI2,	Rising	Falling	Rising	Falling
	TI2FP2 for TI1)				
Counting only at TI1	High	Counting down	Counting up	Don't count	Don't count
	Low	Counting up	Counting down	Don't count	Don't count
Counting only at TI2	High	Don't count	Don't count	Counting up	Counting down
	Low	Don't count	Don't count	Counting down	Counting up
Counting on	High	Counting down	Counting up	Counting up	Counting down
TI1 and TI2	Low	Counting up	Counting down	Counting down	Counting up

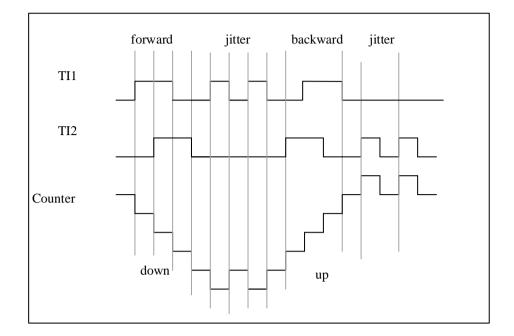
Table 9-1 Counting direction versus encoder signals


Here is an example of an encoder with dual edge triggering selected to suppress input jitter:

1. IC1FP1 is mapped to TI1 (TIMx_CCMOD1.CC1SEL= '01'), IC1FP1 is not inverted (TIMx_CCEN.CC1P= '0');

- 2. IC1FP2 is mapped to TI2 (TIMx_CCMOD2.CC2SEL= '01'), IC2FP2 is not inverted (TIMx_CCEN.CC2P= '0');
- 3. The input is valid on both rising and falling edges (TIMx_SMCTRL.SMSEL = '011');

4. Enable counter TIMx_CTRL1.CNTEN= '1';

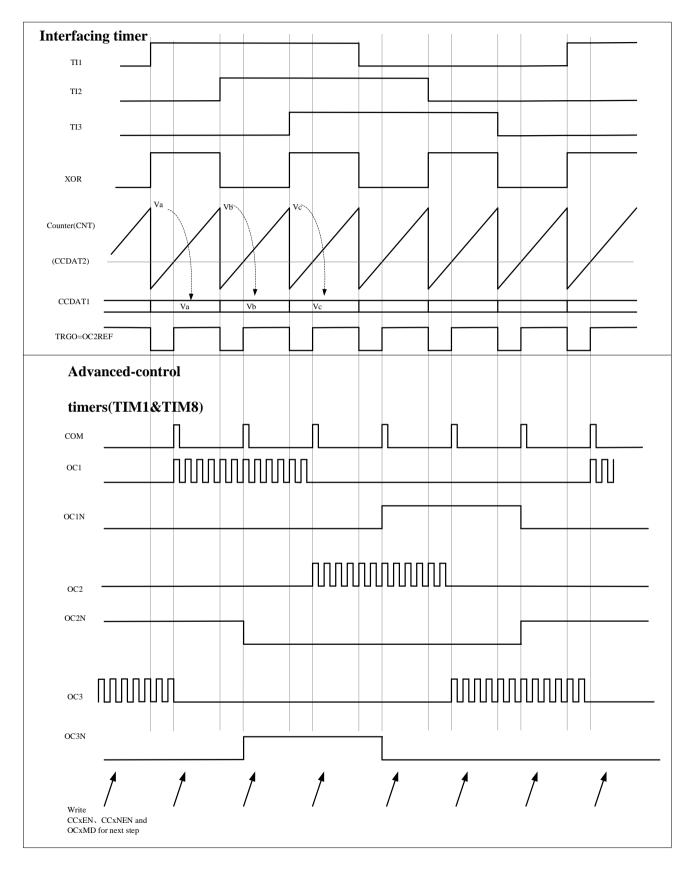

Figure 9-33 Example of counter operation in encoder interface mode

The following figure shows the example of counter behavior when IC1FP1 polarity is inverted (CC1P= '1', other configurations are the same as above)

Figure 9-34 Encoder interface mode example with IC1FP1 polarity inverted

9.3.20 Interfacing with Hall sensor

Connect the Hall sensor to the three input pins (CC1, CC2 and CC3) of the timer, and then select the XOR function to pass the inputs of TIMx_CH1, TIMx_CH2 and TIMx_CH3 through the XOR gate as the output of TI1 to channel 1 for capture signal.


The timer needs to be configured as the reset mode in slave mode (TIMx_SMCTRL.SMSEL= '100'); the edge of the trigger select TI1 triggers TI1F_ED (TIMx_SMCTRL.TSEL= '100'), any change in the Hall 3 inputs will trigger the counter to recount, so it is used as a time reference; the capture/compare channel 1 is configured to capture the TRC signal in capture mode (TIMx_CCMOD1.CC1SEL= '11'), which is used to calculate the two input time intervals, thereby reflecting the motor speed.

Select timer channel 2 to output pulses to the advanced timer to trigger the COM event of the advanced timer to update the control bits of the output PWM. The trigger selection of the advanced timer needs to select the corresponding internal trigger signal (TIMx_SMCTRL.TSEL="ITRx"), the capture/compare preload control bit needs to be configured to support preload (TIMx_CTRL2.CCPCTL=1) and support the rising edge of TRGI Trigger an update (TIMx_CTRL2.CCUSEL=1).

This example is shown in the following figure.

Figure 9-35 Example of Hall sensor interface

Nations Technologies Inc. Tel: +86-755-86309900 Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

9.4 TIMx register description(x=1)

For abbreviations used in registers, see section 1.1

These peripheral registers can be operated as half word (16-bits) or one word (32-bits).

9.4.1 Register Overview

Table 9-2 Register overview

Offset	Register	31 30 229 225 225 223 223 223 221 20	18	17	16	15	14	13	12	11	10	6	~	7	9	5	4	3	2	1	0
000h	TIMx_CTRL1	Reserved		PBKPEN	LBKPEN	CLRSEL	Reserved	Reserved	Reserved	CISEL	IOMBKPEN		CLKU[1:0]	ARPEN		CAMBEL I.U.	DIR	ONEPM	UPRS	UPDIS	CNTEN
	Reset Value			0	0	0				0	0	0	0	0	0	0	0	0	0	0	0
004h	TIMx_CTRL2	Reserved	OI6	Reserved	OI5	Reserved	OI4	OI3N	OI3	OI2N	012	OIIN	011	TIISEL		MMSEL[2:0]		CCDSEL	CCUSEL	Reserved	CCPCTL
	Reset Value		0		0		0	0	0	0	0	0	0	0	0	0	0	0	0		0
008h	TIMx_SMCTRL	Reserved				НXЭ	EXCEN	IV USGLAS	[0:1]e 11 V7		EVTED.01	[0:c]11V3		MSMD		TSEL[2:0]		Reserved		SMSEL[2:0]	
	Reset Value					0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
00Ch	TIMx_DINTEN	Reserved					TDEN	COMDEN	CC4DEN	CC3DEN	CC2DEN	CCIDEN	UDEN	BIEN	TIEN	COMIEN	CC4IEN	CC31EN	CC2IEN	CCIIEN	UIEN
	Reset Value						0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
010h	TIMx_STS	Reserved		CC61TF	CC5ITF		Reserved		CC40CF	CC30CF	CC20CF	CCIOCF	Reserved	BITF	TITF	COMITF	CC4ITF	CC31TF	CC21TF	CCIITF	UDITF
	Reset Value			0	0				0	0	0	0		0	0	0	0	0	0	0	0
014h	TIMx_EVTGEN	Reserved												BGN	TGN	CCUDGN	CC4GN	CC3GN	CC2GN	CCIGN	NDGN
	Reset Value													0	0	0	0	0	0	0	0
	TIMx_CCMOD1 Output compare mode	Reserved				OC2CEN		OC2MD[2:0]		OC2PEN	OC2FEN		CC2SEL[1:0]	OCICEN		OC1MD[2:0]		OCIPEN	OCIFEN	CC1SFI [1-0]	
018h	Reset Value					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	TIMx_CCMOD1 Input capture mode	Reserved					ICOBED: MI	10.27[3:0]		IO. LIDORCOL	[A'1] DG 17 DI		CC2SEL[1:0]		ICTERS.01			IV:11230121		CC1SFL[1+0]	
	Reset Value					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01Ch	TIMx_CCMOD2 Output compare mode	Reserved				OC4CEN		OC4MD[2:0]		OC4PEN	OC4FEN		CC4SEL[1:0]	OC3CEN		OC3MD[2:0]		OC3PEN	OC3FEN	CC3SEL[1-0]	
	Reset Value					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01Ch	TIMx_CCMOD2 Input capture mode	Reserved					1C4EF3.01	1C4r[5:0]		LO. LIDORADI			CC4SEL[1:0]		10.2EF3.01			10.110.90501		CC3SEI [1-0]	
	Reset Value					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Nations Technologies Inc. Tel: +86-755-86309900 Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

www.nationstech.com

Offset	Register	31 30 22 22 22 22 22 22 22 22 22 22	21	20	19	17	16	15	14	13	12	Ξ	10	9	×	7	9	5	4	3	2	-	0
020h	TIMx_CCEN	Reserved	CC6P	CC6EN	Reserved	CC5P	CC5EN	bormood	Nesei veu	CC4P	CC4EN	CC3NP	CC3NEN	CC3P	CC3EN	CC2NP	CC2NEN	CC2P	CC2EN	CCINP	CCINEN	CCIP	CC1EN
	Reset Value		0	0	м	0	0	<u>م</u>	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
024h	TIMx_CNT	Reserved													CNT[15:0]							
	Reset Value							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0								
028h	TIMx_PSC	Reserved							PSC[15:0]														
	Reset Value							0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02Ch	TIMx_AR	Reserved													AR[1	15:0]							
	Reset Value							1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
030h	TIMx_REPCNT	Reserved																RI	EPCN	T[7:0	0]		
	Reset Value																0						
034h	TIMx_CCDAT1	Reserved										-		CC	DAT	1[15:0	0]			-			
0541	Reset Value															0							
038h	TIMx_CCDAT2	Reserved						CCDAT2[15:0]															
	Reset Value															0							
03Ch	TIMx_CCDAT3	Reserved																					
	Reset Value							0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
040h	TIMx_CCDAT4 Reset Value	Reserved						0	0	0	0	0	0	0	0	4[15:0	0	0	0	0	0	0	0
	Reset value							0	0	0	0	0	0			0	0	0	0	0	0	0	0
044h	TIMx_BKDT	Reserved						MOEN	AOEN	BKP	BKEN	OSSR	ISSO		דרערנמוויח			Ι	DTGN	J[7:0]			
	Reset Value							0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
048h	TIMx_DCTRL Reset Value	Reserved									0	DB	LEN[·	4:0]	0		Reserved		0	DBA 0	ADDR		0
											U	U	U						U	0	U	U	0
04Ch	TIMx_DADDR	Reserved						BURST[15:0]															
	Reset Value							0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

9.4.2 Control register 1 (TIMx_CTRL1)

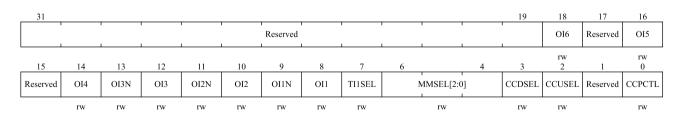
Offset address: 0x00

Reset value: 0x0000 0000

31													18	17	16
		1		1	1	Rese	erved	1		1	1			PBKPEN	LOCKUP EN
15	14		12	11	10	9	8	7	6	5	4	3	2	rw 1	rw 0
CLRSEL		Reserved		C1SEL	IOM BKPEN	CLKI	D[1:0]	ARPEN	CAMS	EL[1:0]	DIR	ONEPM	UPRS	UPDIS	CNTEN
rw				rw	rw	r	w	rw	r	w	rw	rw	rw	rw	rw

Bit field	Name	Description
31:18	Reserved	Reserved, the reset value must be maintained
17	PBKPEN	PVD as BKP enable
		0: Disable
		1: Enable
16	LBKPEN	LockUp as BKP enable

Bit field	Name	Description
		0: Disable
		1: Enable
15	CLRSEL	OCxREF clear selection
		0: Select the external OCxREF clear from ETR
		1: Select the internal OCxREF clear from comparator
14:12	Reserved	Reserved, the reset value must be maintained
11	C1SEL	Channel 1 selection
		0: Select external CH1 signal from IOM
		1: Select internal CH1 signal from COMP
10	IOMBKPEN	Enabling IOM as BKP
		0: Enable
		1: Disable
9:8	CLKD[1:0]	Clock division
		CLKD[1:0] indicates the division ratio between CK_INT (timer clock) and DTS (clock used
		for dead-time generator and digital filters (ETR, TIx))
		00: $t_{DTS} = t_{CK_INT}$
		$01: t_{DTS} = 2 \times t_{CK_INT}$
		10: $t_{DTS} = 4 \times t_{CK_INT}$
		11: Reserved, do not use this configuration
7	ARPEN	ARPEN: Auto-reload preload enable
		0: Shadow register disable for TIMx_AR register
		1: Shadow register enable for TIMx_AR register
6:5	CAMSEL[1:0]	Center-aligned mode selection
		00: Edge-aligned mode. TIMx_CTRL1.DIR specifies up-counting or down-counting.
		01: Center-aligned mode 1. The counter counts in center-aligned mode, and the output
		compare interrupt flag bit is set to 1 when down-counting.
		10: Center-aligned mode 2. The counter counts in center-aligned mode, and the output
		compare interrupt flag bit is set to 1 when up-counting.
		11: Center-aligned mode 3. The counter counts in center-aligned mode, and the output
		compare interrupt flag bit is set to 1 when up-counting or down-counting.
		Note: Switching from edge-aligned mode to center-aligned mode is not allowed when the
		counter is still enabled (TIMx_CTRL1.CNTEN = 1).
4	DIR	Direction
		0: Up-counting
		1: Down-counting
		Note: This bit is read-only when the counter is configured in center-aligned mode or encoder
		mode.
3	ONEPM	One-pulse mode
		0: Disable one-pulse mode, the counter counts are not affected when an update event occurs.
		1: Enable one-pulse mode, the counter stops counting when the next update event occurs
		(clearing TIMx_CTRL1.CNTEN bit)



Bit field	Name	Description
2	UPRS	Update request source
		This bit is used to select the UEV event sources by software.
		0: If update interrupt or DMA request is enabled, any of the following events will generate an
		update interrupt or DMA request:
		- Counter overflow/underflow
		 The TIMx_EVTGEN.UDGN bit is set
		 Update generation from the slave mode controller
		1: If update interrupt or DMA request is enabled, only counter overflow/underflow will
		generate update interrupt or DMA request
1	UPDIS	Update disable
		This bit is used to enable/disable the Update event (UEV) events generation by software.
		0: Enable UEV. UEV will be generated if one of following condition been fulfilled:
		- Counter overflow/underflow
		 The TIMx_EVTGEN.UDGN bit is set
		 Update generation from the slave mode controller
		Shadow registers will update with preload value.
		1: UEV disabled. No update event is generated, and the shadow registers (AR, PSC, and
		CCDATx) keep their values. If the TIMx_EVTGEN.UDGN bit is set or a hardware reset is
		issued by the slave mode controller, the counter and prescaler are reinitialized.
0	CNTEN	Counter Enable
		0: Disable counter
		1: Enable counter
		Note: external clock, gating mode and encoder mode can only work after
		TIMx_CTRL1.CNTEN bit is set in the software. Trigger mode can automatically set
		TIMx_CTRL1.CNTEN bit by hardware.

9.4.3 Control register 2 (TIMx_CTRL2)

Offset address: 0x04

Reset value: 0x0000 0000

Bit field	Name	Description
31:19	Reserved	Reserved, the reset value must be maintained
18	OI6	Output idle state 6 (OC6 output). See TIMx_CTRL2.OI1 bit.
17	Reserved	Reserved, the reset value must be maintained

Bit field	Name	Description
16	OI5	Output idle state 5 (OC5 output). See TIMx_CTRL2.OI1 bit.
15	Reserved	Reserved, the reset value must be maintained
14	OI4	Output idle state 4 (OC4 output). See TIMx_CTRL2.OI1 bit.
13	OI3N	Output idle state 3 (OC3N output). See TIMx_CTRL2.0I1N bits.
12	OI3	Output idle state 3 (OC3 output). See TIMx_CTRL2.OI1 bit.
11	OI2N	Output idle state 2 (OC2N output). See TIMx_CTRL2.0I1N bits.
10	OI2	Output idle state 2 (OC2 output). See TIMx_CTRL2.OI1 bit.
9	OI1N	Output Idle state 1 (OC1N Output)
		0: When TIMx_BKDT.MOEN = 0, after dead-time $OC1N = 0$
		1: When TIMx_BKDT.MOEN = 0, after dead-time $OC1N = 1$
8	OI1	Output Idle state 1
		0: When TIMx_BKDT.MOEN = 0, if OC1N is implemented, after dead-time $OC1 = 0$
		1: When TIMx_BKDT.MOEN = 0, if OC1N is implemented, after dead-time $OC1 = 1$
7	TI1SEL	TI1 selection
		0: TIMx_CH1 pin connected to TI1 input.
		1: TIMx_CH1, TIMx_CH2, and TIMx_CH3 pins are XOR connected to the TI1 input.
6:4	MMSEL[2:0]	Master Mode Selection
		These 3 bits (TIMx_CTRL2. MMSEL [2:0]) are used to select the synchronization information
		(TRGO) sent to the slave timer in the master mode. Possible combinations are as follows:
		000: Reset –When the TIMx_EVTGEN.UDGN is set or a reset is generated by the slave mode
		controller, a TRGO pulse occurs. And in the latter case, the signal on TRGO is delayed
		compared to the actual reset.
		001: Enable - The TIMx_CTRL1.CNTEN bit is used as the trigger output (TRGO). Sometimes
		you need to start multiple timers at the same time or enable slave timer for a period of time.
		The counter enable signal is set when TIMx_CTRL1.CNTEN bit is set or the trigger input in
		gated mode is high.
		When the counter enable signal is controlled by the trigger input, there is a delay on TRGO
		except if the master/slave mode is selected (see the description of the TIMx_SMCTRL.MSMD
		bit).
		010: Update - The update event is selected as the trigger output (TRGO). For example, a master
		timer clock can be used as a slave timer prescaler.
		011: Compare pulse - Triggers the output to send a positive pulse (TRGO) when the
		TIMx_STS.CC1ITF is to be set (even if it is already high), when a capture or a comparison
		succeeds.
		100: Compare - OC1REF signal is used as the trigger output (TRGO).
		101: Compare - OC2REF signal is used as the trigger output (TRGO).
		110: Compare - OC3REF signal is used as the trigger output (TRGO).
		111: Compare - OC4REF signal is used as the trigger output (TRGO).
3	CCDSEL	Capture/compare DMA selection
		0: When a CCx event occurs, a DMA request for CCx is sent.
		1: When an update event occurs, a DMA request for CCx is sent.

Bit field	Name	Description
2	CCUSEL	Capture/compare control update selection
		0: If TIMx_CTRL2.CCPCTL = 1, they can only be updated by setting CCUDGN bits
		1: If TIMx_CTRL2.CCPCTL = 1, they can be updated by setting CCUDGN bits or a rising edge
		on TRGI.
		Note: This bit only applied to channels with complementary outputs.
1	Reserved	Reserved, the reset value must be maintained
0	CCPCTL	Capture/ Compare preloaded control
		0: No preloading of CCxEN, CCxNEN and OCxMD bits occurs.
		1: Preloading of CCxEN, CCxNEN and OCxMD bits occurs. they are updated only when a
		commutation event COM occurs (TIMx_EVTGEN.CCUDGN bit set or rising edge on TRGI
		depending on CCUSEL bit)
		Note: This bit only applied to channels with complementary outputs.

9.4.4 Slave mode control register (TIMx_SMCTRL)

Offset address: 0x08

Reset value: 0x0000

15	14	13 12	11	8	7	6	4	3	2	0
EXTP	EXCEN	EXTPS[1:0]	EXTF[3:0]	1	MSMD	TSEL[2:0]		Reserved		SMSEL[2:0]
rw	rw	rw	rw		rw	rw				rw

Bit field	Name	Description
15	EXTP	External trigger polarity
		This bit is used to select whether the trigger operation is to use ETR or the inversion of ETR.
		0: ETR active at high level or rising edge.
		1: ETR active at low level or falling edge.
14	EXCEN	External clock enable
		This bit is used to enable external clock mode 2, and the counter is driven by any active edge on
		the ETRF signal in this mode.
		0: External clock mode 2 disable.
		1: External clock mode 2 enable.
		Note 1: When external clock mode 1 and external clock mode 2 are enabled at the same time, the
		input of the external clock is ETRF.
		Note 2: The following slave modes can be used simultaneously with external clock mode 2: reset
		mode, gated mode and trigger mode; However, TRGI cannot connect to ETRF
		$(TIMx_SMCTRL.TSEL \neq '111').$
		Note 3: Setting the TIMx_SMCTRLEXCEN bit has the same effect as selecting external clock
		mode 1 and connecting TRGI to ETRF (TIMx_SMCTRL.SMSEL = 111 and TIMx_SMCTRL.TSEL
		= 111).
13:12	EXTPS[1:0]	External trigger prescaler

Bit field	Name	Description
		The frequency of the external trigger signal ETRP must be at most 1/4 of TIMxCLK frequency.
		When a faster external clock is input, a prescaler can be used to reduce the frequency of ETRP.
		00: Prescaler disable
		01: ETRP frequency divided by 2
		10: ETRP frequency divided by 4
		11: ETRP frequency divided by 8
11:8	EXTF[3:0]	External trigger filter
		These bits are used to define the frequency at which the ETRP signal is sampled and the
		bandwidth of the ETRP digital filtering. In effect, the digital filter is an event counter that
		generates a validate output after consecutive N events are recorded.
		0000: No filter, sampling at f _{DTS}
		0001: $f_{SAMPLING} = f_{CK_INT}$, N = 2
		0010: $f_{SAMPLING} = f_{CK_INT}$, N = 4
		0011: $f_{SAMPLING} = f_{CK_INT}$, N = 8
		0100: $f_{SAMPLING} = f_{DTS}/2$, N = 6
		0101: $f_{SAMPLING} = f_{DTS}/2$, N = 8
		0110: $f_{SAMPLING} = f_{DTS}/4$, N = 6
		0111: $f_{SAMPLING} = f_{DTS}/4$, N = 8
		1000: $f_{SAMPLING} = f_{DTS}/8$, N = 6
		1001: $f_{SAMPLING} = f_{DTS}/8$, N = 8
		1010: $f_{SAMPLING} = f_{DTS}/16$, N = 5
		1011: $f_{SAMPLING} = f_{DTS}/16$, N = 6
		1100: $f_{SAMPLING} = f_{DTS}/16$, N = 8
		1101: $f_{SAMPLING} = f_{DTS}/32$, N = 5
		1110: $f_{SAMPLING} = f_{DTS}/32$, N = 6
		1111: $f_{SAMPLING} = f_{DTS}/32$, N = 8
7	MSMD	Master/ Slave mode
		0: No action
		1: Events on the trigger input (TRGI) are delayed to allow a perfect synchronization between the
		current timer (via TRGO) and its slaves. This is useful when several timers are required to be
		synchronized to a single external event.
6:4	TSEL[2:0]	Trigger selection
		These 3 bits are used to select the trigger input of the synchronous counter.
		000: Internal trigger 0 (ITR0) 100: TI1 edge detector (TI1F_ED)
		001: Internal trigger 1 (ITR1) 101: Filtered timer input 1 (TI1FP1)
		010: Internal trigger 2 (ITR2) 110: Filtered timer input 2 (TI2FP2)
		011: Internal trigger 3 (ITR3) 111: External triggered Input (ETRF)
		For more details on ITRx, see 错误!未找到引用源。 below.
		Note: These bits must be changed only when not in use (e. g. TIMx_SMCTRL.SMSEL=000) to
		avoid false edge detection at the transition.

Bit field	Name	Description
2:0	SMSEL[2:0]	Slave mode selection
		When an external signal is selected, the active edge of the trigger signal (TRGI) is linked to the
		selected external input polarity (see input control register and control register description)
		000: Disable slave mode. If TIMx_CTRL1.CNTEN = 1, the prescaler is driven directly by the
		internal clock.
		001: Encoder mode 1. According to the level of TI2FP2, the counter up-counting or down-
		counting on the edge of TI1FP1.
		010: Encoder mode 2. According to the level of TI1FP1, the counter up-counting or down-
		counting on the edge of TI2FP2.
		011: Encoder mode 3. According to the input level of another signal, the counter up-counting or
		down-counting on the edges of TI2FP1 and TI2FP2.
		100: Reset mode. On the rising edge of the selected trigger input (TRGI), the counter is
		reinitialized and the shadow register is updated.
		101: Gated mode. When the trigger input (TRGI) is high, the clock of the counter is enabled. Once
		the trigger input becomes low, the counter stops counting, but is not reset. In this mode, the start
		and stop of the counter are controlled.
		110: Trigger mode. When a rising edge occurs on the trigger input (TRGI), the counter is started
		but not reset. In this mode, only the start of the counter is controlled.
		111: External clock mode 1. The counter is clocked by the rising edge of the selected trigger input
		(TRGI).
		Note: Do not use gated mode if TIIF_ED is selected as the trigger input
		(TIMx_SMCTRL.TSEL=100). This is because TI1F_ED outputs a pulse for each TI1F transition,
		whereas gated mode checks the level of the triggered input.

Table 9-3 TIMx internal trigger connection

Slave timer	ITR0 (TSEL = 000)	ITR1 (TSEL = 001)	ITR2 (TSEL = 010)	ITR3 (TSEL = 011)
TIM1	NA	NA	TIM3	NA
TIM8	TIM1	NA	NA	NA

9.4.5 DMA/Interrupt enable registers (TIMx_DINTEN)

Offset address: 0x0C

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	TDEN	COMDEN	CC4DEN	CC3DEN	CC2DEN	CC1DEN	UDEN	BIEN	TIEN	COMIEN	CC4IEN	CC3IEN	CC2IEN	CC1IEN	UIEN
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit field	Name	Description
15	Reserved	Reserved, the reset value must be maintained

Bit field	Name	Description
14	TDEN	Trigger DMA request enable
		0: Disable trigger DMA request
		1: Enable trigger DMA request
13	COMDEN	COM DMA request enable
		0: Disable COM DMA request
		1: Enable COM DMA request
12	CC4DEN	Capture/Compare 4 DMA request enable
		0: Disable capture/compare 4 DMA request
		1: Enable capture/compare 4 DMA request
11	CC3DEN	Capture/Compare 3 DMA request enable
		0: Disable capture/compare 3 DMA request
		1: Enable capture/compare 3 DMA request
10	CC2DEN	Capture/Compare 2 DMA request enable
		0: Disable capture/compare 2 DMA request
		1: Enable capture/compare 2 DMA request
9	CC1DEN	Capture/Compare 1 DMA request enable
		0: Disable capture/compare 1 DMA request
		1: Enable capture/compare 1 DMA request
8	UDEN	Update DMA request enable
		0: Disable update DMA request
		1: Enable update DMA request
7	BIEN	Break interrupt enable
		0: Disable break interrupt
		1: Enable break interrupt
6	TIEN	Trigger interrupt enable
		0: Disable trigger interrupt
		1: Enable trigger interrupt
5	COMIEN	COM interrupt enable
		0: Disable COM interrupt
		1: Enable COM interrupt
4	CC4IEN	Capture/Compare 4 interrupt enable
		0: Disable capture/compare 4 interrupt
		1: Enable capture/compare 4 interrupt
3	CC3IEN	Capture/Compare 3 interrupt enable
		0: Disable capture/compare 3 interrupt
		1: Enable capture/compare 3 interrupts
2	CC2IEN	Capture/Compare 2 interrupt enable
		0: Disable capture/compare 2 interrupt
		1: Enables capture/compare 2 interrupts

Bit field	Name	Description			
1	CC1IEN	Capture/Compare 1 interrupt enable			
		0: Disable capture/compare 1 interrupt			
		1: Enables capture/comparing 1 interrupt			
0	UIEN	Update interrupt enable			
		0: Disable update interrupt			
		1: Enables update interrupt			

9.4.6 Status registers (TIMx_STS)

Offset address: 0x10

Reset value: 0x0000 0000

31													18	17	16
	1			1		Rese	erved						1	CC6ITF	CC5ITF
15		13	12	11	10	9	8	7	6	5	4	3	2	rc_w0 1	rc_w0 0
	Reserved		CC40CF	CC30CF	CC2OCF	CC10CF	Reserved	BITF	TITF	COMITF	CC4ITF	CC3ITF	CC2ITF	CC1ITF	UDITF
			rc_w0	rc_w0	rc_w0	rc_w0		rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0

Bit field	Name	Description
31: 18	Reserved	Reserved, the reset value must be maintained
17	CC6ITF	Capture/Compare 6 interrupt flag
		See TIMx_STS.CC1ITF description.
16	CC5ITF	Capture/Compare 5 interrupt flag
		See TIMx_STS.CC1ITF description.
15: 13	Reserved	Reserved, the reset value must be maintained
12	CC4OCF	Capture/Compare 4 overcapture flag
		See TIMx_STS.CC1OCF description.
11	CC3OCF	Capture/Compare 3 overcapture flag
		See TIMx_STS.CC1OCF description.
10	CC2OCF	Capture/Compare 2 overcapture flags
		See TIMx_STS.CC1OCF description.
9	CC10CF	Capture/Compare 1 overcapture flag
		This bit is set by hardware only when the corresponding channel is configured in input capture
		mode. Cleared by software writing 0.
		0: No overcapture occurred
		1: TIMx_STS.CC1ITF was already set when the value of the counter has been captured in the
		TIMx_CCDAT1 register.
8	Reserved	Reserved, the reset value must be maintained
7	BITF	Break interrupt flag
		This bit is set by hardware once the brake input is active. This bit is cleared by software when
		the brake input becomes inactive.

Bit field	Name	Description
		0: No break event occurred
		1: An active level has been detected
6	TITF	Trigger interrupt flag
		This bit is set by hardware when an active edge is detected on the TRGI input when the slave
		mode controller is in a mode other than gated. This bit is set by hardware when any edge in
		gated mode is detected. This bit is cleared by software.
		0: No trigger event occurred
		1: Trigger interrupt occurred
5	COMITF	COM interrupt flag
		This bit is set by hardware once a COM event is generated (when TIMx_CCEN.CCxEN,
		TIMx_CCEN.CCxNEN, TIMx_CCMOD1.OCxMD have been updated). This bit is cleared by
		software.
		0: No COM event occurred
		1: COM interrupt pending
4	CC4ITF	Capture/Compare 4 interrupt flag
		See TIMx_STS.CC11TF description.
3	CC3ITF	Capture/Compare 3 interrupt flag
		See TIMx_STS.CC11TF description.
2	CC2ITF	Capture/Compare 2 interrupt flag
		See TIMx_STS.CC11TF description.
1	CC1ITF	Capture/Compare 1 interrupt flag
		When the corresponding channel of CC1 is in output mode:
		Except in center-aligned mode, this bit is set by hardware when the counter value is the same as
		the compare value (see TIMx_CTRL1.CAMSEL bit description). This bit is cleared by
		software.
		0: No match occurred.
		1: The value of TIMx_CNT is the same as the value of TIMx_CCDAT1.
		When the value of TIMx_CCDAT1 is greater than the value of TIMx_AR, the
		TIMx_STS.CC1ITF bit will go high if the counter overflows (in up-counting and up/down-
		counting modes) and underflows in down-counting mode.
		When the corresponding channel of CC1 is in input mode:
		This bit is set by hardware when the capture event occurs. This bit is cleared by software or by
		reading TIMx_CCDAT1.
		0: No input capture occurred.
		1: Input capture occurred. Counter value has captured in the TIMx_CCDAT1. An edge with the
		same polarity as selected has been detected on IC1.
0	UDITF	Update interrupt flag
		This bit is set by hardware when an update event occurs under the following conditions:

Bit field	Name	Description			
		- When TIMx_CTRL1.UPDIS = 0, and repeat counter value overflow or underflow (An			
		update event is generated when the repeat counter equals 0).			
		- When TIMx_CTRL1.UPRS = 0, TIMx_CTRL1.UPDIS = 0, and set the			
		TIMx_EVTGEN.UDGN bit by software to reinitialize the CNT.			
		- When TIMx_CTRL1.UPRS = 0, TIMx_CTRL1.UPDIS = 0, and the counter CNT is			
		reinitialized by the trigger event. (See TIMx_SMCTRL Register description)			
		This bit is cleared by software.			
		0: No update event occurred			
		1: Update interrupt occurred			

9.4.7 Event generation registers (TIMx_EVTGEN)

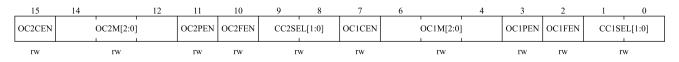
Offset address: 0x14

Reset values: 0x0000

15						8	7	6	5	4	3	2	1	0
	1	Rese	erved	1	1	1	BGN	TGN	CCUDGN	CC4GN	CC3GN	CC2GN	CC1GN	UDGN
				•			w	w	w	w	w	w	w	w

Bit field	Name	Description							
15: 8	Reserved	Reserved, the reset value must be maintained							
7	BGN	Break generation							
		This bit can generate a brake event when set by software. And at this time TIMx_BKDT.MOEN							
		= 0, TIMx_STS.BITF = 1, if the corresponding interrupt and DMA are enabled, the							
		corresponding interrupt and DMA will be generated. This bit is automatically cleared by							
		hardware.							
		0: No action							
		1: Generated a break event							
6	TGN	Trigger generation							
		This bit can generate a trigger event when set by software. And at this time TIMx_STS.TITF =							
		1, if the corresponding interrupt and DMA are enabled, the corresponding interrupt and DMA							
		will be generated. This bit is automatically cleared by hardware.							
		0: No action							
		1: Generated a trigger event							
5	CCUDGN	Capture/Compare control update generation							
		This bit is set by software. And if TIMx_CTRL2.CCPCTL = 1 at this time, the CCxEN,							
		CCxNEN and OCxMD bits are allowed to be updated. This bit is automatically cleared by							
		hardware.							
		0: No action							
		1: Generated a COM event							
		Note: This bit is only valid for channels with complementary outputs.							

Bit field	Name	Description							
4	CC4GN	Capture/Compare 4 generation							
		See TIMx_EVTGEN.CC1GN description.							
3	CC3GN	Capture/Compare 3 generation							
		See TIMx_EVTGEN.CC1GN description.							
2	CC2GN	Capture/Compare 2 generation							
		See TIMx_EVTGEN.CC1GN description.							
1	CC1GN	Capture/Compare 1 generation							
		This bit can generate a capture/compare event when set by software. This bit is automatically							
		cleared by hardware.							
		When the corresponding channel of CC1 is in output mode:							
		The TIMx_STS.CC1ITF flag will be pulled high, if the corresponding interrupt and DMA are							
		enabled, the corresponding interrupt and DMA will be generated.							
		When the corresponding channel of CC1 is in input mode:							
		TIMx_CCDAT1 will capture the current counter value, and the TIMx_STS.CC1ITF flag will be							
		pulled high, if the corresponding interrupt and DMA are enabled, the corresponding interrupt							
		and DMA will be generated. If The TIMx_STS.CC1ITF is already pulled high, pull							
		TIMx_STS.CC10CF high.							
		0: No action							
		1: Generated a CC1 capture/compare event							
0	UDGN	Update generation							
		This bit can generate an update event when set by software. And at this time the counter will be							
		reinitialized, the prescaler counter will be cleared, the counter will be cleared in center-aligned or up-							
		counting mode, but take TIMx_AR in down-counting mode the value of the register. This bit is							
		automatically cleared by hardware.							
		0: No action							
		1: Generated an update event							


9.4.8 Capture/compare mode register 1 (TIMx_CCMOD1)

Offset address: 0x18

Reset value: 0x0000

Channels can be used for input (capture mode) or output (compare mode), and the direction of the channel is defined by the corresponding CCxSEL bit. The other bits of the register act differently in input and output modes. OCx describes the function of a channel in output mode, ICx describes the function of a channel in input mode. Hence, please note that the same bit can have different meanings for output mode and for input mode.

Output compare mode:

Bit field	Name	Description
15	OC2CEN	Output Compare 2 clear enable
14:12	OC2MD[2:0]	Output Compare 2 mode
11	OC2PEN	Output Compare 2 preload enable
10	OC2FEN	Output Compare 2 fast enable
9:8	CC2SEL[1:0]	Capture/compare 2 selection
		These bits are used to select the input/output and input mapping of the channel
		00: CC2 channel is configured as output
		01: CC2 channel is configured as input, IC2 is mapped on TI2
		10: CC2 channel is configured as input, IC2 is mapped on TI1
		11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is only active
		when the internal trigger input is selected by TIMx_SMCTRL.TSEL.
		Note: CC2SEL is writable only when the channel is off ($TIMx_CCEN.CC2EN = 0$).
7	OC1CEN	Output Compare 1 clear enable
		0: OC1REF is not affected by ETRF input level
		1: OC1REF is cleared immediately when the ETRF input level is detected as high
6:4	OC1MD[2:0]	Output Compare 1 mode
		These bits are used to manage the output reference signal OC1REF, which determines the
		values of OC1 and OC1N, and is valid at high levels, while the active levels of OC1 and
		OC1N depend on the TIMx_CCEN.CC1P and TIMx_CCEN.CC1NP bits.
		000: Frozen. Comparison between TIMx_CCDAT1 register and counter TIMx_CNT has no
		effect on OC1REF signal.
		001: Set channel 1 to the active level on match. When TIMx_CCDAT1 = TIMx_CNT,
		OC1REF signal will be forced high.
		010: Set channel 1 as inactive level on match. When TIMx_CCDAT1 = TIMx_CNT,
		OC1REF signal will be forced low.
		011: Toggle. When TIMx_CCDAT1 = TIMx_CNT, OC1REF signal will be toggled.
		100: Force to inactive level. OC1REF signal is forced low.
		101: Force to active level. OC1REF signal is forced high.
		110: PWM mode 1 - In up-counting mode, if TIMx_CNT < TIMx_CCDAT1, OC1REF signal
		of channel 1 is high, otherwise it is low. In down-counting mode, if TIMx_CNT >
		TIMx_CCDAT1, OC1REF signal of channel 1 is low, otherwise it is high.
		111: PWM mode 2 - In up-counting mode, if TIMx_CNT < TIMx_CCDAT1, OC1REF signal
		of channel 1 is low, otherwise it is high. In down-counting mode, if TIMx_CNT >
		TIMx_CCDAT1, OC1REF signal of channel 1 is high, otherwise it is low.
		Note 1: In PWM mode 1 or PWM mode 2, the OCIREF level changes only when the
		comparison result changes or when the output compare mode is switched from frozen mode to
		PWM mode.
3	OC1PEN	Output Compare 1 preload enable
		0: Disable preload function of TIMx_CCDAT1 register. Supports write operations to
		TIMx_CCDAT1 register at any time, and the written value is effective immediately.
		1: Enable preload function of TIMx_CCDAT1 register. Only read and write operations to

Bit field	Name	Description							
		preload registers. When an update event occurs, the value of TIMx_CCDAT1 is loaded into							
		the active register.							
		Note 1: Only when TIMx_CTRL1.ONEPM = 1(In one-pulse mode), PWM mode can be used							
		without verifying the preload register, otherwise no other behavior can be predicted.							
2	OC1FEN	Output Compare 1 fast enable							
		This bit is used to speed up the response of the CC output to the trigger input event.							
		0: CC1 behaves normally depending on the counter and CCDAT1 values, even if the trigger is							
		ON. The minimum delay for activating CC1 output when an edge occurs on the trigger input							
		is 5 clock cycles.							
		1: An active edge of the trigger input acts like a comparison match on CC1 output. Therefore,							
		OC is set to the comparison level regardless of the comparison result. The delay time for							
		sampling the trigger input and activating the CC1 output is reduced to 3 clock cycles.							
		OCxFEN only works if the channel is configured in PWM1 or PWM2 mode.							
1: 0	CC1SEL[1:0]	Capture/compare 1 selection							
		These bits are used to select the input/output and input mapping of the channel							
		00: CC1 channel is configured as output							
		01: CC1 channel is configured as input, IC1 is mapped on TI1							
		10: CC1 channel is configured as input, IC1 is mapped on TI2							
		11: CC1 channels are configured as inputs and IC1 is mapped to TRC. This mode is only							
		active when the internal trigger input is selected by TIMx_SMCTRL.TSEL.							
		Note: CC1SEL is writable only when the channel is off ($TIMx_CCEN.CC1EN = 0$).							

Input capture mode:

15		12	11	10	9	8	7		4	3	2	1	0
	IC2F[3:0]		IC2PS	C[1:0]	CC2SI	' EL[1:0]		IC1F[3:0]	1	IC1PS	SC[1:0]	CC1SI	EL[1:0]
	rw		r	w	r	w		rw		r	W	r	W

Bit field	Name	Description
15:12	IC2F[3:0]	Input Capture 2 Filter
11:10	IC2PSC[1:0]	Input Capture 2 Prescaler
9:8	Capture/Compare 2 selection	
		These bits are used to select the input/output and input mapping of the channel
		00: CC2 channel is configured as output
		01: CC2 channel is configured as input, IC2 is mapped on TI2
		10: CC2 channel is configured as input, IC2 is mapped on TI1
		11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is only active when the
		internal trigger input is selected by TIMx_SMCTRL.TSEL.
		Note: CC2SEL is writable only when the channel is off ($TIMx_CCEN.CC2EN = 0$).
7:4	IC1F[3:0]	Input Capture 1 filter
		These bits are used to define sampling frequency of TI1 input and the length of digital filter. The

Bit field	Name	Description
		digital filter is an event counter that generates an output transition after N events are recorded.
		0000: No filter, sampling at f _{DTS} frequency
		0001: $f_{SAMPLING} = f_{CK_INT}$, $N = 2$
		0010: $f_{SAMPLING} = f_{CK_INT}$, N = 4
		0011: $f_{SAMPLING} = f_{CK_INT}$, N = 8
		0100: $f_{SAMPLING} = f_{DTS}/2$, N = 6
		0101: $f_{SAMPLING} = f_{DTS}/2$, N = 8
		0110: $f_{SAMPLING} = f_{DTS}/4$, N = 6
		0111: $f_{SAMPLING} = f_{DTS}/4$, N = 8
		1000: $f_{SAMPLING} = f_{DTS}/8$, N = 6
		1001: $f_{SAMPLING} = f_{DTS}/8$, N = 8
		1010: $f_{SAMPLING} = f_{DTS}/16$, N = 5
		1011: $f_{SAMPLING} = f_{DTS}/16$, N = 6
		1100: $f_{SAMPLING} = f_{DTS}/16$, N = 8
		1101: $f_{SAMPLING} = f_{DTS}/32$, N = 5
		1110: $f_{SAMPLING} = f_{DTS}/32$, N = 6
		1111: $f_{SAMPLING} = f_{DTS}/32$, N = 8
3:2	IC1PSC[1:0]	Input Capture 1 prescaler
		These bits are used to select the ratio of the prescaler for IC1 (CC1 input).
		When $TIMx_CCEN.CC1EN = 0$, the prescaler will be reset.
		00: No prescaler, capture is done each time an edge is detected on the capture input
		01: Capture is done once every 2 events
		10: Capture is done once every 4 events
		11: Capture is done once every 8 events
1:0	CC1SEL[1:0]	Capture/Compare 1 selection
		These bits are used to select the input/output and input mapping of the channel
		00: CC1 channel is configured as output
		01: CC1 channel is configured as input, IC1 is mapped on TI1
		10: CC1 channel is configured as input, IC1 is mapped on TI2
		11: CC1 channel is configured as input, IC1 is mapped to TRC. This mode is only active when the
		internal trigger input is selected by TIMx_SMCTRL.TSEL.
		Note: CCISEL is writable only when the channel is off ($TIMx_CCEN.CCIEN = 0$).

9.4.9 Capture/compare mode register 2 (TIMx_CCMOD2)

Offset address: 0x1C

Reset value: 0x0000

See the description of the CCMOD1 register above

Output comparison mode:

15	14	12 11	10	9 8	7	6	4	3 2	1 0
OC4CEN	OC4MD[2:0]	OC4PEN	OC4FEN	CC4SEL[1:0]	OC3CEN	OC3MD[2:0]	OC3	PEN OC3FEN	CC3SEL[1:0]
rw	rw	rw	rw	rw	rw	rw	r	w rw	rw

Bit field	Name	Description
15	OC4CEN	Output compare 4 clear enable
14:12	OC4MD[2:0]	Output compare 4 mode
11	OC4PEN	Output compare 4 preload enable
10	OC4FEN	Output compare 4 fast enable
9:8	CC4SEL[1:0]	Capture/Compare 4 selection
		These bits are used to select the input/output and input mapping of the channel
		00: CC4 channel is configured as output
		01: CC4 channel is configured as input, IC4 is mapped on TI4
		10: CC4 channel is configured as input, IC4 is mapped on TI3
		11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is only active when
		the internal trigger input is selected by TIMx_SMCTRL.TSEL.
		Note: CC4SEL is writable only when the channel is off ($TIMx_CCEN.CC4EN = 0$).
7	OC3CEN	Output compare 3 clear enable
6:4	OC3MD[2:0]	Output compare 3 mode
3	OC3PEN	Output compare 3 preload enable
2	OC3FEN	Output compare 3 fast enable
1:0	CC3SEL[1:0]	Capture/Compare 3 selection
		These bits are used to select the input/output and input mapping of the channel
		00: CC3 channel is configured as output
		01: CC3 channel is configured as input, IC3 is mapped to TI3
		10: CC3 channel is configured as input, IC3 is mapped on TI4
		11: CC3 channel is configured as input, IC3 is mapped to TRC. This mode is only active when
		the internal trigger input is selected by TIMx_SMCTRL.TSEL.
		Note: CC3SEL is writable only when the channel is off $(TIMx_CCEN.CC3EN = 0)$.

Input capture mode:

15	12	11	10	9	8	7			4	3	2	1	0
IC4F[3:0]		IC4PS	C[1:0]	CC4SI	EL[1:0]		IC3F	[3:0]	1	IC3PS	C[1:0]	CC3SI	EL[1:0]
		1					I						
rw		rw		r	rw		rw			rw		rw	
r													

B	Bit field Name		Description							
1	5:12	IC4F[3:0]	Input Capture 4 filter							
1	1:10	IC4PSC[1:0]	Input Capture 4 Prescaler							

Bit field	Name	Description
9:8	CC4SEL[1:0]	Capture/Compare 4 selection
		These bits are used to select the input/output and input mapping of the channel
		00: CC4 channel is configured as output
		01: CC4 channel is configured as input, IC4 is mapped on TI4
		10: CC4 channel is configured as input, IC4 is mapped on TI3
		11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is only active when the
		internal trigger input is selected by TIMx_SMCTRL.TSEL.
		Note: CC4SEL is writable only when the channel is off $(TIMx_CCEN.CC4EN = 0)$.
7:4	IC3F[3:0]	Input Capture 3 filter
3:2	IC3PSC[1:0]	Input Capture 3 Prescaler
1:0	CC3SEL[1:0]	Capture/compare 3 selection
		These bits are used to select the input/output and input mapping of the channel
		00: CC3 channel is configured as output
		01: CC3 channel is configured as input, IC3 is mapped to TI3
		10: CC3 channel is configured as input, IC3 is mapped on TI4
		11: CC3 channel is configured as input, IC3 is mapped to TRC. This mode is only active when the
		internal trigger input is selected by TIMx_SMCTRL.TSEL.
		Note: CC3SEL is writable only when the channel is off $(TIMx_CCEN.CC3EN = 0)$.

9.4.10 Capture/compare enable registers (TIMx_CCEN)

Offset address: 0x20

Reset value: 0x0000 0000

31									22	21	20	19	18	17	16
		1	1	Rese	erved					CC6P	CC6EN	Reso	erved	CC5P	CC5EN
15	14	13	12	11	10	9	8	7	6	rw 5	rw 4	3	2	rw 1	rw 0
Rese	erved	CC4P	CC4EN	CC3NP	CC3NEN	CC3P	CC3EN	CC2NP	CC2NEN	CC2P	CC2EN	CC1NP	CC1NEN	CC1P	CC1EN
		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit field	Name	Description						
31:22	Reserved	served, the reset value must be maintained						
21	CC6P	pture/Compare 6 output polarity						
		See TIMx_CCEN.CC1P description.						
20	CC6EN	Capture/Compare 6 output enable						
		See TIMx_CCEN.CC1EN description.						
19: 18	Reserved	Reserved, the reset value must be maintained						
17	CC5P	Capture/Compare 5 output polarity						
		See TIMx_CCEN.CC1P description.						

Bit field	Name	Description
16	CC5EN	Capture/Compare 5 output enable
		See TIMx_CCEN.CC1EN description.
15:14	Reserved	Reserved, the reset value must be maintained
13	CC4P	Capture/Compare 4 output polarity
		See TIMx_CCEN.CC1P description.
12	CC4EN	Capture/Compare 4 output enable
		See TIMx_CCEN.CC1EN description.
11	CC3NP	Capture/Compare 3 Complementary output polarity
		See TIMx_CCEN.CC1NP description.
10	CC3NEN	Capture/Compare 3 complementary output enable
		See TIMx_CCEN.CC1NEN description.
9	CC3P	Capture/Compare 3 output polarity
		See TIMx_CCEN.CC1P description.
8	CC3EN	Capture/Compare 3 output enable
		See TIMx_CCEN.CC1EN description.
7	CC2NP	Capture/Compare 2 complementary output polarity
		See TIMx_CCEN.CC1NP description.
6	CC2NEN	Capture/Compare 2 complementary output enable
		See TIMx_CCEN.CC1NEN description.
5	CC2P	Capture/Compare 2 output polarity
		See TIMx_CCEN.CC1P description.
4	CC2EN	Capture/Compare 2 output enable
		See TIMx_CCEN.CC1EN description.
3	CC1NP	Capture/Compare 1 complementary output polarity
		0: OC1N active high
		1: OC1N active low
2	CC1NEN	Capture/Compare 1 complementary output enable
		0: Disable - Disable output OC1N signal. The level of OC1N depends on the value of these bits
		TIMx_BKDT.MOEN, TIMx_BKDT.OSSI, TIMx_BKDT.OSSR, TIMx_CTRL2.OI1,
		TIMx_CTRL2.011N and TIMx_CCEN.CC1EN.
		1: Enable - Enable output OC1N signal. The level of OC1N depends on the value of these bits
		TIMx_BKDT.MOEN, TIMx_BKDT.OSSI, TIMx_BKDT.OSSR, TIMx_CTRL2.OI1,
		TIMx_CTRL2.0I1N and TIMx_CCEN.CC1EN.
1	CC1P	Capture/Compare 1 output polarity
		When the corresponding channel of CC1 is in output mode:
		0: OC1 active high
		1: OC1 active low
		When the corresponding channel of CC1 is in input mode:
		At this time, this bit is used to select whether IC1 or the inverse signal of IC1 is used as the trigger
		or capture signal.

Bit field	Name	Description
		0: non-inverted: Capture action occurs when IC1 generates a rising edge. When used as external
		trigger, IC1 is non-inverted.
		1: inverted: Capture action occurs when IC1 generates a falling edge. When used as external
		trigger, IC1 is inverted.
		<i>Note: If TIMx_BKDT.LCKCFG = 3 or 2, these bits cannot be modified.</i>
0	CC1EN	Capture/Compare 1 output enable
		When the corresponding channel of CC1 is in output mode:
		0: Disable - Disable output OC1 signal. The level of OC1 depends on the value of these bits
		TIMx_BKDT.MOEN, TIMx_BKDT.OSSI, TIMx_BKDT.OSSR, TIMx_CTRL2.011,
		TIMx_CTRL2.0I1N and TIMx_CCEN.CC1NEN.
		1: Enable - Enable output OC1 signal. The level of OC1N depends on the value of these bits
		TIMx_BKDT.MOEN, TIMx_BKDT.OSSI, TIMx_BKDT.OSSR, TIMx_CTRL2.011,
		TIMx_CTRL2.0I1N and TIMx_CCEN.CC1NEN.
		When the corresponding channel of CC1 is in input mode:
		At this time, this bit is used to disable/enable the capture function.
		0: Disable capture
		1: Enable capture

Table 9-4 Output control bits of complementary OCx and OCxN channels with break function

Contro	l bits				Output state ¹⁾					
MOEN	NOSSI OSSR CCXEN CCXNEN		CCxNEN	OCx Output state	OCxN Output state					
		0	0	0	Output disabled (not driven by timer) OCx=0,OCx EN=0	Output disabled (not driven by timer) OCxN=0,OCxN EN=0				
		0	0	1	Output disabled (not driven by timer) OCx=0,OCx_EN=0	OCxREF + polarity, OCxN= OCxREF xor CCxNP,OCxN EN=1				
		0	1 0		OCxREF + polarity, OCx= OCxREF xor CCxP,OCx_EN=1	Output disabled (not driven by timer) OCxN=0,OCxN EN=0				
		0 1	1	OCxREF + polarity + dead- time,OCx EN=1	Complementary to OCxREF + polarity + dead- time,OCxN_EN=1					
1	Х	1	0	0	Output disabled (not driven by timer) OCx=CCxP,OCx EN=0	Output disabled (not driven by timer) OCxN=CCxNP,OCxN EN=0				
		1	0	1	Off-state (Output enabled with inactive state) OCx=CCxP,OCx_EN=1	OCxREF + polarity, OCxN= OCxREF xor CCxNP,OCxN_EN=1				
		1 1		0	OCxREF + polarity, OCx= OCxREF xor CCxP, OCx_EN=1	Off-state (Output enabled with inactive state) OCxN=CCxNP,OCxN_EN=1				
		1	1 1		OCxREF + polarity + dead-time,	Complementary to OCxREF + polarity + dead-				

Contro	l bits				Output state ¹⁾								
MOEN	OSSI	OSSR	CCxEN	CCxNEN	OCx Output state	OCxN Output state							
					OCx_EN=1	time,							
						OCxN_EN=1							
	0		0	0	Output disabled (not driven by timer)								
	0		0	1	Asynchronously: OCx=CCxP, OCx_EN=0, OCxN=CCxNP,OCxN_EN=0;								
	0		1	0	Then if the clock is present: OCx=OIx and	OCxN=OIxN after a dead-time, when (CCxP $^{\wedge}$							
0	0	v	1	1	$OIx) \wedge (CCxNP^{OIxN})! = 0.$								
0	1	^	0	0	Off-state (Output enabled with inactive sta	te)							
	1		0	1	Asynchronously: OCx=CCxP, OCx_EN=1, OCxN=CCxNP,OCxN_EN=1;								
	1		1	0	Then if the clock is present: OCx=OIx and OCxN=OIxN after a dead-time, when (CCxP $^{\circ}$								
	1	1	1	1	$OIx) \wedge (CCxNP^{OIxN})! = 0$	$DIx)^{(CCxNP^{OIxN})!} = 0$							

1. If both outputs of a channel are not used (CCxEN = CCxNEN = 0), OIx, OIxN, CCxP and CCxNP must all be cleared.

Note: The status of external I/O pins connected to complementary OCx and OCxN channels depends on the OCx and OCxN channel states and GPIO and AFIO registers.

9.4.11 Counters (TIMx_CNT)

Offset address: 0x24

Reset value: 0x0000

15									0
	1 1	1	1 1		1	г г	1	1	
				CNT	[15:0]				
L								 	
				1	w				

Bit field	Name	Description

Counter value

9.4.12 Prescaler (TIMx_PSC)

CNT[15:0]

Offset address: 0x28

15:0

Reset value: 0x0000

Name	Description
PSC[15:0]	Prescaler value
	Counter clock $f_{CK_CNT} = f_{CK_PSC} / (PSC [15:0] + 1)$.
	Each time an update event occurs, the PSC value is loaded into the active prescaler register.

9.4.13 Auto-reload register (TIMx_AR)

Offset address: 0x2C

Reset values: 0xFFFF

15														0
i	i i	1	1	1	1	1	1	1	1	1	1	i	1	1
							AR[15:0]							
		1	1	1										1
							rw							

Bit field	Name	Description					
15:0	AR[15:0]	Auto-reload value					
		hese bits define the value that will be loaded into the actual auto-reload register.					
		See Section 错误!未找到引用源。 for more details.					
		When the TIMx_AR.AR [15:0] value is null, the counter does not work.					

9.4.14 Repeat count registers (TIMx_REPCNT)

Offset address: 0x30

Reset value: 0x0000

Bit field	Name	Description
15:8	Reserved	Reserved, the reset value must be maintained
7:0	REPCNT[7:0]	Repetition counter value
		Repetition counter is used to generate the update event or update the timer registers only after a
		given number (N+1) cycles of the counter, where N is the value of TIMx_REPCNT.REPCNT .
		The repetition counter is decremented at each counter overflow in up-counting mode, at each
		counter underflow in down-counting mode or at each counter overflow and at each counter
		underflow in center-aligned mode. Setting the TIMx_EVTGEN.UDGN bit will reload the content
		of TIMx_REPCNT.REPCNT and generate an update event.

9.4.15 Capture/compare register 1 (TIMx CCDAT1)

Offset address: 0x34

Reset value: 0x0000

15											0
		1					1				
					CCDAT	[1[15:0]					
1	 1	1	1	I			1	1	I	1	

rw/r

Bit field	Name	Description
15:0	CCDAT1[15:0]	Capture/Compare 1 value
		CC1 channel is configured as output:
		CCDAT1 contains the value to be compared to the counter TIMx_CNT, signaling on the OC1
		output.
		If the preload feature is not selected in TIMx_CCMOD1.OC1PEN bit, the written value is
		immediately transferred to the active register. Otherwise, this preloaded value is transferred to the
		active register only when an update event occurs.
		CC1 channel is configured as input:
		CCDAT1 contains the counter value transferred by the last input capture 1 event (IC1).
		When configured as input mode, register CCDAT1 and CCDDAT1 are only readable.
		When configured as output mode, register CCDAT1 and CCDDAT1 are readable and writable.

9.4.16 Capture/compare register 2 (TIMx CCDAT2)

Offset address: 0x38

Reset value: 0x0000

15												0
	1 1	I	1	1	CCDA	T2[15:0]	1	1	1	1	1	
		1			, CCDA	Г2[15:0]						
					rv	v/r	•			ł		

Bit field Name Description 15:0 CCDAT2[15:0] Capture/Compare 2 values CC2 channel is configured as output: CCDAT2 contains the value to be compared to the counter TIMx_CNT, signaling on the OC2 output. If the preload feature is not selected in TIMx_CCMOD1.OC2PEN bit, the written value is immediately transferred to the active register. Otherwise, this preloaded value is transferred to the active register only when an update event occurs. CC2 channel is configured as input: CCDAT2 contains the counter value transferred by the last input capture 2 event (IC2). When configured as input mode, register CCDAT2 and CCDDAT2 are only readable. When configured as output mode, register CCDAT2 and CCDDAT2 are readable and writable.

9.4.17 Capture/compare register 3 (TIMx_CCDAT3)

Offset address: 0x3C

Reset value: 0x0000

15												0
	1	1	I	1	1	CCDAI	- 		1		1	
			1			 CCDAI	1					1
				•								

rw/r

Bit field	Name	Description
15:0	CCDAT3[15:0]	Capture/Compare 3 value
		CC3 channel is configured as output:
		CCDAT3 contains the value to be compared to the counter TIMx_CNT, signaling on the OC3
		output.
		If the preload feature is not selected in TIMx_CCMOD2.OC3PEN bit, the written value is
		immediately transferred to the active register. Otherwise, this preloaded value is transferred to
		the active register only when an update event occurs.
		CC3 channel is configured as input:
		CCDAT3 contains the counter value transferred by the last input capture 3 event (IC3).
		When configured as input mode, register CCDAT3 and CCDDAT3 are only readable.
		When configured as output mode, register CCDAT3 and CCDDAT3 are readable and writable.

9.4.18 Capture/compare register 4 (TIMx_CCDAT4)

Offset address: 0x40

Reset value: 0x0000

15				 								0
	I	1	1	1	CCDA	- [4[15:0]		1	1	1	1	
	ı		ı	 	 L				ı	ı		
					rv	v/r						

Bit field	Name	Description
15:0	CCDAT4[15:0]	Capture/Compare 4 value
		CC4 channel is configured as output:
		CCDAT4 contains the value to be compared to the counter TIMx_CNT, signaling on the OC4
		output.
		If the preload feature is not selected in TIMx_CCMOD2.OC4PEN bit, the written value is
		immediately transferred to the active register. Otherwise, this preloaded value is transferred to
		the active register only when an update event occurs.
		CC4 channel is configured as input:
		CCDAT4 contains the counter value transferred by the last input capture 4 event (IC4).

	When configured as input mode, register CCDAT4 and CCDDAT4 are only readable.
	When configured as output mode, register CCDAT4 and CCDDAT4 are readable and writable.

9.4.19 Break and Dead-time registers (TIMx_BKDT)

Offset address: 0x44

Reset value: 0x0000

15	14	13	12	11	10	9	8	7					0
MOEN	AOEN	ВКР	BKEN	OSSR	OSSI	LCKCF	FG[1:0]			DTG	N[7:0]		
rw	rw	rw	rw	rw	rw	rv	N		I	r	w	1	

Note: AOEN, BKP, BKEN, OSSI, OSSR, and DTGN [7:0] *bits can all be write protected depending on the LOCK configuration, and it is necessary to configure all of them on the first write to the TIMx_BKDT register.*

Bit field	Name	Description
15	MOEN	Main Output enable
		This bit can be set by software or hardware depending on the TIMx_BKDT.AOEN bit, and is
		asynchronously cleared to '0' by hardware once the brake input is active. It is only valid for
		channels configured as outputs.
		0: OC and OCN outputs are disabled or forced to idle state.
		1: OC and OCN outputs are enabled if TIMx_CCEN.CCxEN or TIMx_CCEN.CCxNEN bits are
		set. For more details, see Section 错误!未找到引用源。 Capture/Compare enable registers
		(TIMx_CCEN). 错误!未找到引用源。
14	AOEN	Automatic output enable
		0: Only software can set TIMx_BKDT.MOEN;
		1: Software sets TIMx_BKDT.MOEN; or if the break input is not active, when the next update
		event occurs, hardware automatically sets TIMx_BKDT.MOEN.
13	ВКР	Break input polarity
		0: Low level of the brake input is valid
		1: High level of the brake input is valid
		Note: Any write to this bit requires an APB clock delay to take effect.
12	BKEN	Break enable
		0: Disable brake input (BRK and CCS clock failure events)
		1: Enable brake input (BRK and CCS clock failure events)
		Note: Any write to this bit requires an APB clock delay to take effect.
11	OSSR	Off-state Selection for Run Mode
		This bit is used when TIMx_BKDT.MOEN=1 and the channel is a complementary output.
		The OSSR bit does not exist in timer without complementary outputs.
		0: When inactive, OCx/OCxN outputs are disabled (OCx/OCxN enable output signal = 0)
		1: When inactive, OCx/OCxN outputs are enabled with their inactive level as soon as CCxEN = 1
		or CCxNEN = 1. Then, OCx/OCxN enable output signal = 1

Bit field	Name	Description
		For more details, See Section 错误!未找到引用源。, capture/compare enablement registers
		(TIMx_CCEN).
10	OSSI	Off-state Selection for Idle Mode
		This bit is used when TIMx_BKDT.MOEN=0 and the channels configured as outputs.
		0: When inactive, $OCx/OCxN$ outputs are disabled ($OCx/OCxN$ enable output signal = 0)
		1: When inactive, OCx/OCxN outputs are enabled with their idle level as soon as CCxEN = 1 or
		CCxNEN = 1. Then, OCx/OCxN enable output signal = 1
		For more details, See Section 错误!未找到引用源。, capture/compare enablement registers
		(TIMx_CCEN).
9:8	LCKCFG[1:0]	Lock Configuration
		These bits offer a write protection against software errors.
		00:
		– No write protected.
		01:
		– LOCK Level 1
		TIMx_BKDT.DTGN, TIMx_BKDT.BKEN, TIMx_BKDT.BKP, TIMx_BKDT.AOEN,
		TIMx_CTRL2.OIx, TIMx_CTRL2.OIxN bits enable write protection.
		10:
		– LOCK Level 2
		Except for register write protection in LOCK Level 1 mode, TIMx_CCEN.CCxP and
		TIMx_CCEN.CCxNP (If the corresponding channel is configured in output mode),
		TIMx_BKDT.OSSR and TIMx_BKDT.OSSI bits also enable write protection.
		11:
		– LOCK Level 3
		Except for register write protection in LOCK Level 2, TIMx_CCMODx.OCxMD and
		TIMx_CCMODx.OCxPEN bits (If the corresponding channel is configured in output mode) also
		enable write protection.
		Note: After the system reset, the LCKCFG bit can only be written once. Once written to the
		TIMx_BKDT register, LCKCFG will be protected until the next reset.
7:0	DTGN [7:0]	Dead-time Generator
		These bits define the dead-time duration between inserted complementary outputs. The
		relationship between the DTGN value and the dead time is as follows::
		DTGN[7:5] = 0xx:
		dead time = $DTGN[7:0] \times (t_{DTS})$
		DTGN[7:5] = 10x:
		dead time =(64+DTGN[5:0]) \times (2 \times t _{DTS})
		DTGN[7:5]=110:
		dead time =(32+DTGN[4:0]) × (8 × t_{DTS})
		DTGN [then] = 111:
		dead time = $(32 + \text{DTGN } [4:0]) \times (16 \times t_{\text{DTS}})$
		t _{DTS} value see TIMx_CTRL1.CLKD [1:0].

9.4.20 DMA Control register (TIMx_DCTRL)

Offset address: 0x48

Reset value: 0x0000

15	13	12		8	7	5	4		0
Res	erved		DBLEN[4:0]	I		Reserved		DBADDR[4:0]	
	I		- 1	I		I		I	
			rw					rw	

Bit field	Name	Description		
15:9	Reserved	Reserved, the reset value must be maintained, kept at 0.		
12:8	DBLEN[4:0]	DMA Burst Length		
This bit field defines the number DMA will accesses (write/read) TIM		This bit field defines the number DMA will accesses (write/read) TIMx_DADDR register.		
		00000:1 time transfer		
		00001: 2 times transfers		
		00010: 3 times transfers		
		10001: 18 times transfers		
7:5	Reserved	Reserved, the reset value must be maintained.		
4:0	DBADDR[4:0]	DMA Base Address		
		This bit field defines the first address where the DMA accesses the TIMx_DADDR register.		
		When access is done through the TIMx_DADDR first time, this bit-field specifies the address		
		you just access. And then the second access to the TIMx_DADDR, you will access the address		
		of "DMA Base Address + 4"		
		00000: TIMx_CTRL1,		
		00001: TIMx_CTRL2,		
		00010: TIMx_SMCTRL,		
		10001: TIMx_BKDT		
		10010: TIMx_DCTRL		

9.4.21 DMA transfer buffer register (TIMx_DADDR)

Offset address: 0x4C

Reset value: 0x0000

15

BURST[15:0]

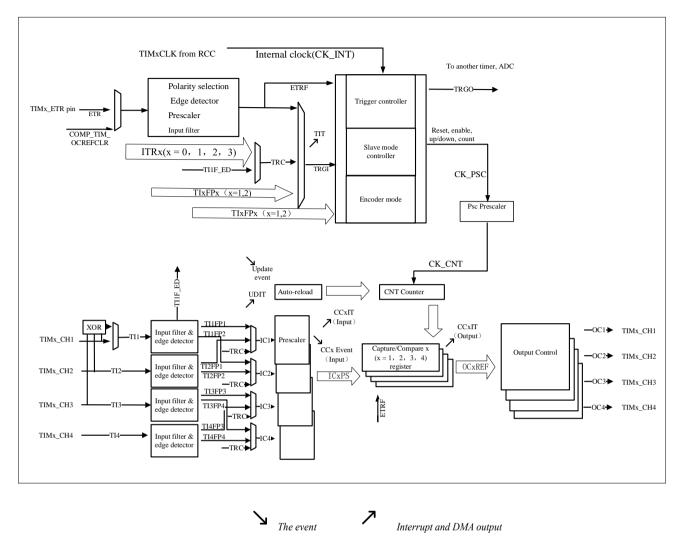
rw

0

Bit field	Name	Description	
15:0	BURST[15:0]	DMA access buffer.	
		When a read or write operation is assigned to this register, the register located at the address	
		range (DMA base address + DMA burst length \times 4) will be accessed.	
		DMA base address = The address of TIM_CTRL1 + TIMx_DCTRL. DBADDR * 4;	
		DMA burst len = $TIMx_DCTRL.DBLEN + 1$.	
		Example:	
		If TIMx_DCTRL.DBLEN = 0x3(4 transfers), TIMx_DCTRL.DBADDR = 0xD	
		(TIMx_CCDAT1), DMA data length = half word, DMA memory address = buffer address in	
		SRAM, DMA peripheral address = TIMx_DADDR address.	
		When an event occurs, TIMx will send requests to the DMA, and transfer data 4 times.	
		For the first time, DMA access to the TIMx_DADDR register will be mapped to access	
		TIMx_CCDAT1 register;	
		For the second time, DMA access to the TIMx_DADDR register will be mapped to access	
		TIMx_CCDAT2 register;	
		For the fourth time, DMA access to the TIMx_DADDR register will be mapped to access	
		TIMx_CCDAT4 register;	

10 General-purpose timers (TIM3)

10.1 General-purpose timers introduction


The general-purpose timers (TIM3) is mainly used in the following occasions: counting the input signal, measuring the pulse width of the input signal and generating the output waveform, etc.

10.2 Main features of General-purpose timers

- 16-bit auto-reload counter. (It can implement up-counting, down-counting, up/down counting)
- 16-bit programmable prescaler. (The frequency division factor can be configured with any value between 1 and 65536)
- TIM3 up to 4 channels
- Channel's working modes: PWM output, ouput compare, one-pulse mode output, input capture
- The events that generate the interrupt/DMA are as follows:
 - Update event
 - Trigger event
 - Input capture
 - Output compare
- Timer can be controlled by external signal
- Timers are linked internally for timer synchronization or interconnection
- Incremental (quadrature) encoder interface: used for tracking motion and resolving rotation direction and position
- Hall sensor interface: used to do three-phase motor control

The capture channel 1 input can come from IOM or comparator output

10.3 General-purpose timers description

10.3.1 Time-base unit

The time base unit mainly includes: prescaler, counter and auto-reload. When the time base unit is operating, the software can read and write the corresponding registers (TIMx_PSC, TIMx_CNT and TIMx_AR) at any time.

Depending on the setting of the auto-reload preload enable bit (TIMx_CTRL1.ARPEN), the value of the preload register is transferred to the shadow register immediately or at each update event UEV. An update event is generated when the counter reaches the overflow/underflow condition and it can be generated by software when TIMx_CTRL1.UPDIS=0. The counter CK_CNT is valid only when the TIMx_CTRL1.CNTEN bit is set. The counter starts counting one clock cycle after the TIMx_CTRL1.CNTEN bit is set.

10.3.1.1 Prescaler description

The TIMx_PSC register consists of a 16-bit counter that can be used to divide the counter clock frequency by any factor between 1 and 65536. It can be changed dynamically at runtime as the controller has a buffer . The prescaler value is only taken into account at the next update event.

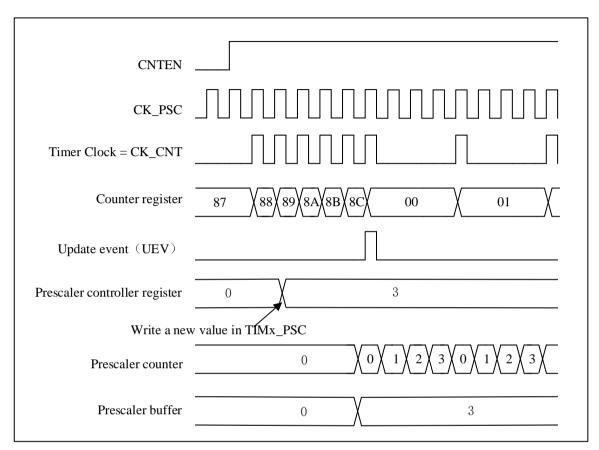


Figure 10-2 Counter timing diagram with prescaler division change from 1 to 4

10.3.2 Counter mode

10.3.2.1 Up-counting mode

In up-counting mode, the counter will count from 0 to the value of the register TIMx_AR, then it resets to 0. And a counter overflow event is generated.

If the TIMx_CTRL1.UPRS bit (select update request) and the TIMx_EVTGEN.UDGN bit are set, an update event (UEV) will generate And TIMx_STS.UDITF will not be set by hardware, therefore, no update interrupts or update DMA requests are generated. This setting is used in scenarios where you want to clear the counter but do not want to generate an update interrupt.

Depending on the update request source is configured in TIMx_CTRL1.UPRS, When an update event occurs, all registers are updated and the TIMx_STS.UDITF is set:

- Update auto-reload shadow registers with preload value(TIMx AR), when TIMx CTRL1.ARPEN = 1.
- The prescaler shadow register is reloaded with the preload value(TIMx PSC).

To avoid updating the shadow registers when new values are written to the preload registers, you can disable the update by setting TIMx CTRL1.UPDIS=1.

When an update event occurs, the counter will still be cleared and the prescaler counter will also be set to 0 (but the prescaler value will remain unchanged).

The figure below shows some examples of the counter behavior and the update flags for different division factors in the up-counting mode.

Internal clock divided by 2	CNTEN	
	CK_PSC	
	Timer clock = CK_CNT	
	Counter register	0034 0035 0036 0000 0001 0002 0003
	Counter overflow	
	Update interrupt flag(UDITF)	
	Update event(UEV)	
Internal clock divided by N	CK_PSC	
	Timer clock = CK_CNT	
	Counter register	1F 20 00
	Counter overflow	
	Update interrupt flag(UDITF)	
	Update event(UEV)	

Figure 10-3 Timing diagram of up-counting. The internal clock divider factor = 2/N

ARPEN = 0 _{CNTEN}					
CIVILIN					
CK_PSC					
Timer clock = CK_CNT					
Counter register	31 32 33 34 35 36 00 01 02 03 04 05 06 07				
Counter overflow					
Update event (UEV)					
Update interrupt flag(UDITF)					
Auto-reload preload register	FF 36				
Write a new	Change AR value Write a new value in TIMx_AR				
ARPEN = 1					
CNTEN					
CK_PSC					
Timer clock = CK_CNT					
Counter register	F0 K1 F2 F3 F4 F5 00 01 02 03 04 05 06 07				
Counter overflow					
Update event (UEV)					
Update interrupt flag(UDITF)					
Auto-reload preload register	F5 36				
Write a new value in TIMx_AR					
- Auto-reload shadow register -	F5 36				

Figure 10-4 Timing diagram of the up-counting, update event when ARPEN=0/1

196 / 447

Nations Technologies Inc. Tel: +86-755-86309900 Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

10.3.2.2 Down-counting mode

In down-counting mode, the counter will decrement from the value of the register TIMx_AR to 0, then restart from the auto-reload value and generate a counter underflow event.

The process of configuring update events and updating registers in down-counting mode is the same as in up-counting mode, see 10.3.2.1.

The figure below shows some examples of the counter behavior and the update flags for different division factors in the down-counting mode.

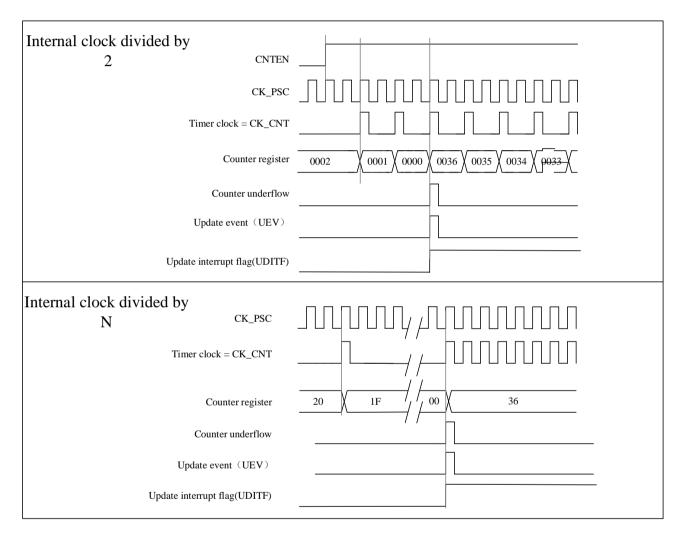


Figure 10-5 Timing diagram of the down-counting, internal clock divided factor = 2/N

10.3.2.3 Center-aligned mode

In center-aligned mode, the counter increments from 0 to the value $(TIMx_AR) - 1$, a counter overflow event is generated. It then counts down from the auto-reload value $(TIMx_AR)$ to 1 and generates a counter underflow event. Then the counter resets to 0 and starts counting up again.

In this mode, the TIMx_CTRL1.DIR direction bits have no effect and the count direction is updated and specified by hardware. Center-aligned mode is valid when the TIMx_CTRL1. CAMSEL bit is not equal to "00".

The update events can be generated each time the counter overflows and each time the counter underflows. Alternatively, an update event can also be generated by setting the TIMx_EVTGEN. UDGN bit (either by software or using a slave mode controller). In this case, the counter restarts from 0, as does the prescaler's counter.

Note: if the update source is a counter overflow, auto-reload update before reloading the counter.

Figure 10-6 Timing diagram of the Center-aligned, internal clock divided factor =2/N

Internal clock divided by 2	CK_PSC CNTEN	
	CITIEN	
	Timer clock = CK_CNT	
	Counter register	0003 0002 0001 0000 0001 0002 0003
	Counter underflow	
	Update event (UEV)	7
Upd	ate interrupt flag(UDITF)	
Internal clock	divided	
by N	CK_PSC	
Tir	ner clock = CK_CNT	
	Counter register	20 1F / 01 00
	Counter underflow	
t	Jpdate event (UEV)	
Update i	nterrupt flag(UDITF)	

198 / 447

[
Counter		
underflow	CNTEN	
	CK_PSC	
	Timer clock = CK_CNT	
	Counter register	06 05 04 03 02 01 00 01 02 03 04 05 06 07
	Counter underflow	
	Update event (UEV)	
	Update interrupt flag(UDITF)	
	Auto-reload preload register	FD 36
	W	rite a new value in TIMx_AR
	Auto-reload active register	FD 36
Counter overflow	CNTEN	
	CK_PSC	
	Counter register	F7 XF8XF9XFAXFBXFCX36X35X34X33X32X31X30X2FX
	Counter overflow	
	Update event (UEV)	
	Update interrupt flag(UDITF)	
	Auto-reload preload register	FD 36
	Writ	te a new value in TIMx_AR
	Auto-reload active register	FD 36

Figure 10-7 A center-aligned sequence diagram that includes counter overflows and underflows (ARPEN = 1)

10.3.3 Clock selection

- The internal clock of timers : CK_INT
- Two kinds of external clock mode :

- external input pin
- external trigger input ETR
- Internal trigger input (ITRx): one timer is used as a prescaler for another timer.

10.3.3.1 Internal clock source (CK_INT)

When the TIMx_SMCTRL.SMSEL is equal to "000", the slave mode controller is disabled. The three control bits (TIMx_CTRL1.CNTEN、TIMx_CTRL1.DIR、TIMx_EVTGEN.UDGN) can only be changed by software (except TIMx_EVTGEN.UDGN, which remains cleared automatically). It is provided that the TIMx_CTRL1.CNTEN bit is soft-written as' 1 ', the clock source of the prescaler is provided by the internal clock CK_INT.

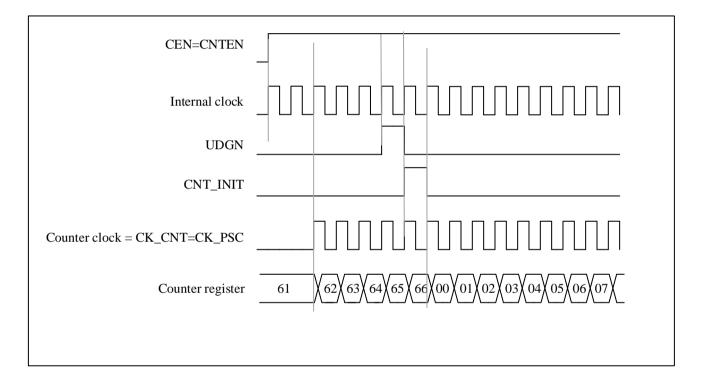
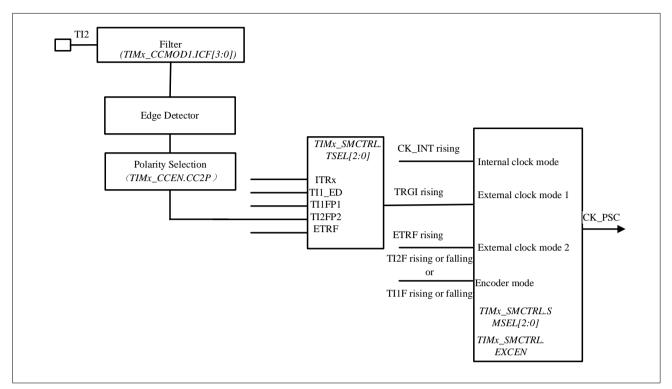



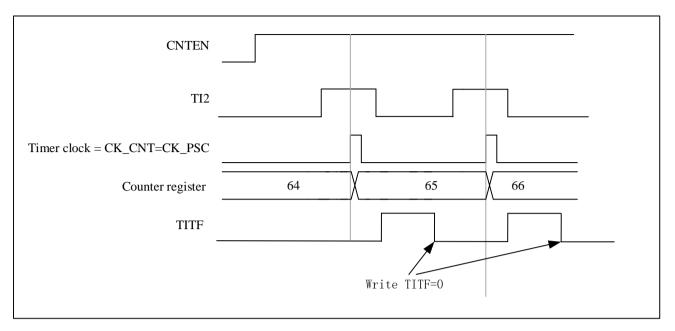
Figure 10-8 Control circuit in normal mode, internal clock divided by 1

10.3.3.2 External clock source mode 1

This mode is selected by configuring TIMx_SMCTRL.SMSEL=111. The counter can be configured to count on the rising or falling edge of the clock at the selected input.

For example, to configure up-counting mode to count on the rising edge of the clock at the TI2 input, the configuration steps are as follows:

- Configure TIMx CCMOD1.CC2SEL equal to '01', CC2 channel is configured as input, IC2 is mapped to TI2
- Configure TIMx_CCEN.CC2P equal to '0', select clock rising edge polarity
- To select input filter bandwidth by configuring TIMx_CCMOD1.IC2F[3:0] (if filter is not needed, keep IC2F bit at '0000')
- Configure TIMx SMCTRL.SMSEL equal to '111', select timer external clock mode 1
- Configure TIMx SMCTRL.TSEL equal to '110', select TI2 as the trigger input source
- Configure TIMx CTRL1.CNTEN equal to '1' to start the counter


Note: The capture prescaler is not used for triggering, so it does not need to be configured

When the rising edge of the timer clock occurs at TI2=1, the counter counts once and the TIMx_STS .TITF flag is pulled high.

The delay between the rising edge of TI2 and the actual clock of the counter depends on the resynchronization circuit at the input of TI2.

10.3.4 Capture/compare channels

Capture/compare channels include capture/compare registers and shadow registers. The input section consists of digital filters, multiplexers and prescalers. The output section includes comparators and output controls.

The input signal TIx is sampled and filtered to generate the signal TIxF. A signal (TIxF_rising or TIxF_falling) is then generated by the edge detector of the polarity select function, the polarity of which is selected by the TIMx_CCEN.CCxP bits. This signal can be used as a trigger input for the slave mode controller. At the same time, the signal ICx is sent to the capture register after frequency division. The following figure shows a block diagram of a capture/compare channel.

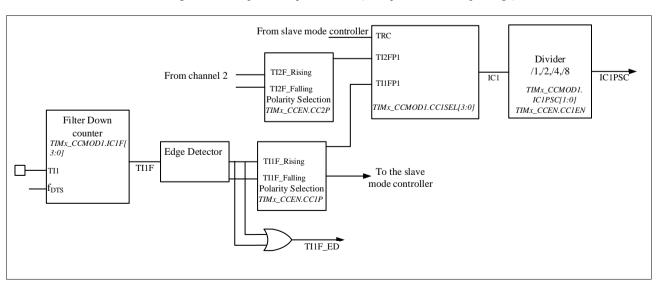


Figure 10-11 Capture/compare channel (example: channel 1 input stage)

Nations Technologies Inc. Tel: +86-755-86309900 Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

The output part generates an intermediate waveform OCxRef (active high) as reference. The polarity acts at the end of the chain.

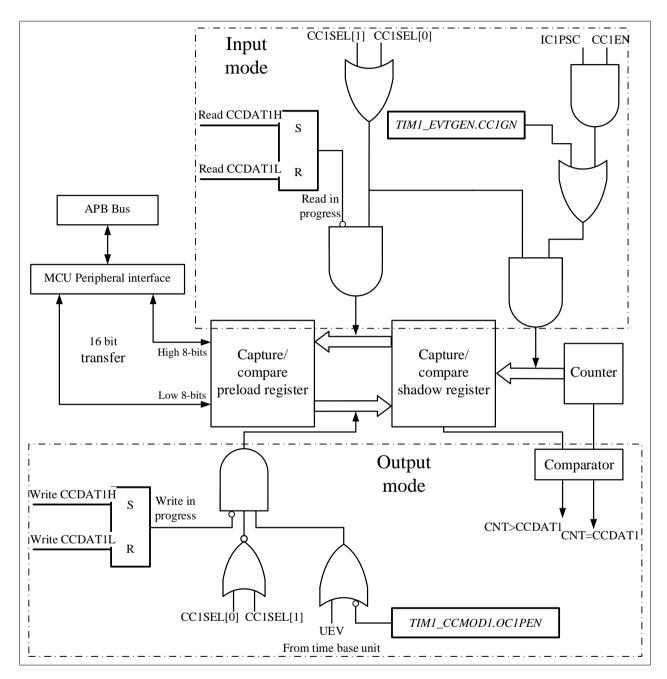


Figure 10-12 Capture/compare channel 1 main circuit

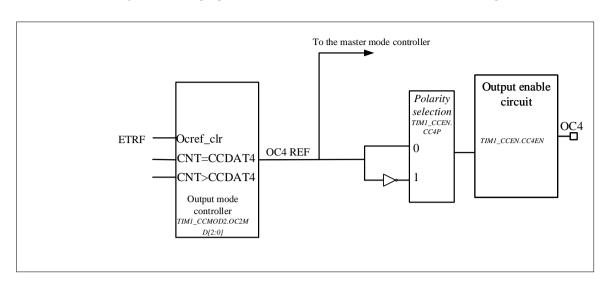


Figure 10-13 Output part of channels (x = 1,2,3,4; take channel 4 as an example)

Reads and writes always access preloaded registers when capture/compare. The two specific operating processes are as follows:

In capture mode, the capture is actually done in the shadow register, and then the value in the shadow register is copied into the preload register.

In compare mode, as opposed to capture mode, the value of the preload register is copied into the shadow register, which is compared with the counter.

10.3.5 Input capture mode

In capture mode, the TIMx_CCDATx registers are used to latch the counter value after the ICx signal detects.

There is a capture interrupt flag TIMx_STS.CCxITF, which can issue an interrupt or DMA request if the corresponding interrupt enable is pulled high.

The TIMx_STS. CCxITF bit is set by hardware when a capture event occurs and is cleared by software or by reading the TIMx_CCDATx register.

The over capture flag TIMx_STS.CCxOCF is set equal to 1 when the counter value is captured in the TIMx_CCDATx register and TIMx_STS.CC1ITF is already pulled high. Unlike the former, TIMx_STS.CCxOCF is cleared by writing 0 to it.

To achieve a rising edge of the TI1 input to capture the counter value into the TIMx_CCDAT1 register, the configuration flow is as follows:

■ To select a valid input:

Configure TIMx_CCMOD1.CC1SEL to '01'. At this time, the input is the CC1 channel, and IC1 is mapped to TI1.

Program the desired input filter duration:

Define the sampling frequency of the TI1 input and the length of the digital filter by configuring the

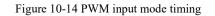
204 / 447

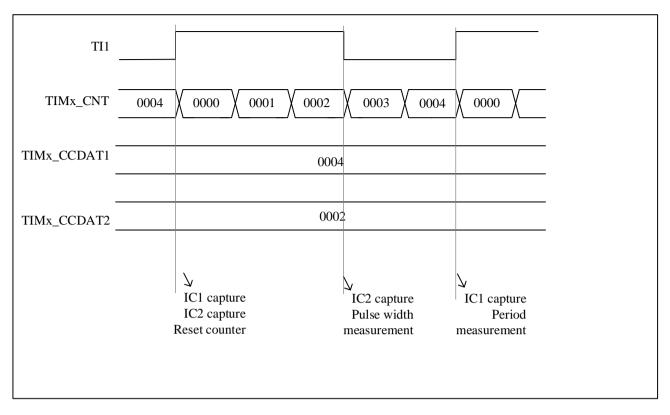
TIMx_CCMODx.ICxF bits. Example: If the input signal jitters up to 5 internal clock cycles, we must choose a filter duration longer than these 5 clock cycles. When 8 consecutive samples (sampled at f_{DTS} frequency) with the new level are detected, we can validate the transition on TI1. Then configure TIMx_CCMOD1. IC1F to '0011'.

- By configuring TIMx_CCEN .CC1P=0, select the rising edge as the valid transition polarity on the TI1 channel.
- Configure the input prescaler. In this example, configure TIMx_CCMOD1.IC1PSC= '00' to disable the prescaler because we want to capture every valid transition.
- Enable capture by configuring TIMx_CCEN. CC1EN = '1'.

If you want to enable DMA request, you can configure TIMx_DINTEN.CC1DEN=1.If you want enable related interrupt request, you can configureTIMx_DINTEN.CC1IEN bit=1

10.3.6 PWM input mode


There are some differences between PWM input mode and normal input capture mode, including:


- Two ICx signals are mapped to the same TIx input.
- The two ICx signals are active on edges of opposite polarity.
- Select one of two TIxFP signals as trigger input.
- The slave mode controller is configured in reset mode.

For example, the following configuration flow can be used to know the period and duty cycle of the PWM signal on TI1 (It depends on the frequency of CK INT and the value of the prescaler).

- Configure TIMx_CCMOD1.CC1SEL equal to '01' to select TI1 as valid input for TIMx_CCDAT1.
- Configure TIMx_CCEN.CC1P equal to '0' to select the active polarity of filtered timer input 1(TI1FP1), valid on the rising edge.
- Configure TIMx_CCMOD1.CC2SEL equal to '10' select TI1 as valid input for TIMx_CCDAT2.
- Configure TIMx_CCEN.CC2P equal to 1 to select the valid polarity of filtered timer input 2(TI1FP2), valid on the falling edge.
- Configure TIMx_SMCTRL.TSEL=101 to select Filtered timer input 1 (TI1FP1) as valid trigger input.
- Configure TIMx SMCTRL.SMSEL=100 to configure the slave mode controller to reset mode.
- Configure TIMx CCEN. CC1EN=1 and TIMx CCEN.CC2EN=1 to enable capture.

Because of only filter timer input 1 (TI1FP1) and filter timer input 2 (TI2FP2) are connected to the slave mode controller, the PWM input mode can only be used with the TIMx_CH1/TIMx_CH2 signals.

10.3.7 Forced output mode

Software can force output compare signals to active or inactive level directly, in output mode (TIMx CCMODx.CCxSEL=00).

User can set TIMx_CCMODx. OCxMD=101 to force the output compare signal to active level. And the OCxREF will be forced high, OCx get opposite value to CCxP polarity bit. On the other hand, user can set TIMx_CCMODx. OCxMD=100 to force the output compare signal to inactive level.

The values of the TIMx_CCDATx shadow register and the counter still comparing with each other in this mode. And the flag still can be set. Therefore, the interrupt and DMA requests still can be sent.

The comparison between the output compare register TIMx_CCDATx and the counter TIMx_CNT has no effect on OCxREF. And the flag still can be set. Therefore, the interrupt and DMA requests still can be sent.

10.3.8 Output compare mode

User can use this mode to control the output waveform, or to indicate that a period of time has elapsed.

When the capture/compare register and the counter have the same value, the output compare function's operations are as follow:

- TIMx_CCMODx.OCxMD is for output compare mode, and TIMx_CCEN.CCxP is for output polarity. When the compare matches, if set TIMx_CCMODx.OCxMD=000, the output pin will keep its level; if set TIMx_CCMODx.OCxMD=001, the output pin will be set active; if set TIMx_CCMODx.OCxMD=010, the output pin will be set inactive; if set TIMx_CCMODx.OCxMD=011, the output pin will be set to toggle.
- Set TIMx_STS.CCxITF.
- If user set TIMx_DINTEN.CCxIEN, a corresponding interrupt will be generated.
- If user set TIMx_DINTEN.CCxDEN and set TIMx_CTRL2.CCDSEL to select DMA request, and DMA request will be sent.

User can set TIMx_CCMODx.OCxPEN to choose capture/compare shawdow register using capture/compare preload registers(TIMx_CCDATx) or not.

The time resolution is one count of the counter.

In one pulse mode, the output compare mode can also be used to output a single pulse.

Here are the configuration steps for output compare mode:

- First of all, user should select the counter clock.
- Secondly, set TIMx_AR and TIMx_CCDATx with desired data.
- If user need to generate an interrupt, set TIMx_DINTEN.CCxIEN.
- Then select the output mode by set TIMx_CCEN.CCxP, TIMx_CCMODx.OCxMD, TIMx_CCEN.CCxEN, etc.
- At last, set TIMx_CTRL1.CNTEN to enable the counter.

User can update the output waveform by setting TIMx_CCDATx at any time, as long as the preload register is not enabled. Otherwise the TIMx_CCDATx shadow register will be updated at the next update event.

Here is an example.

10.3.9 PWM mode

User can use PWM mode to generate a signal whose duty cycle is determined by the value of the TIMx_CCDATx register and whose frequency is determined by the value of the TIMx_AR register. And depends on the value of TIMx_CTRL1.CAMSEL, the TIM can generate PWM signal in edge-aligned mode or center-aligned mode.

User can set PWM mode 1 or PWM mode 2 by setting TIMx_CCMODx. OCxMD=110 or setting TIMx_CCMODx. OCxMD=111. To enable preload register, user must set corresponding TIMx_CCMODx.OCxPEN. And then set TIMx_CTRL1.ARPEN to auto-reload preload register eventually.

User can set polarity of OCx by setting TIMx_CCEN.CCxP. To enable the output of OCx, user need to set the combination of the value of CCxEN.

The values of TIMx_CNT and TIMx_CCDATx are always compared with each other when the TIM is under PWM mode.

Only if an update event occurs, the preload register will transfer to the shadow register. Therefore user must reset all the registers by setting TIMx_EVTGEN.UDGN before the counter starts counting.

10.3.9.1 PWM center-aligned mode

If user set TIMx_CTRL1.CAMSEL equal 01, 10 or 11, the PWM center-aligned mode will be active. The setting of the compare flag depends on the value of TIMx_CTRL1.CAMSEL. There are three kinds of situation that the compare flag is set, only when the counter counts up, only when the counter counts down, or when the counter counts up and counts down. User should not modified TIMx_CTRL1.DIR by software, it is updated by hardware.

 $208\ /\ 447$

Examples of center-aligned PWM waveforms is as follow, and the setting of the waveform are: TIMx_AR=8, PWM mode 1, the compare flag is set when the counter counts down corresponding to TIMx_CTRL1. CAMSEL=01.

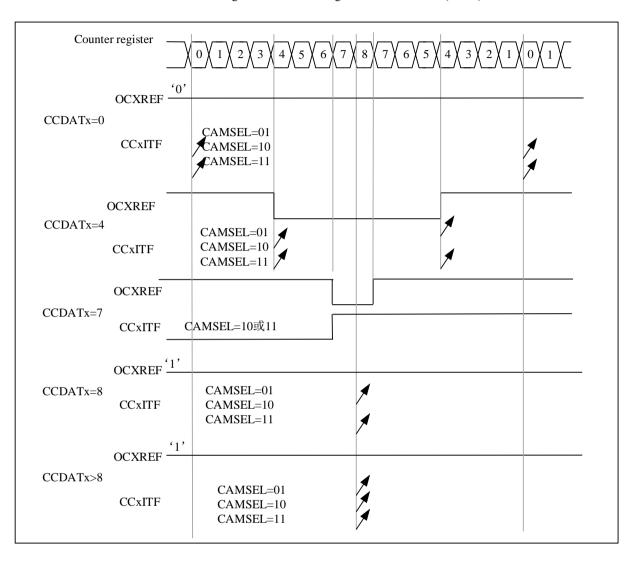


Figure 10-16 Center-aligned PWM waveform (AR=8)

Notes that user should know when using center-aligned mode are as follow:

- It depends on the value of TIMx_CTRL1.DIR that the counter counts up or down. Cautions that the DIR and CAMSEL bits should not be changed at the same time.
- User should not write the counter while running in center-aligned mode, otherwise it will cause unexpected results. Here are some example:
 - If the value written into the counter is 0 or is the value of TIMx_AR, the direction will be updated but the update event will not be generated.
 - If the value written into the counter is greater than the value of auto-reload, the direction will not be updated.
- To be on the safe side, user is suggested setting TIMx_EVTGEN.UDGN to generate an update by software before starting the counter, and not writing the counter while it is running.

10.3.9.2 PWM edge-aligned mode

There are two kinds of configuration in edge-aligned mode, up-counting and down-counting.

• Up-counting

User can set TIMx CTRL1.DIR=0 to make counter counts up.

Here is an example for PWM mode1.

When TIMx_CNT < TIMx_CCDATx, the reference PWM signal OCxREF is high. Otherwise it will be low. If the compare value in TIMx_CCDATx is greater than the auto-reload value, the OCxREF will remains 1. Conversely, if the compare value is 0, the OCxREF will remains 0.

When TIMx_AR=8, the PWM waveforms are as follow.

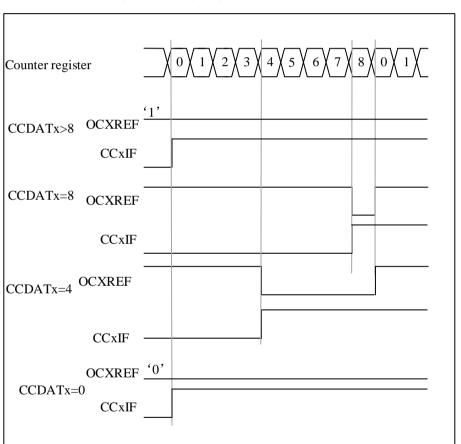


Figure 10-17 Edge-aligned PWM waveform (APR=8)

• Down-counting

User can set TIMx_CTRL1.DIR=1 to make counter counts down.

Here is an example for PWM mode1.

When $TIMx_CNT > TIMx_CCDATx$, the reference PWM signal OCxREF is low. Otherwise it will be high. If the compare value in $TIMx_CCDATx$ is greater than the auto-reload value, the OCxREF will remains 1.

Note: If the nth PWM cycle CCDATx shadow register $\geq AR$ value, the shadow register value of CCDATx in the (n+1)th PWM cycle is 0. At the moment when the counter is 0 in the (n+1)th PWM cycle, although the value of the counter = CCDATx shadow register = 0 and OCxREF = '0', no compare event will be generated.

10.3.10 One-pulse mode

In the one-pulse mode (ONEPM), a trigger signal is received, and a pulse t_{PULSE} with a controllable pulse width is generated after a controllable delay t_{DELAY} . The output mode needs to be configured as output compare mode or PWM mode. After selecting one-pulse mode, the counter will stop counting after the update event UEV is generated.

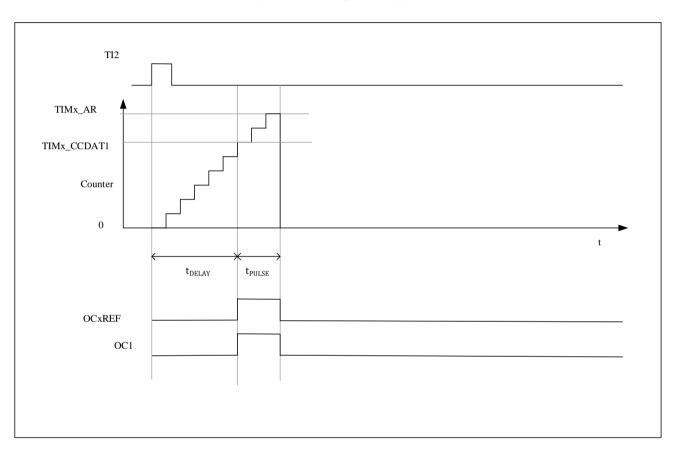


Figure 10-18 Example of One-pulse mode

The following is an example of a one-pulse mode:

A rising edge trigger is detected from the TI2 input, and a pulse with a width of t_{PULSE} is generated on OC1 after a delay of t_{DELAY} .

1. Counter configuration: count up, counter $TIMx_CNT < TIMx_CCDAT1 \le TIMx_AR$;

2. TI2FP2 is mapped to TI2, TIMx_CCMOD1.CC2SEL= '01'; TI2FP2 is configured for rising edge detection, TIMx_CCEN.CC2P= '0';

3. TI2FP2 acts as the trigger (TRGI) of the slave mode controller and starts the counter, TIMx_SMCTRL.TSEL= '110', TIMx_SMCTRL.SMSEL= '110' (trigger mode);

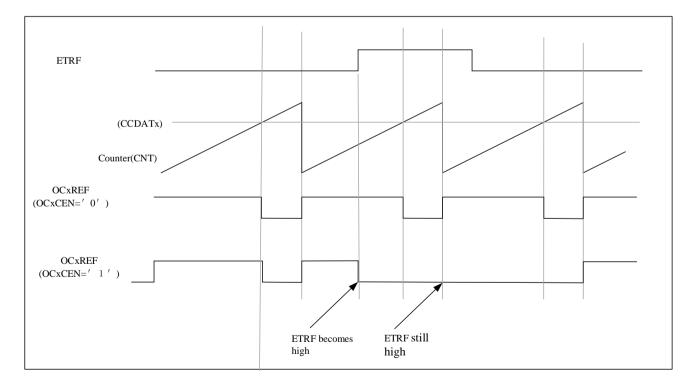
4. TIMx_CCDAT1 writes the count value to be delayed (t_{DELAY}), TIMx_AR - TIMx_CCDAT1 is the count value of

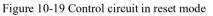
the pulse width t_{PULSE};

5. Configure TIMx_CTRL1.ONEPM=1 to enable single pulse mode, configure TIMx_CCMOD1.OC1MD = '111' to select PWM2 mode;

6. Wait for an external trigger event on TI2, and a one pulse waveform will be output on OC1;

10.3.10.1 Special case: OCx fast enable:


In one-pulse mode, an edge is detected through the TIx input, and triggers the start of the counter to count to the comparison value and then output a pulse. These operations limit the minimum delay t_{DELAY} that can be achieved.


You can set TIMx_CCMODx.OCxFEN=1 to turn on OCx fast enable, after triggering the rising edge, the OCxREF signal will be forced to be converted to the same level as the comparison match occurs immediately, regardless of the comparison result. OCxFEN fast enable only takes effect when the channel mode is configured for PWM1 and PWM2 modes.

10.3.11 Clearing the OCxREF signal on an external event

If user set TIMx_CCMODx.OCxCEN=1, high level of ETRF input can be used to driven the OCxREF signal to low, and the OCxREF signal will remains low, until the next UEV happens. Only output compare and PWM modes can use this function. This cannot be used when it is in forced mode.

Here is an example for the case that when ETRF input becomes high, the behavior of OCxREF signal for different value of OCxCEN. Timer is set to be in PWM mode in this case.

10.3.12 Debug mode

When the microcontroller is in debug mode (the Cortex-M0 core halted), depending on the DBG_CTRL.TIMx_STOP configuration in the PWR module, the TIMx counter can either continue to work normally or stop. For more details, see 错误!未找到引用源。.

10.3.13 TIMx and external trigger synchronization

Same with advanced-control timer, see 错误!未找到引用源。

10.3.14 Timer synchronization

All TIMx timers are internally connected to each other. This implementation allows any master timer to provide trigger to reset, start, stop or provide a clock for the other slave timers. The master clock is used for internal counter and can be prescaled. Below figure shows a Block diagram of timer interconnection.

The synchronization function does not support dynamic change of the connection. User should configure and enable the slave timer before enable the master timer's trigger or clock.

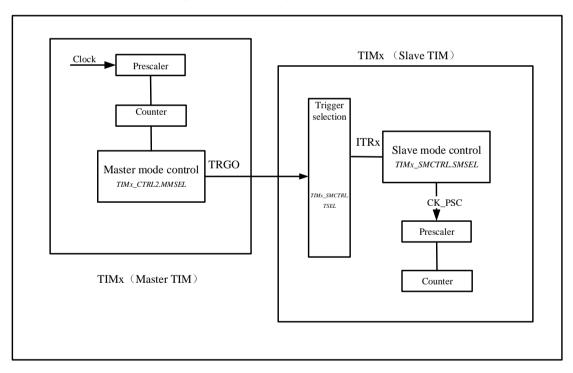


Figure 10-20 Block diagram of timer interconnection

10.3.14.1 Master timer as a prescaler for another timer

TIM1 as a prescaler for TIM3. TIM1 is maser, TIM3 is slave.

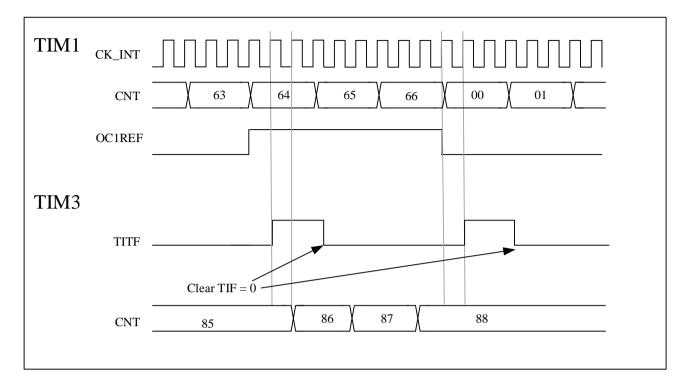
User need to do the following steps for this configuration.

- Setting TIM1_CTRL2.MMSEL='010' to use the update event of TIM1 as trigger output.
- Configure TIM3_SMCTRL. TSEL= '000', connect the TRGO of TIM1 to TIM3.
- Configure TIM3_SMCTRL.SMSEL = '111', the slave mode controller will be configured in external clock mode 1.
- Start TIM3 by setting TIM3 CTRL1. CNTEN = '1'.
- Start TIM1 by setting TIM1 CTRL1. CNTEN = '1'.

Note: If user select OCx as the trigger output of TIM1 by configuring MMSEL = '1xx', OCx rising edge will be used to drive TIM2.

10.3.14.2 Master timer to enable another timer

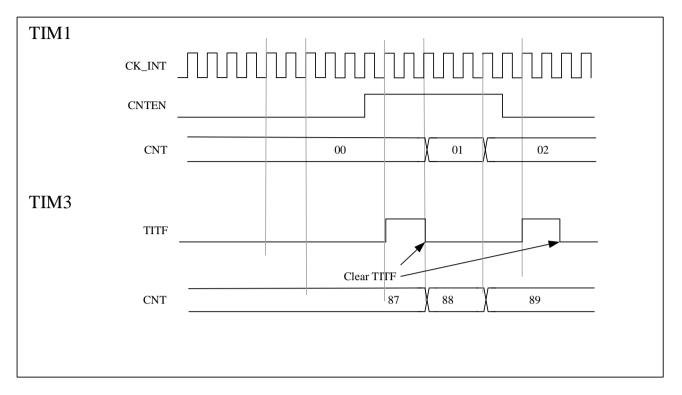
In this example, TIM3 is enabled by the output compare of TIM1. TIM3 counter will start to count after the OC1REF output from TIM1 is high. The clock of both counters are based on CK_INT via a prescaler divide by 3 is performed ($f_{CK_CNT} = f_{CK_INT}/3$).


The configuration steps are shown as below.

- Setting TIM1_CTRL2.MMSEL='100' to use the OC1REF of TIM1 as trigger output.
- Configure TIM1_CCMOD1 register to configure the OC1REF output waveform.
- Setting TIM3_SMCTRL.TSEL = '000' to connect TIM1 trigger output to TIM3.
- Setting TIM3_SMCTRL.SMSEL= '101' to set TIM3 to gated mode.
- Setting TIM3 CTRL1.CNTEN= '1' to start TIM3.
- Setting TIM1 CTRL1.CNTEN= '1' to start TIM1.

Note: The TIM3 clock is not synchronized with the TIM1 clock, this mode only affects the TIM3 counter enable signal.

Figure 10-21 TIM3 gated by OC1REF of TIM1

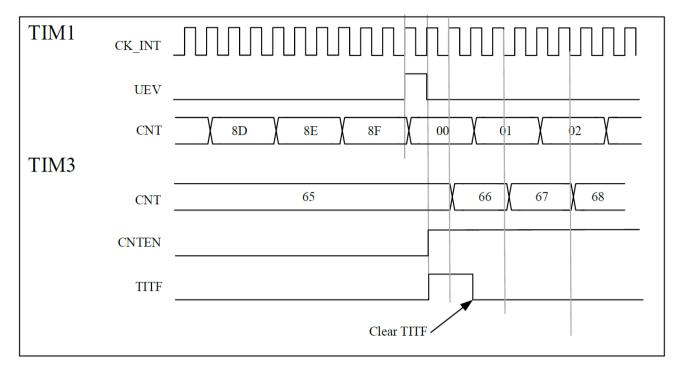

In the next example, Gated TIM3 with enable signal of TIM1, Setting TIM1.CTRL1.CNTEN = '0' to stop TIM1. TIM3 counts on the divided internal clock only when TIM1 is enable. The clock of both counters are based on CK_INT via a prescaler divide by 3 is performed ($f_{CK_CNT} = f_{CK_INT}/3$).

The configuration steps are shown as below

- Setting TIM1 CTRL2.MMSEL='001' to use the enable signal of TIM1 as trigger output
- Setting TIM3 SMCTRL.TSEL = '000' to configure TIM3 to get the trigger input from TIM1
- Setting TIM3_SMCTRL.SMSEL = '101' to configure TIM3 in gated mode.
- Setting TIM3_CTRL1.CNTEN= '1' to start TIM3.
- Setting TIM1_CTRL1.CNTEN= '1' to start TIM1.
- Setting TIM1_CTRL1.CNTEN= '0' to stop TIM1.

Figure 10-22 TIM3 gated by enable signal of TIM1

10.3.14.3 Master timer to start another timer


In this example, we can use update event as trigger source.TIM1 is master, TIM3 is slave.

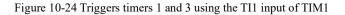
The configuration steps are shown as below:

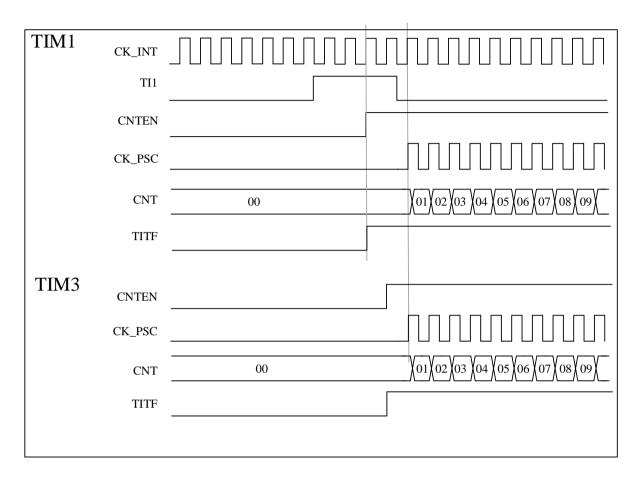
- Setting TIM1_CTRL2.MMSEL='010' to use the update event of TIM1 as trigger output
- Configure TIM1 AR register to set the output period.
- Setting TIM3_SMCTRL .TSEL= '000' to connect TIM1 trigger output to TIM3.
- Setting TIM3_SMCTRL. SMSEL = '110' to set TIM3 to trigger mode.
- Setting TIM1_CTRL1.CNTEN=1 to start TIM1.

Figure 10-23 Trigger TIM3 with an update of TIM1

10.3.14.4 Start 2 timers synchronously using an external trigger

In this example, TIM1 is enabled when TIM1's TI1 input rises, and TIM3 is enabled when TIM1 is enabled. To ensure the alignment of counters, TIM1 must be configured in master/slave mode. For TI1, TIM1 is the slave; for TIM3, TIM1 is the master.


The configuration steps are shown as below:


- Setting TIM1.MMSEL = '001' to use the enable signal as trigger output
- Setting TIM1_SMCTRL.TSEL = '100' to configure the TIM1 to slave mode and receive the trigger input of TI1.
- Setting TIM1_SMCTRL .SMSEL = '110' to configure TIM1 to trigger mode.
- Setting TIM1_SMCTRL .MSMD = '1' to configure TIM1 to master/slave mode.
- Setting TIM3 SMCTRL .TSEL = '000' to connect TIM1 trigger output to TIM3.
- Setting TIM3 SMCTRL.SMSEL = '110' to configure TIM3 to trigger mode.

When TI1 rising edge arrives, both timers start counting synchronously according to the internal clock, and both TITF flags are set simultaneously.

The following figure shows a delay between CNTEN and CK_PSC of TIM1 in master/slave mode.

10.3.15 Encoder interface mode

The encoder uses two inputs TI1 and TI2 as an interface and the counter counts on every edge change on TI1FP1 or TI2FP2. The count direction is automatically controlled by hardware TIMx_CTRL1.DIR. There are three types of encoder count modes:

1. The counter only counts on the edge of TI1, TIMx_SMCTRL.SMSEL = '001';

2. The counter only counts on the edge of TI2, TIMx SMCTRL.SMSEL = '010';

3. The counter counts on the edges of TI1 and TI2 at the same time, TIMx_SMCTRL.SMSEL = '011';

The encoder interface is equivalent to using an external clock with direction selection, and the counter only counts continuously between 0 and the auto-reload value (TIMx_AR.AR [15:0]). Therefore, it is necessary to configure the auto-reload register TIMx_AR in advance.

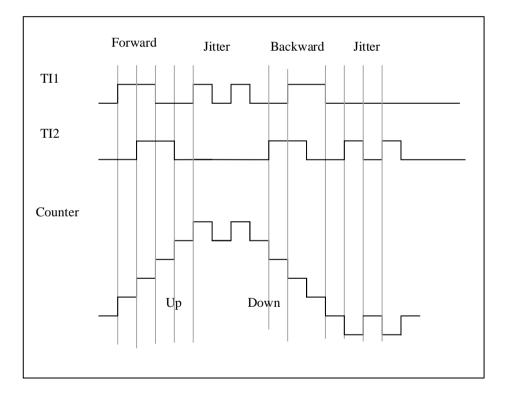
Note: Encoder mode and external clock mode 2 are not compatible and must not be selected together.

The relationship between the counting direction and the encoder signal is shown in Table 10-1:

Table 10-1 Relationship between countingdirection and encoder signals

Level on opposite signals	TI1FP1 signal	TI2FP2 signal
---------------------------	---------------	---------------

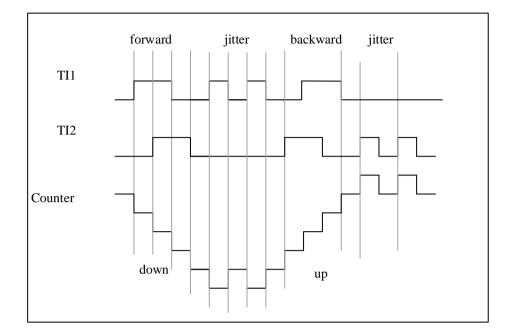
218 / 447


Active edge	(TI1FP1 forTI2,	Rising	Falling	Rising	Falling
	TI2FP2 for TI1)				
Counting only at TI1	High	Counting down	Counting up	Don't count	Don't count
	Low	Counting up	Counting down	Don't count	Don't count
Counting only at TI2	High	Don't count	Don't count	Counting up	Counting down
	Low	Don't count	Don't count	Counting down	Counting up
Counting on	High	Counting down	Counting up	Counting up	Counting down
TI1 and TI2	Low	Counting up	Counting down	Counting down	Counting up

Here is an example of an encoder with dual edge triggering selected to suppress input jitter:

```
1. IC1FP1 is mapped to TI1 (TIMx CCMOD1.CC1SEL= '01'), IC1FP1 is not inverted (TIMx CCEN.CC1P= '0');
```

- 2. IC1FP2 is mapped to TI2 (TIMx_CCMOD2.CC2SEL= '01'), IC2FP2 is not inverted (TIMx_CCEN.CC2P= '0');
- 3. The input is valid on both rising and falling edges (TIMx SMCTRL.SMSEL = '011');
- 4. Enable counter TIMx CTRL1.CNTEN= '1';


Figure 10-25 Example of counter operation in encoder interface mode

The following figure shows the example of counter behavior when IC1FP1 polarity is inverted (CC1P= '1', other configurations are the same as above)

Figure 9-43 Encoder interface mode example with IC1FP1 polarity inverted

10.3.16 Interfacing with Hall sensor

Please refer to 错误!未找到引用源。

10.4 TIMx register description(x=3)

For abbreviations used in registers, see section 1.1

These peripheral registers can be operated as half word (16-bits) or one word (32-bits).

10.4.1 Register Overview

																	0																	
Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	11	1/	16	15	14	1	13	12	11	10	6	×	7	9	5	4	3	2	1
000h	TIMx_CTRL1												Reserved														CLKD[1:0]	ARPEN		CAMSEL[1:0]	DIR	ONEPM	UPRS	UPDIS
	Reset Value																									0	0	0	0	0	0	0	0	0 0
004h	TIMx_CTRL2													Reserved														TIISEL		MMSEL[2:0]		CCDSEL		Reserved
	Reset Value																											0	0	0	0	0		
008h	TIMx_SMCTRL													Reserved														DWSMD		TSEL[2:0]		Reserved		SMSELEL[2:0]
	Reset Value																											0	0	0	0		0	0 0

Table	10-2	Register	overview
14010	10 2	register	0.01.10.00

Offset	Register	31 30 29 28 28 28 22 22 22 23 23 23 23 23 23 21 19 117 17	15	14	12	11	10	6	∞	7	9	5	4	3	2	0
00Ch	TIMx_DINTEN Reset Value	Reserved		o TDEN Reserved	0 CC4DEN	o CC3DEN	o CC2DEN	o CCIDEN	0 UDEN	Reserved	0 TIEN	Reserved	o CC4IEN	o CC3IEN		0 CCIIEN 0 UIEN
010h	TIMx_STS Reset Value	Reserved			o CC40CF	o CC30CF o	o cc20CF o	o CCIOCF o	Reserved		o TITF o	Reserved	o CC4ITF o	o CC3ITF 9	CC2ITF	o CCUITF o
014h	TIMx_EVTGEN Reset Value	Reserved									o TGN	Reserved	o CC4GN	o CC3GN		o CCIGN o UDGN
	TIMx_CCMOD1 Output compare	Reserved	OC2CEN	OC2MD[2-0]		OC2PEN	OC2FEN	CC2SEL11:01		OCICEN		OC1MD[2:0]		OCIPEN	OCIFEN	CC1SEL[1:0]
018h	Reset Value TIMx_CCMOD1 Input capture	Reserved	0	0 0 0 0	0			CC2SFL11:01		0	ICIEC3-01		0	ICIPSCI1:01		CC1SEL[1:0]
01Ch	Reset Value TIMx_CCMOD2 Output compare	Reserved	0C4CEN 0	0004MD[2.0]		0C4PEN 0	o OC4FEN o	CC4SEI/1:01		o OC3CEN o	0	oC3MD[2:0]	0	o OC3PEN o	OC3FEN	CC3SEL[1:0]
01Ch	Reset Value TIMx_CCMOD2 Input capture	Reserved	0	IC4F[3:0] 0	0	0	IC4PSC[1:0]	CC4SEL11:01	0	0	0 IC3FI3-01	0	0	IC3PSCI1:01		CC3SEL[1:0]
020h	Reset Value TIMx_CCEN Reset Value	Reserved	0	0 0 CC4P	0 CC4EN 0	0	Reserved 0	o CC3P o	0 CC3EN 0	Doctored	0 VCSCI ACU	o CC2P o	o CC2EN o	0 Reserved		o CCIP 0 o CCIEN 0
024h	TIMx_CNT Reset Value	Reserved	0	0 0	0	0	0		VT[15	:0] 0	0	0	0	0		0 0
028h	TIMx_PSC Reset Value	Reserved	0	0 0	0	0	0	PS 0	SC[15:	:0] 0	0	0	0	0	0	0 0
02Ch	TIMx_AR Reset Value	Reserved	1	1 1	1	1	1	A 1	R[15:	0] 1	1	1	1	1	1	1 1
030h		Reserved														
034h	TIMx_CCDAT1 Reset Value	Reserved	0	0 0	0	0	0	CCD 0	0 OAT1[_	0	0	0	0	0	0 0
038h	TIMx_CCDAT2 Reset Value	Reserved	0	0 0	0	0	0	0		0	0	0	0	0	0	0 0
03Ch	TIMx_CCDAT3 Reset Value TIMx_CCDAT4	Reserved	0	0 0	0	0	0	0	0 0 0 0AT4[0	0	0	0	0	0	0 0
040h 044h	Reset Value	Reserved	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 0
048h	TIMx_DCTRL Reset Value	Reserved			0		LEN[0	-	0		Reserved			0 0	-	

Nations Technologies Inc. Tel: +86-755-86309900 Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

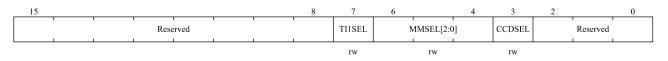
Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	$\frac{1}{0}$
04Ch	TIMx_DADDR								Re	serve	d													BU	RST[15:0]						
	Reset Value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0

10.4.2 Control register 1 (TIMx_CTRL1)

Offset address: 0x00

Reset value: 0x0000 0000

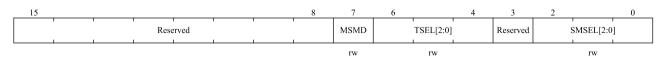
31															16
	1	I	I	I	I	I	Rese	erved			1	I	I		1
	1	1	1								1	1			L]
15					10	9	8	7	6	5	4	3	2	1	0
	1	Rese	erved			CLKI	D[1:0]	ARPEN	CAMS	EL[1:0]	DIR	ONEPM	UPRS	UPDIS	CNTEN
	•		•			r	w	rw	r	N	rw	rw	rw	rw	rw


Bit field	Name	Description
31:10	Reserved	Reserved, the reset value must be maintained
9:8	CLKD[1:0]	Clock division
		CLKD[1:0] indicates the division ratio between CK_INT (timer clock) and t_{DTS} (clock used
		for dead-time generator and digital filters (ETR, TIx))
		00: $t_{DTS} = t_{CK_INT}$
		$01: t_{DTS} = 2 \times t_{CK_INT}$
		10: $t_{DTS} = 4 \times t_{CK_INT}$
		11: Reserved, do not use this configuration
7	ARPEN	ARPEN: Auto-reload preload enable
		0: Shadow register disable for TIMx_AR register
		1: Shadow register enable for TIMx_AR register
6:5	CAMSEL[1:0]	Center-aligned mode selection
		00: Edge-aligned mode. TIMx_CTRL1.DIR specifies up-counting or down-counting.
		01: Center-aligned mode 1. The counter counts in center-aligned mode, and the output
		compare interrupt flag bit is set to 1 when down-counting.
		10: Center-aligned mode 2. The counter counts in center-aligned mode, and the output
		compare interrupt flag bit is set to 1 when up-counting.
		11: Center-aligned mode 3. The counter counts in center-aligned mode, and the output
		compare interrupt flag bit is set to 1 when up-counting or down-counting.
		Note: Switching from edge-aligned mode to center-aligned mode is not allowed when the
		counter is still enabled (TIMx_CTRL1.CNTEN = 1).
4	DIR	Direction
		0: Up-counting
		1: Down-counting

Bit field	Name	Description
		Note: This bit is read-only when the counter is configured in center-aligned mode or encoder
		mode.
3	ONEPM	One-pulse mode
		0: Disable one-pulse mode, the counter counts are not affected when an update event occurs.
		1: Enable one-pulse mode, the counter stops counting when the next update event occurs
		(clearing TIMx_CTRL1.CNTEN bit)
2	UPRS	Update request source
		This bit is used to select the UEV event sources by software.
		0: If update interrupt or DMA request is enabled, any of the following events will generate an update interrupt or DMA request:
		 Counter overflow/underflow
		 The TIMx_EVTGEN.UDGN bit is set
		 Update generation from the slave mode controller
		1: If update interrupt or DMA request is enabled, only counter overflow/underflow will
		generate update interrupt or DMA request
1	UPDIS	Update disable
		This bit is used to enable/disable the Update event (UEV) events generation by software.
		0: Enable UEV. And UEV will be generated if one of following condition is fulfilled:
		- Counter overflow/underflow
		 The TIMx_EVTGEN.UDGN bit is set
		 Update generation from the slave mode controller
		Shadow registers will update with preload value.
		1: UEV disabled. No update event is generated, and the shadow registers (AR, PSC, and
		CCDATx) keep their values. If the TIMx_EVTGEN.UDGN bit is set or a hardware reset is
		issued by the slave mode controller, the counter and prescaler are reinitialized.
0	CNTEN	Counter Enable
		0: Disable counter
		1: Enable counter
		Note: external clock, gated mode and encoder mode can only operate after
		TIMx_CTRL1.CNTEN bit is set in the software. Trigger mode can automatically set
		TIMx_CTRL1.CNTEN bit by hardware.

10.4.3 Control register 2 (TIMx_CTRL2)

Offset address: 0x04



Bit field	Name	Description
15:8	Reserved	Reserved, the reset value must be maintained
7	TI1SEL	TI1 selection
		0: TIMx_CH1 pin connected to TI1 input.
		1: TIMx_CH1, TIMx_CH2, and TIMx_CH3 pins are XOR connected to the TI1 input.
6:4	MMSEL[2:0]	Master Mode Selection
		These 3 bits (TIMx_CTRL2. MMSEL [2:0]) are used to select the synchronization information
		(TRGO) sent to the slave timer in the master mode. Possible combinations are as follows:
		000: Reset When the TIMx_EVTGEN.UDGN is set or a reset is generated by the slave mode
		controller, a TRGO pulse occurs. And in the latter case, the signal on TRGO is delayed
		compared to the actual reset.
		001: Enable - The TIMx_CTRL1.CNTEN bit is used as the trigger output (TRGO). Sometimes
		you need to start multiple timers at the same time or enable slave timer for a period of time.
		The counter enable signal is set when TIMx_CTRL1.CNTEN bit is set or the trigger input in
		gated mode is high.
		When the counter enable signal is controlled by the trigger input, there is a delay on TRGO
		except if the master/slave mode is selected (see the description of the TIMx_SMCTRL.MSMD
		bit).
		010: Update - The update event is selected as the trigger output (TRGO). For example, a master
		timer clock can be used as a slave timer prescaler.
		011: Compare pulse - Triggers the output to send a positive pulse (TRGO) when the
		TIMx_STS.CC1ITF is to be set (even if it is already high), when a capture or a comparison
		succeeds.
		100: Compare - OC1REF signal is used as the trigger output (TRGO).
		101: Compare - OC2REF signal is used as the trigger output (TRGO).
		110: Compare - OC3REF signal is used as the trigger output (TRGO).
		111: Compare - OC4REF signal is used as the trigger output (TRGO).
3	CCDSEL	Capture/compare DMA selection
		0: When a CCx event occurs, a DMA request for CCx is sent.
		1: When an update event occurs, a DMA request for CCx is sent.
2:0	Reserved	Reserved, the reset value must be maintained

10.4.4 Slave mode control register (TIMx_SMCTRL)

Offset address: 0x08

Bit field	Name	Description
15:8	Reserved	Reserved, the reset value must be maintained
7	MSMD	Master/ Slave mode
		0: No action
		1: Events on the trigger input (TRGI) are delayed to allow a perfect synchronization between the
		current timer (via TRGO) and its slaves. This is useful when several timers are required to be
		synchronized to a single external event.
6:4	TSEL[2:0]	Trigger selection
		These 3 bits are used to select the trigger input of the synchronous counter.
		000: Internal trigger 0 (ITR0) 100: TI1 edge detector (TI1F_ED)
		001: Internal trigger 1 (ITR1) 101: Filtered timer input 1(TI1FP1)
		010: Internal trigger 2 (ITR2) 110: Filtered timer input 2 (TI2FP2)
		011: Internal trigger 3 (ITR3) 111: External triggered Input (ETRF)
		For more details on ITRx, see Table 10-3 below.
		Note: These bits must be changed only when not in use (e. g. TIMx_SMCTRL.SMSEL=000) to
		avoid false edge detection at the transition.
3	Reserved	Reserved, the reset value must be maintained
2:0	SMSEL[2:0]	Slave mode selection
		When an external signal is selected, the active edge of the trigger signal (TRGI) is linked to the
		selected external input polarity (see input control register and control register description)
		000: Disable slave mode. If TIMx_CTRL1.CNTEN = 1, the prescaler is driven directly by the
		internal clock.
		001: Encoder mode 1. According to the level of TI2FP2, the counter up-counting or down-
		counting on the edge of TI1FP1.
		010: Encoder mode 2. According to the level of TI1FP1, the counter up-counting or down-
		counting on the edge of TI2FP2.
		011: Encoder mode 3. According to the input level of another signal, the counter up-counting or
		down-counting on the edges of TI2FP1 and TI2FP2.
		100: Reset mode. On the rising edge of the selected trigger input (TRGI), the counter is
		reinitialized and the shadow register is updated.
		101: Gated mode. When the trigger input (TRGI) is high, the clock of the counter is enabled. Once
		the trigger input becomes low, the counter stops counting, but is not reset. In this mode, the start
		and stop of the counter are controlled.
		110: Trigger mode. When a rising edge occurs on the trigger input (TRGI), the counter is started
		but not reset. In this mode, only the start of the counter is controlled.
		111: External clock mode 1. The counter is clocked by the rising edge of the selected trigger input
		(TRGI).
		Note: Do not use gated mode if TI1F_ED is selected as the trigger input
		(TIMx_SMCTRL.TSEL=100). This is because TI1F_ED outputs a pulse for each TI1F transition,
		whereas gated mode checks the level of the triggered input.

Table 10-3 TIMx internal trigger connection

Slave timer	ITR0 (TSEL = 000)	ITR1 (TSEL = 001)	ITR2 (TSEL = 010)	ITR3 (TSEL = 011)
TIM3	TIM1	NA	NA	NA

10.4.5 DMA/Interrupt enable registers (TIMx_DINTEN)

Offset address: 0x0C

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	TDEN	Reserved	CC4DEN	CC3DEN	CC2DEN	CCIDEN	UDEN	Reserved	TIEN	Reserved	CC4IEN	CC3IEN	CC2IEN	CC1IEN	UIEN
	rw		rw	rw	rw	rw	rw		rw		rw	rw	rw	rw	rw

Bit field	Name	Description
15	Reserved	Reserved, the reset value must be maintained
14	TDEN	Trigger DMA request enable
		0: Disable trigger DMA request
		1: Enable trigger DMA request
13	Reserved	Reserved, the reset value must be maintained
12	CC4DEN	Capture/Compare 4 DMA request enable
		0: Disable capture/compare 4 DMA request
		1: Enable capture/compare 4 DMA request
11	CC3DEN	Capture/Compare 3 DMA request enable
		0: Disable capture/compare 3 DMA request
		1: Enable capture/compare 3 DMA request
10	CC2DEN	Capture/Compare 2 DMA request enable
		0: Disable capture/compare 2 DMA request
		1: Enable capture/compare 2 DMA request
9	CC1DEN	Capture/Compare 1 DMA request enable
		0: Disable capture/compare 1 DMA request
		1: Enable capture/compare 1 DMA request
8	UDEN	Update DMA request enable
		0: Disable update DMA request
		1: Enable update DMA request
7	Reserved	Reserved, the reset value must be maintained
6	TIEN	Trigger interrupt enable
		0: Disable trigger interrupt
		1: Enable trigger interrupt
5	Reserved	Reserved, the reset value must be maintained

Bit field	Name	Description			
4	CC4IEN	Capture/Compare 4 interrupt enable			
		0: Disable capture/compare 4 interrupt			
		1: Enable capture/compare 4 interrupt			
3	3 CC3IEN Capture/Compare 3 interrupt enable				
		0: Disable capture/compare 3 interrupt			
		1: Enable capture/compare 3 interrupts			
2	CC2IEN	Capture/Compare 2 interrupt enable			
		0: Disable capture/compare 2 interrupt			
		1: Enables capture/compare 2 interrupts			
1	CC1IEN	Capture/Compare 1 interrupt enable			
		0: Disable capture/compare 1 interrupt			
		1: Enables capture/comparing 1 interrupt			
0	UIEN	Update interrupt enable			
		0: Disable update interrupt			
		1: Enables update interrupt			

10.4.6 Status registers (TIMx_STS)

Offset address: 0x10

15		13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved	1	CC40CF	CC30CF	CC2OCF	CC10CF	Res	erved	TITF	Reserved	CC4ITF	CC3ITF	CC2ITF	CC1ITF	UDITF
			rc_w0	rc_w0	rc_w0	rc_w0			rc_w0		rc_w0	rc_w0	rc_w0	rc_w0	rc_w0

Bit field	Name	Description
15:13	Reserved	Reserved, the reset value must be maintained
12	CC40CF	Capture/Compare 4 over capture flag
		See TIMx_STS.CC10CF description.
11	CC30CF	Capture/Compare 3 over capture flag
		See TIMx_STS.CC1OCF description.
10	CC2OCF	Capture/Compare 2 over capture flags
		See TIMx_STS.CC1OCF description.
9	CC10CF	Capture/Compare 1 over capture flag
		This bit is set by hardware only when the corresponding channel is configured in input capture
		mode. Cleared by software writing 0.
		0: No over capture occurred
		1: TIMx_STS.CC1ITF was already set when the value of the counter has been captured in the
		TIMx_CCDAT1 register.
8:7	Reserved	Reserved, the reset value must be maintained
6	TITF	Trigger interrupt flag

Bit field	Name	Description
		This bit is set by hardware when an active edge is detected on the TRGI input when the slave
		mode controller is in a mode other than gated. This bit is set by hardware when any edge in
		gated mode is detected. This bit is cleared by software.
		0: No trigger event occurred
		1: Trigger interrupt occurred
5	Reserved	Reserved, the reset value must be maintained
4	CC4ITF	Capture/Compare 4 interrupt flag
		See TIMx_STS.CC1ITF description.
3	CC3ITF	Capture/Compare 3 interrupt flag
		See TIMx_STS.CC1ITF description.
2	CC2ITF	Capture/Compare 2 interrupt flag
		See TIMx_STS.CC1ITF description.
1	CC1ITF	Capture/Compare 1 interrupt flag
		When the corresponding channel of CC1 is in output mode:
		Except in center-aligned mode, this bit is set by hardware when the counter value is the same as
		the compare value (see TIMx_CTRL1.CAMSEL bit description). This bit is cleared by
		software.
		0: No match occurred.
		1: The value of TIMx_CNT is the same as the value of TIMx_CCDAT1.
		When the value of TIMx_CCDAT1 is greater than the value of TIMx_AR, the
		TIMx_STS.CC1ITF bit will go high if the counter overflows (in up-counting and up/down-
		counting modes) and underflows in down-counting mode.
		When the corresponding channel of CC1 is in input mode:
		This bit is set by hardware when the capture event occurs. This bit is cleared by software or by
		reading TIMx_CCDAT1.
		0: No input capture occurred.
		1: Input capture occurred. Counter value has captured in the TIMx_CCDAT1. An edge with the
		same polarity as selected has been detected on IC1.
0	UDITF	Update interrupt flag
		This bit is set by hardware when an update event occurs under the following conditions:
		- When TIMx_CTRL1.UPDIS = 0, overflow or underflow (An update event is generated).
		- When TIMx_CTRL1.UPRS = 0, TIMx_CTRL1.UPDIS = 0, and set the
		TIMx_EVTGEN.UDGN bit by software to reinitialize the CNT.
		- When TIMx_CTRL1.UPRS = 0, TIMx_CTRL1.UPDIS = 0, and the counter CNT is
		reinitialized by the trigger event. (See TIMx_SMCTRL Register description)
		This bit is cleared by software.
		0: No update event occurred
		1: Update interrupt occurred

10.4.7 Event generation registers (TIMx_EVTGEN)

Offset address: 0x14

15								7	6	5	4	3	2	1	0
	1	1	1	Reserved	1	1	1	1	TGN	Reserved	CC4GN	CC3GN	CC2GN	CC1GN	UDGN
	- 1	1		1		1	1	1	w		w	w	w	w] w

Bit field	Name	Description
15: 7	Reserved	Reserved, the reset value must be maintained.
6	TGN	Trigger generation
		This bit can generate a trigger event when set by software. And at this time TIMx_STS.TITF =
		1, if the corresponding interrupt and DMA are enabled, the corresponding interrupt and DMA
		will be generated. This bit is automatically cleared by hardware.
		0: No action
		1: Generated a trigger event
5	Reserved	Reserved, the reset value must be maintained
4	CC4GN	Capture/Compare 4 generation
		See TIMx_EVTGEN.CC1GN description.
3	CC3GN	Capture/Compare 3 generation
		See TIMx_EVTGEN.CC1GN description.
2	CC2GN	Capture/Compare 2 generation
		See TIMx_EVTGEN.CC1GN description.
1	CC1GN	Capture/Compare 1 generation
		This bit can generate a capture/compare event when set by software. This bit is automatically
		cleared by hardware.
		When the corresponding channel of CC1 is in output mode:
		The TIMx_STS.CC1ITF flag will be pulled high, if the corresponding interrupt and DMA are
		enabled, the corresponding interrupt and DMA will be generated.
		When the corresponding channel of CC1 is in input mode:
		TIMx_CCDAT1 will capture the current counter value, and the TIMx_STS.CC1ITF flag will be
		pulled high, if the corresponding interrupt and DMA are enabled, the corresponding interrupt
		and DMA will be generated. If The IMx_STS.CC1ITF is already pulled high, pull
		TIMx_STS.CC10CF high.
		0: No action
		1: Generated a CC1 capture/compare event
0	UDGN	Update generation
		This bit can generate an update event when set by software. And at this time the counter will be
		reinitialized, the prescaler counter will be cleared, the counter will be cleared in center-aligned or up-
		counting mode, but take TIMx_AR in down-counting mode the value of the register. This bit is
		automatically cleared by hardware.

Bit field	Name	Description
		0: No action
		1: Generated an update event

10.4.8 Capture/compare mode register 1 (TIMx_CCMOD1)

Offset address: 0x18

Reset value: 0x0000

Channels can be used for input (capture mode) or output (compare mode), and the direction of the channel is defined by the corresponding CCxSEL bit. The other bits of the register act differently in input and output modes. OCx describes the function of a channel in output mode, ICx describes the function of a channel in input mode. Hence, please note that the same bit can have different meanings for output mode and for input mode.

Output compare mode:

15	14		12	11	10	9	8	7	6		4	3	2	1	0
OC2CEN		OC2MD[2:0]	OC2PEN	OC2FEN	CC2S	EL[1:0]	OC1CEN		OC1MD[2:0]	OC1PEN	OC1FEN	CC1SI	' EL[1:0]
rw		rw		rw	rw	r	w	rw		rw		rw	rw	r	W

Bit field	Name	Description
15	OC2CEN	Output Compare 2 clear enable
14:12	OC2MD[2:0]	Output Compare 2 mode
11	OC2PEN	Output Compare 2 preload enable
10	OC2FEN	Output Compare 2 fast enable
9:8	CC2SEL[1:0]	Capture/compare 2 selection
		These bits are used to select the input/output and input mapping of the channel
		00: CC2 channel is configured as output
		01: CC2 channel is configured as input, IC2 is mapped on TI2
		10: CC2 channel is configured as input, IC2 is mapped on TI1
		11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is only active
		when the internal trigger input is selected by TIMx_SMCTRL.TSEL.
		Note: CC2SEL is writable only when the channel is off $(TIMx_CCEN.CC2EN = 0)$.
7	OC1CEN	Output Compare 1 clear enable
		0: OC1REF is not affected by ETRF input level
		1: OC1REF is cleared immediately when the ETRF input level is detected as high
6:4	OC1MD[2:0]	Output Compare 1 mode
		These bits are used to manage the output reference signal OC1REF, which determines the
		values of OC1 and OC1N, and is valid at high levels, while the active levels of OC1 and
		OC1N depend on the TIMx_CCEN.CC1P and TIMx_CCEN.CC1NP bits.
		000: Frozen. Comparison between TIMx_CCDAT1 register and counter TIMx_CNT has no
		effect on OC1REF signal.

Bit field	Name	Description
		001: Set channel 1 to the active level on match. When TIMx_CCDAT1 = TIMx_CNT,
		OC1REF signal will be forced high.
		010: Set channel 1 as inactive level on match. When TIMx_CCDAT1 = TIMx_CNT,
		OC1REF signal will be forced low.
		011: Toggle. When TIMx_CCDAT1 = TIMx_CNT, OC1REF signal will be toggled.
		100: Force to inactive level. OC1REF signal is forced low.
		101: Force to active level. OC1REF signal is forced high.
		110: PWM mode 1 - In up-counting mode, if TIMx_CNT < TIMx_CCDAT1, OC1REF signal
		of channel 1 is high, otherwise it is low. In down-counting mode, if TIMx_CNT >
		TIMx_CCDAT1, OC1REF signal of channel 1 is low, otherwise it is high.
		111: PWM mode 2 - In up-counting mode, if TIMx_CNT < TIMx_CCDAT1, OC1REF signal
		of channel 1 is low, otherwise it is high. In down-counting mode, if TIMx_CNT >
		TIMx_CCDAT1, OC1REF signal of channel 1 is high, otherwise it is low.
		Note 1: In PWM mode 1 or PWM mode 2, the OCIREF level changes only when the
		comparison result changes or when the output compare mode is switched from frozen mode to
		PWM mode.
3	OC1PEN	Output Compare 1 preload enable
5	OCHEN	0: Disable preload function of TIMx_CCDAT1 register. Supports write operations to
		TIMx_CCDAT1 register at any time, and the written value is effective immediately.
		1: Enable preload function of TIMx_CCDAT1 register. Only read and write operations to
		preload registers. When an update event occurs, the value of TIMx_CCDAT1 is loaded into
		the active register.
		Note 1: Only when $TIMx_CTRL1.ONEPM = 1$ (In one-pulse mode), PWM mode can be used
		without verifying the preload register, otherwise no other behavior can be predicted.
2	OC1FEN	Output Compare 1 fast enable
		This bit is used to speed up the response of the CC output to the trigger input event.
		0: CC1 behaves normally depending on the counter and CCDAT1 values, even if the trigger is
		ON. The minimum delay for activating CC1 output when an edge occurs on the trigger input
		is 5 clock cycles.
		1: An active edge of the trigger input acts like a comparison match on CC1 output. Therefore,
		OC is set to the comparison level regardless of the comparison result. The delay time for
		sampling the trigger input and activating the CC1 output is reduced to 3 clock cycles.
		OCxFEN only works if the channel is configured in PWM1 or PWM2 mode.
1: 0	CC1SEL[1:0]	Capture/compare 1 selection
		These bits are used to select the input/output and input mapping of the channel
		00: CC1 channel is configured as output
		01: CC1 channel is configured as input, IC1 is mapped on TI1
		10: CC1 channel is configured as input, IC1 is mapped on TI2
		11: CC1 channels are configured as inputs and IC1 is mapped to TRC. This mode is only
		active when the internal trigger input is selected by TIMx_SMCTRL.TSEL.
		Note: CC1SEL is writable only when the channel is off (TIMx_CCEN.CC1EN = 0).

Input capture mode:

15	12	11 10	9 8	7	4 3 2	1 0									
	IC2F[3:0]	IC2PSC[1:0]	CC2SEL[1:0]	IC1F[3:0]	IC1PSC[1:0]	CC1SEL[1:0]									
	rw	rw	ľW	rw	rw	rw									
Bit field	Name	Description													
15:12	IC2F[3:0]	Input Capture	2 Filter												
11:10	IC2PSC[1:0]	Input Capture	2 Prescaler												
9:8	CC2SEL[1:0]	Capture/Comp	are 2 selection												
		These bits are	used to select the	e input/output and input m	apping of the channel										
		00: CC2 chanr	el is configured	as output											
		01: CC2 chanr	el is configured	as input, IC2 is mapped of	n TI2										
		10: CC2 chanr	el is configured	as input, IC2 is mapped or	n TI1										
		11: CC2 chanr	el is configured	as input, IC2 is mapped or	n TRC. This mode is o	nly active when the									
		internal trigger input is selected by TIMx_SMCTRL.TSEL.													
		Note: CC2SEI	. is writable only	when the channel is off (1	TIMx_CCEN.CC2EN =	<i>• 0)</i> .									
7:4	IC1F[3:0]	Input Capture 1 filter													
		These bits are used to define sampling frequency of TI1 input and the length of digital fil													
		digital filter is an event counter that generates an output transition after N events are recorded.													
		0000: No filter, sampling at f _{DTS} frequency													
		0001: $f_{SAMPLING} = f_{CK_INT}, N = 2$													
		$0010: \text{ f}_{\text{SAMPLING}} = \text{f}_{\text{CK}_{\text{INT}}}, \text{N} = 4$													
		0011: fsamplin	$G = f_{CK_{INT}}, N = 8$	3											
		0100: f _{samplin}	$_{\rm G} = {\rm f}_{\rm DTS}/2, {\rm N} = 6$												
		0101: f _{samplin}	$_{\rm G} = {\rm f}_{\rm DTS}/2, {\rm N} = 8$												
		0110: fsamplin	$_{\rm G} = {\rm f}_{\rm DTS}/4, {\rm N} = 6$												
		0111: f _{samplin}	$_{\rm G} = {\rm f}_{\rm DTS}/4, {\rm N} = 8$												
		1000: f _{samplin}	$_{\rm G} = {\rm f}_{\rm DTS}/8, {\rm N} = 6$												
		1001: fsamplin	$_{\rm G} = f_{\rm DTS}/8, {\rm N} = 8$												
		1010: f _{samplin}	$_{\rm G} = {\rm f}_{\rm DTS}/16, {\rm N} = 1$	5											
		1011: fsamplin	$_{\rm G} = {\rm f}_{\rm DTS}/16, {\rm N} = 0$	6											
		1100: f _{samplin}	$_{\rm G} = {\rm f}_{\rm DTS}/16, {\rm N} = 3$	8											
		1101: f _{samplin}	$_{\rm G} = {\rm f}_{\rm DTS}/32, {\rm N} = 1$	5											
		1110: fsamplin	$_{\rm G} = {\rm f}_{\rm DTS}/32, {\rm N} =$	6											
		1111: $f_{SAMPLING} = f_{DTS}/32$, N = 8													
3:2	IC1PSC[1:0]	Input Capture	1 prescaler												
		These bits are	used to select the	e ratio of the prescaler for	IC1 (CC1 input).										
		When TIMx_0	CCEN.CC1EN =	0, the prescaler will be re-	set.										
		00: No prescal	er, capture is dor	ne each time an edge is de	tected on the capture in	iput									
		01: Capture is	done once every	2 events											

Bit field	Name	Description								
		10: Capture is done once every 4 events								
		11: Capture is done once every 8 events								
1:0	CC1SEL[1:0]	Capture/Compare 1 selection								
	These bits are used to select the input/output and input mapping of the channel									
		00: CC1 channel is configured as output								
		01: CC1 channel is configured as input, IC1 is mapped on TI1								
		10: CC1 channel is configured as input, IC1 is mapped on TI2								
		11: CC1 channel is configured as input, IC1 is mapped to TRC. This mode is only active when the								
		internal trigger input is selected by TIMx_SMCTRL.TSEL.								
		Note: CC1SEL is writable only when the channel is off $(TIMx_CCEN.CC1EN = 0)$.								

10.4.9 Capture/compare mode register 2 (TIMx_CCMOD2)

Offset address: 0x1C

Reset value: 0x0000

See the description of the CCMOD1 register above

Output comparison mode:

15	14		12	11	10	9	8	7	6		4	3	2	1	0
OC4CEN	EN OC4MD[2:0])]	OC4PEN	OC4FEN	CC4S	EL[1:0]	OC3CEN		OC3MD[2:0]		OC3PEN	OC3FEN	CC3SEL[1:0]	
rw		rw	rw rw rw rw		w	rw		rw		rw	rw	r	w		

Bit field	Name	Description					
15	OC4CEN	Output compare 4 clear enable					
14:12	OC4MD[2:0]	Output compare 4 mode					
11	OC4PEN	Output compare 4 preload enable					
10	OC4FEN	Output compare 4 fast enable					
9:8	CC4SEL[1:0]	Capture/Compare 4 selection					
		These bits are used to select the input/output and input mapping of the channel					
	00: CC4 channel is configured as output						
	01: CC4 channel is configured as input, IC4 is mapped on TI4						
		10: CC4 channel is configured as input, IC4 is mapped on TI3					
		11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is only active when					
		the internal trigger input is selected by TIMx_SMCTRL.TSEL.					
		<i>Note:</i> CC4SEL is writable only when the channel is off ($TIMx_CCEN.CC4EN = 0$).					
7	OC3CEN	Output compare 3 clear enable					
6:4	OC3MD[2:0]	Output compare 3 mode					
3	OC3PEN	Output compare 3 preload enable					
2	OC3FEN	Output compare 3 fast enable					

Bit field	Name	Description
1:0	CC3SEL[1:0]	Capture/Compare 3 selection
		These bits are used to select the input/output and input mapping of the channel
		00: CC3 channel is configured as output
		01: CC3 channel is configured as input, IC3 is mapped to TI3
		10: CC3 channel is configured as input, IC3 is mapped on TI4
		11: CC3 channel is configured as input, IC3 is mapped to TRC. This mode is only active when
		the internal trigger input is selected by TIMx_SMCTRL.TSEL.
		Note: CC3SEL is writable only when the channel is off $(TIMx_CCEN.CC3EN = 0)$.

Input capture mode:

15	12	11	10	9	8	7		4	3	2	1	0
IC4F[3:0]	1	IC4PSC	C[1:0]	CC4SE	L[1:0]		IC3F[3:0]	I	IC3PSC[1:0]		CC3SEL[1:0]	
rw		rw rw				rw		r	w	r	W	

Bit field	Name	Description
15:12	IC4F[3:0]	Input Capture 4 filter
11:10	IC4PSC[1:0]	Input Capture 4 Prescaler
9:8	CC4SEL[1:0]	Capture/Compare 4 selection
		These bits are used to select the input/output and input mapping of the channel
		00: CC4 channel is configured as output
		01: CC4 channel is configured as input, IC4 is mapped on TI4
		10: CC4 channel is configured as input, IC4 is mapped on TI3
		11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is only active when the
		internal trigger input is selected by TIMx_SMCTRL.TSEL.
		Note: CC4SEL is writable only when the channel is off $(TIMx_CCEN.CC4EN = 0)$.
7:4	IC3F[3:0]	Input Capture 3 filter
3:2	IC3PSC[1:0]	Input Capture 3 Prescaler
1:0	CC3SEL[1:0]	Capture/compare 3 selection
		These bits are used to select the input/output and input mapping of the channel
		00: CC3 channel is configured as output
		01: CC3 channel is configured as input, IC3 is mapped to TI3
		10: CC3 channel is configured as input, IC3 is mapped on TI4
		11: CC3 channel is configured as input, IC3 is mapped to TRC. This mode is only active when the
		internal trigger input is selected by TIMx_SMCTRL.TSEL.
		Note: CC3SEL is writable only when the channel is off $(TIMx_CCEN.CC3EN = 0)$.

10.4.10 Capture/compare enable registers (TIMx_CCEN)

Offset address: 0x20

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved		CC4P	CC4EN	Rese	erved	CC3P	CC3EN	Res	erved	CC2P	CC2EN	Rese	rved	CC10P	CC1EN
		rw	rw			rw	rw			rw	rw			rw	rw

Bit field	Name	Description
15:14	Reserved	Reserved, the reset value must be maintained.
13	CC4P	Capture/Compare 4 output polarity
		See TIMx_CCEN.CC1P description.
12	CC4EN	Capture/Compare 4 output enable
		See TIMx_CCEN.CC1EN description.
11:10	Reserved	Reserved, the reset value must be maintained
9	CC3P	Capture/Compare 3 output polarity
		See TIMx_CCEN.CC1P description.
8	CC3EN	Capture/Compare 3 output enable
		See TIMx_CCEN.CC1EN description.
7:6	Reserved	Reserved, the reset value must be maintained
5	CC2P	Capture/Compare 2 output polarity
		See TIMx_CCEN.CC1P description.
4	CC2EN	Capture/Compare 2 output enable
		See TIMx_CCEN.CC1EN description.
3:2	Reserved	Reserved, the reset value must be maintained
1	CC1P	Capture/Compare 1 output polarity
		When the corresponding channel of CC1 is in output mode:
		0: OC1 active high
		1: OC1 active low
		When the corresponding channel of CC1 is in input mode:
		At this time, this bit is used to select whether IC1 or the inverse signal of IC1 is used as the trigger
		or capture signal.
		0: non-inverted: Capture action occurs when IC1 generates a rising edge. When used as external
		trigger, IC1 is non-inverted.
		1: inverted: Capture action occurs when IC1 generates a falling edge. When used as external
		trigger, IC1 is inverted.
		<i>Note: If TIMx_BKDT.LCKCFG = 3 or 2, these bits cannot be modified.</i>
0	CC1EN	Capture/Compare 1 output enable
		When the corresponding channel of CC1 is in output mode:
		0: Disable - Disable output OC1 signal.
		1: Enable - Enable output OC1 signal.
		When the corresponding channel of CC1 is in input mode:
		At this time, this bit is used to disable/enable the capture function.
		0: Disable capture
		1: Enable capture

Table 10-4 Output control bits of standard OCx ch	annel
---	-------

CCxEN	OCx output status
0	Disable output (OCx=0)
1	OCx = OCxREF + polarity

Note: The state of external I/O pins connected to standard OCx channels depends on the OCx channel state and GPIO and AFIO registers.

10.4.11 Counters (TIMx_CNT)

Offset address: 0x24

Reset value: 0x0000

15														0
	I		1				ONT	1	1	1	I	I		
CNT[15:0]											.			
rw														

Bit field	Name	Description
15:0	CNT[15:0]	Counter value

10.4.12 Prescaler (TIMx_PSC)

Offset address: 0x28

Reset value: 0x0000

15										0
		1	1		1	1		1	I I	
					PSC	15:01				
					r	w				

Bit fieldNameDescription15:0PSC[15:0]Prescaler value
Counter clock $f_{CK_CNT} = f_{CK_PSC}/$ (PSC [15:0] +1).
Each time an update event occurs, the PSC value is loaded into the active prescaler register.

10.4.13 Auto-reload register (TIMx_AR)

Offset address: 0x2C

Reset values: 0xFFFF

AR[15:0]	1	5															0
AR[15:0]		1	1			1	1			1	1		l	l	1	1	
		AR[15:0]															

rw

Bit field	Name	Description
15:0	AR[15:0]	Auto-reload value
		These bits define the value that will be loaded into the actual auto-reload register.
		See Section 错误!未找到引用源。 for more details.
		When the TIMx_AR.AR [15:0] value is null, the counter does not work.

10.4.14 Capture/compare register 1 (TIMx_CCDAT1)

Offset address: 0x34

Reset value: 0x0000

15														0
	1			1	1		1		1	1	1			1
CCDAT1[15:0]														
I														1
							,							

rw/r

Bit field	Name	Description
15:0	CCDAT1[15:0]	Capture/Compare 1 value
		CC1 channel is configured as output:
		CCDAT1 contains the value to be compared to the counter TIMx_CNT, signaling on the OC1
		output.
		If the preload feature is not selected in TIMx_CCMOD1.OC1PEN bit, the written value is
		immediately transferred to the active register. Otherwise, this preloaded value is transferred to the
		active register only when an update event occurs.
		CC1 channel is configured as input:
		CCDAT1 contains the counter value transferred by the last input capture 1 event (IC1).
		When configured as input mode, register CCDAT1 is only readable.
		When configured as output mode, register CCDAT1 is readable and writable.

10.4.15 Capture/compare register 2 (TIMx_CCDAT2)

Offset address: 0x38

Reset value: 0x0000

15															0
		1	I	1	I				1		1	I	I		
	CCDAT2[15:0]														
		1	1	1	1				1		1				1

rw/r

Bit field	Name	Description
15:0	CCDAT2[15:0]	Capture/Compare 2 values
		CC2 channel is configured as output:
		CCDAT2 contains the value to be compared to the counter TIMx_CNT, signaling on the OC2
		output.
		If the preload feature is not selected in TIMx_CCMOD1.OC2PEN bit, the written value is
		immediately transferred to the active register. Otherwise, this preloaded value is transferred to the
		active register only when an update event occurs.
		CC2 channel is configured as input:
		CCDAT2 contains the counter value transferred by the last input capture 2 event (IC2).
		When configured as input mode, register CCDAT2 is only readable.
		When configured as output mode, register CCDAT2 is readable and writable.

10.4.16 Capture/compare register 3 (TIMx_CCDAT3)

Offset address: 0x3C

Reset value: 0x0000

15													0
	1	1	1	1	1	ļ	1	1		1	1		
CCDAT3[15:0]													
rw/r													

Bit field	Name	Description
15:0	CCDAT3[15:0]	Capture/Compare 3 value
		CC3 channel is configured as output:
		CCDAT3 contains the value to be compared to the counter TIMx_CNT, signaling on the OC3
		output.
		If the preload feature is not selected in TIMx_CCMOD2.OC3PEN bit, the written value is
		immediately transferred to the active register. Otherwise, this preloaded value is transferred to
		the active register only when an update event occurs.
		CC3 channel is configured as input:
		CCDAT3 contains the counter value transferred by the last input capture 3 event (IC3).
		When configured as input mode, register CCDAT3 is only readable.
		When configured as output mode, register CCDAT3 is readable and writable.

10.4.17 Capture/compare register 4 (TIMx_CCDAT4)

Offset address: 0x40

15															0
			1		1		1			1	1	1	1		1
CCDAT4[15:0]															
			1										1		1

rw/r	

Bit field	Name	Description
15:0	CCDAT4[15:0]	Capture/Compare 4 value
		■ CC4 channel is configured as output:
		CCDAT4 contains the value to be compared to the counter TIMx_CNT, signaling on the OC4
		output.
		If the preload feature is not selected in TIMx_CCMOD2.OC4PEN bit, the written value is
		immediately transferred to the active register. Otherwise, this preloaded value is transferred to
		the active register only when an update event occurs.
		■ CC4 channel is configured as input:
		CCDAT4 contains the counter value transferred by the last input capture 4 event (IC4).
		When configured as input mode, register CCDAT4 is only readable.
		When configured as output mode, register CCDAT4 is readable and writable.

10.4.18 DMA Control register (TIMx_DCTRL)

Offset address: 0x48

15	13	12		8	7	5	4		0
Rese	rved		DBLEN[4:0]	1	Res	erved		DBADDR[4:0]	
	1		1 1	1		1		I	
			rw					rw	

Bit field	Name	Description
15:13	Reserved	Reserved, the reset value must be maintained
12:8	DBLEN[4:0]	DMA Burst Length
		This bit field defines the number DMA will accesses (write/read) TIMx_DADDR register.
		00000:1 time transfer
		00001: 2 times transfers
		00010: 3 times transfers
		10001: 18 times transfers
7:5	Reserved	Reserved, the reset value must be maintained.
4:0	DBADDR[4:0]	DMA Base Address
		This bit field defines the first address where the DMA accesses the TIMx_DADDR register.
		When access is done through the TIMx_DADDR first time, this bit-field specifies the address
		you just access. And then the second access to the TIMx_DADDR, you will access the address
		of "DMA Base Address + 4"
		00000: TIMx_CTRL1,

Bit field	Name	Description
		00001: TIMx_CTRL2,
		00010: TIMx_SMCTRL,

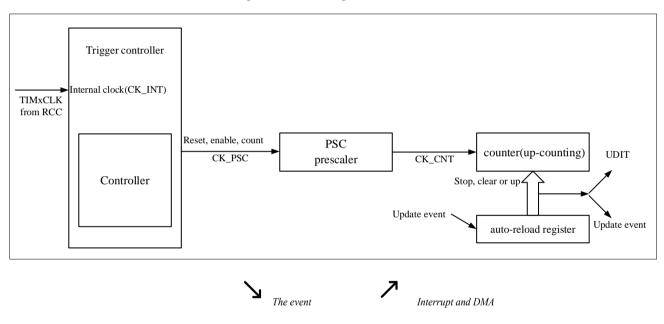
10.4.19 DMA transfer buffer register (TIMx_DADDR)

Offset address: 0x4C

15											0
	1	1	1	1 1	DUDO			1	I	1	
					BURS	T[15:0]					
			I	 · · · · ·		I	 		I	I	
					r	W					

Bit field	Name	Description				
15:0	BURST[15:0]	DMA access buffer.				
		When a read or write operation is assigned to this register, the register located at the address				
		range (DMA base address + DMA burst length \times 4) will be accessed.				
		DMA base address = The address of TIM_CTRL1 + TIMx_DCTRL. DBADDR * 4;				
		DMA burst len = $TIMx_DCTRL.DBLEN + 1$.				
		Example:				
		If TIMx_DCTRL.DBLEN = 0x3(4 transfers), TIMx_DCTRL.DBADDR = 0xD				
		(TIMx_CCDAT1), DMA data length = half word, DMA memory address = buffer address in				
		SRAM, DMA peripheral address = TIMx_DADDR address.				
		When an event occurs, TIMx will send requests to the DMA, and transfer data 4 times.				
		For the first time, DMA access to the TIMx_DADDR register will be mapped to access				
		TIMx_CCDAT1 register;				
		For the second time, DMA access to the TIMx_DADDR register will be mapped to access				
		TIMx_CCDAT2 register;				
		For the fourth time, DMA access to the TIMx_DADDR register will be mapped to access				
		TIMx_CCDAT4 register;				

11 Basic timers (TIM6)


11.1 Basic timers introduction

The basic timer contains a 16-bit counter.

11.2 Main features of Basic timers

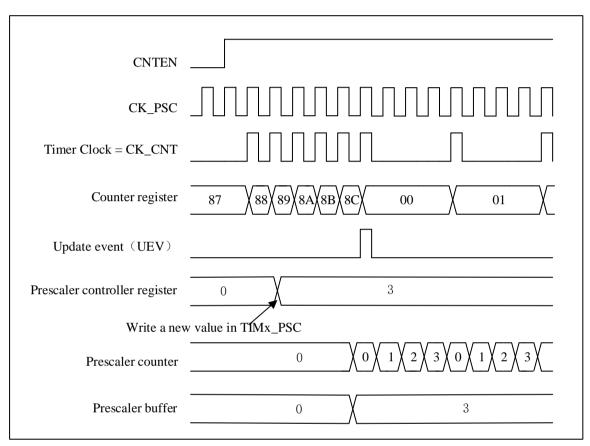
- 16-bit auto-reload up-counting counters.
- 16-bit programmable prescaler. (The frequency division factor can be configured with any value between 1 and 65536)
- The events that generate the interrupt/DMA are as follows:
 - Update event

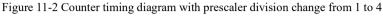
Figure 11-1 Block diagram of TIMx (x = 6)

11.3 Basic timers description

11.3.1 Time-base unit

The time-base unit mainly includes: prescaler, counter and auto-reload. When the time base unit is operating, the software can read and write the corresponding registers (TIMx_PSC, TIMx_CNT and TIMx_AR) at any time.


Depending on the setting of the auto-reload preload enable bit (TIMx_CTRL1.ARPEN), the value of the preload register is transferred to the shadow register immediately or at each update event UEV. An update event is generated when the counter reaches the overflow condition and it can be generated by software when TIMx_CTRL1.UPDIS=0. The counter CK_CNT is valid only when the TIMx_CTRL1.CNTEN bit is set. The counter starts counting one clock



cycle after the TIMx_CTRL1.CNTEN bit is set.

11.3.1.1 Prescaler description

The TIMx_PSC register consists of a 16-bit counter that can be used to divide the counter clock frequency by any factor between 1 and 65536. It can be changed dynamically at the runtime as it is buffered. The prescaler value is only taken into account at the next update event.

11.3.2 Counter mode

11.3.2.1 Up-counting mode

In up-counting mode, the counter will count from 0 to the value of the register TIMx_AR, then it resets to 0. And a counter overflow event is generated.

If the TIMx_CTRL1.UPRS bit (select update request) and the TIMx_EVTGEN.UDGN bit are set, an update event (UEV) will generate, and TIMx_STS.UDITF will not be set by hardware. Therefore, no update interrupts or update DMA requests are generated. This setting is used in scenarios where you want to clear the counter but do not want to generate an update interrupt.

Depending on the update request source is configured in the TIMx_CTRL1.UPRS, When an update event occurs, all registers are updated and the TIMx_STS.UDITF is set:

■ Update auto-reload shadow registers with preload value(TIMx_AR), when TIMx_CTRL1.ARPEN = 1.

242 / 447

■ The prescaler shadow register is reloaded with the preload value(TIMx_PSC)

To avoid updating the shadow registers when new values are written to the preload registers, you can disable the update by setting TIMx_CTRL1.UPDIS=1.

When an update event occurs, the counter will still be cleared and the prescaler counter will also be set to 0 (but the prescaler value will remain unchanged).

The figure below shows some examples of the counter behavior and the update flags for different division factors in the up-counting mode.

Internal clock divided by 2	CNTEN CK_PSC Timer clock = CK_CNT Counter register Counter overflow Update interrupt flag(UDITF) Update event(UEV)	
Internal clock divided by N	CK_PSC Timer clock = CK_CNT Counter register Counter overflow Update interrupt flag(UDITF) Update event(UEV)	

Figure 11-3 Timing diagram of up-counting. The internal clock divider factor = 2/N

ARPEN = 0 _{CNTEN}	
CK_PSC	
Timer clock = CK_CNT	
Counter register	31 \32 \33 \34 \35 \36 \00 \01 \02 \03 \04 \05 \06 \07 \
Counter overflow	
Update event (UEV)	
Update interrupt flag(UDITF)	
Auto-reload preload register	FF 36
Write a new	Change AR value value in TIMx_AR
ARPEN = 1	
CNTEN	
CK_PSC	
Timer clock = CK_CNT	
Counter register	F0 \F1 \F2 \F3 \F4 \F5 \00 \01 \02 \03 \04 \05 \06 \07 \
Counter overflow	
Update event (UEV)	
Update interrupt flag(UDITF)	
Auto-reload preload register	F5 36
Write a new	value in TIMx_AR
- Auto-reload shadow register	F5 X 36

Figure 11-4 Timing diagram of the up-counting, update event when ARPEN=0/1

244 / 447

11.3.3 Clock selection

■ The internal clock of timers: CK INT

11.3.3.1 Internal clock source (CK_INT)

It is provided that the TIMx_CTRL1.CNTEN bit is written as' 1 ' by software, the clock source of the prescaler is provided by the internal clock CK INT.

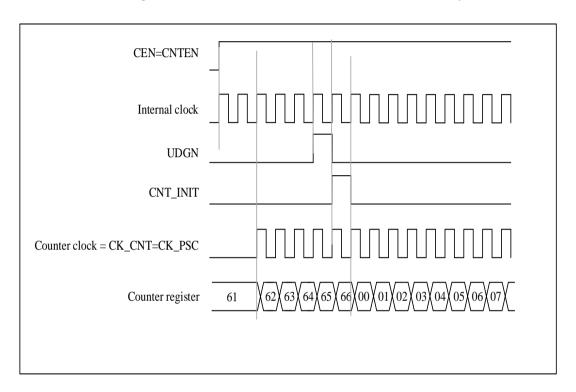


Figure 11-5 Control circuit in normal mode, internal clock divided by 1

11.3.4 Debug mode

When the microcontroller is in debug mode (the Cortex-M0 core halted), depending on the DBG_CTRL.TIMx_STOP configuration in the PWR module, the TIMx counter can either continue to work normally or stop. For more details, see 错误!未找到引用源。.

11.4 TIMx register description(x=6)

For abbreviations used in registers, see section 1.1

These peripheral registers can be operated as half word (16-bits) or one word (32-bits).

11.4.1 Register overview

Offs et	Register 📆 🗧	29 28 28 26 26 25 25 25 23 23 23 21 19 19 18 18 17 17	14 13 13 12 12 12 11 11 11 11 12 2 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
000h		Reserved Reserved ARPEN ARPEN ONEPM									
004h	Reset Value 0 <th< th=""></th<>										
008h	Reset Value 0 0 0 0										
00Ch	TIMx_DINTEN	Reserved	UIEN								
010h	Reset Value TIMx_STS	0 ODTTF									
01.41	Reset Value TIMx_EVTGEN		0 DDCN								
014h	Reset Value	Reserved	0								
018h		Reserved									
01Ch		Reserved									
020h	n Reserved										
024h	TIMx_CNT Reset Value	Reserved 0<									
028h	TIMx_PSC Reset Value	Reserved	PSC[15:0]								
02Ch	TIMx_AR Reset Value	Reserved AR[15:0] 0									

Table 11-1 Register overview

11.4.2 Control Register 1 (TIMx_CTRL1)

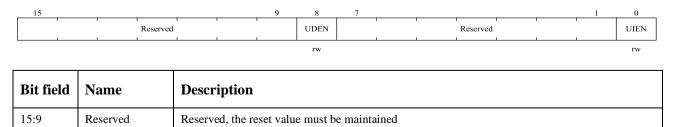
Offset address: 0x00

_	15					8	7	6		4	3	2	1	0
			Rese	erved			ARPEN		Reserved		ONEPM	UPRS	UPDIS	CNTEN
							rw				rw	rw	rw	rw

Bit field	Name	Description				
15:8	Reserved	Reserved, the reset value must be maintained				
7	ARPEN	ARPEN: Auto-reload preload enable				
		0: Shadow register disable for TIMx_AR register				
		1: Shadow register enable for TIMx_AR register				
6:4	Reserved	Reserved, the reset value must be maintained				
3	ONEPM	One-pulse mode				
		0: Disable one-pulse mode, the counter counts are not affected when an update event occurs.				
		1: Enable one-pulse mode, the counter stops counting when the next update event occurs				
		(clearing TIMx_CTRL1.CNTEN bit)				
2	UPRS	Update request source				
		This bit is used to select the UEV event sources by software.				
		0: If update interrupt or DMA request is enabled, any of the following events will generate an				
		update interrupt or DMA request:				
		Counter overflow				
		The TIMx_EVTGEN.UDGN bit is set				
		1: If update interrupt or DMA request is enabled, only counter overflow will generate update				
		interrupt or DMA request				
1	UPDIS	Update disable				
		This bit is used to enable/disable the Update event (UEV) events generation by software.				
		0: Enable UEV. UEV will be generated if one of following condition been fulfilled:				
		Counter overflow				
		The TIMx_EVTGEN.UDGN bit is set				
		Shadow registers will update with preload value.				
		1: UEV disabled. No update event is generated, and the shadow registers (AR, PSC) keep their				
		values. If the TIMx_EVTGEN.UDGN bit is set, the counter and prescaler are reinitialized.				
0	CNTEN	Counter Enable				
		0: Disable counter				
		1: Enable counter				

11.4.3 Control Register 2 (TIMx_CTRL2)

Offset address: 0x04


Reset value: 0x0000

15						7	6		4	3			0
I	1	1	Reserved	1	I	T	Ν	MSEL[2:0]		Rese	erved	
I	1	I	I	I	 1	1					1	I	
								rw					

Bit field	Name	Description
15:7	Reserved	Reserved, the reset value must be maintained
6:4	MMSEL[2:0]	Master mode selection
		These bits are used to select the synchronization signal (TRGO) sent to the slave timer in master
		mode, and there are the following combinations:
		000: Reset – use the UDGN bit of the TIMx_EVTGEN register as trigger output (TRGO). If a
		reset is generated by the trigger input (the slave mode controller is configured in reset mode), the
		signal on TRGO is delayed with respect to the actual reset signal.
		001: Enable – The counter enable signal CNT_EN is used as trigger output (TRGO). It can be
		used to start multiple timers at the same time, or to control the timing of enabling slave timers.
		The counter enable signal is generated by the 'logic OR' of the CNTEN control bit and the trigger
		input when configured in gated mode.
		When the counter enable signal is controlled by the trigger input, there is some delay on the
		TRGO output, unless master/slave mode is selected (see MSMD bit of TIMx_SMCTRL register).
		010: Update - The update event is used as a trigger output (TRGO). For example a master timer
		can be used as a prescaler for the slave timer.
3:0	Reserved	Reserved, the reset value must be maintained

11.4.4 DMA/Interrupt Enable Registers (TIMx_DINTEN)

Offset address: 0x0C

Bit field	Name	Description
8	UDEN	Update DMA Request enable
		0: Disable update DMA request
		1: Enable update DMA request
7:1	Reserved	Reserved, the reset value must be maintained
0	UIEN	Update interrupt enable
		0: Disable update interrupt
		1: Enables update interrupt

11.4.5 Status Registers (TIMx_STS)

Offset address: 0x10

Reset value: 0x0000

15								1	0
		1		Reserved					UDITF
	1	1		i Kesei veu					UDIIF
									rc w0

Bit field	Name	Description
15:1	Reserved	Reserved, the reset value must be maintained
0	UDITF	Update interrupt flag
		This bit is set by hardware when an update event occurs under the following conditions:
		When TIMx_CTRL1.UPDIS = 0, and counter value overflow.
		When TIMx_CTRL1.UPRS = 0, TIMx_CTRL1.UPDIS = 0, and set the
		TIMx_EVTGEN.UDGN bit by software to reinitialize the CNT.
		This bit is cleared by software.
		0: No update event occurred
		1: Update interrupt occurred

11.4.6 Event Generation registers (TIMx_EVTGEN)

Offset address: 0x14

	15										1	0
Γ		1	i.	1			1	1	1			
						Reserved						UDGN
		1										
												w

Bit field	Name	Description
15: 1	Reserved	Reserved, the reset value must be maintained.

Bit field	Name	Description
0	UDGN	UDGN: Update generation
		Software can set this bit to update configuration register value and hardware will clear it
		automatically.
		0: No effect.
		1: Timer counter will restart and all shadow register will be updated. It will restart prescaler
		counter also.

11.4.7 Counters (TIMx_CNT)

Offset address: 0x24

Reset value: 0x0000

15												0
1	1 1			1	1	1	1	1	1	1	ı ı	
				CNT	[15:0]							
				0.01	[10.0]							
			I	I			I		I	I	II	
				r	w							

Bit field	Name	Description
15:0	CNT[15:0]	Counter value

11.4.8 Prescaler (TIMx_PSC)

Offset address: 0x28

Reset value: 0x0000

15												0
	1	1	1	1	1		1	1	1		· · · ·	
						PSC[15:0]					
		1			I						L .	
						r	w					

Name	Description
PSC[15:0]	Prescaler value
	PSC register value will be updated to prescaler register at update event. Counter clock frequency
	is input clock frequency divide PSC + 1.

11.4.9 Automatic reload register (TIMx_AR)

Offset address: 0x2C

Reset values: 0xFFFF

15													0
			1	I	1	1	1	1			1	1	
AR[15:0]													
				1				1	I		 1	l	

rw

Bit field	Name	Description	
15:0	AR[15:0]	Auto-reload value	
		These bits define the value that will be loaded into the actual auto-reload register.	
		See 11.3.1 for more details.	
		When the TIMx_AR.AR [15:0] value is null, the counter does not work.	

12 Independent watchdog (IWDG)

12.1 Introduction

The N32WB03x has built-in independent watchdog (IWDG) and window watchdog (WWDG) timers to solve the problems caused by software errors. Watchdog timer is very flexible to use, which improves the safety of the system and the accuracy of timing control.

Independent Watchdog (IWDG) is driving by Low-speed internal clock (LSI clock) running at 30 KHz, which will still running event dead loop or MCU stuck is happening. This can provide higher safety level, timing accuracy and flexibility of watchdog. It can reset and resolve system malfunctions due to software failure. The IWDG is best suited for applications that require the watchdog to run as a totally independent process outside the main application, but have lower timing accuracy constraints.

When the power control register PWR_CTRL2.IWDGRSTEN bit is '1' and the IWDG counter reaches 0, a system reset will be generated (if this bit is '0', the IWDG will count but not reset).

Note: This chapter is based on the system default value IWDGRSTEN = 1.

12.2 Main features

- A 12-bit down-counter that runs independently
- RC oscillator provides an independent clock source and can work normally in STOP mode
- Reset can be matched.
- A system reset occurs when the down counter reaches 0x0000(if watchdog activated)

12.3 Function description

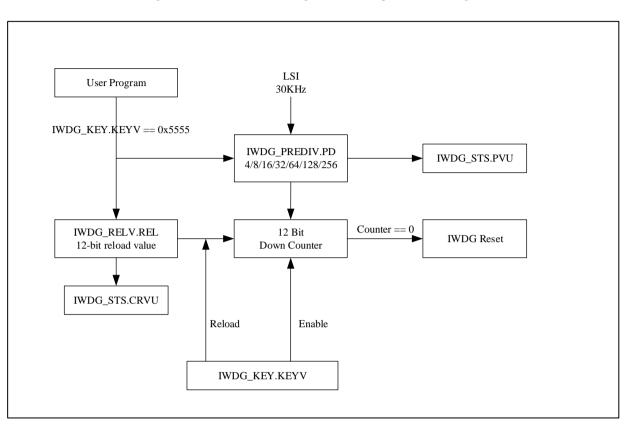


Figure 12-1 Functional block diagram of the independent watchdog module

To enable IWDG, we need to write 0xCCCC to IWDG_KEY.KEYV[15:0] bits. Counter starts counting down from reset value (0xFFF). When counter count to 0x000, it generates a reset signal (IWDG_RESET) to MCU. Other than that, as long as 0xAAAA (reload request) is write to IWDG_KEY.KEYV[15:0] bits before reset, the counter value is set to the reload value in the IWDG_RELV.REL[11:0] bits and prevents the watchdog from resetting the entire device.

If the "hardware watchdog timer" function is enabled through the selection byte, the watchdog will automatically start running after the system is powered on and will generate a system reset, unless the software reloads the counter before it reaches '0'.

12.3.1 Register access protection

IWDG_PREDIV and IWDG_RELV register are write protected. To modify the value of those two register, user needs to write 0x5555 to IWDG_KEY.KEYV[15:0] bits. Writing other value enables write protections again. IWDG_STS.PVU indicates whether the pre-scaler value update is on going. IWDG_STS.CRVU indicates whether the IWDG is updating the reload value. The hardware sets the IWDG_STS.PVU bit and/or IWDG_STS.CRVU bit when the pre-scaler value and/or reload value is updating. After the pre-scaler value and/or reload value update is complete, the hardware clears the IWDG_STS.PVU bit and/or IWDG_STS.CRVU bit.

The reload operation (IWDG_KEY.KEYV[15:0] configured with value of 0xAAAA) will also cause the registers to become write protected again.

12.3.2 Debug mode

In debug mode (Cortex-M0 core stops), IWDG counter will either continue to work normally or stops, depending on DBG_CTRL.IWDG_STOP bit in debug module. If this bit is set to '1', the counter stops. The counter works normally when the bit is '0'. For details, see 错误!未找到引用源。 Peripheral Debugging Support.

12.4 User interface

IWDG module user interface contains 4 registers: Key Register (IWDG_KEY), Pre-scale Register (IWDG_PREDIV), Reload Register (IWDG_RELV) and Status Register (IWDG_STS).

12.4.1 Operate flow

When IWDG is enable from reset from software (write 0xAAAA to IWDG_KEY.KEYV[15:0] bits) or hardware (clear WDG_SW bit). It starts counting down from 0xFFF. Down counting gap is determined by pre-scale LSI clock. Once the counter is reloaded, each new round will start from the value in IWDG_RELV.REL[11:0] instead of 0xFFF.

When program is running normally, software needs to feed IWDG before counter reaches 0 and start a new round of down counting. When counter reach 0, this indicates program malfunction. IWDG generates reset signal under this circumstance.

If user wants to configure IWDG pre-scale and reload value register, it needs to write 0x5555 to IWDG_KEY.KEYV[15:0] first. Then confirm IWDG_STS.CRVU bit and IWDG_STS.PVU bit. IWDG_STS.CRVU bit indicates reload value update is ongoing, IWDG_STS.PVU indicates Pre-scale divider ratio is updating. Only when those two bit are 0 then user can update corresponding value. When update is on-going, hardware sets corresponding bit to 1. At this time, reading IWDG_PREDIV.PD[2:0] or IWDG_RELV.REL[11:0] is invalid since data needs sync to LSI clock domain. The value read from IWDG_PREDIV.PD[2:0] or IWDG_RELV.REL[11:0] will be valid after hardware clears the IWDG STS.PVU bit or IWDG STS.CRVU bit.

If the application uses more than one reload value or pre-scaler value, it must wait until the IWDG_STS.CRVU bit is reset before changing the reload value, the same as changing the pre-scaler value. However, after updating the pre-scale and/or the reload value, it is not necessary to wait until IWDG_STS.CRVU bit or IWDG_STS.PVU bit are reset before continuing code execution.

Pre-scale register and reload register controls the time that generates reset, as shown in Table 12-1.

Pre-scale factor	PD[2:0]	Min timeout (ms) REL [11:0]=0x000	Max timeout (ms) REL [11:0]=0xFFF
/ 4	000	0.1	409.6
/ 8	001	0.2	819.2
/ 16	010	0.4	1638.4
/ 32	011	0.8	3276.8
/ 64	100	1.6	6553.6
/ 128	101	3.2	13107.2
/ 256	11x	6.4	26214.4

Table 12-1 IWDG counting maximum and minimum reset time

12.5 IWDG registers

12.5.1 IWDG register overview

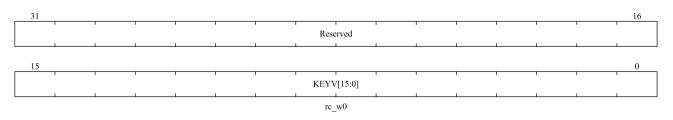

Offset	Register	31	30	29	28	27	26	25	24	23	22	10	21	19	18	17		15	: :	14	C1	12	11	10	6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	7	9	5	4	3	2	-	0
0x00	IWDG_KEY								Rese		J]	KEY	V [1	15:0]							
0x00	Reset value								Rese	avec	L							0	() ()	0	0	0	0	0		0	0	0	0	0	0	0	0
0x04	IWDG_PREDIV														F	Reserv	/ed																F	PD[2:	0]
	Reset value																																0	0	0
	IWDG_RELV																											RE	EL[1	11:0]					
0x08	Reset value										Res	erv	red										1	1	1	1		1	1	1	1	1	1	1	1
0x0C	IWDG_STS															Res	erv	/ed																CRVU	PVU
	Reset value																																	0	0

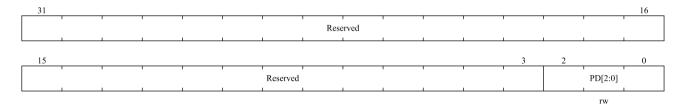
Table 12-2 IWDG register overview

12.5.2 IWDG key register (IWDG_KEY)

Address offset: 0x00

Reset value: 0x0000000

255 / 447



Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained.
15:0	KEYV[15:0]	Key value register: only certain value will serve particular function
		0xCCCC: Start watch dog counter, does not have any effect if hardware watchdog is enable, (if
		hardware watchdog is selected, it is not limited by this command word)
		0xAAAA: Reload counter with REL value in IWDG_RELV register to prevent reset.
		0x5555: Disable write protection of IWDG_PREDIV and IWDG_RELV register

12.5.3 IWDG pre-scaler register (IWDG_PREDIV)

Address offset: 0x04

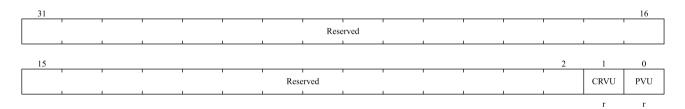
Reset value: 0x0000000

Bit field	Name	Description
31:3	Reserved	Reserved, the reset value must be maintained.
2:0	PD[2:0]	Pre-frequency division factor
		Pre-scaler divider: with write access protection when IWDG_KEY.KEYV[15:0] is not 0x5555. The
		IWDG_STS.PVU bit must be 0 otherwise PD [2:0] value cannot be changed. Divide number is as
		follow:
		000: divider /4
		001: divider /8
		010: divider /16
		011: divider /32
		100: divider /64
		101: divider /128
		Other : divider /256
		Note: Reading this register will return the pre-divided value from the VDD voltage domain. If a write
		operation is in progress, the read-back value may be invalid. Therefore, the read value is valid only
		when the IWDG_STS.PVU bit is '0'.

12.5.4 IWDG reload register (IWDG_RELV)

Address offset: 0x08

Reset value: 0x00000FFF


31													16
						Rese	erved						
15	1		12	11	1	I	1		1	1		1	0
	Rese	erved	1		1			REL	[11:0]	1	1		,
								r					

Bit field	Name	Description
31:12	Reserved	Reserved, the reset value must be maintained.
11:0	REL[11:0]	Watchdog counter reload value.
		With write protection. Defines the reload value of the watchdog counter, which is loaded to the
		counter every time 0xAAAA is written to IWDG_KEY.KEYV[15:0] bits. The counter then starts to
		count down from this value. The watchdog timeout period can be calculated from this reloading value
		and the clock pre-scaler value, refer to Table 12-1.
		This register can only be modified when the IWDG_STS.CRVU bit is '0'.
		Note: Reading this register will return the reload value from the VDD voltage domain. If a write
		operation is in progress, the read-back value may be invalid. Therefore, the read value is valid only
		when the IWDG_STS.CRVU bit is '0'.

12.5.5 IWDG status register (IWDG_STS)

Address offset: 0x0C

Reset value: 0x0000000

Bit field	Name	Description
31:2	Reserved	Reserved, the reset value must be maintained.
1	CRVU	Watchdog reload value update
		Reload Value Update: this bit indicates an update of reload value is ongoing. Set by hardware and
		clear by hardware. Software can only try to change IWDG_RELV.REL[11:0] value when
		IWDG_KEY.KEYV[15:0] bits' value is 0x5555 and this bit is 0.
0	PVU	Watchdog pre-scaler value update
		Pre-scaler Value Update: this bit indicates an update of pre-scaler value is ongoing. Set by hardware
		and clear by hardware. Software can only try to change IWDG_PREDIV.PD[2:0] value when
		IWDG_KEY.KEYV[15:0] bits' value is 0x5555 and this bit is 0.

13 Window watchdog (WWDG)

13.1 Introduction

The clock of the window watchdog (WWDG) is obtained by dividing the APB1 clock frequency by 4096, and whether the program operation is abnormal is detected through the configuration of the time window. Therefore, WWDG is suitable for precise timing, and is often used to monitor software failures caused by external disturbances or unforeseen logic conditions that cause an application to deviate from its normal operating sequence. A system reset occurs when the WWDG down counter is refreshed before reaching the window register value or after the WWDG_CTRL.T6 bit becomes 0.

13.2 Main features

- 7-bit independent down counter programmable
- After WWDG is enabled, a reset occurs under the following conditions
 - The value of the decremented counter is less than 0x40.
 - When the decremented counter value is greater than the value of the window register, it is reloaded.
- Early wake-up interrupt: If the watchdog is started and the interrupt is enabled, wake-up interrupt (WWDG_CFG.EWINT) will be generated when the count value reaches 0x40.

13.3 Function description

If the watchdog is activated (the WWDG_CTRL.ACTB bit), when the 7-bit (WWDG_CTRL.T[6:0]) down-counter reaches 0x3F(WWDG_CTRL.T6 bit is cleared), or the software reloads the counter when the counter value is greater than the value of the window register, a system reset will be generated. In order to avoid system reset, the software must periodically refresh the counter value in the window during normal operation.

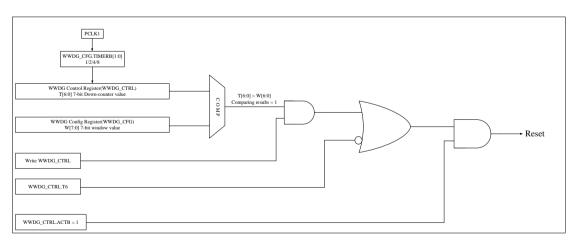


Figure 13-1 Watchdog block diagram

Set the WWDG_CTRL.ACTB bit to enable the watchdog, and thereafter, the WWDG will remain on until reset occurs. The 7-bit down-counter runs independently, and the counter keeps counting down whether WWDG is enabled or not. Therefore, before enabling the watchdog, you need to set WWDG_CTRL.T [6] bit to 1, preventing reset right

after enable. The pre-scaler value set by the clock APB1 and WWDG_CFG.TIMERB[1:0] bits determine the decrement speed of the counter. WWDG CFG.W[6:0] bits set the upper limit of the window.

When the down-counter is refreshed before reaching the window register value or after WWDG_CTRL.T6 bit becomes 0, a system reset will be generated. Figure 13-2 describes the working process of the window register.

Set the WWDG_CFG.EWINT bit to enable early wake-up interrupt. When the count-down counter reaches 0x40, an interrupt will be generated. You can analyze the cause of software failure or save important data in the corresponding interrupt service routine (ISR), and reload the counter to prevent WWDG from resetting. Write '0' to the WWDG_STS.EWINTF bit to clear the interrupt.

13.4 Timing for refresh watchdog and interrupt generation

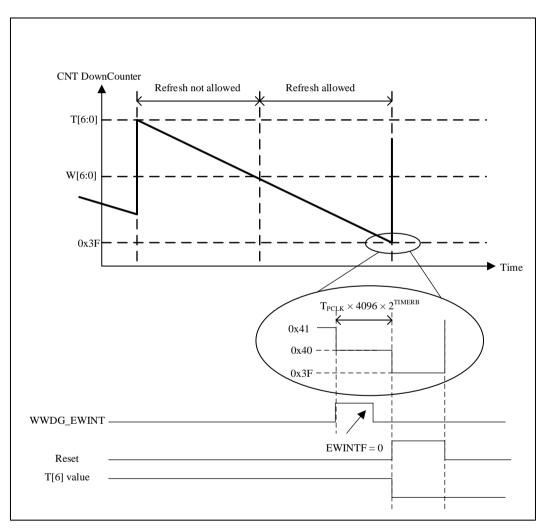


Figure 13-2 Refresh window and interrupt timing of WWDG

Watchdog refreshing window is between WWDG_CFG.W[6:0] value (maximum value 0x7F) and 0x3F, refresh outside this window will generates reset request to MCU. Counter count down from 0x7F to 0x3F using scaled APB1

clock, the maximum counting time and minimum counting time is shown in Table 13-1 (assuming APB1 clock 48

MHz) with calculate equation:

$$T_{WWDG} = T_{PCLK1} \times 4096 \times 2^{TIMERB} \times (T[5:0] + 1)$$

In which:

T_{WWDG}: WWDG timeout

T_{PCLK1}:APB1 clock interval in ms

Minimum-maximum timeout value at PCLK1 = 48MHz

TIMERB	Min timeout value(μs) T[5:0] = 0x00	Max timeout value(ms) T[5:0] = 0x3F
0	85.33	5.46
1	170.67	10.92
2	341.33	21.85
3	682.67	43.68

13.5 Debug mode

In debug mode (Cortex-M0 core stops), WWDG counter will either continue to work normally or stops, depending on DBG_CTRL.WWDG_STOP bit in debug module. If this bit is set to '1', the counter stops. The counter works normally when the bit is '0'. For details, see 错误!未找到引用源。 Peripheral Debug Support.

13.6 User interface

13.6.1 WWDG configuration flow

- 1) Configure RCC_APB1PCLKEN.WWDGEN[11] bit to enable the clock of WWDG module;
- 2) Software setting WWDG_CFG.TIMERB[8:7] bits to configure pre-scale factor for WWDG.
- 3) Software configure WWDG_CTRL.T[6:0] bits, setting starting value of counter. Need to set WWDG CTRL.T[6] bit to 1, preventing reset right after enable.
- 4) Configure WWDG_CFG.W[6:0] bits to configure upper boundary window value;
- 5) Setting WWDG_CTRL.ACTB[7] bit to enable WWDG;
- 6) Software operates WWDG_STS.EWINTF[0] bit to clear wake-up interrupt flag;
- 7) Configure WWDG_CFG.EWINT[9] bit to enable early wake-up interrupt.

13.7 WWDG registers

13.7.1 WWDG register overview

Table 13-2 WWDG register overview

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
000h	WWDG_CTRL										·		Rese	erved			·		-	_						ACTB			,	T[6:0]			
	Reset Value																									0	1	1	1	1	1	1	1
004h	WWDG_CFG											Rese	erved											EWINT	TIMI [1:			-	V	W[6:0]		
	Reset Value																							0	0	0	1	1	1	1	1	1	1
008h	WWDG_STS															F	Reserv	/ed															EWINTF
	Reset Value																																0

13.7.2 WWDG control register (WWDG_CTRL)

Address offset : 0x00

Reset value : 0x000007F

31		-		-					-		16
		1		1	Rese	rved			1		
15					8	7	6				0
		Rese	erved			ACTB			T[6:0]		
						rs			rw	•	

Bit field	Name	Description
31:8	Reserved	Reserved, the reset value must be maintained.
7	ACTB	Activation bit
		When ACTB=1, the watchdog can generate a reset. This bit is set by software and only cleared by
		hardware after a reset. When $ACTB = 1$, the watchdog can generate a reset.
		0: Disable watchdog
		1: Enable watchdog
6:0	T[13:0]	These bits contain the value of the watchdog counter. It is decremented every (4096x2 ^{TIMERB}) PCLK1
		cycles. A reset is produced when it rolls over from 0x40 to 0x3F (T6 becomes cleared).

13.7.3 WWDG config register (WWDG_CFG)

Address offset: 0x04 Reset value : 0x0000007F

31												 	16
					1		Rese	erved			1		
15				•	10	9	8	7	6	•			0
	1	Rese	erved			EWINT	TIMEF	B[1:0]		1	W[6:0]		
						rs	r	w			rw		

Bit field	Name	Description
31:10	Reserved	Reserved, the reset value must be maintained.
9	EWINT	Early wake-up interrupt
		When set, an interrupt occurs whenever the counter reaches the value 0x40. This interrupt is only
		cleared by hardware after a reset.
8:7	TIMERB[1:0]	Timer base.
		The time base of the pre-scaler can be modified as follows:
		00: CK Counter Clock (PCLK1 div 4096) div 1
		01: CK Counter Clock (PCLK1 div 4096) div 2
		10: CK Counter Clock (PCLK1 div 4096) div 4
		11: CK Counter Clock (PCLK1 div 4096) div 8
6:0	W[6:0]	7-bit window value
		These bits contain the window value to be compared to the down counter.

13.7.4 WWDG status register (WWDG_STS)

Address offset: 0x08

Reset value : 0x0000

31						-		-		-		-		-	16
	1	I	I	I	I	I	Rese	erved	I	I	I	I	1	I	
	1	1													
15														1	0
						' I	Reserved			' 1		' I			EWINTF
															rc_w0

Bit field	Name	Description
31:1	Reserved	Reserved, the reset value must be maintained.
0	EWINTF	Early wake-up interrupt flag
		This bit is set by hardware when the counter has reached the value 0x40. It must be cleared by
		software by writing '0'. A write of '1' has no effect. This bit is also set if the interrupt is not enabled.

14 BLE Subsystem

14.1 Introduction to BLE Subsystem

The BLE subsystem includes 3 components, BLE Baseband, RF Control and Modem.

14.1.1 Introduction to Baseband

Specify the basic radio frequency parameters of BLE communication, including signal frequency, modulation scheme, and frequency modulation mechanism;

Control the state of the device, including Standby, Adverting, Scan, Initating and Connected;

Provide a standard interface for communication between Host and Controller;

Provide data encapsulation service for the upper layer;

Provide pair and key distribution for secure data exchange;

14.1.2 Introduction to RF Control

The commands of SETMODE1M, SETMODE2M, SETMODELR, PRETX, POSTTX, PRERX, and POSTRX can be pre-configured, and the Modem's working mode can be controlled according to the output state of Baseband.

14.1.3 Introduction to Modem

It mainly implement the conversion of baseband signal and radio frequency signal.

Transmit precedure: The baseband signal is modulated, divided into two signals in the same direction (I signal) and quadrature (Q signal), and then pass through DA conversion and low-pass filter again, and then use the frequency synthesizer to perform frequency conversion. After the two signal components are synthesized, they are pushed to the antenna through the PA amplifier.

Receive precedure: The radio frequency signal pass through a low-noise amplifier (LNA), enter two phase components (I/Q), pass through a band-pass filter, amplify using VGA, and finally convert it into a digital signal and transmit it to the baseband.

14.2 Main features of the BLE subsystem

14.2.1 Main features of BLE Baseband

- Conform to Bluetooth5.1 specification
- Support AHB bus
- Support data packet types: including broadcast packets, advertisement packets, data packets, control packets and LR packets

- Advertising Extension
- Support synchronous channel operation
- Encryption/Decryption (AES-CCM)
- Bitstream processing (CRC, whitening)
- Frequency hopping calculation
- FDMA/TDMA/data formatting and synchronization
- Device class support includes: broadcast, central, observer, peripheral
- Support low power mode

14.2.2 Modem main features

- Compliance with Bluetooth Core Specification V5.1
- -96dBm receiving sensitivity at 1Mbps
- -93dBm receiving sensitivity at 2Mbps
- Soc embedded integration for various applications
- Support data rates include 125Kbps, 250Kbps, 1Mbps, 2Mbps
- Integrated receive filter auto-tuning
- Integrated Receive Skew Compensation
- Integrated VCO auto-tuning
- Integrated PLL bandwidth calibration
- Integrated DC offset compensation
- Integrated matching network and antenna switch
- Efficient Power Management

15 Voice Control and ADC

15.1 Introduction

It supports 10 bit 1.33Msps ADC (16 bit 16Ksps can be configured), single-end or differential AMIC, and built-in PGA, with the maximum gain up to 42dB. In addition it supplies power to MIC by MICBIAS with adjustable voltage, and the optional output voltage falls within the range of 1.6V~2.3V.

There are up to 8 channels, 5 external single ends, 1 differential MIC and 2 internal channels. The internal channel includes VCC detection channel and temperature sensor channel. For the five external channels, channel 1 (PB10) and 2 (PB9) has the detection range of 0V-1V, while channel 3 (PB8), 4 (PB7), and 5 (PB6) has the detection range of 0V-3.6V (when VCC=3.3V).

Built-in programmable gain amplifier (PGA) and microphone bias is used in the voice mode. MIC signals are amplified through PGA, and then converted into digital signals through analog ADC. After voice input control (low-pass decimation filterand optional energy and zero crossing detection), voice data is stored in the system RAM through DMA, and finally the output in 16bit 16kHz voice signal format is available.

15.2 Main features

- Support AMIC input, with microphone offset adjustable
- PGA supports single-end or differential input, with adjustable gain
- Support 1 ADC, measure 5 external single ends, 1 differential MIC and 2 internal channels, with optional input channel
- Internal channel supports TempSensor, VCC, PGA differential input
- 10 bit 1.33Msps ADC (16 bit 16Ksps configurable)
- Support digital filtering to 16 bits and noise filtering
- Support single and continuous conversion mode
- Support DMA request generation during channel conversion
- The analog watchdog feature allows the application to detect whether the input PB10 voltage exceeds the userdefined high/low threshold
- Generate interrupts when conversion ends, PGA interrupts and analog watchdog events occur
- The filter output data is stored in the 16 bit data register in voice mode, and the right alignment of data is stored in the 16 bit data register in general mode
- Output is made in the format of 16bit 16Ksps signed PCM in voice mode and 10bit 4Msps unsigned output in general mode
- ADCCTRL clock includes working clock
 - ♦ ADC_CLK: for ADC working clock, HSE_DIV8 (4MHz) or AUDIOPLLCLK (4.096MHz) can be

265 / 447

configured as the source of working clock

■ The specific internal signal connection of ADC is shown below:

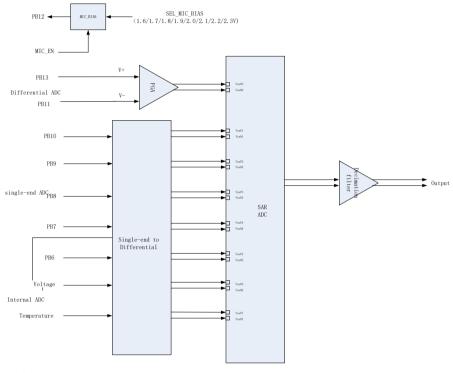


Figure 15-1 Architecture diagram of voice control and ADC

PB13/PB11 are differential pin of voice input,PB10\PB9\PB8\PB7\0B6 are single-end input

15.3 AMIC input channel

It supports one single-end or differential AMIC, and provides voltage-adjustable (in the range of 1.6~2.3V) MICBIAS.

MICBIAS provides a low-noise bias voltage to the microphone outside the chip. There are two working modes: normal mode and turn-off mode.

Output VDD_ MIC power supply, drive capacity of 0.9mA, and support external power supply and 4.7uF offchip capacitor.

- 1. Configure PGA CFG. MICBIAS EN=1, and enable MICBIAS;
- 2. Configure PGA_CFG.MICBIAS[2:0];
- 3. Obtain the corresponding VDD_MIC output;

15.4 PGA control

Programmable mono PGA (programmable gain amplifier) with adjustable gain. The AMIC input channel can

266 / 447

Nations Technologies Inc. Tel: +86-755-86309900 Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China implement signal amplification through PGA.

1. Configure PGA_CFG. PGA_EN=1, and enable PGA;

2. Configure PGA_CFG.PGA_INIT_ENA as 1 first, then as 0 after 5ms. Enable off-chip capacitor fast charging, and use PGA at startup time.

3. Configure PGA_ CFG. PGA_GAIN, with corresponding gain of 0~42dB and step size of 6dB, select appropriate gain configuration, manually adjust the input volume, wait 10ms for stabilization after switching gain;

For input channel, set ADC_CTRL.ADC_CH_SEL to 0 (by default), select PGA path, and input impedance 10K Ω corresponding to PB11/PB13.

15.5 Digital voice control

Digital voice input processing mainly includes low-pass filter (LPF), energy and zero crossing rate detection module, which can be enabled or disabled by configuration.

It supports digital filtering to 16 bits and noise filtering. In the voice mode, the filter output data is stored in the 16 bit data register, providing output in the format of 16 bit 16Ksps signed mono PCM.

15.5.1 Low-pass decimation filter LPF

LPF is a data filter. LPF performs fixed ratio 256 samples after receiving analog ADC output, and filters high-frequency noise mixed in ADC samples, so as to obtain the effective received data.

In voice mode, VOICE_DET_CR .VAD_FILTER_BYP has to be configured as 0 (by default).

Finally LFP has 16 bit 16Ksps signed data output.

15.5.2 Energy detection and zero crossing rate detection

For sound input, first take the information of the former three frames of signals as the initial mean noise parameter, and the sum of which and the constant C is the threshold M0. Voiced sound is determined when the value is above M0, and zero crossing detection is conducted when the value is lower than M0. Those sounds with zero crossing rate ZC between 30 and 70 (can be set by software) are considered clear voice, and the others are mute.

Format of energy detection (ED) and zero crossing rate detection (ZCRD): four bytes at the end of each frame.

Byte 1	Byte 2	Byte 3	Byte 4
ZCRD	ED	ED	EDx6+Silent, Clear and Voice x2

Frame format of Sound: 248 16KHz 16 bit voice sampling data+1 result word of 32-bit energy detection and zero crossing detection Format of the words of energy detection and zero crossing rate detection: word [31:24]: Zero crossing detection result Word [23:2]: average energy compressed to 24bit Word [1:0]: sound detection result 00: Silent: mute 01: Clear: soft tone 10: Voice: voiced sound

15.6 Function description of ADC

15.6.1 Input channel and range of input voltage

ADC is a high-speed successive approximation type analog-to-digital converter, including up to 8 channels, 5 external single ends, 1 differential MIC and 2 internal channels. The internal channel includes VCC detection channel and temperature sensor channel. The A/D conversion of channels can be performed in single and continuous mode.

Configure ADC_CTRL.ADC_CH_SEL for ADC input channel selection.

000 (by default) differential MIC channel, corresponding to PB11/PB13, is selected.

001-010 is used for off-chip pre-voltage division input, corresponding to PB9/PB10, without resistive load, and with detection range of 0-1V.

011~101 is used for direct detection, corresponding to PB6~PB8, with input impedance of $360K\Omega$ and detection range of 0~3.6V.

110 is used for VCC detection.

111 is used for the voltage detection of on-chip temperature sensor.

15.6.2 ADC switch control

ADC can be enabled by setting the ADC_EN bit of ADC_ CTRL register. When the ADC_ENC is set for the first time, ADC needs a stable time t_{STAB} 64 cycle before starting precise conversion, and then once conversion is performed each cycle.

In single mode, the hardware automatically turns off ADC_EN after conversion. If the interrupt is enabled, the corresponding conversion termination interrupt can be generated. Users confirm whether the conversion is completed by querying the ADC_DONE_F in ADC_SR.

the conversion can be stopped in continuous mode by clearing the ADC_EN.

ADC_EN bit has to be disabled before switching input channels.

15.6.3 Conversion mode

15.6.3.1 Single conversion mode

Each conversion relates to two phases: sample phase and conversion phase.

In single conversion mode, ADC only performs one conversion. After setting ADC_CTRL.ADC_CH_SEL and selecting the input channel, users can enable conversion by setting the ADC_EN bit of ADC_CTRL.

Once the selected channel is successfully converted:

- Conversion data is stored in 16 bit ADC_DAT register;
- ♦ ADC_DONE_F (end of conversion) flag is set; and
- An interrupt is generated when ADC_DONE_IE is set.

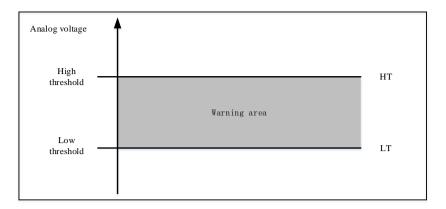
The conversion is completed as fast as only one adcclk clock cycle. However, in the single mode, switching circuit of the input channel requires 64 adcclk stabilization periods when ADCEN or ADCSEL is modified.

15.6.3.2 Continuous conversion mode

By setting ADC_CTRL.ADC_MODE to "1", users can use ADC in continuous mode. In continuous conversion mode, another ADC conversion will be started as soon as the previous one ends. After setting ADC_CTRL.ADC_CH_SEL and selecting the input channel, users can trigger the first ADC conversion by setting the ADC _ EN bit of CTRL register, but afterwards, new conversion data will be automatically generated for each adcclk cycle.

Support setting oversample rate and configured value ADC_OVR_SAMP_CNT. OS_CNT_LD_CNT should be >=2, sample one data from OS_CNT_LD_CNT+1 data.

After each conversion:


- Conversion data is stored in 16 bit ADC_DAT register
- DMA mode is enabled, and DMA request will be generated after each conversion

15.6.4 Analog watchdog

If the analog PB10 voltage converted by ADC is lower than the low threshold or higher than the high threshold, the AWDG analog watchdog status bit is set. Threshold is located at the lowest 10 significant bits of ADC_WDHIGH and ADC_WDLOW register. The generation of corresponding interrupt can be allowed by setting the AWD_IE bit of ADC_CTRL register.

Figure 15-2 Analog watchdog warning area

15.7 Data alignment

The format of right alignment of data is presented in Figure 错误!未找到引用源。.

Figure 15-3 Right alignment of data

0	0	0	0	0	0	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
---	---	---	---	---	---	----	----	----	----	----	----	----	----	----	----	--

15.8 DMA request

Because the channel conversion value is stored in a single data register, DMA has to be used when we convert multiple channels, thus avoiding the loss of the data already stored in ADC DAT register.

DMA request is generated only when the channel conversion ends, and the converted data is transferred from the register ADC DAT to the user-specified destination address.

15.9 Temperature sensor

Temperature sensor can be used to measure the temperature (T_A) around a device.

Temperature sensor is internally connected to the VINP7/VINN7 input channel which converts the sensor's output voltage into a digital value. TS_EN bit must be set to activate the internal channel. When not in use, the sensor can be kept in the power-off mode to reduce power consumption.

The output voltage of temperature sensor changes linearly with the temperature. Due to the change in the production process, the deviation of temperature change curve will vary on different chips (with the maximum difference of 4 °C).

The internal temperature sensor is more suitable for the detection of temperature change than the measurement of absolute temperature. An external temperature sensor should be used as long as accurate temperature measurement is required.

15.9.1 Read temperature

Complete the configuration as follows to read the temperature by using a temperature sensor:

- Select VINP7/VINN7 input channel, ADC CH SEL=3'b111
- Set TS_EN bit of ADC control register (ADC_CTRL) to wake up the temperature sensor in power off mode
- Activate ADC conversion by setting ADC_EN bit
- Read VSENSE data result on ADC data register
- Obtain the temperature through the following formula

```
Temperature (°C)=\{(V_{25} - V_{SENSE}) / Avg_Slope\} + 25
```

Where:

 $V_{25}{=}V_{SENSE}$ value at 25 $^{\circ}\mathrm{C}$

Avg_Slope= average slope of temperature versus V_{SENSE} curve (in mV/°C or μ V/°C)

Refer to the actual value of V25 and Avg_Slope in the Electrical Characteristics section of the Data Manual.

Note: There is a setup time from the time when the sensor is waken up in the power off mode to the time when the V_{SENSE} of correct level can be output, and so does ADC after power on. In order to shorten the delay, ADC_EN and TS_EN bit should be set at the same time.

15.10 ADC register

15.10.1 ADC register overview

Offset	Register	31	30	29	28	27 26	25	77	23 23	ì	22	21	20	19	18	17	16	24	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
000h	ADC_CTRL										Res	erve	ed.											PGARDY_IE	AWD_IE	ADC_DONE_IE	ADC_MODE	ADC_CH_SEL[2]	ADC_CH_SEL[1]	ADC_CH_SEL[0]	DMA_MODE_EN	AWD_EN	TS_EN	ADC_EN
	Reset Value																							0	0	0	0	0	0	0	0	0	0	0
004h	ADC_SR														I	teser	rved															PGARDY_F	AWD_F	ADC_DONE_F
	Reset Value																															0	0	0
008h	ADC_OVR_SAMP_CNT]	Reser	ved														OS_CNT_LD_CNT[4]	OS_CNT_LD_CNT[3]	OS_CNT_LD_CNT[2]	OS_CNT_LD_CNT[1]	OS_CNT_LD_CNT[0]
	Reset Value																													1	1	1	1	1

Table 15-1 ADC register overview

Nations Technologies Inc. Tel: +86-755-86309900 Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

www.nationstech.com

Offset	Register	31 30 29 28 28 26 26 25 24 23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	~	7	6	5	4	3	2	-	0
00Ch	ADC_DAT	Reserved	I		•				_	ADC_DATA[15]	ADC_DATA[14]	ADC_DATA[13]	ADC_DATA[12]	ADC_DATA[11]	ADC_DATA[10]	ADC_DATA[9]	ADC_DATA[8]	ADC_DATA[7]	ADC_DATA[6]	ADC_DATA[5]	ADC_DATA[4]	ADC_DATA[3]	ADC_DATA[2]	ADC_DATA[1]	ADC_DATA[0]
	Reset Value		1						0) ()) () () ()) () () ()	0	0	0	0	0	0	0	0
010h	ADC_WDT_THRES	Reserved [6]LH [6]LH [6]LH	HT[4]	HT[3]	HT[2]	HT[1]	HT[0]			F	Resei	ved			-	LT[9]	LT[8]	LT[7]	LT[6]	LT[5]	LT[4]	LT[3]	LT[2]		LT[0]
	Reset Value		1	1	1 1	1	1					- r		- r	0) ()	0	0	0	0	0	0	0	0
014h	PGA_CFG	Reserved						PGA_GAIN[3]	PGA_GAIN[2]	PGA_GAIN[1]	PGA_GAIN[0]	PGA_EN	AUDIOPGA_DRIVE[1]	AUDIOPGA_DRIVE[0]	AUFIOPGA_PEAK[1]	AUFIOPGA_PEAK[0]	AUDIOPGA_RESERVED[3]	AUDIOPGA_RESERVED[2]	AUDIOPGA_RESERVED[1]	AUDIOPGA_RESERVED[0]	AUDIOPGA_INIT_ENA	MICBIAS[2]	MICBIAS[1]		MICBIAS_EN
	Reset Value							1 0	0) ()) () () 1) [1)	0	0	0	0	1	0	0	0
018h	VOICE_DET_CR						Re	served	1														VAD_FILTER_BYP	VAD_ED_EN	VAD_ZCRD_EN
	Reset Value																						0	0	0
01Ch	VOICE_ZCR_THRES	Reserved	I							VAD_ZCRD_HIGH_THRES[7]	VAD_ZCRD_HIGH_THRES[6]	VAD_ZCRD_HIGH_THRES[5]	VAD_ZCRD_HIGH_THRES[4]	VAD_ZCRD_HIGH_THRES[3]	VAD_ZCRD_HIGH_THRES[2]	VAD_ZCRD_HIGH_THRES[1]	VAD_ZCRD_HIGH_THRES[0]	VAD_ZCRD_LOW_THRES[7]	VAD_ZCRD_LOW_THRES[6]	VAD_ZCRD_LOW_THRES[5]	VAD_ZCRD_LOW_THRES[4]	VAD_ZCRD_LOW_THRES[3]	VAD_ZCRD_LOW_THRES[2]	VAD_ZCRD_LOW_THRES[1]	VAD_ZCRD_LOW_THRES[0]
										\geq	\sim	12	1/	~	~	~	>	2	VA	VAI	[A]	\geq		~	\geq
	Reset Value								C	>) 1	×		≶) 1	-	-)	> 1	2 0	0 VA	IVA 1	0 VA	>	1	1	> 0
020h	VOICE_ED_THRES	Reserved	MOFFSET[22]	MOFFSET[21]	MOFFSET[20]	MOFFSET[19]	MOFFSET[18]	MOFFSET[17]	MOFFSET[16]	15] (14]	13]	12]	[11	[0]	9]	MOFFSET[8]	MOFFSET[7]	MOFFSET[6] 0	MOFFSET[5] –	MOFFSET[4] 0	MOFFSET[3] -	MOFFSET[2]	MOFFSET[1]	MOFFSET[0] 0
020h		Reserved		[©] MOFFSET[21]	© MOFFSET[20]	MOFFSET[19]	^o MOFFSET[18]	O MOFFSET[17]	MOFFSET[16]) <u>1</u>	14]	13]	12]	[1]	[0])	[8]	7] [2]	6] O	1	0	3]	2]	1	0 [0
020h 024h	VOICE_ED_THRES Reset Value VOICE_ED_DWN_THRES			GATE_MIN[21]	© MOFFSET[GATE_MIN[19] MOFFSET[19]	GATE_MIN[18] [©] MOFFSET[18]	© MOFFSET[MOFFSET	MOFFSET[15]	MOFFSET[14]	13]	MOFFSET[12]	[1]	0] MOFFSET[10]	MOFFSET[9]	[8]	7] [2]	GATE_MIN[6] \circ MOFFSET[6] \circ	GATE_MIN[5] o MOFFSET[5] -	GATE_MIN[4] \circ MOFFSET[4] \circ	GATE_MIN[3] \circ MOFFSET[3] $-$	GATE_MIN[2]	GATE_MIN[1] o MOFFSET[1] -	GATE_MIN[0] c MOFFSET[0] c
	VOICE_ED_THRES Reset Value	Reserved	o MOFFSET[© MOFFSET[© MOFFSET[0 MOFFSET	© MOFFSET[© MOFFSET[MOFFSET	O MOFFSET[15]	MOFFSET[14]	MOFFSET[13]	MOFFSET[12]	MOFFSET[11]	MOFFSET[10]	MOFFSET[9]	MOFFSET[8]	© MOFFSET[7]	o MOFFSET[6] o	0 MOFFSET[5] 1	o MOFFSET[4] o	o MOFFSET[3] L	◦ MOFFSET[2]	o MOFFSET[1] -	o MOFFSET[0] o
	VOICE_ED_THRES Reset Value VOICE_ED_DWN_THRES		o MOFFSET[© MOFFSET[GATE_MIN[20] C MOFFSET[0 MOFFSET	© MOFFSET[GATE_MIN[17] GATE_MIN[17] GATE_MIN[17]	GATE_MIN[16] GATE_MIN[16] GATE_MOFFSET[GATE_MIN[15] MOFFSET[15]	MOFFSET[14]	GATE_MIN[13] MOFFSET[13]	GATE_MIN[12] C MOFFSET[12] C	GATE_MIN[11] MOFFSET[11]) GATE_MIN[10] MOFFSET[10]	GATE_MIN[9] MOFFSET[9]	MOFFSET[8]	© MOFFSET[7]	GATE_MIN[6] \circ MOFFSET[6] \circ	GATE_MIN[5] o MOFFSET[5] -	GATE_MIN[4] \circ MOFFSET[4] \circ	GATE_MIN[3] \circ MOFFSET[3] $-$	GATE_MIN[2]	o GATE_MIN[1] o MOFFSET[1] -	GATE_MIN[0] c MOFFSET[0] c

15.10.2 ADC control register (ADC_CTRL)

Address offset: 0x00

Reset value: 0x0000 0000

31		-													16
							Rese	erved							
15				11	10	9	8	7	6	•	4	3	2	1	0
	1	Reserved	1	1	PGARDY_ IE	AWD_ IE	ADC_DO NE_IE	ADC MODE	ADC_	CH_SEL		DMA_MO DE_EN	AWD_EN	TS_EN	ADC_EN
					rw	rw	rw	rw		rw		rw	rw	rw	rw

Bit field	Name	Description
31:11	Reserved	Must be reserved as 0.
10	PGARDY_IE	PGA abnormal operation interrupt enable
		0: Disable
		1: Enable
9	AWD_IE	Analog watchdog interrupt enable
		0: Disable
		1: Enable
8	ADC_DONE_IE	ADC single conversion completion interrupt enable
		0: Disable
		1: Enable
7	ADC_MODE	ADC working mode selection
		0: Single conversion
		1: Continuous conversion
6:4	ADC_CH_SEL	ADC input channel selection
		000: MIC input
		001: Input of PB10
		010: Input of PB9
		011: Input of PB8
		100: Input of PB7
		101: Input of PB6
		110: External voltage input
		111: TS input
3	DMA_MODE_E	DMA mode enable control
	Ν	0: Do not use DMA
		1: Use DMA
2	AWD_EN	Analog watchdog enable
		0: Disable
		1: Enable

Bit field	Name	Description
1	TS_EN	Temperature monitor enable
		0: Disable
		1: Enable
0	ADC_EN	ADC work enable
		0: Disable
		1: Enable

15.10.3 ADC status register(ADC_SR)

Address offset: 0x04

Reset value: 0x0000 0000

31		1						-							16
	1	1	1			I	Rese	erved	I	I	I	I			
	1	1	1	1	1		1	1	1	1	1	I	11		1]
15												3	2	1	0
						Reserved	ı — — — — — — — — — — — — — — — — — — —	1	ı — — — — — — — — — — — — — — — — — — —		1		PGARDY _F	AWD_F	ADC_ DONE_F
													rc w0	rc w0	rc w0

Bit field	Name	Description
31:3	Reserved	Must be reserved as 0.
2	PGARDY_F	PGA abnormal state indication
		0: PGA works normally
		1: PGA works abnormally
1	AWD_F	Analog watchdog working status indication
		0: without analog watchdog event
		1: with analog watchdog event
0	ADC_DONE_F	ADC single conversion completion status indication
		0: Single conversion not completed
		1: Single conversion completed

15.10.4 ADC oversample control register (ADC_OVR_SAMP_CNT)

Address offset: 0x08

Reset value: 0x0000 001F

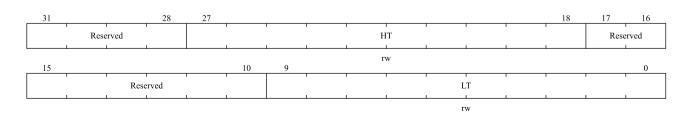
31														16
						Res	erved							
15				I					·		1			
15	1	1	1	Reserved	1	1	l	1	5	4	08	CNT_LD_	I CNT	1
	I	1	- 1		1	1	1	1	1			rw		

Bit field	Name	Description
31:5	Reserved	Must be reserved as 0.
4:0	OS_CNT_LD_CNT	Oversample rate setting
		Note: Configuration value should be>=2
		OS_CNT_LD_CNT+1 data sample for each data

15.10.5 ADC data register (ADC_DAT)

Address offset: 0x0C

Reset value: 0x0000 0000

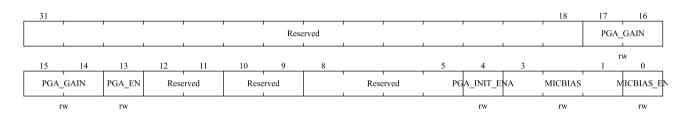

31									16
				Rese	erved	1			
15									
15				ADC_	DATA				
				:	r				

Bit field	Name	Description
31:16	Reserved	Must be reserved as 0.
15:0	ADC_DATA	Store ADC conversion data
		When VAD_FILTER_BYP is 1, store 10bit unsigned number
		When VAD_FILTER_BYP is 0 and the filter works, store 16 bit signed numbers

15.10.6 ADC watchdog threshold control register (ADC_WDT_THRES)

Address offset: 0x10

Reset value: 0x0FFC 0000



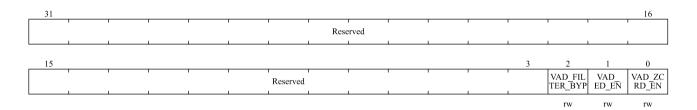
Bit field	Name	Description
31:28	Reserved	Must be reserved as 0.
27:18	НТ	Analog watchdog high threshold
17:10	Reserved	Must be reserved as 0.
9:0	LT	Analog watchdog low threshold

15.10.7 PGA&BIAS control register (PGA_CFG)

Address offset: 0x14

Reset value: 0x0002 0A08

Bit field	Name	Description
31:18	Reserved	Must be reserved as 0.
17	Reserved	It is 1 by default
16:14	PGA_GAIN	PGA gain configuration
		000 : 0dB
		001 : 6dB
		010 : 12dB
		011 : 18dB
		100 : 24dB
		101 : 30dB
		110 : 36dB
		111 : 42dB
13	PGA_EN	PGA enable
		0: Not enabled
		1: Enable
12:11	Reserved	Default: 01
10:9	Reserved	Default: 01
8:5	Reserved	Must be reserved as 0
4	PGA_INIT_EN	APGA initialization enable, off-chip capacitor fast charging enable, and activate during PGA start
		0: Disable
		1: Enable
		Note: provide pulses greater than 5ms (first 1, then 0)
3:1	MICBIAS	Setting the MIC BIAS output voltage range, step=0.1V
		000 : 1.6V



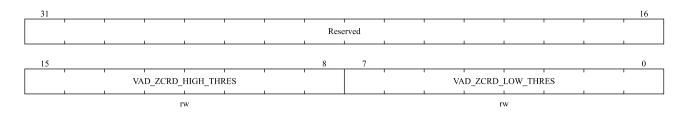
Bit field	Name	Description
		001 : 1.7V
		010 : 1.8V
		011 : 1.9V
		100 : 2.0V (default);
		101 : 2.1V
		110 : 2.2V
		111 : 2.3V
0	MICBIAS_EN	MICBIAS enable control
		0: Disable
		1: Enable

15.10.8 Voice detection control register (VOICE_DET_CR)

Address offset: 0x18

Reset value: 0x0000 0000

Bit field	Name	Description
31:3	Reserved	Must be reserved as 0.
2	VAD_FILTER_BYP	FILTER BYPASS enable
		0: Disable
		1: Enable
1	VAD_ED_EN	Energy detection enable
		0: Disable
		1: Enable
0	VAD_ZCRD_EN	Zero crossing rate detection enable
		0: Disable
		1: Enable


15.10.9 Voice zero crossing rate detection threshold register

(VOICE_ZCR_THRES)

Address offset: 0x1C

Reset value: 0x0000 6D2E

Bit field	Name	Description
31:16	Reserved	Must be reserved as 0.
15:8	VAD_ZCRD_HIGH_THRES	Zero crossing detection high threshold value
7:0	VAD_ZCRD_LOW_THRES	Zero crossing detection low threshold value

15.10.10 Voice energy detection threshold register (VOICE_ED_THRES)

Address offset: 0x20

Reset value: 0x0000 0000

31							23	22					 16
				Reserved							' MOFFSET		
15	1										rw		0
	1	1	1		1	MOF	FSET		1	1	1	1	
						r	w						

Bit field	Name	Description
31:23	Reserved	Must be reserved as 0.
22:0	MOFFSET	Environmental noise energy threshold

15.10.11 Voice energy detection underflow register (VOICE_ED_DWN_THRES)

Address offset: 0x24

Reset value: 0x0000 0000

Bit field	Name	Description
31:23	Reserved	Must be reserved as 0.
22:0	GATE_MIN	Adaptive threshold attenuation limits the lower limit to prevent underflow.

15.10.12 Voice energy detection overflow register (VOICE_ED_UP_THRES)

Address offset: 0x28

Reset value: 0x0000 0000

31								23	22						16
			1	Reserved						1	, ,	' GATE_MAX	X		
15												rw			0
	1	1	1	1			GATE	MAX		1	1	1			
rw															

Bit field	Name	Description	
31:23	Reserved	Must be reserved as 0.	
22:0	GATE_MAX	Adaptive threshold attenuation limits the upper limit to prevent overflow.	

16 I²C interface

16.1 Introduction

I2C bus is a widely used bus structure, it has only two bidirectional lines, namely data bus SDA and clock bus SCL. All devices compatible with I2C bus can communicate directly with each other through I2C bus with these two lines.

I2C interface connects microcontroller and serial I2C bus, and can be used for communication between MCU and external I2C devices. It supports standard speed mode and fast mode, it supports CRC calculation and verification, SMBus (System Management Bus) and PMBus (Power Management Bus), it also provides multi-host function to control all I2C bus specific timing, protocol, arbitration. I2C interface module also supports DMA mode, which can effectively reduce the CPU overload.

16.2 Main features

- Parallel-bus to I²C protocol converter
- Multi host function: the module can be used as both master and slave equipment
- As I²C master, it can generate clock, start and stop signal
- As I²C slave, it supports address detection, stop bit detection function
- Supports 7-bit/10-bit address mode and broadcast addressing
- Support standard speed mode(up to 100 kHz) and fast mode(up to 400 kHz,1MHz)
- Support interrupt vector, Event interrupt and error interrupt share one interrupt vector
- Optional clock extending function
- Support DMA mode
- Optional PEC (Packet Error Check) generation and verification
- Compatible with SMBus 2.0 and PMBus

Note: not all of the above features are included in all products. Please refer to the relevant data manual to confirm the I^2C functions supported by the product.

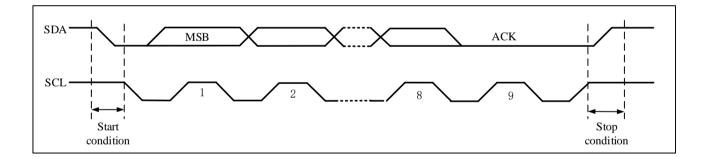
16.3 Function description

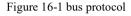
I2C module receives and transmits data, and converts data from serial to parallel or parallel to serial, It support interrupt mode, users can enable or disable interrupt according to their needs. I2C interface is connected to I2C bus through data pin (SDA) and clock pin (SCL) to communicate with external devices. It can be connected to standard (up to 100kHz) or fast (up to 400kHz,1MHz) I2C bus.

16.3.1 Mode selection

The interface supports four operation modes:

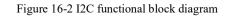
- Slave transmitter mode
- Slave receiver mode
- Master transmitter mode
- Master receiver mode

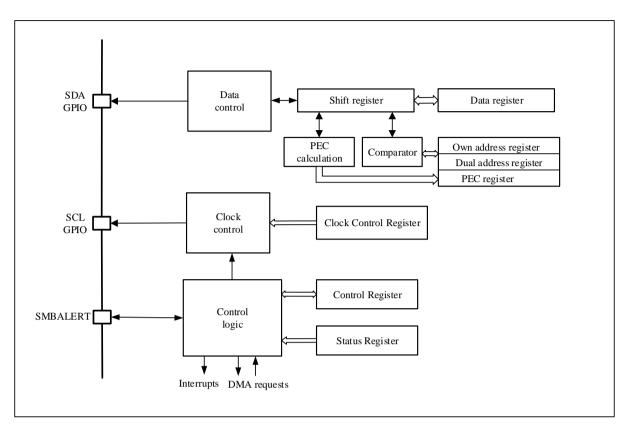

I2C works in slave mode by default. The I2C interface is configured by software to send a start bit on the bus, and then the interface automatically switches from the slave mode to the master mode. When arbitration is lost or a stop signal is generated, the interface will switched to the slave mode from the receive mode. Allow multi host functionality.


16.3.1.1 Communication flow

In master mode, I2C host device starts data transmission and generates SCL clock.Serial data transmission always starts with a start condition and ends with a stop condition. Both the start condition and stop condition are generated by software control in the master mode.

In slave mode, I2C interface can identify its own address (7 or 10 bits) and broadcast call address. The software can control the identification of broadcast call addres.


During the 9th clock period after 8 clocks of one byte transmission, the receiver must send back an ACK to the transmitter. Refer to the figure below.



The software can enable or disable answering (ACK), and can set the address of I2C interface (7-bit, 10 bit address or broadcast call address). The functional block diagram of I2C interface is shown in the figure below.

Note: in SMBus mode, SMBALERT is an optional signal. If SMBus is disabled, the signal cannot be used.

16.3.2 I2C Slave mode

By default the I2C interface always works in slave mode. To switch from slave mode to master mode, a start condition needs to be generated. In order to generate correct timing, the input clock to the module must be programmed in the I2C CTRL2 register. The frequency of the input clock must be at least:

- grammeIn standard mode: 2MHz (100KHz communication rate)
- In fast mode: 3MHz (1MHz communication rate) and 10MHz (400KHz communication rate).

Once a START condition is detected, the address received on the SDA line is sent to the shift register. Then with the chip's own address OADDR1 and OADDR2 (when DUALEN=1 or wide compared with the broadcast call address (if GCEN=1). Note: In 10-bit address mode, the comparison includes the header sequence (11110xx0), where xx are the two most significant bits of the address.

Header or address mismatch: The I2C interface ignores it and waits for another START condition.

Header match (10-bit mode only): If the ACK bit is set to '1', the I2C interface generates an acknowledge pulse and waits for the 8-bit slave address.

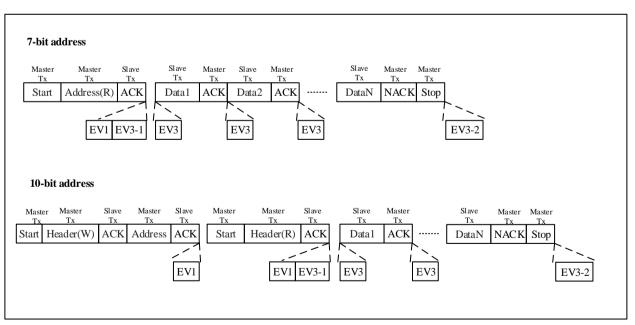
Address Match: The I2C interface generates the following timing:

- If ACK is set to '1', an acknowledge pulse is generated
- Hardware sets ADDRF bit; generates an interrupt if EVTINTEN bit is set
- If DUALEN=1, software must read the DUALFLAG bit to confirm which slave address responded.

In 10-bit mode, the slave is always in receiver mode after receiving an address sequence. Transmitter mode will be entered when a repeated START condition is received after receiving a header sequence matching the address with the lowest bit being '1' (i.e. 11110xx1).

In slave mode the TRF bit indicates whether it is currently in receiver or transmitter mode.

16.3.2.1 Slave transmission mode


After receiving the address and clearing the ADDRF bit, the slave transmitter sends the byte from the DAT register to the SDA line via the internal shift register.

The slave keeps SCL low until the ADDRF bit is cleared and the data to be transmitted has been written to the DAT register. (see EV1 and EV3 in the figure below).

When an acknowledge pulse is received:

■ The TXDATE bit is set by hardware, and an interrupt is generated if the EVTINTEN and BUFINTEN bits are set.

If the TXDATE bit is set, but no new data is written to the I2C_DAT register before the end of the next data transmission, the BSF bit is set, and the I2C interface will keep SCL low before clearing BSF; write after reading I2C_STS1 Writing to the I2C_DAT register will clear the BSF bit

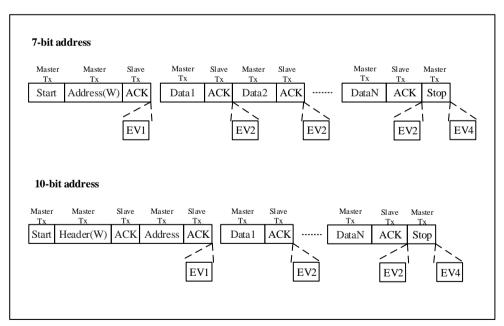
Instructions:

1. Start (start condition), Stop (stop condition), ACK=response, Evx=event.

283 / 447

- 2. EV1: I2C STS1.ADDRF = 1, read STS1 and then STS2 to clear the event.
- 3. EV3-1: I2C_STS1.TXDATE=1, shift register is empty, data register is empty, write DAT.
- 4. EV3: I2C_STS1.TXDATE=1, shift register is not empty, data register is empty, write DAT will clear the event.
- 5. EV3-2: I2C_STS1.ACKFAIL=1, ACKFAIL bit of STS1 register write "0" to clear the event.

Note: a) EV1 and EV3 1 event prolongs the low SCL time until the end of the corresponding software sequence.


b) The software sequence of EV3 must be completed before the end of the current byte transfer.

16.3.2.2 Slave receiving mode

After receiving the address and clearing ADDRF, the slave receiver stores the byte received from the SDA line through the internal shift register into the DAT register. The I2C interface performs the following actions after each byte received:

- Generate an acknowledge pulse if the ACK bit is set
- Hardware setting RXDATNE=1. An interrupt is generated if the EVTINTEN and BUFINTEN bits are set.

If RXDATN is set, and the DAT register is not read before the end of receiving new data, the BSF bit is set, the I2C interface will keep SCL low before clearing BSF; write to the I2C_DAT register after reading I2C_STS1 The BTF bit will be cleared. (See below).

Figure 16-4 Slave receiver transfer sequence diagram

Instructions:

- 1. Start (start condition), Stop (stop condition), ACK=response, Evx=event.
- 2. EV1: I2C_STS1.ADDRF = 1, read STS1 and then STS2 to clear the event.

- 3. EV2: I2C STS1.RXDATNE =1, reading DAT will clear this event.
- 4. EV4: I2C_STS1.STOPF=1, reading STS1 and then writing the CTRL1 register will clear this event.

Note: a)EV1 event prolongs the time when SCL is low until the end of the corresponding software sequence.

b) The software sequence of EV2 must be completed before the end of the current byte transmission.

16.3.2.3 Close slave communication

When the master generates a STOP condition after the last data byte has been transmitted, the I2C interface detects this condition:

■ Set STOPF=1, and generate an interrupt if EVTINTEN bit is set.

Then the I2C interface waits to read the STS1 register before writing the CTRL1 register. (See EV4 in Figure 16-4).

16.3.3 I2C master mode

16.3.3.1

In master mode, the I2C interface initiates data transfers and generates clock signals. Serial data transfers always begin with a START condition and end with a STOP condition. The device enters master mode when a START condition is generated on the bus via the START bit. The following is the sequence of operations required by master mode:

- Set the input clock to the module in the I2C_CTRL2 register to generate the correct timing
- Configure clock control register
- Configure rise time register
- Program the I2C_CTRL1 register to enable the peripheral
- Set the STARTGEN bit in the I2C_CTRL1 register to 1 to generate a start condition.

The input clock frequency of the I2C module must be at least:

- In standard mode: 2MHz (100KHz communication rate)
- In fast mode: 3MHz (1MHz communication rate) and 10MHz (400KHz communication rate).

16.3.3.2 initial condition

When BUSY=0, set STARTGEN=1, the I2C interface will generate a start condition and switch to master mode (MSMODE bit is set).

Note: In master mode, setting the STARTGEN bit will generate a restart condition by hardware after the current byte has been transferred.

Once the start condition is issued:

■ The STARTBF bit is set by hardware, and an interrupt will be generated if the EVTINTEN bit is set. The master then waits to read the STS1 register, followed by writing the slave address to the DAT register (see EV5 in Figure 16-5 and Figure 16-6).

16.3.3.3 send slave address

The slave address is sent to the SDA line through the internal shift register.

■ In 10-bit address mode, sending a header sequence generates the following events:

◆ The ADDR10F bit is set by hardware, and an interrupt is generated if the EVTINTEN bit is set. The master then waits to read the STS1 register before writing the second address byte to the DAT register (see Figure 16-5 and Figure 16-6).

◆ The ADDRF bit is set by hardware, and an interrupt is generated if the EVTINTEN bit is set. The master then waits for a read of the STS1 register followed by a read of the STS2 register (see Figure 16-5 and Figure 16-6)

■ In 7-bit address mode, only one address byte needs to be sent out.

Once the address byte is sent,

◆ The ADDRF bit is set by hardware, and an interrupt is generated if the EVTINTEN bit is set. The master then waits for a read of the STS1 register followed by a read of the STS2 register (see Figure 16-5 and Figure 16-6). According to sending the lowest bit of the slave address, the master decides whether to enter the transmitter mode or the receiver mode.

- In 7-bit address mode,
- ◆ To enter the transmitter mode, the master device sets the lowest bit to '0' when sending the slave address.
 - ◆ To enter receiver mode, the master device sets the lowest bit to '1' when sending the slave address.
- In 10-bit address mode

• To enter the transmitter mode, the master device first sends the header byte (11110xx0), and then sends the slave address with the lowest bit being '0'. (here xx represents the highest 2 bits of the 10-bit address)

• To enter receiver mode, the master device first sends the header byte (11110xx0), and then sends the slave address with the lowest bit being '1'. Then resend a START condition followed by the header byte (11110xx1) (where xx represents the most significant 2 bits of the 10-bit address).

The TRF bit indicates whether the master is in receiver or transmitter mode.

16.3.3.4 I2C master transmission mode

After sending the address and clearing the ADDRF bit, the master sends the byte from the DAT register to the SDA line through the internal shift register.

The master waits until TXDATE is cleared, (see EV8 in Figure 16-5).

When an acknowledge pulse is received:

■ The TXDATE bit is set by hardware, and an interrupt is generated if the EVTINTEN and BUFINTEN bits are set. If TXDATE is set and no new data byte is written to the DAT register before the end of the last data transmission, BSF is set by hardware, and the I2C interface will keep SCL low before clearing BSF; read I2C_STS1 and then Writing to the I2C_DAT register will clear the BSF bit.

16.3.3.5 close communication

After writing the last byte in the DAT register, generate a stop condition by setting the STOPGEN bit (see EV8_2 in Figure 16-5), then the I2C interface will automatically return to slave mode (MSMODE bit cleared). Note: When TXDATE or BSF bit is set, stop condition should be scheduled on EV8_2 event.

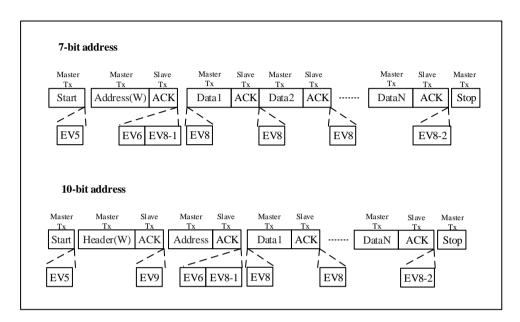


Figure 16-2 Master transmitter transfer sequence diagram

Instructions:

- 1. Start (start condition), Stop (stop condition), ACK=response, Evx=event (Interrupt generated when EVTINTEN=1).
- 2. EV5: SB= 1, reading STS1 and writing the address to the DAT register will clear the event.
- 3. EV6: ADDRF = 1, read STS1 and then STS2 to clear the event.
- 4. EV8_1: TXDATE = 1, shift register is empty, data register is empty, write DAT register.
- 5. EV8: TXDATE = 1, shift register is not empty, data register is empty, write to DAT register will clear the event.
- 6. EV8_2: TXDATE = 1, BSF = 1, request to set stop bit. These two events are cleared by the hardware when a stop condition is generated.
- 7. EV9: .ADDR10F = 1, read STS1 and then write to DAT register to clear the event.

Note:

a) EV5, EV6, EV9, EV8_1 and EV8_2 event prolonged the low SCL time until the end of the corresponding software sequence.

b) The software sequence of EV8 must be completed before the end of the current byte transfer.

16.3.3.6 I2C master receiving mode

After sending the address and clearing ADDRF, the I2C interface enters master receiver mode. In this mode, the I2C

287 / 447

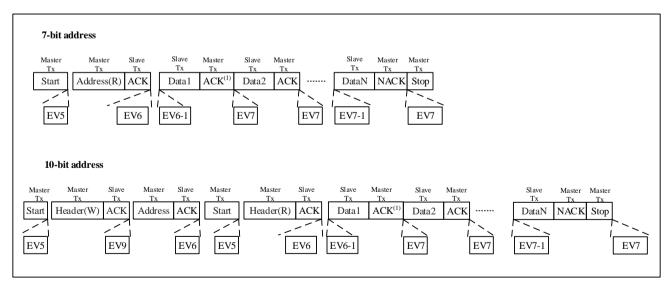
interface receives data bytes from the SDA line and sends them to the DAT register through the internal shift register. After each byte, the I2C interface performs the following operations in sequence:

■ If the ACKEN bit is set, send an acknowledge pulse.

■ Hardware setting RXDATNE=1, if EVTINTEN and BUFINTEN bits are set, an interrupt will be generated (see EV7 in Figure 16-6).

If the RXDATNE bit is set, and the data in the DAT register has not been read before the end of receiving new data, the hardware will set BSF=1, The I2C interface will hold SCL low until BSF is cleared; reading the I2C_DAT register after reading I2C_STS1 will clear the BSF bit.

16.3.3.7 Close communication


The master sends a NACK after receiving the last byte from the slave. After receiving a NACK, the slave releases control of the SCL and SDA lines; the master can then send a stop/restart condition.

■ In order to generate a NACK pulse after the last byte is received, the ACKEN bit must be cleared after reading the second-to-last data byte (after the second-to-last RXDATNE event).

■ To generate a stop/restart condition, software must set the STOPGEN / STARTGEN bit after reading the second-to-last data byte (after the second-to-last RXDATNE event).

When only one byte is received, just after EV6 (when EV6_1, after ADDR is cleared), the generation bit of acknowledge and stop condition should be turned off.

After a stop condition is generated, the I2C interface automatically returns to slave mode (MSMODE bit is cleared).

Instructions:

 Start (start condition), Stop (stop condition), ACK(response), NACK(non-response), Evx=event (interrupt generated when EVTINTEN=1)

- 2. EV5: STARTBF=1, reading STS1 and then writing the address into the DAT register will clear this event.
- 3. EV6: ADDRF=1, reading STS1 and STS2 in sequence will clear this event. In the 10-bits master receiving mode, the STARTGEN should be set to 1 after this event.
- 4. EV6_1: There is no corresponding event flag, only suitable for receiving 1 byte. Just after EV6 (that is after clearing ADDRF), the generation bits for acknowledge and stop condition should be cleared.
- 5. EV7: RXDATNE=1, read the DAT register to clear this event.
- 6. EV7_1: RXDATNE =1, read the DAT register to clear this event. Set ACKEN=0 and STOPGEN=1.
- 7. EV9: ADDR10F=1, reading STS1 and then writing to the DAT register will clear this event.

Note:

- a) If a single byte is received, it is NA.
- *b) EV5*, *EV6*, and *EV9* events extend the low level of SCL until the corresponding software sequence ends.
- *c) The EV7 software sequence shall be completed before the end of the current byte transmission.*
- *d)* The software sequence of EV6_1 or EV7_1 shall be completed before the ACK pulse of the current transmission byte.

16.3.4 Error conditions description

The following conditions may cause communication failure.

16.3.4.1 Bus Error(BUSERR)

when address or data is transmissing,I2C interface receive external stop or start condition, it will happen a bus error,
 BUSERR bit is set. An interrupt occurs, when.ERRINTEN bit is set to 1.

■ I2C device as slave, when data is discarded in transmission and the bus releases by hardware, it will have two situation:

• If an error start condition is detected, the slave device considers a restart condition and waits for an address or a stop condition.

• If an error stop condition is detected, the slave device operates as a normal stop condition and the hardware releases the bus.

■ I2C device as master, the hardware does not release bus, as the same time it done not affect the current status of transfer, The current transfer will determined by software whether suspend.

16.3.4.2 Acknowledge Failure(ACKFAIL)

The interface have a acknowledge bit is detected that does not match the expectation, it will occurs acknowledge fail error,

- ACKFAIL bit is set. An interrupt occurs, when ERRINTEN bit is set to 1.
- When transmitter receives a NACK, The communication must be reset:
 - Device in slave mode, hardware release the bus;
 - Device in master mode, it must generate a stop condition from software.

289 / 447

16.3.4.3 Arbitration Lost(ARLOST)

The interface have arbitration lost is detected, hardware release the bus, it will occurs arbitration lost error,

■ ARLOST bit is set. An interrupt occurs, when I2C_CTRL2.ERRINTEN bit is set to 1.

■ I2C interface will go to slave mode automatically(I2C_STS2.MSMODE bit is cleared). When the I2C interface lost the arbitration, in the same communication, it can not respond to its slave address, but it can respond when master win the bus retransmits a start signal.

■ Hardware releases the bus.

16.3.4.4 Overrun/Underrun Error(OVERRUN)

In slave mode, disable clock extend, When I2C interface is receiving data (RXDATNE=1, data have received in register), and DAT register still have previous byte has not been read, it will occurs an overrun error. In this situation:

- the last received data is discarded.
- software should clear RXDATNE bit, transmitter retransmit last byte.

In slave mode, disable clock extend, When I2C interface is sending data (TXDATE=1, new data have not sending to register), and DAT register still empty, it will occurs an underrun error. In this situation:

- the previous byte in the DAT register is sending repeatedly.
- And User make sure that in the event of an underrun error, the receiver discard repeatedly byte, and transmitter should update the DAT register at the specified time according to the I2C bus standard.

In sending the first byte, DAT register must be written after ADDRF bit is cleared and the before the first SCL rising edge. If cannot make sure do that, the first byte should be discard by receiver.

16.3.5 SDA/SCL line control

The I2C module has two interface lines: a serial data line (SDA) and a serial clock line (SCL). Devices connected to the bus communicate with each other over these two wires. Both SDA and SCL are bidirectional lines, connected to the positive pole of the power supply through a current source or a pull-up resistor. When the bus is free, both lines are high. The output of the device connected to the bus must have an open drain or open collector to provide a wired-AND function. Data on the I2C bus can reach 100 kbit/s in standard mode and 1Mbit/s in fast mode. Since devices of different processes may be connected to the I2C bus, the levels of logic '0' and logic '1' are not fixed and depend on the actual level of VDD.

Allowing clock stretching, i.e. pulling the SCL line low, avoids overrun errors on receive and underrun errors on transmit.

- If clock stretching is allowed:
 - ◆ Transmitter mode: If TXDATE=1 and BSF=1: I2C interface keeps the clock line low before transmission to

wait for the software to read STS1, then write the data into the data register (buffer and shift register are both empty).

• Receiver mode: If RXDATNE =1 and BSF=1: I2C interface keeps the clock line low after receiving the data byte to wait for the software to read STS1, then read the data register DAT (both buffer and shift register are full of).

■ If clock stretching is disabled in slave mode:

◆ If RXDATNE=1, DAT has not been read before receiving the next byte, an overload error occurs. The last byte received was lost.

◆ If TXDATE=1, an underrun error occurs if no new data is written to DAT before the next byte must be sent. The same bytes will be emitted repeatedly.

◆ Does not control duplicate write conflicts

16.3.6 SMBus

16.3.6.1 Introduction

The System Management Bus (SMBus) is a two-wire interface. It allows devices to communicate with each other and with other parts of the system. It is based on the I2C operating principle. SMBus provides a control bus for system and power management related tasks. A system can use SMBus to exchange information with multiple devices without using separate control lines. The System Management Bus (SMBus) standard addresses three classes of devices. Slave device: A device that receives or responds to commands. Master device: used to send commands, A device that generates clocks and terminates transmissions. Host: A dedicated master device that provides the main interface to the system CPU. The host must have master-slave functionality and must support the SMBus alert protocol. Only one host is allowed in a system

16.3.6.2 Similarities between SMBus and I2C

- Both bus protocols contain of 2 wires (a clock wire SCL and a data wire SDA), with an optional SMBus alert wire.
- Both are master-slave communication modes, and the master device provides the clock.
- Both support multi master
- The data format is similar. SMBus data format is similar to 7-bit address format of I2C(See 错误!未找到引用 源。1).

16.3.6.3 Differences between SMBus and I2C

SMBus	I ² C
Maximum transmission speed 100kHz	Maximum transmission speed 1MHz
Minimum transmission speed 10kHz	No minimum transmission speed
Low clock timeout 35ms	No clock timeout
Fixed logic level	VDD determined logic level
Different address types (reserved, dynamic, etc.)	7-bit, 10-bit, and broadcast call slave address

Table 16-16-1 Comparison between SMBus and I2C

SMBus	I ² C							
	types							
Different bus protocols (quick command, call handling,	No bus protocol							
etc.)								

16.3.6.4 SMBus usage

Using the system management bus, a device can provide manufacturer information, tell the system its model/part number, save status on halt events, report various types of errors, receive control parameters, and return its status. SMBus provides a control bus for system and power management related tasks.

16.3.6.5 Device identification

On the SMBus, as a slave have a only address for any device, named slave address.

Please refer to the SMBus specification version 2.0 (http://smbus.org/specs/) for the reserved slave address table

16.3.6.6 Bus protocol

SMBus specification include 9 bus protocols. If want browse the details on protocols or SMBus address types, it can refer to the SMBus specification v2.0(<u>http://smbus.org/specs/</u>). User's software can device what protocols are implemented.

16.3.6.7 Address resolution protocol (ARP)

The SMBus resolves address conflicts by dynamically assigning a new unique address to each slave device. This is the address resolution protocol(ARP).

Address Resolution Protocol (ARP) has the following characteristics:

■ Use the standard SMBus physical layer arbitration mechanism to assign addresses;

■ While the device is powered on, the assigned address remains unchanged, also allowing the device to retain its address after a power outage.

■ After address allocation, there is no additional SMBus packaging overhead (that is to say, it takes the same time to access a device with an assigned address and a device with a fixed address);

Any SMBus master can traverse the bus.

16.3.6.8 Unique Device Identifier (UDID)

In order to assign addresses, a mechanism is required to distinguish each device, and each device must possess a unique device identifier. For details on the 128-bit UDID over ARP, refer to version 2.0 of the SMBus specification (http://smbus.org/specs/).

16.3.6.9 SMBus alter mode

SMBus offer a optional interrupt signal SMBALERT(like SCL and SDA, is a wired-and signal) that devices uses to extend their control capabilities at expense of a pin. SMBus broadcast call address often combine with SMBALERT. There is 2 bytes message about SMBus.

A device which only has slave function can set SMBALERT bit to indicate it want to communicate with host. The host handles the interrupt and accesses all SMBALERT devices through the ARA (Alert Response Address, address value 0001100x). Only those devices that pull SMBALERT low can respond to ARA. This state is identified by the SMBALERT. The 7-bit device address provided from the sending device is placed on the 7 most significant bits of the byte, the eighth bit can be either '0' or '1'.

When more than one device's SMBALERT is low, the highest priority(The smaller the address, the higher the priority) can win bus communication through the standard arbitration during address transmission. If confirming the slave address, device's SMBALERT is no longer pulled low. If message transmitted completely, device's SMBALERT still is low, it mean host will read ARA again.

The host can periodically access the ARA when the SMBALERT signal is not used.

For more details on the SMBus alert mode, please refer to the SMBus specification version 2.0 (http://smbus.org/specs/).

16.3.6.10 Timeout function

There are many differences between I2C and SMBus in terms of timing specifications.

SMBus defines a clock low timeout, 35ms timeout. SMBus defines TLOW:SEXT as the accumulated clock low extension time of the slave device. SMBus specifies that TLOW:MEXT is the accumulated clock low extension time for the master device. Please refer to the SMBus specification version 2.0 (http://smbus.org/specs/) for more timeout details.

The status flag TIMOUT error in I2C_STS1 indicates the status of this feature.

16.3.6.11 How to use the interface in SMBus mode

In order to switch from I2C mode to SMBus mode, the following steps should be performed:

■ Set the SMBMODE bit in the I2C_CTRL1 register;

■ Configure the SMBTYPE and ARPEN bits in the I2C_CTRL1 register as required by the application. If the device is to be configured as a master, the steps for generating a START condition are described in Section 16.3.3 I2C Master Mode. Otherwise, see Section 16.3.2 I2C Slave Mode.

A software program must handle multiple SMBus protocols.

- If ARPEN=1 and SMBTYPE=0, use SMB device default address.
- If ARPEN=1 and SMBTYPE=1, use SMB master header field.
- If SMBALERT=1, use SMB alert response address.

16.3.7 DMA requests

DMA requests (when enabled) are used for data transfers only. A DMA request is generated when the data register becomes empty during transmission or when the data register becomes full during reception.Before transfer current byte at the end DMA requests must be answered. If set the DMA channel transfer data is done, DMA will send EOT(End Of Transmission) to I2C, and ocurrs a interrupt when enable interrupt bit.

■ In the master transmit mode, in EOT interrupt handler need to disbale DMA request, and set stop condition after waiting for BSF event.

■ In the master receive mode, the data of received is great than or equal to 2, DMA will send a hardware signal EOT_1 in DMA transmission(byte number-1). If set .DMALAST bit, when hardware have send the EOT_1 next byte it will send a NACK automatically. The user can set a stop condition in the interrupt handler after the DMA transfer is completed if interrupt enable.

16.3.7.1 Transmit process

If use the DMA mode need set the DMAEN bit. When TXDATE bit is set, the data will send to I2C_DAT from storage area by the DMA. DMA assign a channle for I2C transmission, (x is the channel number) the following step must be opreate:

- 1. In the DMA_PADDRx register set the I2C_DAT register address. Data will be send to address in every TXDATE event.
- 2. In the DMA_MADDRx register set the memory address. Data will send to I2C_DAT address in every TXDATE event.
- 3. In the DMA_TXNUMx register set the number of need to be transferred. In every TXDATE event this number-1 until 0.
- 4. In the DMA_CHCFGx register set PRIOLVL[1:0] bit to configure the priority of channel.
- 5. In the DMA_CHCFGx register set DIR bit to configure when ocurrs an interrupt whether send a half data or all completed.
- 6. In the DMA CHCFGx register set CHEN bit to enable transfer channel.

When DMA transfer data is done, DMA need send a EOT/EOT_1 signal to I2C indicate this transfer is done. If interrupt is enable, DMA ocurrs a interrupt.

Note: if DMA is used for transmission, do not set BUFINTEN bit.

16.3.7.2 Receive process

If use DMA mode need set.DMAEN bit. When data byte is received,DMA will send I2C data to storage area, set DMA channel for I2C reception. The following steps must be opreate:

1. In DMA_PADDRx register set the address of the I2C_DAT register. In every RXDATEN event, data will send from address to storage area.

- 2. In DMA_MADDRx register set the memory area address. In every RXDATEN event,data will send from I2C DAT register to storage area.
- 3. In DMA_TXNUMx register set the number of need to be transferred. In every RXDATEN event the number-1 until 0.
- 4. In DMA_CHCFGx register set PRIOLVL[0:1] to configure the priority of channel.
- 5. In DMA_CHCFGx register clear DIR to configure when ocurrs a interrupt request whether received half data or all data is received.
- 6. In the DMA_CHCFGx register set CHEN bit to activate the channel.

When DMA tansfer data is done, DMA need to send EOT/EOT_1 signal to I2C indicate this transfer is done, if interrupt is enbale, DMA ocurrs a interrupt.

Note: If DMA is used for receiving, do not set I2C_CTRL2.BUFINTEN bit.

16.3.8 Packet error check(PEC)

The Packet Error Check (PEC) calculator is used to improve the reliability of communication. This calculator uses the following CRC-8 polynomial to calculate each bit of serial data:

C(x) = x8 + x2 + x + 1

■ The PEC calculation is activated by the PECEN bit of the I2C_CTRL1 register. The PEC is calculated using a CRC-8 algorithm for all information bytes, including address and read/write bits.

When sending: Set the PEC transmission bit of the I2C_CTRL1 register at the last TXDATE event, and the PEC will be sent after the last byte.

◆ On receive: After the last RXDATNE event the PEC bit of the I2C_CTRL1 register is set, and if the next received byte is not equal to the internally calculated PEC, the receiver sends a NACK. If it is the primary receiver, a NACK will be sent after the PEC regardless of the result of the collation. The PEC bit must be set before receiving the ACK pulse for the current byte.

■ PECERR error flag/interrupt available in I2C_STS1 register.

■ If both DMA and PEC calculators are activated:

◆ On transmission: When the I2C interface receives the EOT signal from the DMA controller, it automatically sends the PEC after the last byte.

◆ On Receive: When the I2C interface receives an EOT_1 signal from the DMA, it will automatically take the next byte as PEC and will check it. A DMA request is generated after receiving the PEC.

■ In order to allow intermediate PEC transfers, there is a control bit (DMALAST bit) in the I2C_CTRL2 register to determine whether it is really the last DMA transfer. If it is indeed the last master receiver's DMA request, a NACK is automatically sent after the last byte is received.

² The PEC calculation is invalid when arbitration is lost.

16.4 Interrupt request

All I2C interrupt requests are listed in the following table.

Interrupt event	Event flag	Set control bit					
Start bit sent (master)	STARTBF						
Address sent (master) or	ADDRF						
address matched (slave)		- EVTINTEN					
10-bit header sent (master)	ADDR10F	EVIINIEN					
Received stop (slave)	STOPF						
Data byte transfer completed.	BSF						
Receive buffer is not empty.	RXDATNE	- EVTINTEN and BUFINTEN					
Send buffer is empty.	TXDATE	EVIINTEN and BUFINTEN					
Bus error	BUSERR						
Lost arbitration (master)	ARLOST						
Acknowledge fail	ACKFAIL						
Overrun/underrun	OVERRUN	ERRINTEN					
PEC error	PECERR						
Timeout /Tlow error	TIMOUT]					
SMBus Alert	SMBALERT						

Table 16-16-2 I²C interrupt request

Note: 1. STARTBF, ADDRF, ADDR10F, STOPF, BSF, RXDATNE and TXDATE are merged into a interrupt channel through logical OR.

- 2. BUSERR, ARLOST, ACKFAIL, OVERRUN, PECERR, TIMEOUT and SMBALERT are merged into a interrupt channel through logical OR.
- 3. Event interrupts and error interrupts are logically ORed into the global interrupt channel.

Figure 16-7 I2C Interrupt Map

16.5 I2C debug mode

When the microcontroller enters debug mode (Cortex®-M0 core in halt state), the SMBUS timeout control either continues to work normally or can be stopped depending on the debug control register (DBG_CTRL) configuration bits I2C1TIMEOUT and I2C2TIMEOUT in the PWR module. See Section 4.3.18 DBGMCU_CR Register for details.

16.6 I2C registers desciption

For the abbreviations used in the register description, see Section 1.1

These peripheral registers can be operated by half word (16 bits) or word (32 bits)

16.6.1 I2C register overview

Table	16-16-3	12C	register	overview
raute	10-10-5	12 U	register	0,01,10,00

Offset	Register	31	30	29	28	27	26	25	24	23	52	21		20	2	18	17	16	15	14	13	12	11	10	6	~	7	9	5	4	3	2	-	0
000h	I2C_CTRL1			<u>.</u>		<u> </u>			Rese	erve	d								SWRESET	Reserved	SMBALERT	PEC	ACKPOS	ACKEN	STOPGEN	STARTGEN	NOEXTEND	GCEN	PECEN	ARPEN	SMBTYPE	Reserved	SMBMODE	EN
	Reset Value																		0	I	0	0	0	0	0	0	0	0	0	0	0	I	0	0
004h	I2C_CTRL2										Reser	ved										DMALAST	DMAEN	BUFINTEN	EVTINTEN	ERRINTEN	-	Keserved		CL	KFRI	EQ[5:0)]	
	Reset Value																					0	0	0	0	0			0	0	0	0	0	0
008h	I2C_OADDR1		Reserved															ADDRMODE	Reserved		Rese	Reserved GR						ΑĽ	DDR[7	/:1]			ADDR0	
	Reset Value																		0						0	0	0	0	0	0	0	0	0	0
00Ch	I2C_OADDR2		Reserved												ADDR2[7:1]						DUALEN													
	Reset Value																										0	0	0	0	0	0	0	0
010h	I2C_DAT												F	Reserve	d														Ε	DATA	[7:0]			
	Reset Value																		1	ſ		-			1		0	0	0	0	0	0	0	0
014h	I2C_STS1								Rese	erve	d								SMBALERT	TUOMIT	Reserved	PECERR	OVERRUN	ACKFAIL	ARLOST	BUSERR	TXDATE	RXDATNE	Reserved	STOPF	ADDR10F	BSF	ADDRF	STARTBF
	Reset Value																		0	0		0	0	0	0	0	0	0		0	0	0	0	0
018h	I2C_STS2								Rese	erve	d										Р	ECV	AL[7:0	0]			DUALFLAG	SMBHADDR	SMBDADDR	GCALLADDR	Reserved	TRF	BUSY	MSMODE
	Reset Value																		0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
01Ch	I2C_CLKCTRL		Reserved E CLKCT												KCTR	L[11:	0]																	
\square	Reset Value																		0	0			0	0	0	0	0	0	0	0	0	0	0	0
020h	I2C_TMRISE													Re	serv	red														1	ARIS	RISE[5:0]		
	Reset Value																												0	0	0	0	0	0

16.6.2 I2C Control register 1 (I2C_CTRL1)

Address offset: 0x00

14

13

15

12

11

10

9

8

6

5

4

3

2

1 0

SW RESET Res	erved SN ALE	ſB	PE	C ACK POS	ACKEN	STOP GEN	START GEN	NO EXTEND	GCEN	PECEN	ARPEN	SMB TYPE	Reserved	SMB MODE	EN			
rw	rv	v	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	-	rw	rw			
Bit field	Name			Descripti	on													
15	SWRE	SET	7	resetting t 0:The I2C 1:The I2C Note: Thi detected of	hen asserted, I2C is in reset. Make sure the I2C pins are released and the bus is empty before etting this bit. The I2C module is not in reset state;; The I2C module in reset state. te: This bit can be used when the I2C_STS2.BUSY bit is set to 1 and no stop condition is ected on the bus.													
14	Reserv	red		Reserved,	erved, the reset value must be maintained													
13	SMBA	LEI	RΤ	0: SMBA	can be set or cleared by software. When I2C_CTRL1.EN=0, it will be cleared by hardware. SMBAlert pin go high. The response address header is followed by the NACK signal; SMBAlert pin go low. The response address header is followed by the ACK signal.													
12	PEC			It can be s or by start 0: No PEC 1: PEC tra	acket error checking acket error checking can be set or cleared by software. It will be cleared by hardware when PEC has been transferred, r by start or stop condition, or when I2C_CTRL1.EN=0. : No PEC transfer : PEC transfer. <i>Vote: When arbitration is lost, the calculation of PEC is invalid.</i>													
11	АСКР	OS		It can be s 0: I2C_C received; 1: I2C_C I2C_CTR Note: ACKPOS receiving For the se I2C_STSI	Acknowledge/PEC Position (for data reception) It can be set or cleared by software. Or when I2C_CTRL1.EN=0, it will be cleared by hardware. 0: I2C_CTRL1.ACKEN bit determines whether to send an ACK to the byte currently being received; I2C_CTRL1.PEC bit indicates that the byte in the current shift register is PEC. 1: I2C_CTRL1.ACKEN bit etermines whether to send an ACK to the next received byte; I2C_CTRL1.PEC bit indicates that the next byte received in the shift register is PEC.													
10	ACKE	N		It can be s 0: No ac	Acknowledge enable It can be set or cleared by software. Or when EN equals to 0, it will be cleared by hardware. 0: No acknowledge send; 1: Send an acknowledge after receiving a byte													
9	STOP	GEN	ſ	Stop generation It can be set or cleared by software. Or it will be cleared by hardware when a stop condition is														

Bit field	Name	Description
		In the master mode:
		0: No stop condition generates;
		1: Generate a stop condition.
		In the slave mode:
		0: No stop condition generates;
		1: Release SCL and SDA lines after the current byte.
		Note: When the STOPGEN, STARTGEN or PEC bit is set, the software should not take any write
		operation to I2C_CTRL1 until this bit is cleared by hardware. Otherwise, the STOPGEN,
		STARTGEN or PEC bits may be set twice.
		Start generation
		It can be set or cleared by software. Or it will be cleared by hardware when the start condition is
		transferred or I2C_CTRL1.EN=0.
		In the master mode:
8	STARTGEN	0: No start condition generates;
		1: repeated generation of start conditions
		In the slave mode:
		0: No start condition generates;
		1: A START condition is generated when the bus is free.
		Clock extending disable (Slave mode)
		This bit determines whether to pull SCL low when the data is not ready(I2C_STS1.ADDRF or
7	NOEXTEND	I2C_STS1.BSF flag is set) in slave mode, and is cleared by software reset
		0: Enable Clock extending.
		1: Disable Clock extending.
		General call enable
6	GCEN	0: Disable General call. not respond(NACK) to the address 00h;
		1: Enable General call. respond(ACK) the address 00h.
		PEC enable
5	PECEN	0: Disable PEC module;
		1: Enable PEC module.
		ARP enable
		0: Disable ARP;
4	ARPEN	1: Enable ARP.
		If I2C_CTRL1.SMBTYPE=0, the default address of SMBus device is used.
		If I2C_CTRL1.SMBTYPE=1, the host address of SMBus is used.
		SMBus type
3	SMBTYPE	0: Device
		1: Host
2	Reserved	Reserved, the reset value must be maintained.
		SMBus mode
1	SMBMODE	0: I2C mode;
		1: SMBus mode.
	1	1

Bit field	Name	Description
		I2C Peripheral enable
		0: Disable I2C module;
	EN	1: Enable I2C module
0	EN	Note: If this bit is cleared when communication is in progress, the I2C module is disabled and
		returns to the idle state after the current communication ends, all bits will be cleared.
		In master mode, this bit must never be cleared until the communication has ended.

16.6.3 I2C Control register 2 (I2C_CTRL2)

Address offset: 0x04

15		13	12	11	10	9	8	7	6	5				0
	Reserved		DMA LAST	DMA EN	BUFINT EN	EVTINT EN	ERRINT EN	Rese	rved		CLKFR	EQ[5:0]	1	
			rw	rw	rw	rw	rw				r	w		

Bit field	Name	Description
15:13	Reserved	Reserved, the reset value must be maintained.
12	DMALAST	DMA last transfer
		0: Next DMA EOT is not the last transfer
		1: Next DMA EOT is the last transfer
		Note: This bit is used in the master receiving mode, so that a NACK can be generated when
		data is received for the last time.
11	DMAEN	DMA requests enable
		0: Disable DMA
		1: Enable DMA
10	BUFINTEN	Buffer interrupt enable
		0: When I2C_STS1.TXDATE=1 or I2C_STS1.RXDATNE=1, any interrupt is not generated.
		1: If I2C_CTRL2.EVTINTEN= 1, When I2C_STS1.TXDATE=1 or I2C_STS1.RXDATNE=
		1, interrupt will be generated.
9	EVTINTEN	Event interrupt enable
		0: Disable event interrupt;
		1: Enable event interrupt
		This interrupt is generated when:
		I2C_STS1.STARTBF = 1 (Master)
		I2C_STS1.ADDR F = 1 (Master/Slave)
		$I2C_STS1.ADD10F = 1$ (Master)
		I2C_STS1.STOPF = 1 (Slave)
		I2C_STS1.BSF = 1 with no I2C_STS1.TXDATE or I2C_STS1.RXDATNE event
		I2C_STS1.TXDATE = 1 if I2C_CTRL2.BUFINTEN = 1
		I2C_STS1.RXDATNE = 1 if I2C_CTRL2.BUFINTEN = 1
8	ERRINTEN	Error interrupt enable

Bit field	Name	Description
		0: Disable error interrupt;
		1: Enable error interrupt.
		This interrupt is generated when:
		$I2C_STS1.BUSERR = 1;$
		$I2C_STS1.ARLOST = 1;$
		I2C_STS1.ACKFAIL = 1;
		I2C_STS1.OVERRUN = 1;
		$I2C_STS1.PECERR = 1;$
		$I2C_STS1.TIMOUT = 1;$
		$I2C_STS1.SMBALERT = 1.$
7:6	Reserved	Reserved, the reset value must be maintained.
5:0	CLKFREQ[5:0]	I2C Peripheral clock frequency
		CLKFREQ[5:0] should be the APB1 clock frequency to generate the correct timming.
		000000: Disable
		000001: Disable
		000010: 2MHz
		000011: 3MHz
		110000: 48MHz
		110001~111111: Disable.

16.6.4 I2C Own address register 1 (I2C_OADDR1)

Address offset: 0x08

15	14	13			10	9	8	7						1	0
ADDR MODE	Reserved		Rese	erved		ADD	R[9:8]		1	1	ADDR[7:1]	1		ADDR0
rw						r	w			-	ťw				rw

Bit field	Name	Description
15	ADDRMODE	Addressing mode (slave mode)
		0: 7-bit slave address
		1: 10-bit slave address
14	Reserved	Must always be kept as' 1' by the software.
13:10	Reserved	Reserved, the reset value must be maintained.
9:8	ADDR[9:8]	Interface address
		9~8 bits of the address.
		Note: don't care these bits in 7-bit address mode
7:1	ADDR[7:1]	Interface address
		7~1 bits of the address.
0	ADDR0	Interface address

Bit field	Name	Description
		0 bit of the address.
		Note: don't care these bits in 7-bit address mode

16.6.5 I2C Own address register 2 (I2C_OADDR2)

Address offset: 0x0C

Reset value: 0x0000

15					8	7						1	0
I	1	Resc	rved	1	1		I	1	∙ ADDR2[7::	[]	1	1	DUALEN
1	ı			ı	 1		ı	1		í.	I		
									rw				rw

Bit field	Name	Description
15:8	Reserved	Reserved, the reset value must be maintained.
7:1	ADDR2[7:1]	Interface address
		7~1 bits of address in dual address mode.
0	DUALEN	Dual addressing mode enable
		0: Disable dual address mode, only OADDR1 is recognized;
		1: Enable dual address mode, both OADDR1 and OADDR2 are recognized.
		Note: Valid only for 7-bit address mode

16.6.6 I2C Data register (I2C_DAT)

Address offset: 0x10

15						8	7						0
								1		1		1	
		Rese	erved						DATA	A [7:0]			
	1	1	1	1	1	1		1		1	1	1	1
									r	w			

Bit field	Name	Description
15:8	Reserved	Reserved, the reset value must be maintained.
7:0	DATA[7:0]	8-bit data register
		Used to store received data or place data for sending to the bus Transmitter mode: Data
		transmission is automatically initiated when a byte is written to the DAT register. Once the
		transmission starts ($TXDATE=1$), if the next data to be transmitted can be written into the DAT
		register in time, the I2C module will maintain a continuous data flow.
		Receiver mode: Received bytes are copied to the DAT register (RXDATNE=1). Continuous data
		transmission can be realized by reading the data register before receiving the next byte
		(RXDATNE=1).
		Note: In the slave mode, the address will not be copied into the DAT register;
		Note:Hardware does not manage write conflicts(if I2C_STS1.TXDATE =0, data can still be
		written into the data register);

Bit field	Name	Description
		Note: If the ARLOST event occurs when processing the ACK pulse, the received byte will not be
		copied into the data register, so it cannot be read.

16.6.7 I2C Status register 1 (I2C_STS1)

Address offset: 0x14

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMB ALERT	TIM OUT	Reserved	PEC ERR	OVER RUN	ACK FAIL	AR LOST	BUS ERR	TXDATE	RXDAT NE	Reserved	STOPF	ADDR10F	BSF	ADDRF	START BF
rc_w0	rc_w0		rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	r	r		r	r	r	r	r

Bit field	Name	Description
15	SMBALERT	SMBus alert
		0: No SMBus alert(master mode) or no SMB alert response address header sequence(slave
		mode);
		1: SMBus alert event is generated on the pin(master mode) or receive SMBAlert response
		address(slave mode)
14	TIMOUT	Timeout or Tlow error
		Writing '0' to this bit by software can clear it, or it is cleared by hardware when
		I2C_CTRL1.EN=0.
		0: No Timeout error;
		1: A timeout error occurred
		Error in the following cases:
		■ SCL has kept low for 25ms (Timeout).
		■ Master cumulative clock low extend time more than 10 ms (Tlow:mext).
		■ Slave cumulative clock low extend time more than 25 ms (Tlow:sext).
		Timeout in slave mode: slave device resets the communication and hardware frees the bus.
		Timeout in master mode: hardware sends the stop condition.
13	Reserved	Reserved, the reset value must be maintained.
12	PECERR	PEC Error in reception
		Writing '0' to this bit by software can clear it, or it is cleared by hardware when
		I2C_CTRL1.EN=0.
		0: No PEC error; receiver returns ACK after receiving PEC (if ACKEN=1);
		1: PEC error: receiver will returns NACK Whether the I2C_CTRL1.ACKEN bit is enabled
11	OVERRUN	Overrun/Underrun
		Writing '0' to this bit by software can clear it, or it is cleared by hardware when
		I2C_CTRL1.EN=0.
		0: No Overrun/Underrun
		1: Overrun/Underrun
		Set by hardware in slave mode when I2C_CTRL1.NOEXTEND=1, and when receiving a new
		byte in receiving mode, if the data within DAT register has not been read yet, over-run occurs,the

Bit field	Name	Description
		new received byte will be lost. When transferring a new byte in transfer mode, but there is not
		new data that has not been written in DAT register, under-run occurs which leads that the same
		byte will be send twice.
10	ACKFAIL	Acknowledge failure
		Writing '0' to this bit by software can clear it, or it is cleared by hardware when
		I2C_CTRL1.EN=0.
		0: No acknowledge failed;
		1: Acknowledge failed.
9	ARLOST	Arbitration lost (master mode)
		Writing '0' to this bit by software can clear it, or it is cleared by hardware when
		I2C_CTRL1.EN=0.
		0: No arbitration lost;
		1: Arbitration lost.
		When the interface loses control of the bus to another host, the hardware will set this bit to '1',
		and the I2C interface will automatically switch back to slave mode (I2C_STS2.MSMODE=0).
		Note: In SMBUS mode, the arbitration of data in slave mode only occurs in the data stage or the
		acknowledge transfer interval (excluding the address acknowledge).
8	BUSERR	Bus error
		Writing '0' to this bit by software can clear it, or it is cleared by hardware when
		I2C_CTRL1.EN=0.
		0: No start or stop condition error
		1: Start or stop condition error
7	TXDATE	Data register empty (transmitters)
		Writing data to DAT register by software can clear this bit; Or after a start or stop condition
		occurs, or automatically cleared by hardware when I2C_CTRL1.EN=0.
		0: Data register is not empty;
		1: Data register is empty.
		When sending data, this bit is set to' 1' when the data register is empty, and it is not set at the
		address sending stage.
		If a NACK is received, or the next byte to be sent is PEC(I2C_CTRL1.PEC=1), this bit will not
		be set.
		Note: After the first data to be sent is written, or data is written when BSF is set, the TXDATE bit
		cannot be cleared, because the data register is still empty.
6	RXDATNE	Data register not empty(receivers)
		This bit is cleared by software reading and writing to the data register, or cleared by hardware
		when I2C_CTRL1.EN=0.
		0: Data register is empty;
		1: Data register is not empty.
		During receiving data, this bit is set to' 1' when the data register is not empty, and it is not set at
		the address receiving stage.
		RXDATNE is not set when the ARLOST event occurs.
		KARATATE IS not set when the ANLEOST Event occurs.

Bit field	Name	Description
		Note: When BSF is set, the RXDATNE bit cannot be cleared when reading data, because the data
		register is still full.
5	Reserved	Reserved, the reset value must be maintained.
4	STOPF	Stop detection (slave mode)
		After the software reads the STS1 register, the operation of writing to the CTRL1 register will
		clear this bit, or when I2C_CTRL1.EN=0, the hardware will clear this bit.
		0: No stop condition is detected;
		1: Stop condition is detected.
		After a ACK, the hardware sets this bit to' 1' when the slave device detects a stop condition on
		the bus.
		Note: I2C_STS1.STOPF bit is not set after receiving NACK.
3	ADDR10F	10-bit header sent (Master mode)
		After the software reads the STS1 register, the operation of writing to the CTRL1 register will
		clear this bit, or when I2C_CTRL1.EN=0, the hardware will clear this bit.
		0: No ADD10F event;
		1: Received has sent the first address byte.
		In 10-bit address mode, when the master device has sent the first byte, the hardware sets this bit
		to' 1'.
		Note: After receiving a NACK, the I2C_STS1.ADDR10F bit is not set.
2	BSF	Byte transfer finished
		After the software reads the STS1 register, reading or writing the data register will clear this bit;
		Or after sending a start or stop condition in sending mode, or when I2C_CTRL1.EN=0, this bit
		is cleared by hardware.
		0: Byte transfer does not finish.
		1: Byte transfer finished.
		When I2C_CTRL1.NOEXTEND =0, the hardware sets this bit to' 1' in the following cases:
		In receiving mode, when a new byte (including ACK pulse) is received and the data register has
		not been read (I2C_STS1.RXDATNE=1).In sending mode, when a new data is to be transmitted
		and the data register has not been written with the new data (I2C_STS1.TXDATE=1).
		Note: After receiving a NACK, the BSF bit will not be set.
		If the next byte to be transferred is PEC (I2C _STS2.TRF is' 1' and I2C_CTRL1.PEC is' 1'), the
		BSF bit will not be set.
1	ADDRF	Address sent (master mode) / matched (slave mode)
		After the STS1 register is read by software, reading the STS2 register will clear this bit, or when
		I2C_CTRL1 .EN=0, it will be cleared by hardware.
		0: Address mismatch or no address received(slave mode) or Address sending did not end(master
		mode);
		1: Received addresses matched(slave mode) or Address sending ends(master mode)
		In master mode:
		In 7-bit address mode, this bit is set to' 1' after receiving the ACK of the address.In 10-bit address
		mode, this bit is set to' 1' after receiving the ACK of the second byte of the address.

Bit field	Name	Description
		In slave mode:
		Hardware sets this bit to' 1' (when the corresponding setting is enabled) when the received slave
		address matches the content in the OADDR register, or a general call or SMBus device default
		address or SMBus host or SMBus alter is recognized.
		Note: After receiving NACK, the I2C_STS1.ADDRF bit will not be set.
0	STARTBF	Start bit (Master mode)
		After the STS1 register is read by software, writing to the data register will clear this bit, or when
		I2C_CTRL1.EN=0, the hardware will clear this bit.
		0: Start condition was not sent;
		1: Start condition has been sent.
		This bit is set to' 1' when the start condition is sent.

16.6.8 I2C Status register 2 (I2C_STS2)

Address offset: 0x18

15					8	7	6	5	4	3	2	1	0
	PECVA	L[7:0]	1	1	1	DUAL FLAG	SMBH ADDR	SMBD ADDR	GCALL ADDR	Reserved	TRF	BUSY	MS MODE
	r					r	r	r	r		r	r	r

Bit field	Name	Description
15:8	PECVAL[7:0]	Packet error checking register
		PECVAL [7:0] Stores the internal PEC value When I2C_CTRL1.PECEN =1.
7	DUALFLAG	Dual flag(Slave mode)
		Hardware clears this bit when a stop condition or a repeated start condition is generated, or
		when I2C_CTRL1.EN=0.
		0: Received address matches the content in OADDR1;
		1: Received address matches the content in OADDR2.
6	SMBHADDR	SMBus host header (Slave mode)
		Hardware clears this bit when a stop condition or a repeated start condition is generated, or
		when I2C_CTRL1.EN=0.
		0: SMBus host address was not received;
		1: when I2C_CTRL1.SMBTYPE=1 and I2C_CTRL1.ARPEN=1, the SMBus host address is
		received.
5	SMBDADDR	SMBus device default address (Slave mode)
		Hardware clears this bit when a stop condition or a repeated start condition is generated, or
		when I2C_CTRL1.EN=0.
		0: The default address of SMBus device has not been received;
		1: when I2C_CTRL1.ARPEN=1, the default address of SMBus device is received.
4	GCALLADDR	General call address(Slave mode)
		Hardware clears this bit when a stop condition or a repeated start condition is generated, or

Bit field	Name	Description
		when I2C_CTRL1.EN=0.
		0: No general call address was received;
		1: when I2C_CTRL1.GCEN=1, general call address was received.
3	Reserved	Reserved, the reset value must be maintained.
2	TRF	Transmitter/receiver
		After detecting the stop condition (I2C_STS1.STOPF=1), repeated start condition or bus
		arbitration loss (I2C_STS1.ARLOST=1), or when I2C_CTRL1.EN=0, the hardware clears it.
		0: Data receiving mode
		1: Data transmission mode;
		At the end of the whole address transmission stage, this bit is set according to the R/W bit of
		the address byte.
1	BUSY	Bus busy
		Hardware clears this bit when a stop condition is detected.
		0: No data communication on the bus;
		1: Data communication on the bus.
		When detecting that SDA or SCL is low level, the hardware sets this bit to' 1';
		Note: This bit indicates the bus communication currently in progress, and this information is
		still updated when the interface is disabled (I2C_CTRL1.EN=0).
0	MSMODE	Master/slave mode
		Hardware clears this bit when a stop condition is detected on the bus, arbitration is lost
		(I2C_STS1.ARLOST=1), or when I2C_CTRL1.EN=0.
		0: In slave mode;
		1: In master mode.
		When the interface is in the master mode (I2C_STS1.STARTBF=1), the hardware sets this bit;

16.6.9 I2C Clock control register (I2C_CLKCTRL)

Address offset: 0x1c

Reset value: 0x0000

15	14	13	12	11							0
FSMODE	DUTY	Res	erved		1	1	CLKCTI	RL[11:0]	1	1	
rw	rw						rv	w			

Bit field	Name	Description
15:14	DUTY	SCL duty cycle
		00: Tlow/Thigh = 1;
		01: Tlow/Thigh = 1;
		10: Tlow/Thigh = 2;
		11: Tlow/Thigh = $16/9$;
		Note: 00 or 01 configuration is recommended for SCL 100K or 1M.

307 / 447

Bit field	Name	Description
13:12	Reserved	Reserved, the reset value must be maintained.
11:0	CLKCTRL[11:0]	Clock control register in Fast/Standard mode (Master mode)
		This division factor is used to set the SCL clock in the master mode.
		■ If DUTY = 00 or 01:
		Thow = CLKCTRL \times T _{PCLK1}
		Thigh = CLKCTRL \times T _{PCLK1}
		If $DUTY = 10$:
		Thow = $2 \times CLKCTRL \times T_{PCLK1}$
		Thigh = $CLKCTRL \times T_{PCLK1}$
		If $DUTY = 11$:
		Thow = $16 \times CLKCTRL \times T_{PCLK1}$
		Thigh = $9 \times CLKCTRL \times T_{PCLK1}$
		For example, if DUTY = 00 Generates SCL frequency of 100kHz
		if CLKFREQ = 08 , T_{PCLK1} = 125ns Then CLKCTRL must be written to 0x28 (40 \times 125ns =
		5000 ns).
		Note: 1. When $DUTY = 00$ or 01, the allowable minimum value is 0x04, and the other allowable
		minimum value is 0x01;
		The minimum setting value is 0x04 in standard mode and 0x01 in fast mode;
		2. $T_{high} = T_{r(SCL)} + T_{w(SCLH)}$. See the definitions of these parameters in the data sheet for details.
		3. $T_{low} = T_{f(SCL)} + T_{w(SCLL)}$, see the definitions of these parameters in the data sheet for details;
		4. These delays have no filters;
		5. The CLKCTRL register can only be set when I2C is turned off $(EN = 0)$;

16.6.10 I2C Rise time register (I2C_TMRISE)

Address offset: 0x20

15								6	5					0
	1					I								·
			Rese	erved		TMRISE[5:0]								
	1	 1	1		1	1	1	1				1		<u> </u>
											r	w		

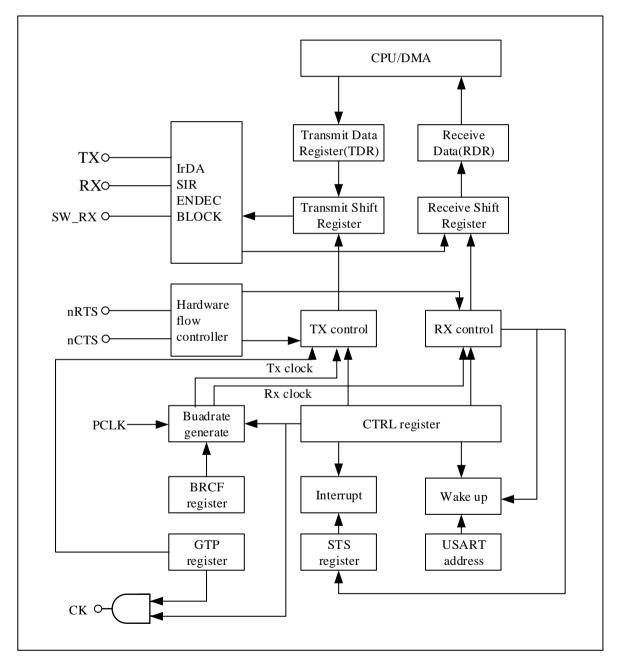
Bit field	Name	Description
15:6	Reserved	Reserved, the reset value must be maintained.
5:0	TMRISE[5:0]	Maximum rise time in fast/standard mode (master mode).
		These bits must be set to the maximum SCL rising time given in the I2C bus specification, and
		incremented step is 1.
		For example, the maximum allowable SCL rise time in standard mode is 1000ns. if the value in
		I2C_CTRL2.CLKFREQ [5:0] is equal to 0x08(8MHz) and TPCLK1=125ns ,09h(1000ns/125 ns + 1)
		must be written in TMRISE[5:0].
		If the result is not an integer, write the integer part to TMRISE[5:0] to ensure the thigh parameter.
		Note: TMRISE[5:0] can only be set when I2C is disabled (EN=0).

17 Universal synchronous asynchronous receiver transmitter (USART)

17.1 Introduction

The Universal Synchronous Asynchronous Receiver Receiver (USART) is a full-duplex or half-duplex, synchronous or asynchronous serial data exchange interface. USART mention A programmable baud rate generator is provided to divide the system clock to generate the specific frequency required for USART transmission and reception.

USART supports standard asynchronous transceiver mode, IrDA, SIR, smart card protocol, LIN, synchronous singleduplex mode, multiprocessor communication and Modem flow control operation (CTS/RTS), and also uses multibuffer configuration for high-speed data communication DMA mode..


17.2 Main features

- Full-duplex asynchronous communication
- Single-wire half-duplex communication
- NRZ standard format (Mark/Space)
- Baud rate generator, the highest baud rate can reach 4Mbit/s
- Support serial data frame structure with 8 or 9 data bits, 1 or 2 stop bits
- The LIN master has the ability to send break characters and the LIN slave has the ability to detect break characters; When the USART hardware is configured as LIN, generate a 13-bit break; Detects 10/11-bit breaks
- The sender provides the clock for synchronous transfers
- IrDA SIR encoder-decoder supporting 3/16 bit duration in normal mode
- Asynchronous smart card protocol defined in the ISO7816-3 standard, smart card mode supports 0.5 or 1.5 stop bits
- Configurable DMA multi-buffer communication; receive/send data with DMA buffer
- Support data overflow error detection, frame error detection, noise error detection, parity error detection
- Interrupt requests include: transmit data register empty, CTS flag, transmit complete, receive data ready to read, data overflow detected, idle line detected, parity error, LIN break frame detection, noise flag/overflow error/frame error in multi-buffer communication
- Support multi-processor communication: if the address does not match, it will enter silent mode, and can be woken up by idle bus detection or address identification
- Two ways to wake up the receiver: address bit (MSB, bit 9), bus free.

17.3 Functional block diagram

Figure 17-17-1 USART block diagram

Nations Technologies Inc. Tel: +86-755-86309900 Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

17.4 Function description

As shown in Figure 17-1, any USART two-way communication requires at least two pins: receive data input (RX) and transmit data output (TX). RX: Serial data input terminal. In order to distinguish data from noise, oversampling technique is used. TX: Serial data output terminal. When the transmission is enabled, the pin defaults to a high level. The TX port can also be used for sending and receiving data at the same time, such as single In line or smart card mode, when the transmission is not enabled, the TX port is configured as the original I/O port.

- The bus should be idle when not sending or receiving
- a start bit
- 1 data word (8 or 9 bits), least significant bit first
- 0.5, 1, 1.5, 2 stop bits, indicating the end of the data frame
- Using the Fractional Baud Rate Generator 12-bit Integer and 4-Decimal Representation
- 1 status register (USART_STS)
- 1 Data register (USART_DAT)
- 1 baud rate configuration register (USART BRCF), 12-bit integer and 4 decimal

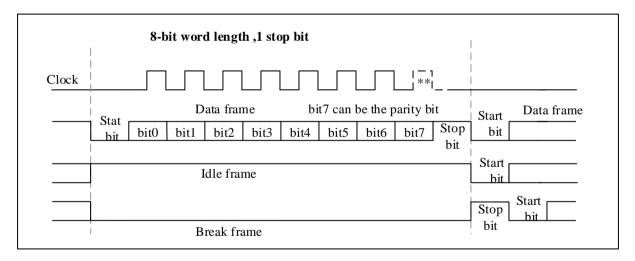
■ 1 guard time register (GTV) in smart card mode For the specific definition of each bit in the above registers, please refer to the register description section 17.8: USART registers. The following pins are required in synchronous mode:

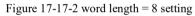
• CK: This pin outputs the clock for synchronous transmission, (there is no clock pulse on the Start bit and Stop bit, USART_CTRL2 registers The LBCLK bit in the register controls whether the clock pulse is output on the CK pin at the corresponding moment of the last bit of data). Data can be synchronized on RX is received. This can be used to control external devices with shift registers (such as LCD drivers). CK clock phase and polarity can be The clock polarity and phase can be modified by CLKPOL/CLKPHA in the USART_CTRL2 register. In smart card mode, the CK can also Clock provided. The following pins are required in hardware flow control mode:

CTS: Receive clear, if it is low level, it means that the next data transmission can be continued at the

end of the current data transmission; if it is high level, Block the next data transmission when the current data transmission ends.

■ RTS: Request to send, if it is low level, it indicates that the USART is ready to receive data.


17.5 USART frame format


The word length is selected as 8 or 9 bits by programming the WL bits in the USART_CTRL1 register (see Figure 17-2 and). The TX pin is low during start bits and high during stop bits.

Idle frame: A complete data frame consisting of '1', also includes the stop bit of the data. For example: if WL=0, the idle frame consists of 10 '1'; if WL=1, the idle frame consists of 11 '1',

Disconnected frame: It is considered to have received all '0' within a frame period (including the stop bit period, which is also '0'). At the end of the disconnection frame, the transmitter inserts 1 or 2 stop bits ('1') to acknowledge the start bit, when WL=0, 10 low levels, followed by a stop bit; or when WL=1, 11 Bit low, followed by a stop bit, the length cannot be greater than 10 or 11 bits.

Both transmit and receive are driven by a common baud clock generator, which generates baud clocks for the transmitter and receiver respectively when their respective enable bits are set.

9-bit word length , 1 stop bit	I
	,
Stat Data frame bit8 can be the parity bit	Start Data frame
bit bit0 bit1 bit2 bit3 bit4 bit5 bit6 bit7 bit8 Stop bit	bit
	Start
Idle frame	bit
	Stop Start
Break frame	bit

Note: In this chapter, unless otherwise specified, setting means that a certain register is set to a state of '1', and resetting or clearing means that a certain register is set to a state of '0'; either hardware or program may set a bit Or clear a certain register; please refer to the specific content in this chapter.

17.5.1 Transmitter

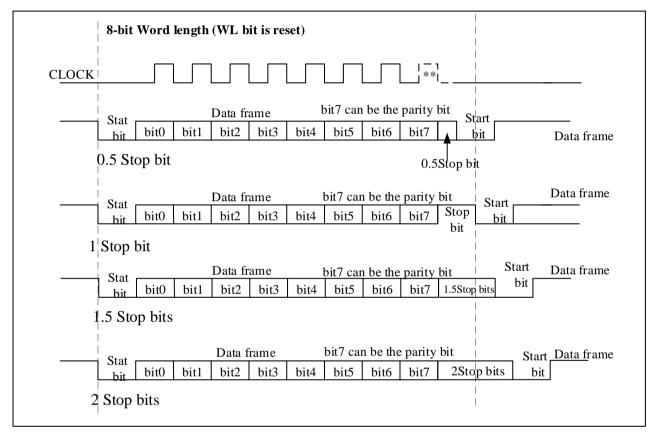
When the transmit enable bit (TXEN) is set and there is data in the buffer, the transmitter transmits an 8-bit or 9-bit data word depending on the state of the WL bit. The data in the transmit shift register is output on the TX pin, and the corresponding clock pulse is output on the CK pin.

17.5.1.1 Character send

When the USART transmits data, the TX pin shifts out the least significant bit of the data first. In character transmit mode, the USART_DAT register contains a buffer between the internal bus and the transmit shift register (see Figure 17-1). Each character is preceded by a low-level start bit; followed by a configurable number of stop bits. The USART supports configurations of 0.5, 1, 1.5, and 2 stop bits.

Note: 1. The TXEN bit cannot be reset during data transmission, otherwise the data on the TX pin will be destroyed, because the baud rate counter stops counting. Current data being transferred will be lost. 2. When the TXEN bit is activated, the USART will automatically transmit an idle frame.

17.5.1.2 Stop bit


The characters are followed by stop bits, the number of which can be configured by setting USART_CTRL2. STPB[1:0].

USART_CTRL2.STPB[1:0]	Stop bit length (bits)	functional description
00	1	default
01	0.5	Receiving in Smartcard mode
10	2	General USART mode, single-wire mode and modem mode.
11	1.5	Transmitting and receiving in Smartcard mode

Table 17-17-1 Stop bit configuration

17.5.1.3 Single byte communication

A write to the USART DAT register clears the USART STS.TXDE bit.

The USART_STS.TXDE bit is set by hardware when the data in the TDR register is transferred to the transmit shift register (indicating that data is being transmitted). An interrupt will be generated if USART_CTRL1.TXDEIEN is set. At this point, the next data can be sent to the USART_DAT register because the TDR register has been cleared and will not overwrite the previous data.

Write operation to USART DAT register:

- When the transmit shift register is not sending data and is in an idle state, the data is directly put into the shift register for transmission, and the USART STS.TXDE bit is set by hardware;
- When the transmit shift register is sending data, the data is stored in the TDR register, and after the current transmission is completed, the data is put into the shift register.

When a frame containing data is sent and USART_STS.TXDE=1, the USART_STS.TXC bit is set to '1' by hardware. An interrupt is generated if USART_CTRL1.TXCIEN is '1'.USART_STS.TXC bit is cleared by a software sequence (read USART_STS register first, then write USART_DAT register).

Note: The TXC bit can also be cleared by writing '0' to it by software. This clearing method is only recommended to be used in DMA multi-buffer communication mode.

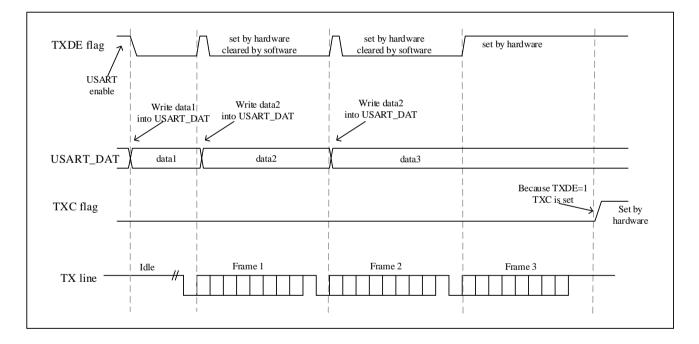


Figure 17-4 TXC/TXDE changes during transmission

17.5.1.4 Break frame

Use USART_CTRL1.SDBRK to send the break character. When there is 8-bit data, the break frame consists of 10 bits of low level, followed by a stop bit; when there is 9-bit data, the break frame consists of 11 bits of low level, followed by a stop bit.

After the break frame is sent, USART_CTRL1.SDBRK is cleared by hardware, and the stop bit of the break frame is being sent. Therefore, to send a second break frame, USART_CTRL1.SDBRK should be set after the stop bit of the previous break frame has been sent.

If software resets the USART_CTRL1.SDBRK bit before starting to send the break frame, the break frame will not be sent. If two consecutive break frames are to be sent, the SDBRK bit should be set after the stop bit of the previous break frame.

17.5.1.5 Idle frame

Setting USART_CTRL1.TXEN will cause the USART to transmit an idle frame before the first data frame.

17.5.2 Receiver

17.5.2.1 The WL bit of USART CTRL1 determines whether to receive an 8-bit or 9-bit data word.

17.5.2.2 Start bit detection

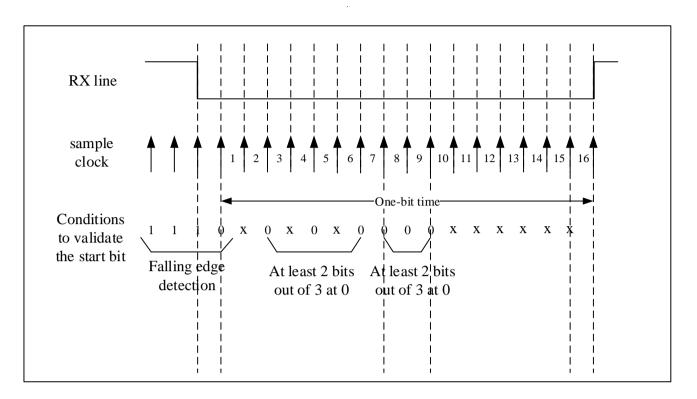
When the received sampling sequence is: 1 1 1 0 X 0 X 0 X 0 0 0, it is considered that a start bit is detected.

Note: If the sequence is incomplete, the receiver will exit start bit detection and return to idle state (without setting any flags) and wait for a falling edge.

The samples at the 3rd, 5th, and 7th bits, and the samples at the 8th, 9th, and 10th bits are all '0' (that is, 6 '0'), then confirm the receipt of the start bit, the USART_STS.RXDNE flag bit is set, and if USART_CTRL1.RXDNEIEN=1, an interruption occurs and will not Set the NEF noise flag.

The samples of the 3rd, 5th, and 7th bits have two '0' points, and at the same time, the samples of the 8th, 9th, and 10th bits have three '0' points, then the start bit is confirmed, but it will be set NEF noise flag.

The samples of the 3rd, 5th, and 7th bits have three '0' points, and at the same time, the samples of the 8th, 9th, and 10th bits have two '0' points, then the start bit is confirmed, but it will be set NEF noise flag.


The samples of the 3rd, 5th, and 7th bits have two '0' points, and at the same time, the samples of the 8th, 9th, and

10th bits have two '0' points, then it is confirmed that the start bit is received, but it will be set bit NEF noise flag.

If the sampling values in the 3rd, 5th, 7th, 8th, 9th and 10th bits cannot meet the above four requirements, the USART receiver thinks that it has not received the correct start bit, and will exit the start bit detection and Return to idle state and wait for falling edge.

Figure 17-5 Start bit detection

Charater reception

During data reception, the number of data stop bits can be configured by the USART_CTRL2.STPB[1:0]. In normal mode, 1 or 2 stop bits can be selected. In Smartcard mode, 0.5 or 1.5 stop bits can be selected.

- 0.5 stop bits (receive in smartcard mode): 0.5 stop bits are not sampled. Therefore, if 0.5 stop bits is selected, framing errors and broken frames cannot be detected.
- 1 stop bit: the sampling of one stop bit is carried out through three points, and the 8th, 9th and 10th sampling bits are selected.
- 3. 1.5 stop bit (Smartcard mode): when sending in Smartcard mode, the device must check whether the data is sent correctly. So the receiver function block must be activated (USART_CTRL1.RXEN=1) and sample the signal on the data line during the transmission of the stop bit. If a parity error occurs, the smartcard will pull down the data line when the transmitter samples the NACK signal, that is, within the time corresponding to the stop bit on the bus, indicating that a framing error has occurred. The USART_STS.FEF is set together with the USART_STS.RXDNE at the end of the 1.5th stop bit. The 1.5 stop bits were sampled at points 16, 17 and 18. The 1.5 stop bits can be divided into two parts: one is 0.5 clock cycles, during which nothing is done. This is

followed by the stop bit of 1 clock cycle, which is sampled at the midpoint of this period of time. For details, see 错误!未找到引用源。 Smartcard mode.

4. 2 stop bits: the sampling of the 2 stop bits is completed at the 8th, 9th and 10th sampling points of the first stop position. If a frame error is detected during the first stop bit, the frame error flag is set. The second stop bit does not detect framing error. The USART_STS.RXNE flag will be set at the end of the first stop bit.

17.5.2.3 Receiver process

During USART reception, the least significant bit of the data is first moved forward from the RX pin. In this mode, the USART_DAT register contains buffers between the internal APB bus and the receive shift register.

USART receiver enable is performed as follows:

- 1. Set the UEN bit in the USART_CTRL1 register to enable the USART;
- 2. Write WL of USART_CTRL1 register to set data bit width;
- 3. Write the STPB[1:0] bits in the USART_CTRL2 register to set the stop bit length;
- If the multi-level buffer communication method is selected, DMA should be enabled in the USART_CTRL3 register (DMARXEN bit);
- 5. Set the baud rate in the USART_BRCF register;

6. Set RXEN bit in USART_CTRL1;

When a data frame is received:

- The RXDNE bit will be set, and the contents of the shift register will be transferred to RDR (Receiver Data Register). At this point the data has been received and can be read (including the error flags associated with it);
- Generate an interrupt if the RXDNEIEN bit is set.
- Framing errors, noise or overflow errors are detected during reception, so the error flag will be set.
- In multi-buffer communication mode, the RXDNE flag is set after each byte is received, and is cleared by the DMA read operation of the data register.
- In single-buffer mode, software can clear the RXDNE bit by reading the USART_DAT register or writing 0 to clear the RXDNE bit. The RXDNE bit must be cleared before the end of the next frame data reception to avoid

overrun errors.

During reception, RXNE must be enabled, otherwise the current data frame will be lost.

17.5.2.4 Break frame detection

The frame error flag(USART_STS.FEF) is set by hardware when the receiver detects a break frame. It can be cleared by a software sequence (read USART_STS register first, then read USART_DAT register).

17.5.2.5 Idle frame detection

The receiver of the USART can detect idle frames. An interrupt is generated if USART_CTRL1.IDLEIEN is '1'. USART_STS.IDLEF bit is cleared by a software sequence (read USART_STS register first, then read USART_DAT register).

17.5.2.6 Overrun error

When USART_STS.RXDNE is still '1', when the data currently received in the shift register needs to be transferred to the RDR register, an overflow error will be detected, and the hardware will set USART_STS.OREF. When this bit is set, the value in the RDR register is not lost, but the data in the shift register is overwritten. It is cleared by a software sequence (read USART_STS register first, then write USART_DAT register).

When an overflow error occurs, USART_STS.RXDNE is '1', and an interrupt is generated. If the USART_CTRL3.ERRIEN bit is set, an interrupt will be generated when the USART_STS.OREF flag is set in multi-buffer communication mode.

Noise error

Noise error uses oversampling technology (except synchronous mode) to recover data by distinguishing between valid input data and noise.

USART_STS.NEF is set by hardware when noise is detected on a received frame. It is cleared by software sequence (read USART_STS register first, then write USART_DAT register). During single-byte communication, no noise interrupt generated because it occurs with USART_STS.RXDNE and the hardware will generate an interrupt when the USART_STS.RXDNE flag is set. In multi-buffer communication mode, an interrupt is generated when the USART_STS.NEF flag is set if the USART_CTRL3.ERRIEN bit is set.

Sample value	mple value NE status		Data validity		
000	0	0	Effective		

001	1	0	be invalid
010	1	0	be invalid
011	1	1	be invalid
100	1	0	be invalid
101	1	1	be invalid
110	1	1	be invalid
111	0	1	Effective

17.5.2.7 Framing error

A framing error occurs when a stop bit is not received and recognized at the expected time. At this time, the frame error flag USART_STS.FEF will be set by hardware, and the invalid data will be transferred from the shift register to the USART_DAT register. During single-byte communication, no framing error interrupt will be generated because it occurs with USART_STS.RXDNE and the hardware will generate an interrupt when the USART_STS.RXDNE flag is set. In multi-buffer communication mode, an interrupt will be generated if the USART_CTRL3.ERRIEN bit is set.

Sequential reads of the USART_STS and USART_DAT registers reset the FEF bit.

17.5.2.8 Stop bit description

During data reception, the number of data stop bits can be configured by the USART_CTRL2.STPB[1:0]. In normal mode, 1 or 2 stop bits can be selected. In Smartcard mode, 0.5 or 1.5 stop bits can be selected.

- 0.5 stop bits (receive in smartcard mode): 0.5 stop bits are not sampled. Therefore, if 0.5 stop bits is selected, framing errors and broken frames cannot be detected.
- 2. 1 stop bit: the sampling of one stop bit is carried out through three points, and the 8th, 9th and 10th sampling bits are selected.
- 3. 1.5 stop bit (Smartcard mode): when sending in Smartcard mode, the device must check whether the data is sent correctly. So the receiver function block must be activated (USART_CTRL1.RXEN=1) and sample the signal on the data line during the transmission of the stop bit. If a parity error occurs, the smartcard will pull down the data line when the transmitter samples the NACK signal, that is, within the time corresponding to the stop bit on the bus, indicating that a framing error has occurred. The USART_STS.FEF is set together with the USART_STS.RXDNE at the end of the 1.5th stop bit. The 1.5 stop bits were sampled at points 16, 17 and 18.

The 1.5 stop bits can be divided into two parts: one is 0.5 clock cycles, during which nothing is done. This is followed by the stop bit of 1 clock cycle, which is sampled at the midpoint of this period of time. For details, see 错误!未找到引用源。 Smartcard mode.

4. 2 stop bits: the sampling of the 2 stop bits is completed at the 8th, 9th and 10th sampling points of the first stop position. If a frame error is detected during the first stop bit, the frame error flag is set. The second stop bit does not detect framing error. The USART_STS.RXNE flag will be set at the end of the first stop bit.

17.5.3 Generation of fractional baud rate

The baud rate of the USART can be configured in the USART_BRCF register. This register defines the integer and fractional parts of the baud rate divider. The baud rate of the transmitter and receiver should be configured to the same value. Be careful not to change the value of the USART_BRCF register during communication, because the baud rate counter will be replaced by the new value of the baud rate register.

TX / RX baud rate = f_{PCLK} /(16 *USARTDIV)

where f_{PCLK} is the clock provided to the peripheral:

- PCLK1 is used for USART2, up to 48MHz;
- PCLK2 is used for USART1, up to 48 MHz.

USARTDIV is an unsigned fixed-point number.

17.5.3.1 USARTDIV and USART_BRCF register configuration

Example 1:

If DIV Integer = 27, DIV Decimal = 12 (USART BRCF = 0x1BC), then

DIV Integer(USARTDIV) = 27

 $DIV_Decimal(USARTDIV) = 12/16 = 0.75$

So USARTDIV = 27.75

Example 2:

Requirements USARTDIV = 25.62, there are:

DIV Decimal = 16*0.62 = 9.92

Closest integer is: 10 = 0x0A

 $DIV_Integer = DIV_Integer(25.620) = 25 = 0x19$

So, USART_BRCF = 0x19A

Example 3:

Requirements USARTDIV = 50.99, there are:

DIV Decimal = 16*0.99 = 15.84

Closest integer: $16 = 0x10 \Rightarrow DIV_Decimal[3:0]$ overrun \Rightarrow carry must be added to the fractional part

 $DIV_Integer = DIV_Integer (0d50.990+carry) = 51 = 0x33$

So: USART BRCF= 0x330, USARTDIV = 0d51.00

Baud rate f _{PCLK} = 36MHz		$f_{PCLK} = 48 MHz$					
serial number	Kbps	Reality	Set value in register	Error(%)	Reality	Set value in register	Error(%)
1	2.4	2.4	937.5	0%	2.4	1250	0%
2	9.6	9.6	234.375	0%	9.6	312.5	0%
3	19.2	19.2	117.1875	0%	19.2	156.25	0%
4	57.6	57.6	39.0625	0%	57.623	52.0625	0.04%
5	115.2	115.384	19.5	0.15%	115.1	26.0625	0.08%
6	230.4	230.769	9.75	0.16%	230.769	13	0.16%
7	460.8	461.538	4.875	0.16%	461.538	6.5	0.16%
8	921.6	923.076	2.4375	0.16%	923.076	3.25	0.16%
9	2250	2250	1	0%	2285.714	1.3125	1.58%
10	3000	impossible	impossible	impossible	3000	1	0%

Notes: The lower the clock frequency of the CPU, the lower the error for a particular baud rate.

17.5.4 Receiver's tolerance clock deviation

Variations due to transmitter errors (including transmitter side oscillator variations), receiver side baud rate rounding errors, receiver side oscillator variations, variations due to transmission lines (usually due to The inconsistency

322 / 447

between the low-to-high transition timing of the transceiver and the high-to-low transition timing of the transceiver), these factors will affect the overall clock system variation. Only when the sum of the above four changes is less than the tolerance of the USART receiver, the USART asynchronous receiver can work normally.

When receiving data normally, the tolerance of the USART receiver depends on the selection of the data bit length and whether it is generated using a fractional baud rate. The tolerance of the USART receiver is equal to the maximum tolerable variation.

Table 17-17-4 when DIV	Decimal = 0. Tolerance of USART receiver	

WL bit	NF is an error	NF is don't care
0	3.75%	4.375%
1	3.41%	3.97%

Table 17-17-5 when DIV Decimal != 0. Tolerance of USART receiver

WL bit	NF is an error	NF is don't care
0	3.33%	3.88%
1	3.03%	3.53%

Note: In special cases, when the received frame contains some idle frames that are exactly 10 bits at WL=0 (11 bits at WL=1), There may be slight discrepancies between the data in the 2 tables above.

17.5.5 Parity control

Parity can be enabled by configuring the USART_CTRL1.PCEN bit.

When the parity bit is enabled for transmission, A parity bit is generated, parity check is performed on reception.

WL bit	PCEN bit	USART frame
0	0	Start bit 8-bit data Stop bit
0	1	Start bit 7 bits of data Parity bit Stop bit
1	0	Start bit 9-bit data Stop bit
1	1	start bit 8-bit data parity bit stop bit

Table 17-17-6 Frame format

Even parity

Configure USART CTRL1.PSEL to 0, and even parity can be selected.

Make the number of '1' in the transmitted data (including parity bit) be an even number. That is: if Data=11000101, there are 4 '1's, then the parity bit will be '0' (4 '1' in total). After the data and check digit are sent to the receiver, the receiver calculates the number of 1s in the data again. If it is an even number, the check is passed, indicating that no errors occurred during the transmission process. If it is not even, it means that an error has occurred, the USART_STS.PEF flag is set to '1', and if USART_CTRL1.PEIEN is enabled, an interrupt is generated.

Odd parity

Configure USART_CTRL1.PSEL to 1, you can choose odd parity.

Make the number of '1' in the transmitted data (including parity bit) be an odd number. That is: if Data=11000101, there are 4 '1's, then the parity bit will be '1' (5 '1' in total). After the data and check digit are sent to the receiver, the receiver calculates the number of 1s in the data again. If it is an odd number, the check is passed, indicating that no errors occurred during the transmission process. If it is not an odd number, it means that an error has occurred, the USART_STS.PEF flag is set to '1', and if USART_CTRL1.PEIEN is enabled, an interrupt is generated.

17.5.6 Multiprocessor communication

Multiprocessor communication refers to multiple USARTs connected to a common network. For example, a USART device can be the master, and its TX output is connected to the RX input of other USART slave devices; the respective TX outputs of the USART slave devices are logically connected together and connected to the RX input of the master device. In a multiprocessor configuration, it is a large processor overhead for a device to monitor all RX pins, and the mute mode can be turned on, which can reduce redundant USART Service Burden. In mute mode.

- None of the receive status bits will be set.
- All receive interrupts are disabled.

The RCVWU bit in the USART_CTRL1 register is set to 1. RCVWU can be automatically controlled by hardware or written by software under certain conditions.

Depending on the state of the WUM bit in the USART_CTRL1 register, the USART can enter or exit silent mode in two ways.

■ If the WUM bit is reset: Perform idle bus detection.

■ If the WUM bit is set: Perform address mark detection.

USART allows multiprocessor communication. The principle is: multiple processors communicate through USART, and it is necessary to determine who is the master device, and the remaining processors are all slave devices. The TX output of the master device is directly connected to the RX port of all slave device. The TX outputs of the slaves are logically AND together and connected to the RX inputs of the master.

When multi-processor communication is performed, the slave devices are all in mute mode, and the host uses a specific method to wake up a slave device to be communicated when needed, so that the slave device is in an active state and transmits data with the master device.

The USART can wake up from mute mode by idle line detection or address mark detection.

17.5.6.1 Idle line detection (WUM=0)

When the RCVWU bit is set, the USART enters mute mode. When the RX pin detects an idle frame, RCVWU is cleared by hardware, but the IDLEF bit in the USART_STS register will not be set to 1. RCVWU can also be written to 0 by software. The RCVWU state when an idle frame is detected is shown in Figure 17-7 below.

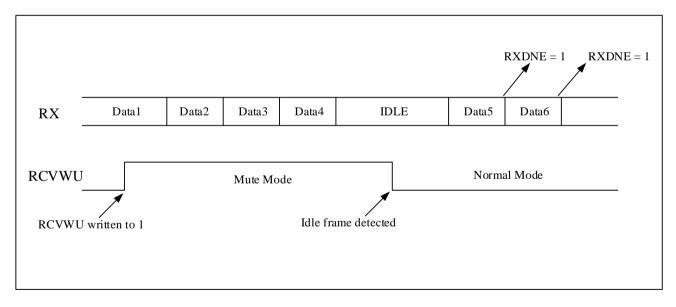


Figure 17-8 Mute mode using idle line detection

17.5.6.2 Address mark detection (WUM=1)

In this mode, the highest bit is the address flag, if it is 1, the byte is the address, otherwise it is the data. In an address byte, the address of the intended receiver is placed in the lower 4 bits. If this 4-bit address is different in ADDR[3:0]

of USART_CTRL2 register, that is, when the received byte does not match its programmed address, the USART will enter mute mode and set the RCVWU bit. In this case, RXDNE will not be set either.

When the received byte is the same as the programmed address in the receiver, receive the data frame that wakes up the USART, then the hardware clears the RCVWU bit, the USART exits the mute mode, and the subsequent bytes are received normally, and the matching address word is received The RXDNE bit will be set during the festival because the receive The wake-up bit RCVWU bit has been cleared.

When the receive buffer does not contain data (RXDNE=0 in USART_STS), the receive wake-up bit RCVWU can be written as 0 or 1. Otherwise, the write operation is ignored.

The figure below shows an example of using address mark detection to wake up and enter mute mode.

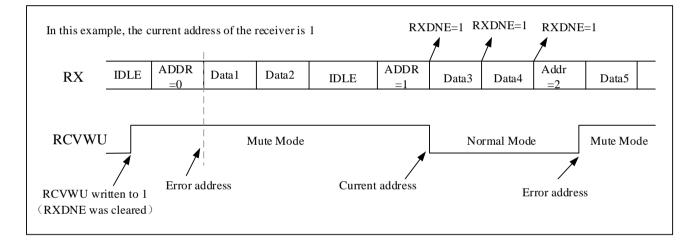


Figure 17-4 Mute mode detected using address mark

17.5.7 LIN mode

LIN mode is selected by setting the LINMEN bit of the USART_CTRL2 register. In LIN mode, the following registers must be cleared to 0:

- CLKEN bit and STPB[1:0] of USART_CTRL2 register
- SCMEN, HDMEN and IRDAMEN of USART_CTRL3 register.

17.5.7.1 LIN receiving and transmitting

There are some differences between the sending steps of LIN and the normal operation process of USART, When

Nations Technologies Inc. Tel: +86-755-86309900 Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

sending ordinary data frames, the LIN sending process is the same as the ordinary sending process, but the data length can only be 8, so clear the WL bit to configure the 8-bit word length, and set the SDBRK in USART_CTRL1 to send 13 '0' as Disconnect sign. Then send a stop bit. When the LIN mode is enabled, the break symbol detection function is completely independent of the USART receiver, and the break detection can be used when the bus is free and between sending a certain data frame.

When the receiver is activated (RXDEN=1 of USART_CTRL1), the circuit starts to monitor the start signal on RX. When the start bit is detected, it samples the 8th, 9th, and 10th oversampling clock points of each bit. If 10 or 11 consecutive bits are '0' followed by a fixed delimiter, the LINBDF flag of USART_STS is set. If LINBDIEN bit=1, an interrupt will be generated. Check the delimiter before acknowledging the break symbol because it means the RX line has returned to high.

If a '1' is sampled before the 10th or 11th sampling point, the detection circuit searches for the start bit again and cancels the current detection. If LIN mode is disabled, the receiver does not need to detect break symbols.

If the LIN mode is enabled (LINMEN=1), a framing error occurs (that is, the stop bit detects '0', which occurs in a break frame), and the receiver will be stopped until the break symbol detection circuit receives a A '1' (this happens when a break symbol has not been emitted completely), or a delimiter (this happens when a full break symbol has been detected).

Figure 17-9 shows the behavior of the broken symbol detector state machine in relation to the broken symbol flag. Figure 17-10 shows an example of a disconnected frame

RX line					Bre	ak frame							
Break frame	Idle	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7	Bit8	Bit9	Bit10	Idle
Sample													
Sample data		0	0	0	0	0	0	0	0	0	0	1	
LINBDF													
С	ase 2: break	signal ju	st long e	nough =		detected reak fram						Г	
RX line					Di						delin	niter is in	nmediate
Break frame	Idle	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7	Bit8	Bit9	B10	Idle
Sample													
Sample data		0	0	0	0	0	0	0	0	0	0	0	
LINBDF													
c	Case 3: breal	k signal le	ong enou	gh => bi	reak deto	ected							
RX line					I	Break fra	me						
Break frame	Idle	Bit0	Bit1 Bi	it2 Bit3	Bit4	Bit5	Bit6 B	it7 Bit8	Bit9	Bit10	wait de	limiter	Idle
Coursel o													
Sample Sample data		0	0	0	0	0	0	0	0	0	0	0	
LINBDF													

Figure 17-9 Break detection in LIN mode (11-bit break length-the LINBDL bit is set)

Break occurring	after an Idle	•			
RX line	frame1	Idle	1	frame2	frame3
			1 frame time	1 frame time	
XDNE/FEF					
LINBDF					
LINBDF					
LINBDF Break occurring	while a data	is being reco	eived:		
	while a data	is being reco	sived:	frame2	frame3
Break occurring		frame2	eived:	frame2 1 frame time	frame3
Break occurring		frame2	1		frame3

Figure 17-10 Break detection and framing error detection in LIN mode

17.5.8 Usart Synchronous mode

Synchronous mode is selected by writing the CLKEN bit in the USART_CTRL2 register, the LINMEN bit in the USART_CTRL2 register, the SCMEN, HDMEN and IRRAMEN bits in the USART_CTRL3 register must be zero.

USART only supports master mode to control bidirectional synchronization serial communication, and cannot use the input clock from other devices to receive or send data (CK is always an output). The CK pin is used as the output of the USART transmitter clock. During start bit and stop bit, CK pin will not output clock pulse.

The external CK clock is not active during the bus idle state, before the actual data arrives and when the break symbol is sent. The CK pin works jointly with the TX pin. Thus, the clock is only provided when the transmitter is enabled (TXEN=1) and data is being transmitted (writing data to the USART_DAT register). A USART receiver in synchronous mode works differently than in asynchronous mode. If RXEN=1, data is sampled on CK without oversampling. But setup time and duration (depending on baud rate, 1/16 bit time) must be considered.

Notice:

- 1. Synchronous mode does not send data and cannot receive synchronous data.
- 2. LBCLK, CLKPOL and CLKPHA bits can only be configured when synchronous mode is not working.
- 3. The same code sets TXEN and RXEN, which can reduce the setup time and hold time of the receiver.

Figure 17-11 USART synchronous transmission example

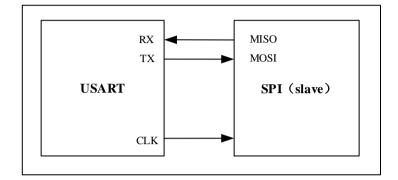
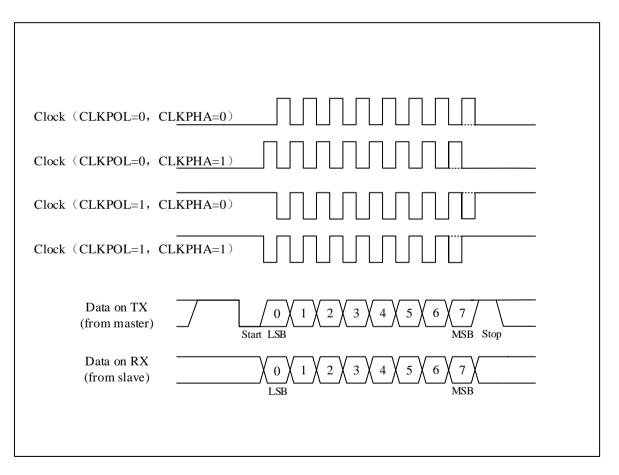
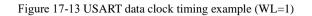




Figure 17-12 USART data clock timing example (WL=0)

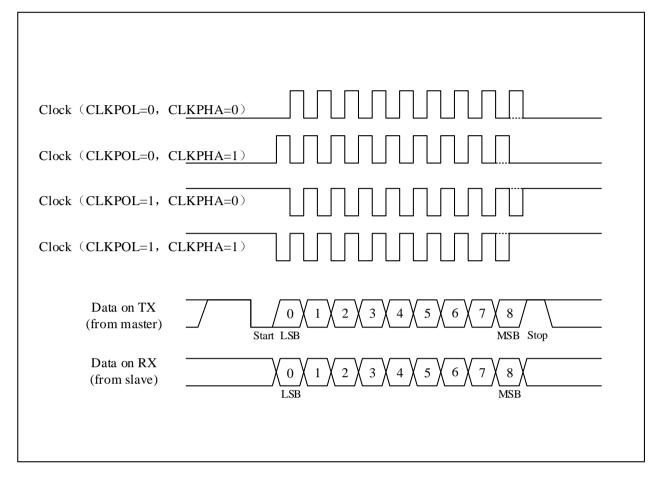
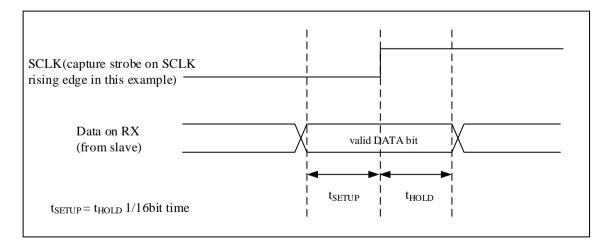



Figure 17-14 RX data sampling / holding time

Note: the function of CK is different in Smartcard mode, please refer to the Smartcard mode section for details.

17.5.9 Single-wire half-duplex mode

Single-wire half-duplex mode is selected by setting the HDMEN bit of the USART_CTRL3 register. The following bits must be set to zero, the LINMEN and CLKEN bits of the USART_CTRL2 register, and the SCMEN and IRDAMEN bits of the USART_CTRL3 register.

In single-wire half-duplex mode, the TX and RX pins are interconnected inside the chip, and the RX pin is not used anymore. The HDMEN bit in USART_CTRL3 selects half-duplex and full-duplex communication. TX is always released when there is no data transfer. Therefore, when it is in the idle state or the receive state Appears as a standard I/O port. Therefore, when the TX port is not enabled by the USART, it must be configured as a floating input or an open-drain output high.

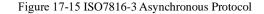
Communication collisions are managed by software (eg by using a central arbiter).

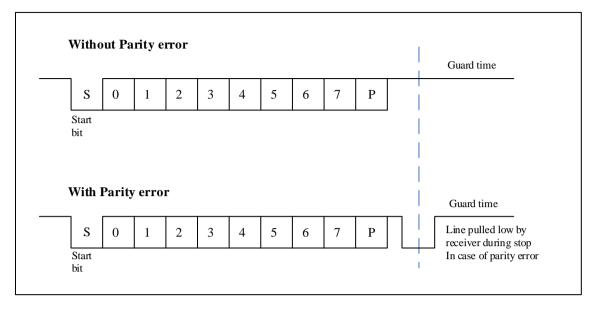
17.5.10 Smartcard mode (ISO7816)

Smart card mode is an asynchronous communication mode that supports the ISO7816-3 protocol.

Set the SCMEN bit of the USART_CTRL3 register to select the smart card mode. In smart card mode, the following registers must be cleared: LINMEN bit of USART_CTRL2 register, HDMEN bit and IRDAMEN bit of USART_CTRL3 register

If the CLKEN bit is set, the USART provides the clock to the smart card through the CK pin. This interface supports the smart card asynchronous protocol. USART should be set to:


■ 8 data bits plus parity bit: At this time, WL=1, PCEN=1 in the USART_CTRL1 register


■ 1.5 stop bits when sending and receiving: ie STPB=11 of USART_CTRL2 register

Note: 1/2 stop bits can also be selected on receive, but to avoid switching between the 2 configurations, it is recommended to use 1.5 stop bits on both transmit and receive.

The figure below shows two situations with and without check digit.

When connecting with a smart card, the TX pin needs to be set to open-drain mode, and an external pull-up resistor is connected. This pin will drive the same bidirectional connection with the smart card. During the data byte, it is released (weak pull-up) during the transmission of the stop bit, so the receiver can pull the data line low in case of parity error. If TXEN is not enabled, TX will be pulled high during the stop bit.

■ To send data from the transmit shift register, the delay must be greater than or equal to half a baud clock. During normal operation, a full transmit shift The bit register will begin shifting out data on the next baud clock edge. In smart card mode, the delay is half a baud clock.

■ If a parity error is detected during reception of a data frame with 0.5 or 1.5 stop bits set, at the end of the stop bits, The transmit line will be pulled low for one baud clock cycle (NACK), notifying the smart card that the USART did not receive the data correctly. This NACK signal A framing error will be generated on the sender, meaning the sender is configured for 1.5 stop bits. Programs can resend data. if set If the SCNACK control bit is set, the receiver will give a NACK signal when a parity error occurs; otherwise, it will not send a NACK.

■ The setting of TXC flag can be delayed by programming the protection time register. When the transmit shift register is cleared and no new transmits please When requested, TXC is set high. In smart card mode, an empty transmit shift register will trigger the guard time counter to start counting up. Before the value reaches, TXC is forced to be low, and after the count value is reached, TXC is set high.

■ Smart card mode does not affect the deactivation of the TXC flag. 298 / 400

■ If the transmitter detects a NACK signal received by the receiver, the receiver function module of the transmitter will not treat NACK as a start bit detection. The duration of a received NACK can be 1 or 2 baud clock periods according to the ISO protocol.

■ On the receiver side, if a parity error is detected, NACK is also sent, and the receiver will not detect NACK as a start bit.

Notice:

- 1. The break symbol has no meaning in smart card mode. A 00h data with framing error will be treated as data instead of break symbol.
- When the TXEN bit is toggled back and forth, no IDLE frame is sent. The ISO protocol does not define IDLE frames.

Figure 17-16 samples the NACK signal for the USART. In the figure the USART is sending data and is configured for 1.5 stop bits. to check Data integrity and NACK signals enable the receive function block of the USART.

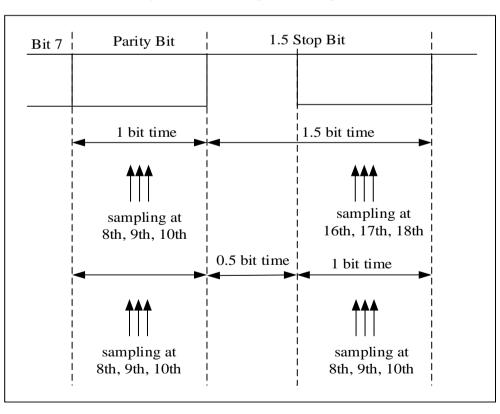


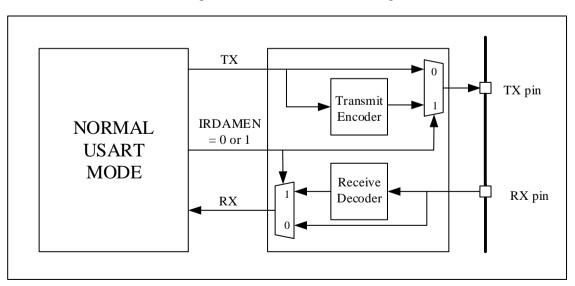
Figure 17-16 Use 1.5 stop bits to detect parity errors

USART can provide clock for smart card through CK output. In the smart card mode, CK is not directly related to communication, but first drives the clock of the smart card with the internal peripheral input clock through a 5-bit

Nations Technologies Inc. Tel: +86-755-86309900 Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

prescaler. The division ratio can be configured in the prescaler register USART_GTP. The frequency of CK division is from f CK /2 to f CK /62, where f CK is the peripheral input clock.

17.5.11 IrDA SIR ENDEC mode

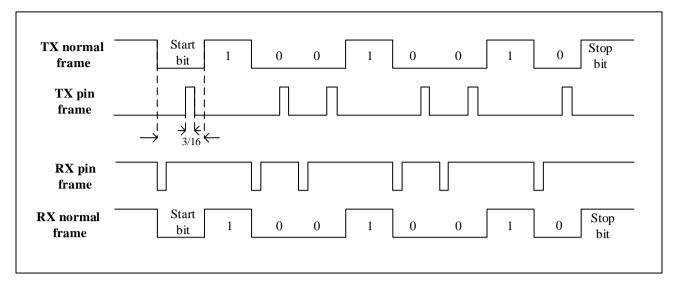

USART supports the IrDA (Infrared Data Association) SIR ENDEC specification.

Through the USART_CTRL3. IRDAMEN bit, you can choose whether to enable the infrared mode. When using the infrared function, USART_CTRL2. CLKEN, USART_CTRL2. STPB[1:0], USART_CTRL2. LINMEN, USART_CTRL3. HDMEN, USART_CTRL3. SCMEN, these bits should be kept clear.

Through the USART_CTRL3. IRDALP bit, it can be used to select normal mode or low power infrared mode.

17.5.11.1 IrDA normal mode

The transmitter is in low-power mode, and the pulse width no longer lasts 3/16 bit periods. Instead, the pulse width is three times the low-power baud rate, which can be as low as 1.42MHz. Receiver low power mode reception is similar to normal mode reception. In order to exclude other power supply interference, the low-level signal of the IrDA low-power baud rate clock with a duration greater than 2 cycles is considered a valid signal. Notice: 1. Pulses with a width less than 1 PSCV period must be filtered out, but those pulses with a width greater than 1 and less than 2 PSCV periods may be accepted or filtered. 2. Software management controls the settling time of the receiver. The IrDA Physical Layer Specification protocol specifies a minimum delay of 10ms between transmission and reception.



335 / 447

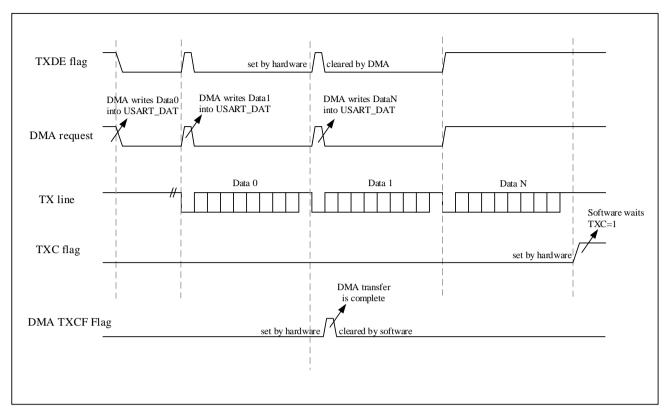
Nations Technologies Inc. Tel: +86-755-86309900 Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

Figure 17-18 IrDA data Modulation (3/16)-normal mode

17.5.12 DMA communication mode

The USART can use DMA to access the send buffer and receive buffer respectively.

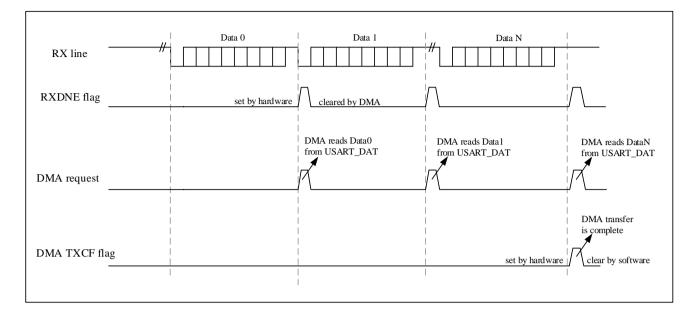
17.5.12.1 DMA transmitting


The steps to allocate a DMA channel for USART transmission are as follows (x represents the channel number):

- 1. The USART_DAT register address is configured as the destination address of the DMA transfer, and the memory address is configured as the source address of the DMA transfer.
- 2. Configure the total number of bytes to transfer.
- 3. Configure the channel priority.
- 4. Configure the DMA interrupt to be generated when the transfer is half or fully completed.
- 5. Activate the channel.

When a DMA transfer is complete, an interrupt is generated on the corresponding DMA channel. In the sending mode, when the DMA transmits all the data to be sent, the DMA controller sets the TXCFx flag of the DMA_INTSTS register, and the TXC flag is set high by the hardware to indicate that the transmission is complete. The software needs to wait for TXDE=1 first, and then wait for TXC= 1.

17.5.12.2 DMA reception


The steps to allocate a DMA channel for USART reception are as follows (x represents the channel number):

- 1. Configure the USART_DAT register address as the source address of the transfer through the DMA control register, and set the destination address of the transfer with the memory address.
- 2. Configure the number of DMA bytes to transfer.
- 3. Configure the channel priority on the DMA registers, configure the transfer.
- 4. Configure the DMA interrupt to be generated when the transfer is half or fully completed.
- 5. Activate the channel.

When receiving the transfer amount specified by the DMA controller, the DMA controller generates an interrupt on the interrupt vector of the DMA channel.

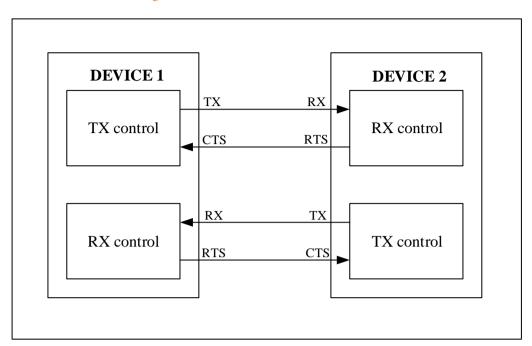
Figure 17-20 Reception using DMA

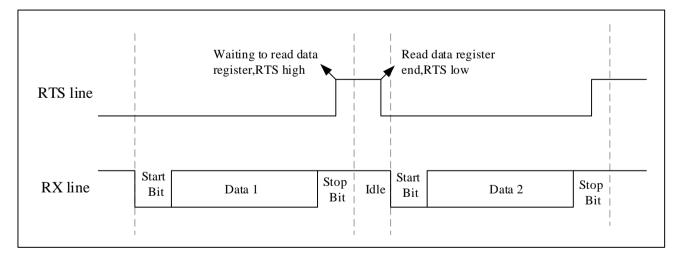
17.5.12.3 Error flags and interrupt generation in multi-buffer communication

When an error occurs in the multi buffer communication, an error flag will be set when the current byte transmission is completed. If the interrupt enable bit is set, an error interrupt will be generated. When a single byte is received, the frame error, overflow error and noise flags set together with RXDNE will cause an interrupt when the current byte transmission ends if a separate error flag interrupt enable bit is set.

17.5.13 Hardware flow control

Hardware flow control functions are implemented through nCTS input and nRTS output. The figure below shows how to connect two devices in this mode.

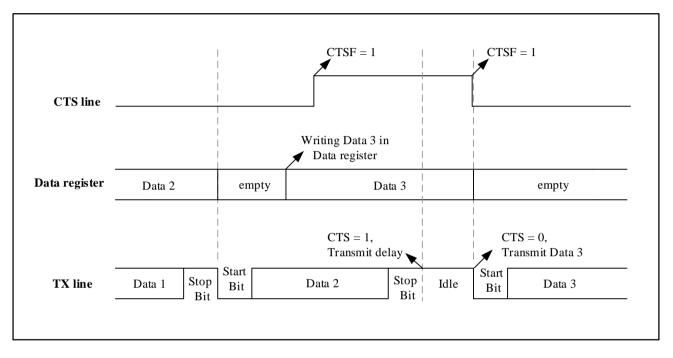



Figure 17-20 hardware flow control between two USART

RTS and CTS flow control can be enabled independently by setting RTSEN and CTSEN in USART_CTRL3 respectively.

17.5.13.1 RTS flow control

If RTS flow control is enabled (RTSEN=1), when a frame of data is received, nRTS is high, otherwise it is low. The figure below is an example of communication with RTS flow control enabled.


17.5.13.2 CTS flow control

If CTS flow control is enabled (CTSEN=1), the transmitter checks the nCTS pin to decide whether to send data

Nations Technologies Inc. Tel: +86-755-86309900 Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

before sending the next frame. If nCTS is pulled low (active), the transmitter sends data (assuming that data is ready to be sent, that is, TXDE=0). If nCTS is pulled high during transmission, the transmission of the current data frame will stop after the transmission is completed. If the CTS flow control is enabled (CTSEN=1), the nCTS pin signal bit changes, the CTSF status bit is set to 1, and if the CTSIEN bit of the USART_CTRL3 register is set, an interrupt will be generated, as shown in Figure 17-23 to enable CTS flow control.

17.6 Interrupt request

The various interrupt events of USART are logical OR relations, if the corresponding enable control bit is set, these events can generate their own interrupts, but only one interrupt request can be generated at the same time.

Table 17-17-7 USART	interrupt request
---------------------	-------------------

Interrupt function	Interrupt event	Event flag	Enable bit		
	Transmission data register is empty.	TXDE	TXDEIEN		
	CTS flag	CTSF	CTSIEN		
USART global interrupt	Transmission complete	TXC	TXCIEN		
	Receive data ready to be read	RXDNE	RXDNEIEN		

Data overrun error detected.	ORERR	
Idle line detected	IDLEF	IDLEIEN
Parity error	PEF	PEIEN
Disconnect flag	LINBDF	LINBDIEN
Noise, overrun error and framing error in multi- buffer communication	NEF/OREF/FEF	ERRIEN ⁽¹⁾

1. This flag is only used when receiving data using DMA. The various interrupt events of the USART are in a logical OR relationship (see Figure 17-24 below). If the corresponding enable control bit is set, these events can generate their own interrupts, but only one interrupt request can be generated at the same time.

17.7 Usart mode configuration

Communication mode	USART1	USART2				
Asynchronous mode	Y	Y				
Hardware flow control mode	Y	Y				
DMA communication mode	Y	Y				
Multiprocessor	Y	Y				
Synchronous mode	Y	Y				
Smartcard mode	Y	Y				
Single-wire half duplex mode	Y	Y				
IrDA infrared mode	Y	Y				
LIN	Y	Y				

Table 17-8 USART mode setting (1))
-----------------------------------	---

(1) Y = support this mode, N = do not support this mode

17.8 USART register

17.8.1 USART register overview

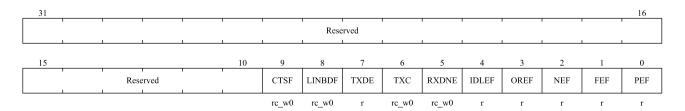

Offset	Register	31	30	0C	28	27	26 75	3	24 23	22	į	21 20	19	10	18 17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
000h	USART_STS										R	Reserved											CTSF	LINBDF	TXDE	TXC	RXDNE	IDLEF	OREF	NEF	FEF	PEF
	Reset Value																						0	0	1	1	0	0	0	0	0	0
004h	USART_DAT											Reserv	red														DA	TV[8	:0]			
	Reset Value																							0	0	0	0	0	0	0	0	0
008h	USART_BRCF								Reserved												DIV	/_Inte	ger[1	1:0]					D	IV_D [3:		al
	Reset Value																0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00Ch	USART_CTRL1								Rese	erved							<u>.</u>	<u>.</u>	UEN	ML	MUM	PCEN	PSEL	PEIEN	TXDEIEN	TXCIEN	RXDNEIEN	IDLEIEN	TXEN	RXEN	RCVWU	SDBRK
	Reset Value																		0	0	0	0	0	0	0	0	0	0	0	0	0	0
010h	USART_CTRL2								Reserv	ed								LINMEN		РВ :0]	CLKEN	CLKPOL	CLKPHA	LBCLK	Reserved	LINBDIEN	LINBDL	Reserved	1	ADDI	R[3:0]	
	Reset Value																	0	0	0	0	0	0	0	1	0	0	ł	0	0	0	0
014h	USART_CTRL3									R	lese	served							•			CTSIEN	CTSEN	RTSEN	DMATXEN	DMARXEN	SCMEN	SCNACK	HDMEN	IRDALP	IRDAMEN	ERRIEN
	Reset Value																					0	0	0	0	0	0	0	0	0	0	0
018h	USART_GTP								Reserved											GTV	[7:0]	-	•	•		-		PSCV	[7:0]	•	-	
	Reset Value																0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 17-17-9 USART register overview and reset value

17.8.2 USART Status register (USART_STS)

Address offset : 0x00

Reset value : 0x0000 00C0

Bit field	Name	Description
31:10	Reserved	Reserved, the reset value must be maintained
9	CTSF	CTS flag
		If USART_CTRL3.CTSEN bit is set, this bit is set by hardware when the nCTS input
		changes. If USART_CTRL3.CTSIEN bit is set, an interrupt will be generated.
		This bit is cleared by software.
		0:nCTS status line has not changed.
		1:nCTS status line changes.
8	LINBDF	LIN break detection flag.
		If USART_CTRL2.LINMEN bit is set, this bit is set by hardware when LIN
		disconnection is detected. If USART_CTRL2.LINBDIEN bit is set, an interrupt will be
		generated.
		This bit is cleared by software.
		0: LIN break character not detected.
		1: LIN break character detected.
7	TXDE	The Transmit data register empty.
		Set to 1 after power-on reset or data to be sent has been sent to the shift register. Setting
		USART_CTRL1.TXDEIEN will generate an interrupt.
		This bit is cleared to 0 when the software writes the data to be sent into USART_DAT.
		0: Send data buffer is not empty.
		1: The transmitting data buffer is empty.
6	TXC	Transmission complete.
		This bit is set to 1 after power-on reset. If USART_STS.TXDE is set, this bit is set when
		the current data transmission is completed.
		Setting USART_CTRL1.TXCIEN bit will generate an interrupt.
		This bit is cleared by software.
		0: Transmitting did not complete.
		1: Send completed.
5	RXDNE	The Read data register not empty.
		This bit is set when the read data buffer receives data from the shift register. When
		USART_CTRL1.RXDNEIEN bit is set, an interrupt will be generated.
		Software can clear this bit by writing 0 to it or reading the USART_DAT register.
		0: The read data buffer is empty.
		1: The read data buffer is not empty.
4	IDLEF	IDLE line detected flag.
		Within one frame time, the idle state is detected at the RX pin, and this bit is set to 1.
		When USART_CTRL1.IDLEIEN bit is set, an interrupt will be generated.
		The software can clear this bit by reading USART_STS first and then reading
		USART_DAT.
		0: No idle frame detected.
		1: idle frame detected.
		Note: IDLEF bit will not be set high again until USART_STS.RXDNE bit is set (that is,

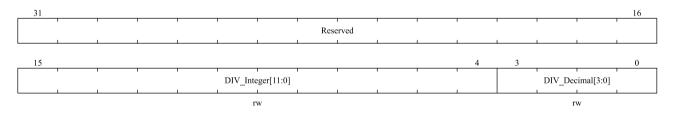
Bit field	Name	Description
		an idle line is detected again).
3	OREF	Overrun error
		With RXDNE set, this bit is set if the USART_DAT register receives data from the shift
		register. When USART_CTRL3.ERRIEN bit is set, an interrupt will be generated.
		The software can clear this bit by reading USART_STS first and then reading
		USART_DAT.
		0: No overrun error was detected.
		1: Overflow error detected.
2	NEF	Noise error flag.
		When noise is detected in the received frame, this bit is set by hardware. It is cleared by
		the software sequence (read first USART_STS, read USART_DAT again).
		0: No noise error detected.
		1: Noise error detected.
		Note: this bit will not generate an interrupt because it appears with
		USART_STS.RXDNE, and the hardware will generate an interrupt when setting the
		USART_STS.RXDNE flag. In the multi-buffer communication mode, if the
		USART_CTRL3.ERRIEN bit is set, an interrupt will be generated when the NEF flag is
		set.
1	FEF	Framing error.
		When the data is not synchronized or a large amount of noise is detected, and the stop
		bit is not received and recognized at the expected time, it will be judged that a framing
		error has been detected, and this bit will be set to 1. First read USART_STS, then read
		USART_DAT can cleared this bit.
		0: No framing errors were detected.
		1: A framing error or a Break Character is detected.
		Note: this bit will not generate an interrupt because it appears with
		USART_STS.RXDNE, and the hardware will generate an interrupt when setting the
		USART_STS.RXDNE flag. If the currently transmitted data has both framing errors and
		overload errors, the hardware will continue to transmit the data and only set the
		USART_STS.OREF flag bit.
		In the multi-buffer communication mode, if the USART_CTRL3.ERRIEN bit is set, an
		interrupt will be generated when the FEF flag is set.
0	PEF	Parity error.
		This bit is set when the parity bit of the received data frame is different from the
		expected check value.
		The software can clear this bit by reading USART_STS first and then reading
		USART_DAT.
		0: No parity error was detected.
		1: Parity error detected.

17.8.3 USART Data register (USART_DAT)

Address offset : 0x04

Reset value : undefined (uncertain value)

31														16
	1					Rese	erved		1	1	1			
	1	I	1	1			1	1	1	1	1	1	II	
15					9	8								0
	1		Reserved	1			1	1	1	DATV[8:0]]	1		
										rw				


Bit field	Name	Description
31:9	Reserved	Reserved, the reset value must be maintained
8:0	DATV[8:0]	Data value
		Contains the data sent or received; Software can change the transmitted data by writing
		these bits, or read the values of these bits to obtain the received data.
		If parity is enabled, when the transmitted data is written into the register, the highest bit
		of the data (the 7th or 8th bit depends on USART_CTRL1.WL bit) will be replaced by
		the parity bit.

17.8.4 USART Baud rate register (USART_BRCF)

Address offset : 0x08

Reset value : 0x0000 0000

Note: When USART_CTRL1.UEN=1, this register cannot be written; The baud counter stops counting if USART_CTRL1.TXEN or USART_CTRL1.RXEN are disabled respectively.

Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained
15:4	DIV_Integer [11:0]	Integer part of baud rate divider.
3:0	DIV_Decimal[3:0]	Fractional part of baud rate divider.

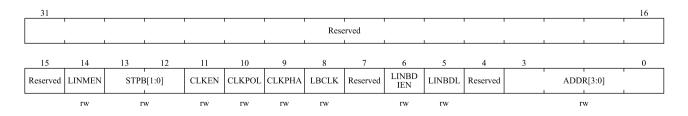
17.8.5 USART control register 1 register (USART_CTRL1)

Address offset : 0x0C

Reset value : 0x0000 0000

31	-														16
							Rese	erved	1						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved	UEN	WL	WUM	PCEN	PSEL	PEIEN	TXDE IEN	TXC IEN	RXDNE IEN	IDLE IEN	TXEN	RXEN	RCVWU	SDBRK
		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit field	Name	Description
31:14	Reserved	Reserved, the reset value must be maintained
13	UEN	USART enable
		When this bit is cleared, the divider and output of USART stop working after the current
		byte transmission is completed to reduce power consumption. Software can set or clear
		this bit.
		0:USART is disabled.
		1:USART is enabled.
12	WL	Word length.
		0:8 data bits.
		1:9 data bits.
		Note: If data is in transfer, this bit cannot be configured.
11	WUM	Wake up mode from mute mode.
		0: Idle frame wake up.
		1: Address identifier wake up.
10	PCEN	Parity control enable
		0: Parity control is disabled.
		1: Parity control is enabled.
9	PSEL	Parity selection.
		0: even check.
		1: odd check.
8	PEIEN	PE interrupt enable
		If this bit is set to 1, an interrupt is generated when USART_STS.PEF bit is set.
		0: Parity error interrupt is disabled.
		1: Parity error interrupt is enabled.
7	TXDEIEN	TXDE interrupt enable
		If this bit is set to 1, an interrupt is generated when USART_STS.TXDE bit is set.
		0: Send buffer empty interrupt is disabled.
		1: Send buffer empty interrupt is enabled.
6	TXCIEN	Transmit complete interrupt enable.
		If this bit is set to 1, an interrupt is generated when USART_STS.TXC is set.
		0: Transmission completion interrupt is disabled.
		1: Transmission completion interrupt is enabled.
5	RXDNEIEN	RXDNE interrupt enable



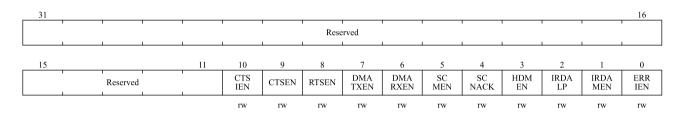
Bit field	Name	Description
		If this bit is set to 1, an interrupt is generated when USART_STS.RXDNE or
		USART_STS.OREF is set.
		0: Data buffer non-empty interrupt o and overrun error interrupt are disabled.
		1: Data buffer non-empty interrupt o and overrun error interrupt are enabled.
4	IDLEIEN	IDLE interrupt enable.
		If this bit is set to 1, an interrupt is generated when USART_STS.IDLEF is set.
		0:IDLE line detection interrupt is disabled.
		1: IDLE line detection interrupt is enabled.
3	TXEN	Transmitter enable.
		0: The transmitter is disabled.
		1: the transmitter is enabled.
2	RXEN	Receiver enable
		0: The receiver is disabled.
		1: the receiver is enabled.
1	RCVWU	The receiver wakes up
		Software can set this bit to 1 to make USART enter mute mode, and clear this bit to 0
		to wake up USART.
		In idle frame wake-up mode (USART_CTRL1.WUM=0), this bit is cleared by hardware
		when an idle frame is detected. In address wake-up mode (USART_CTRL1.WUM=1),
		when an address matching frame is received, this bit is cleared by hardware. Or when
		an address mismatch frame is received, it is set to 1 by hardware.
		0: The receiver is in normal operation mode.
		1: The receiver is in mute mode.
0	SDBRK	Send Break Character.
		The software transmits a break character by setting this bit to 1.
		This bit is cleared by hardware during stop bit of the break frame transmission.
		0: No break character was sent.
		1: Send a break character.

17.8.6 USART control register 2 register (USART_CTRL2)

Address offset : 0x10

Reset value : 0x0000 0000

Bit field	Name	Description
31:15	Reserved	Reserved, the reset value must be maintained
14	LINMEN	LIN mode enable
		0:LIN mode is disabled
		1:LIN mode enabled
13:12	STPB[1:0]	STOP bits.
		00:1 stop bit.
		01:0.5 stop bit.
		10:2 stop bit.
		11:1.5 stop bit.
11	CLKEN	Clock enable
		0:CK pin is disabled
		1:CK pin enabled
10	CLKPOL	Clock polarity.
		This bit is used to set the polarity of CK pin in synchronous mode.
		0: CK pin remains low when it is not transmitted to the outside.
		1: CK pin remains high when it is not sent to the outside.
9	CLKPHA	Clock phase.
		This bit is used to set the phase of CK pin in synchronous mode.
		0: Sample the first data at the first clock edge.
		1: Sample the first data at the second clock edge.
8	LBCLK	The Last bit clock pulse.
		This bit is used to set whether the clock pulse corresponding to the last transmitted data
		byte (MSB) is output on CK pin in synchronous mode.
		0: The clock pulse of the last bit of data is not output from CK.
		1: The clock pulse of the last bit of data will be output from CK.
7	Reserved	Reserved, the reset value must be maintained
6	LINBDIEN	LIN break detection interrupt enable.
		If this bit is set to 1, an interrupt will be generated when USART_STS.LINBDF bit is
		set.
		0: Disconnect signal detection interrupt is disabled.
		1: Turn-off signal detection interrupt enabled
5	LINBDL	LIN break detection length.
		This bit is used to set the length of the break frame.
		0:10 bit break detection
		1:11 bit break detection
		Note: LINBDL can be used to control the detection length of Break Characters in LIN
		mode and other modes, and the detection length is the same as that in LIN mode.
4	Reserved	Reserved, the reset value must be maintained
3:0	ADDR[3:0]	USART address.
		Used in the mute mode of multiprocessor communication, using address identification
		to wake up a USART device.


Bit field	Name	Description
		In address wake-up mode (USART_CTRL1.WUM=1), if the lower four bits of the
		received data frame are not equal to the ADDR[3:0] value, USART will enter the mute
		mode; If the lower four bits of the received data frame are equal to the ADDR[3:0]
		value, USART will be awakened.

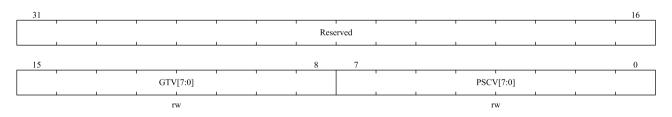
Note: These three bits (USART_CTRL2.CLKPOL, USART_CTRL2.CLKPHA, USART_CTRL2.LBCLK) cannot be overwritten after enabling transmission.

17.8.7 USART control register 3 register (USART_CTRL3)

Address offset : 0x14

Reset value : 0x0000 0000

Bit field	Name	Description						
31:11	Reserved	Reserved, the reset value must be maintained						
10	CTSIEN	CTS interrupt enable.						
		If this bit is set to 1, an interrupt will be generated when USART_STS.CTSF bit is set.						
		0:CTS interrupt is disabled.						
		1:CTS interrupt is enabled.						
9	CTSEN	CTS enable.						
		This bit is used to enable the CTS hardware flow control function.						
		0:CTS hardware flow control is disabled.						
		1:CTS hardware flow control is enabled.						
8	RTSEN	RTS enable.						
		This bit is used to enable RTS hardware flow control function.						
		0:RTS hardware flow control is disabled.						
		1:RTS hardware flow control is enabled.						
7	DMATXEN	DMA transmitter enable.						
		0:DMA transmission mode is disabled.						
		1:DMA transmission mode is enabled.						
6	DMARXEN	DMA receiver enable.						
		0:DMA receive mode is disabled.						
		1:DMA receive mode is enabled.						
5	SCMEN	Smartcard mode enable.						
		This bit is used to enable Smartcard mode.						
		0: Smartcard mode is disabled.						



Bit field	Name	Description
		1: Smartcard mode is enabled.
4	SCNACK	Smartcard NACK enable.
		This bit is used for Smartcard mode to enable transmitting NACK when parity error
		occurs.
		0: Do not send NACK when there is a parity error.
		1: send NACK when there is a parity error.
3	HDMEN	Half-duplex mode enable.
		This bit is used to enable half-duplex mode.
		0: Half-duplex mode is disabled.
		1: Half-duplex mode is enabled.
2	IRDALP	IrDA low-power mode.
		This bit is used to select the low power consumption mode for IrDA mode.
		0: Normal mode.
		1: Low power mode.
1	IRDAMEN	IrDA mode enable.
		0:IrDA is disabled.
		1:IrDA is enabled.
0	ERRIEN	Error interrupt enable.
		When DMA receive mode (USART_CTRL3.DMARXEN=1) is enabled, an interrupt
		will be generated when USART_STS.FEF, USART_STS. OREF or USART_STS. NEF
		bit is set.
		0: Error interrupt is disabled.
		1: Error interrupt enabled.

17.8.8 USART guard time and prescaler register (USART_GTP)

Address offset : 0x18

Reset value : 0x0000 0000

Bit field	Name	Description
31:16	Reserved	Reserved, the reset value must be maintained
15:8	GTV[7:0]	Guard time value in Smartcard mode.
		This bit field specifies the guard time in baud clock. In Smartcard mode, this function
		is required. The setting time of USART_STS.TXC flag is delayed by GTV[7:0] baud
		clock cycles.

Bit field	Name	Description
7:0	PSCV[7:0]	Prescaler value.
		In IrDA low power consumption mode:
		these bits are used to set the frequency division coefficient for dividing the peripheral
		clock (PCLK1/PCLK2) to generate low power consumption frequency.
		00000000: reserved-do not write this value.
		00000001: divide the source clock by 1.
		11111111: divide the source clock by 255.
		In IrDA normal mode:
		PSCV can only be set to 00000001.
		In Smartcard mode:
		PSCV[4:0] is used to set the frequency division of Smartcard clock generated by
		peripheral clock (PCLK1/ PCLK2).
		Coefficient. The actual frequency division coefficient of is twice the set value of
		PSCV[4:0].
		0000: reserved-do not write this value.
		0001: Divide the source clock by 2.
		0010: Divide the source clock by 4.
		1111: Divide the source clock by 62.
		In Smartcard mode, PSCV[7:5] is reserved.

18 Low power universal asynchronous receiver transmitter (LPUART)

18.1 Introduction

Low power universal asynchronous receiver transmitter (LPUART) is a low power, full duplex, asynchronous serial communication interface. The LPUART can be clock provided by HSI, HSE, LSI, LSE, SYSCLK and PCLK1. When 32.768khz LSE is selected as the clock source, the LPUART can work in STOP low-power mode with a maximum communications up to 9600bps. LPUART supports receiving data wake-up. By configuring wake-up events, the CPU in STOP2 mode can be woken up.

At the same time, when MCU works in RUN mode, LPUART can also be used as a common asynchronous serial port. Users can switch the clock source to HSI, HSE, SYSCLK and PCLK1 to obtain higher communication speed.

18.2 Main features

- Full duplex asynchronous communication
- Selectable clock source of HSI, HSE, LSI, LSE, SYSCLK, or PCLK1
- Fractional baud rate generator system: Programmable baud rate shared by sending and receiving up to 1Mbits/s, baud rates from 300bps to 9600bps when using 32.768 kHz clock source (LSE)
- Fixed 8-bit data word length, 1 stop bit and optional 1 parity bit
- Support DMA data transfer
- Support hardware flow control
- Transfer detection flag: Receive buffer full, Receive buffer half full, Receive buffer not empty, Receive buffer overrun, Transmission complete
- Parity control: Odd and even parity selection, Parity can be disable
- Error detection flag: Parity error, Overrun error, Noise error
- 32 byte receive buffer
- Baud rate error correction at low frequencies
- Configurable sampling method of 1 or 3 samples
- Noise detection
- Configurable flow control RTS threshold
- Support STOP mode Configurable source mode
 - Start bit detection
 - Receive buffer non-empty detection
 - A configurable receive byte
 - A programmable 4-byte frame

18.3 Functional block diagram

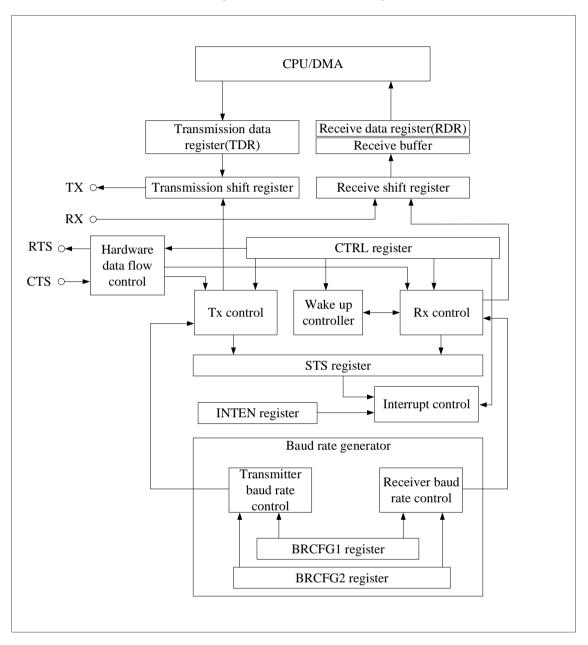


Figure 18-18-1 LPUART block diagram

18.4 Function description

As shown in Figure 18-18-1, LPUART bidirectional communication requires at least two pins: receiving data input (RX) and sending data output (TX).

RX: Serial data input. When the number of samples is 3, data and noise can be distinguished.

TX: Serial data output. When sending is enabled, the pin defaults to be high level.

Nations Technologies Inc. Tel: +86-755-86309900 Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

LPUART has the following characteristics:

- Idle status without sending or receiving
- A start bit
- A data word (8 bits) with the least significant bits first
- A stop bit, indicating the end of a data frame
- A status register (LPUART_STS)
- Data register (LPUART_DAT)
- Two baud rate configuration registers (LPUART_BRCFG1 and LPUART_BRCFG2) using fractional baud rate generators: 16-bit integer and 8-bit decimal representations
- The following pins are required in hardware flow control mode:
- **CTS (Clear To Send):** When transmitter detects that CTS is valid (low level), the next data is sent
- **RTS (Request To Send):** When receiver is ready to receive new data, pull the RTS pin low.

18.4.1 LPUART frame format

The LPUART data word length is fixed at 8 bits (see Figure 18-18-2). During the start bit, TX pin is at a low level and during the stop bit it is at a high level. The parity bit follows the data word when enabled.

Both sending and receiving are driven by two different baud clock generators. When the LPUART_CTRL.TXEN of transmitter is set, the corresponding baud clock generator generates baud clock. When the start bit is received, the receiver's corresponding baud clock generator generates the clock.

Figure 18-18-2 frame format

8-bit word length, 1 stop bit													
	G ()			Data f	rame				-	Possible parity bit			Next data frame
	Start bit	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7		Stop bit		bit
								N	lote:If the	ere is no	parity bi	t, the st	top bit is after bit 7

Note: in this chapter, unless special instruction, setting means that a register is set to state '1', and resetting or clearing means that a register is set to state '0'. Hardware or programs may set or clear a register. Please refer to this chapter for details.

18.4.2 Transmitter

When the Transmit Enable bit (LPUART_CTRL.TXEN) is set and there is data in the buffer, the transmitter sends 8-

bit data words. The data in the shift register is output on the TX pin.

18.4.2.1 Transmit process

During an LPUART transmission, the least significant bit of the data is shifted out on TX pin. In this mode, the LPUART_DAT register contains a buffer between the internal bus and the transmitter shift register (see Figure 18-18-1).

Each character is preceded by a low level starting bit; and is terminated by a stop bit.

Note: You cannot reset the LPUART_CTRL.TXEN bit during data transfer, otherwise the data on the TX pin will be corrupted because the baud rate counter stops counting. The current data being transferred will be lost.

The LPUART sends data as follows:

- 1. Configure baud rate, parity check, DMA, flow control, etc.
- 2. Set the LPUART_CTRL.TXEN bit to enable data transmission.
- 3. Write data to the LPUART_DAT register.
- 4. Check if the LPUART_STS.TXC flag is set, it means the transmission is over. If the flag is set, write 1 to the LPUART STS.TXC bit to clear the flag.
- 5. Check the LPUART_STS.PEF bit to confirm whether the parity is wrong.
- 6. Otherwise, go to Step 3 and send the next data.

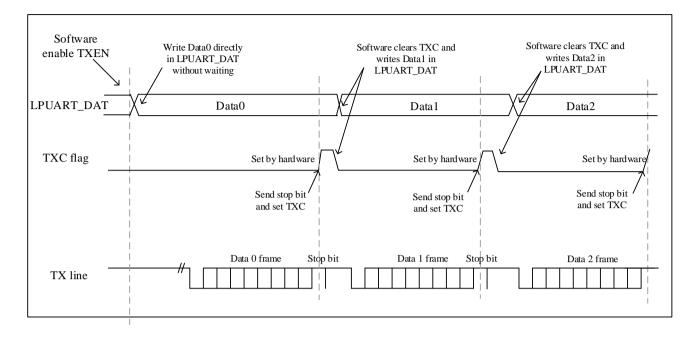
Note: Be sure to initialize the LPUART module before using the transmitter.

LPUART initialization as follows:

- 1. Set all flag bits in the LPUART_STS register to clear the interrupt flag.
- 2. To enable the interrupt function, configure LPUART_INTEN.
- 3. Set LPUART_CTRL.FLUSH clear the RX buffer.

When send data:

- After configuring the baud rate and setting LPUART_CTRL.TXEN, the CPU can write directly to the LPUART_DAT register to send data.
- When a frame transmission is completed (after the stop bit is sent), the LPUART_STS.TXC bit is set. If the LPUART_INTEN.TXCIEN bit is set, an interrupt occurs immediately.
- After the last data byte is written to the LPUART_DAT register, you must wait for LPUART_STS.TXC=1 before shutting down the LPUART module or setting the microcontroller into low-power mode.


18.4.2.2 Single byte communication

After configuring the baud rate and setting TXEN, the CPU can directly write the LPUART_DAT register to send data. When a frame transmission is completed (after the stop bit is sent), the TXC bit is set, and if the TXCIEN bit in the LPUART_INTEN register is set, an interrupt will be generated immediately. After writing the last data word in the LPUART_DAT register, you must wait for TXC=1 before turning off the LPUART module or setting the microcontroller into a low-power mode. The TXC bit can be cleared by writing the TXC bit 1 of the LPUART_STS

register by software.

Figure 18-18-3 TXC changes during transmission

18.4.3 Receiver

18.4.3.1 Start bit detection

If the LPUART_CTRL.SMPCNT bit is 0, that is, the number of samples is 3, when there are at least two 0s in the three sample numbers, the start bit is valid. Otherwise it will be invalid.

Sampling values	NF state	Received bit value	Start bit validity
000	0	0	effective
001	1	0	effective
010	1	0	effective
011	1	1	invalid
100	1	0	effective
101	1	1	invalid
110	1	1	invalid
111	0	1	invalid

18.4.3.2 Receive process

During LPUART reception, the least significant bits of data are first moved in from the RX pin. In this mode, the LPUART_DAT register contains a buffer between the internal APB bus and the receive shift register.

The steps for LPUART to receive data are as follows:

- 1. Configure baud rate, parity check, wake up event/enable, sampling mode, DMA, flow control, etc.
- 2. Check the interrupt flags of the LPUART_STS register: buffer is not empty, buffer is half full, buffer is full, buffer overrun;
- 3. Read the data by reading the LPUART_DAT register.
- 4. Return to Step 2 and continue receiving data.

Note: Please be sure to initialize the LPUART module before using the receiver.

When receiving a data frame:

- The LPUART_STS.FIFO_NE bit is set, and the contents of the shift Register are transferred to the RDR (Receiver Data Register). In other words, the data has been received and can be read (including its associated error flags).
- If the LPUART INTEN.FIFO NEIEN bit is set, an interrupt is generated.
- Frame errors (parity detection errors), noise or overrun errors are detected during reception, so the error flag will be set.
- In multi-buffer communication mode, the LPUART_STS.FIFO_NE flag bit is placed after each byte received and cleared by DMA's read operation on the data register.
- In single buffer mode, the software can clear LPUART_STS.FIFO_NE bits by reading the LPUART_DAT register or by writing 0.The LPUART_STS.FIFO_NE bit must be cleared before the end of the next frame of data reception to avoid overrun errors.

18.4.3.3 Overrun error

The LPUART receiving data buffer has a total of 32 bytes. The LPUART_STS.FIFO_FU flag will be set after receiving 32 bytes of data. When the buffer data is not read out and causes LPUART_STS.FIFO_FU to be not reset in time, if next character is received, an overrun error occurs. This character will be discarded by the hardware. Data can only be transferred from the shift register to the receiving data buffer if the LPUART_STS.FIFO_FU bit is cleared. If the next data has been received or the previous DMA request has not been served, the LPUART_STS.FIFO_FU flag is still set and an overrun error occurs.

When an overrun error occurs:

- The LPUART STS.FIFO OV bit is set.
- The receiving data buffer content will not be lost. Reading the LPUART_DAT register still returns the previous data.
- The contents of the shift register will be overwritten. Any subsequent data received will be lost.
- If the LPUART INTEN.FIFO OVIE bit is set, an interrupt is generated.
- LPUART DAT register read operation, reset LPUART STS.FIFO OV.

18.4.3.4 Noise error

Noise errors use an over-sampling technique (if the LPUART_CTRL.SMPCNT bit is 0, that is, the number of samples is 3) to recover data by distinguishing valid input data from noise.

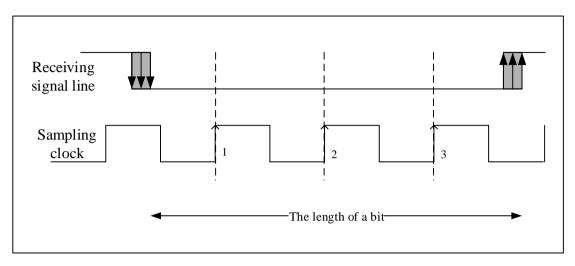


Figure 18-18-4 Data sampling for noise detection

Table 18-18-1 Data sampling for noise detection

Sampling values	NF state	Received bit value
000	0	0
001	1	0
010	1	0
011	1	1
100	1	0
101	1	1
110	1	1
111	0	1

When noise is detected in a receiving frame, you can do the following:

- If three sample values are inconsistent, set the LPUART_STS.NF flag immediately.
- The received data is transferred from the shift register to the buffer.
- Software write 1 clears the LPUART_STS.NF flag bit.

18.4.4 Fractional baud rate generation

Baud rate frequency division coefficient is divided into 16-bit integer part and 8-bit decimal part. The baud rate generator uses the value of the combination of these two parts to determine the baud rate. The fractional baud rate divider will enable the LPUART to generate all standard baud rates.

Baud rate frequency division coefficient (LPUARTDIV) has the following relationship with system clock (PCLK) :

TX/RX baud rate = f_{CLK} /(LPUARTDIV)

Here the f_{CLK} is the clock for LPUART (the clock source of LPUART can be HSI, HSE, LSI, LSE, SYSCLK, or PCLK1). The value of LPUARTDIV is set in the baud rate configuration registers LPUART_BRCFG1 and LPUART_BRCFG2

Note: After writing LPART_BRCFG1 and LPUART_BRCFG2, the baud rate counter is replaced with the new value of the baud rate register. Therefore, do not change the value of the baud rate register during communication.

18.4.4.1 Configure baud rates through LPUART_BRCFG1 and LPUART_BRRCFG2

For example, baud rate = 4800 bps, clock frequency = 32768 Hz.

 $LPUARTDIV = 32768/4800 = 6.82667.LPUART_BRCFG1 = 6$ and the value of $LPUART_BRCFG2$ is calculated by adding fractions in the table below (the value of $LPUART_BRCFG2$ is 0xEFh).

Decimal addition	Carry to the next integer	Bit field	Value
0.82667 + 0.82667 = 1.65333	YES	DECIMAL0	1
1.65333 + 0.82667 = 2.48000	YES	DECIMAL1	1
2.48000 + 0.82667 = 3.30667	YES	DECIMAL2	1
3.30667 + 0.82667 = 4.13333	YES	DECIMAL3	1
4.13333 + 0.82667 = 4.96000	NO	DECIMAL4	0
4.96000 + 0.82667 = 5.78667	YES	DECIMAL5	1
5.78667 + 0.82667 = 6.61333	YES	DECIMAL6	1
6.61333 + 0.82667 = 7.44000	YES	DECIMAL7	1

When LSE clock (32.768KHz) is used, the values of baud rate configuration registers LPUART_BRCFG1 and LPUART_BRCFG2 with different baud rate Settings are as follows:

Baud rate	Divisor	LPUART_BRCFG1	LPUART_BRCFG2
300	109.2267	6Dh	88h
600	54.6133	36h	ADh
1200	27.3067	1Bh	24h
2400	13.6533	0Dh	6Dh
4800	6.8267	06h	EFh

9600	3.4133	03h	4Ah

Note: The lower the clock frequency of the CPU, the lower the accuracy of a particular baud rate.

18.4.5 Parity control

Reset the LPUART_CTRL.PCDIS bit, enable parity control (generate a parity bit when sending, parity check when receiving), set or reset the LPUART_CTRL.PSEL bit selection to use odd or even check. LPUART frame formats are listed in the table below.

PCDIS bit	LPUART frame	
0	Start bit 8-bit data parity bit stop bit	
1	Start bit 8 bits data stop bit	

Transfer mode: Parity is enabled by resetting the LPUART_CTRL.PCDIS bit. If parity fails, the LPUART_STS.PEF flag is set to '1', and an interrupt occurs if LPUART_INTEN.PEIE is set.

Odd parity: LPUART_CTRL.PSEL=1.

Make the number of '1' in one frame data (including parity bit) be an odd number. That is: if Data=11000101, there are 4 '1's, then the parity bit will be '1' (5 '1' in total).

Even parity: LPUART_CTRL.PSEL=0.

Make the number of '1' in one frame data (including parity bit) be an even number. That is: if Data=11000101, there are 4 '1's, then the parity bit will be '0' (4 '1' in total).

18.4.6 DMA application

LPUART can access the transmit data register (TDR) and receive buffer respectively through DMA.

18.4.6.1 DMA transmission

The steps for assigning a DMA channel to the LPUART transmissions are as follows (x indicates the channel number) :

- 1. Configure the LPUART_DAT register address as the destination address for DMA transfer, and the memory address as the source address for DMA transfer.
- 2. Set the total number of bytes to be transmitted.
- 3. Set the channel priority.
- 4. Configure to generate DMA interrupts when the transfer is half or all complete.
- 5. Activate the channel.

Completing a DMA transfer will generate an interrupt on the corresponding DMA channel. In transmission mode, when the DMA has finished the data transfer, the DMA controller sets the DMA_INTSTS.TXCFx flag. The

LPUART_STS.TXC flag bit is asserted by the hardware to indicate that the transfer is completed. The software needs wait for LPUART_STS.TXC=1.

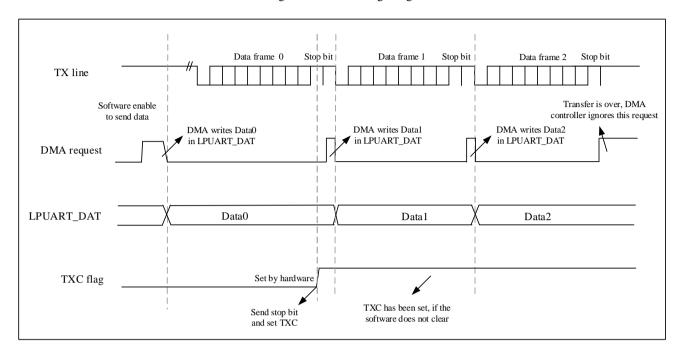
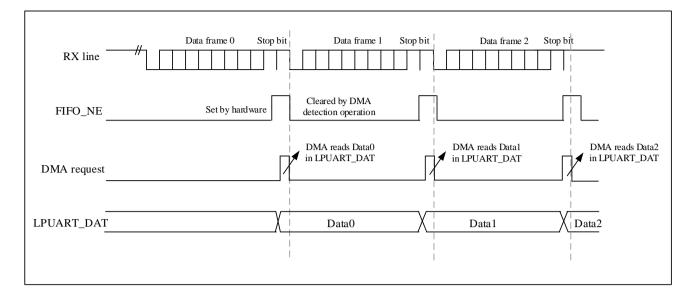


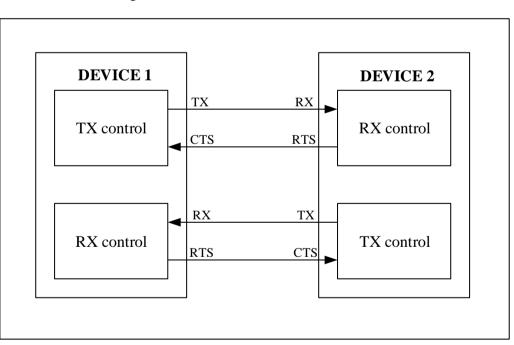
Figure 18-18-5 Sending using DMA

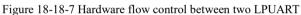
18.4.6.2 DMA reception


The steps for assigning a DMA channel to the LPUART receiving are as follows (x indicates the channel number) :

- 1. Configure the LPUART_DAT register address as the source address for transmission and the memory address as the destination address for transmission through the DMA configuration register.
- 2. Configure the number of DMA bytes to be transferred.
- 3. Configure the channel priority on the DMA register for data transfer.
- 4. Configure interrupts to generate DMA interrupts when the transfer is half or all complete.
- 5. Activate the channel.

When completing the transfer specified by the DMA controller, the DMA controller generates an interrupt on the DMA channel's interrupt vector.




Figure 18-18-6 Receiving with DMA

18.4.7 Hardware flow control

Hardware flow control functions through CTS input and RTS output. The following figure shows how two devices are connected in this mode.

RTS and CTS flow control can be independently enabled by setting LPUART_CTRL.RTSEN and LPUART_CTRL.CTSEN.

18.4.7.1 RTS flow control

If RTS flow control is enabled (LPUART_CTRL.RTSEN=1), the RTS will be driven high (active) when the RTS threshold condition is achieved, otherwise it will be driven low.How is the RTS valid can be selected by the LPUART_CTRL.RTS_THSEL[1:0] bits. The RTS threshold can be selected to be effective when the FIFO is half full, 3/4 full, or full. Below is an example of communication with RTS flow control enabled.

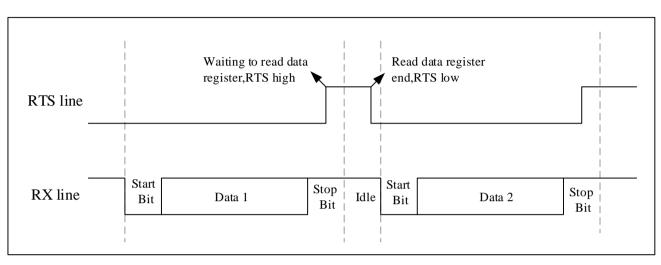
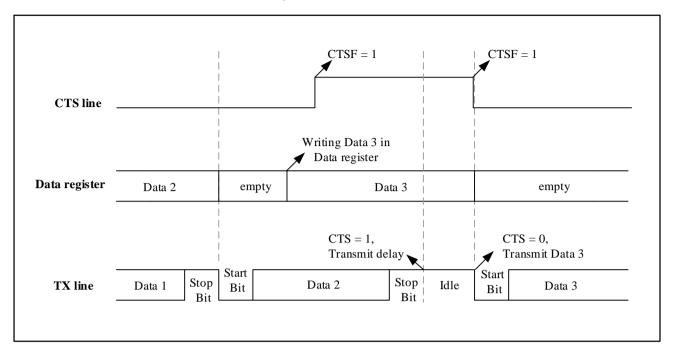



Figure 18-8 RTS flow control


18.4.7.2 CTS flow control

If CTS flow control is enabled (LPUART_CTRL.CTSEN=1), the sender will check the CTS pin to decide whether or not send data before sending the next frame. If the CTS is pulled low (valid), the sender sends data (assuming that data is ready to be sent). If the CTS is pulled up during transmission, the transmission of the current data frame is stopped after transmission.

If CTS flow control is enabled (LPUART_CTRL.CTSEN=1), the signal of CTS pin will be changed. See Figure 18-18-9 for enabling CTS flow control.

18.4.8 Low power wake up

LPUART can work in STOP mode, if the LPUART_CTRL.WUSTP is set, it can wake up the system on EXTI line 22 when a specific waking up event occurs.

The LPUART waking up event can be handled in the following ways (through the LPUART_CTRL.WUSEL[1:0]) :

- A waking up event is generated when a start bit is detected
- A waking up event is generated when the receive buffer non-empty flag is set
- A waking up event is generated when data is received and the first byte matches LPUART WUDAT[7:0]
- A waking up event is generated when data is received and four bytes match LPUART_WUDAT[31:0]

When waking up event occurs, the LPUART_STS.WUF bit will be set.

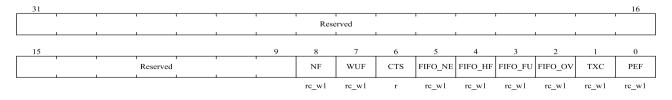
18.5 Interrupt request

Interrupt function	Interrupt event	Event flag	Enable bit
	Parity check error	PEF	PEIE
	TX complete	TXC	TXCIE
LPUART global interrupt	Receive buffer overrun	FIFO_OV	FIFO_OVIE
	Receive buffer full	FIFO_FU	FIFO_FUIE

Receive buffer half full	FIFO_HF	FIFO_HFIE
Receive buffer not empty	FIFO_NE	FIFO_NEIE
Wake up in STOP mode	WUF	WUFIE

LPUART interrupt events are logical OR. If the corresponding enable control bit is set, these events can generate their own interrupt, but only one interrupt request can be generated at the same time.

18.6 LPUART registers

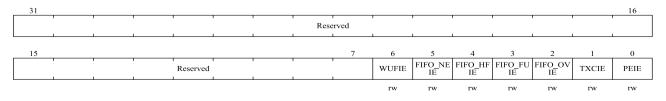

18.6.1 LPUART register overview

Offset	Register	31	20	R I	67.	28	27	26	25	24	23	6	77.	21	20	19	18	1	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
000h	LPUART_STS													Re	serv	ed												NF	WUF	CTS	FIFO_NE	FIFO_HF	FIFO_FU	FIFO_OV	TXC	PEF
	Reset Value																											0	0	0	0	0	0	0	0	0
004h	LPUART_INTEN														R	eser	ved													WUFIE	FIFO_NEIE	FIFO_HFIE	FIFO_FUIE	FIFO_OVIE	TXCIE	PEIE
	Reset Value																					-				-				0	0	0	0	0	0	0
008h	LPUART_CTRL									Re	serv	red										SMPCNT		SEL :0]	RTSEN	CTSEN	RTS_THS	EL [1:0]	WUSTP	DMA_RXEN	DMA_TXEN	LOOPBACK	PCDIS	FLUSH	TXEN	PSEL
	Reset Value																					0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
00Ch	LPUART_BRCFG1									Rese	rved																IN	TEGI	ER[15	:0]						
	Reset Value																				0	0	0	0	0	0	0	1	0	1	1	1	0	1	0	0
010h	LPUART_DAT														Rese	erve	d															DAT	[7:0]			
	Reset Value																												0	0	0	0	0	0	0	0
014h	LPUART_BRCFG2														Rese	erve	d														DI	ECIM	AL[7	:0]		
	Reset Value																												0	0	0	0	0	0	0	0
018h	LPUART_WUDAT																		W	JDA	T[31:	0]														
	Reset Value	0	0)	0	0	0	0	0	0	0	(0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 18-18-4 LPUART register overview

18.6.2 LPUART status register (LPUART_STS)

Address offset: 0x00



Bit field	Name	Description
31:9	Reserved	Reserved, the reset value must be maintained.
8	NF	Noise detected flag.
		When noise is detected in the received frame, this bit is set by hardware. This bit is
		cleared by the software.
		0: No noise is detected.
		1: Noise is detected.
7	WUF	Wakeup from STOP mode Flag.
		0: No wake up event is detected.
		1: A wake up event is detected.
6	CTS	CTS signal (hardware flow control) flag.
		Once the sender requests to send data, it is ready to receive it.
		0: CTS line is reset.
		1: CTS line is set.
5	FIFO_NE	FIFO non-empty flag.
		0: Buffer is empty.
		1: Buffer is not empty.RX data is ready to be read
4	FIFO_HF	FIFO half full flag.
		0: Buffer is not half full.
		1: Buffer is half full.RX data should be read before the buffer is full
3	FIFO_FU	FIFO full flag.
		0: Buffer is not full.
		1: Buffers is full.RX data should be read out in preparation for receiving new data
2	FIFO_OV	FIFO overrun flag.
		0: Buffer did not overrun
		1: Buffer overrun.
1	TXC	TX complete flag.
		0: TX is disabled or not complete.
		1: TX transmission is complete.
0	PEF	Parity check error flag.
		0: No parity error detected.
		1: Parity error detected

18.6.3 LPUART interrupt enable register (LPUART_INTEN)

Address offset: 0x04

Bit field	Name	Description
31:7	Reserved	Reserved, the reset value must be maintained.
6	WUFIE	Wake up interrupt enable
		0: Disable wake up interrupt
		1: Enable wake up interrupt
5	FIFO_NEIE	Receive buffer not empty interrupt enable
		0: Disable buffer non-empty interrupt
		1: Enable buffer non-empty interrupt
4	FOFO_HFIE	Receive buffer half-full interrupt enable
		0: Disables buffer half-full interrupt
		1: Enables buffer half-full interrupt
3	FOFO_FUIE	Receive buffer full interrupt enable
		0: Disables buffer full interrupt
		1: Enable buffer full interrupt
2	FIFO_OVIE	Receive buffer overrun interrupt enable
		0: Disables buffer overrun interrupt
		1: Enable buffer overrun interrupt
1	TXCIE	TX complete interrupt enable
		0: Disable TX complete interrupt
		1: Enable TX complete interrupt
0	PEIE	Parity check error interrupt enable
		0: Disable parity error interrupt
		1: Enable parity error interrupt

18.6.4 LPUART control register (LPUART_CTRL)

Address offset: 0x08

	, ,														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	SMPCNT	WUSE	EL[1:0]	RTSEN	CTSEN	RTS_TH	SEL[1:0]	WUSTP	DMA RXEN	DMA TXEN	LOOP BACK	PCDIS	FLUSH	TXEN	PSEL
	rw	rv	w	rw	rw	r	w	rw	rw	rw	rw	rw	rw	rw	rw

Bit field	Name	Description
31:15	Reserved	Reserved, the reset value must be maintained.
14	SMPCNT	Specify sampling method
		0: 3 sample bits, noise detection is allowed (LPUARTDIV should be large
		enough, such as greater than 10)
		1: 1 sample bits, closed noise detection
13:12	WUSEL[1:0]	Wake up event selection.

Bit field	Name	Description
		00: Start bit detection
		01: Non-empty detection of receive buffer
		10: A configurable receive byte
		11: A programmable 4-byte frame
11	RTSEN	RTS hardware flow control enable
		0: Disables RTS hardware flow control
		1: Enables RTS hardware flow control
10	CTSEN	CTS hardware flow control enable
		0: Disables CTS hardware flow control
		1: Enables CTS hardware flow control
9:8	RTS_THSEL[1:0]	RTS threshold selection
		00: When FIFO is half full, RTS is effective (pull up)
		x1: When FIFO is 3/4 full, RTS effective (pull up)
		10: When FIFO is full, RTS effective (pull up)
7	WUSTP	LPUART STOP mode wakeup enabled
		0: Cannot wake up STOP mode
		1: Can wake up the STOP mode
6	DMA_RXEN	DMA RX request enable
5	DMA_TXEN	DMA TX request enable
4	LOOKBACK	Loopback self-test
		0: Normal mode
		1: Loopback self-test mode
3	PCDIS	Parity control
		0: Enables parity bit
		1: Disables parity bit
2	FLUSH	Clear receive buffer
		0: Disables buffer clear
		1: Clear buffer content
1	TXEN	TX enable
		0: Disables TX
		1: Enables TX
0	PSEL	Odd parity enable
		0: Even parity
		1: Odd parity

18.6.5 LPUART baud rate configuration register 1 (LPUART_BRCFG1)

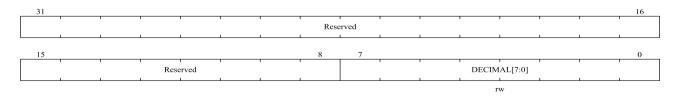
Address offset: 0x0C

31													16
	I	I	I	I		Rese	erved		I	I	I	I	
	1	1	1	1	I	1	1		1	1	I	1	
15									 -				0
		1	1		1	INTEGI	ER[15:0]	1			1		
					•	r	w						

Bit field Name Description 31:16 Reserved Reserved, the reset value must be maintained. 15:0 INTEGER[15:0] Baud rate configuration register 1. The calculation of baud rate configuration register 1 is as follows: If the baud rate is 9600bps and the clock frequency is 32768Hz. LPUARTDIV = 32768/9600 = 3.4133 In this case, the integer part of the LPUARTDIV is 3 and the decimal part is 0.4133.LPUART BRCFG1 = 3.LPUART BRCFG2 will be used for baud rate error correction.For the 3-bit sampling method with noise detection characteristics, LPUARTDIV is not large enough at this time, so 1-bit sampling method should be adopted to avoid sampling error.

18.6.6 LPUART data register (LPUART_DAT)

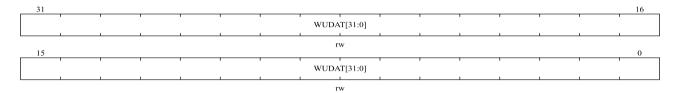
Address offset: 0x10


Reset value: 0x0000 0000

Bit field	Name	Description
31:8	Reserved	Reserved, the reset value must be maintained.
7:0	DAT[7:0]	Write to the data register when sending
		Read the data register when receiving

18.6.7 LPUART baud rate configuration register 2 (LPUART_BRCFG2)

Address offset: 0x14



Bit field	Name	Description
31:8	Reserved	Reserved, the reset value must be maintained.
7:0	DECIMAL[7:0]	Baud rate configuration register 2 is used for baud rate error correction at low
		frequencies.For example,
		If the baud rate is 4800bps and the clock frequency is 32768Hz.
		LPUARTDIV = 32768/4800 = 6.8266
		LPUART_BRCFG1 = 6.In this case, to correct the baud rate error, you should
		configure register 2 with baud rate. For details on how to configure register 2, refer
		to the section "Fractional baud rate generation".

18.6.8 LPUART wake up data register (LPUART_WUDAT)

Address offset: 0x18

Bit field	Name	Description	
31:0	WUDAT[31:0]	When LPUART_CTRL.WUSEL[1:0] = 1x, WUDAT[31:0] is used to check	
		whether the conditions for wake up from STOP mode is matched (byte match or	
		frame match):	
		LPUART_CTRL.WUSEL[1:0] = 10 is used to wake up byte matching. In this case,	
		the first byte is valid	
		LPUART_CTRL.WUSEL[1:0] = 11 is used to wake up frame matching. In this	
		case, all 4 bytes are valid	

19 Serial peripheral interface/Inter-IC Sound (SPI/ I2S)

19.1 Introduction

This module is about SPI/I2S. It works in SPI mode by default and users can choose to use I2S by setting the value of registers.

Serial peripheral interface (SPI) is able to work in master or slave mode, support full-duplex and simplex high-speed communication mode, and have hardware CRC calculation and configurable multi-master mode.

On-chip audio interface (I2S) is able to work in master and slave modes in simplex communication, and supports four audio standards: Philips I2S standard, MSB alignment standard, LSB alignment standard and PCM standard.

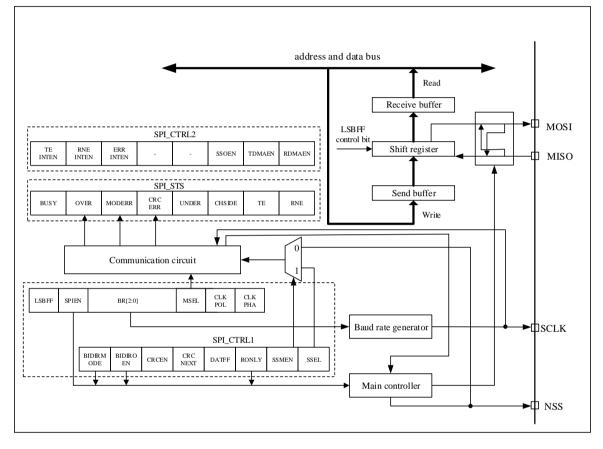
19.2 SPI and I2S main features

19.2.1 SPI features

- Full duplex mode and simplex synchronous mode.
- Support master mode, slave mode and multi-master mode.
- Supports 8-bit or 16-bit data frame format.
- Data bit sequence programmable.
- NSS management by hardware or software.
- Clock polarity and phase programmable.
- Sending and receiving support hardware CRC calculation and check.
- Supports DMA.

19.2.2 I2S features

- Simplex synchronous mode.
- Supports master mode and slave mode operation.
- Four audio standards are supported: Philips I²S standard, MSB alignment standard, LSB alignment standard and PCM standard.
- The audio sampling frequency from 8kHz to 96kHz can be configured.
- Supports 16-bit, 24-bit or 32-bit data length and data frame format (configured according to requirements).
- Steady state clock polarity programmable.
- The data direction is always MSB first.
- Supports DMA.



19.3 SPI function description

19.3.1 General description

SPI block diagram.

Figure 19-19-1 SPI block diagram

A total of 4 pins of SPI are connected to external devices::

- SCLK: serial clock pin. Serial clock signal is output from the SCLK pin of master device and input to SCLK pin of slave device.
- MISO: master input/slave output pin. Data is received from the MISO pin of master device and send by the MISO pin of slave device.
- MOSI: master output/slave input pin. Data is send by the MOSI pin of master device and received from the MOSI pin of slave device.
- NSS: chip select pin. There are two types of NSS pin, internal pin and external pin. If the internal pin detects a high level, SPI works in the master mode. Conversely, SPI works in the slave mode. Users can use a standard I/O pin of the master device to control the NSS pin of the slave device.

Software NSS mode

SSMEN=1 in the SPI_CTRL1 register enables software slave management (see Figure 192).

In this mode, the NSS pin is not used, and the internal NSS signal level is driven by writing the SSEL bit of SPI CTRL1 (master mode SSEL=1, slave mode SSEL=0).

Hardware NSS mode

SSMEN=0 in SPI CTRL1 register disables software slave management.

Input mode: configured as master mode, NSS output disabled (MSEL=1, SSOEN=0), allowing operation in multimaster mode. The master device (slave device) should connect the NSS pin to a high level (low level) during the entire data frame transmission.

Output mode: configured as master mode, NSS output enable (MSEL=1, SSOEN=1), SPI as the master device must pull NSS low, all SPI devices that are set to NSS hardware mode and connected to it will detect Low level, automatically enter the slave state. If the master device cannot pull down NSS, it will enter the slave mode and generate a master mode failure error MODERR bit '1'.

Note: The choice of software mode or hardware mode depends on whether NSS control is required in the communication protocol. If not needed, you can select the software mode to release a GPIO pin for other uses.

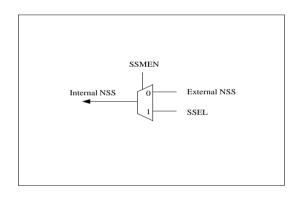
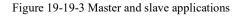
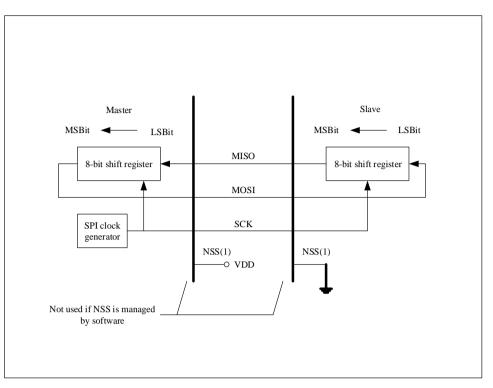




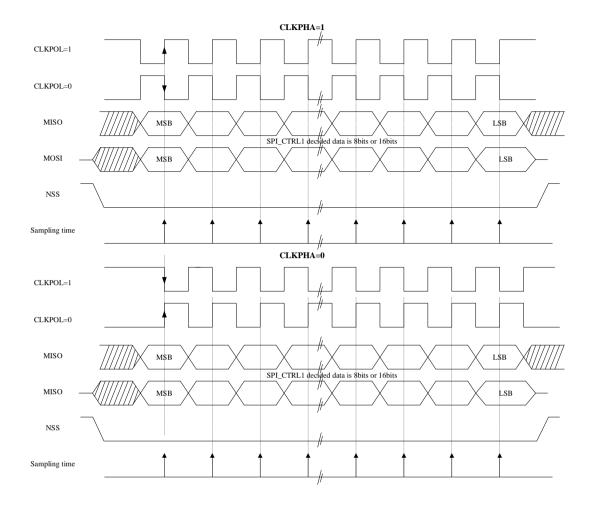
Figure 19-19-2 Selective management of hardware/software

The following figure is an example of the interconnection of single master and single slave devices.

Note: NSS pin is set as input

SPI is a ring bus structure. The master device outputs a synchronous clock signal through the SCLK pin, and the MOSI and MISO pins are connected accordingly. Data is transmitted serially between the master and the slave, and the data is sent to the slave device through the MOSI pin with the lowest bit. At the same time, the highest bit of the slave device is transmitted to the lowest bit of the master device through the MISO pin. When the second bit of data is sent, The data in the lowest bit will be shifted one bit to the left and the new data will be stored in the lowest bit.

SPI timing mode


The combination of CLKPOL clock polarity and CLKPHA clock phase selects the clock edge for data capture. Configuring the CLKPOL and CLKPHA bits of the SPI CTRL1 register has the following four timing relationships.

- CLKPOL=0, CLKPHA=0: The SCLK pin remains low in the idle state, and the data is sampled on the first edge, that is, the rising edge;
- CLKPOL=0, CLKPHA=1: The SCLK pin remains low in the idle state, and the data is sampled on the second edge, that is, the falling edge;
- CLKPOL=1, CLKPHA=0: The SCLK pin remains high in the idle state, and the data is sampled on the first edge, that is, the falling edge;
- CLKPOL=1, CLKPHA=1: The SCLK pin remains at a high level in the idle state, and the data is sampled on the second edge, that is, the rising edge.

Figure 19-19-4 is when the SPI_CTRL1 register LSBFF=0, the four CLKPHA and CLKPOL bit combination timings for SPI transmission..

Figure 19-19-4 Data clock timing diagram

Data format

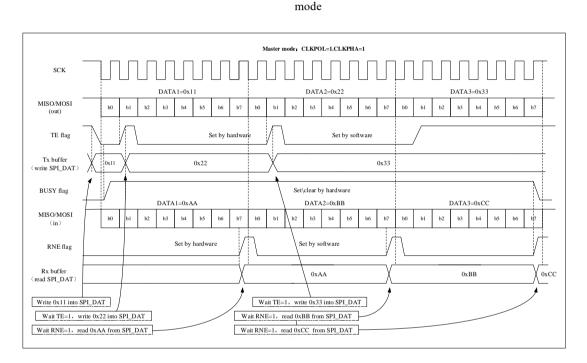
User can selects the data order by setting the SPI_CTRL1.LSBFF bit. When SPI_CTRL1.LSBFF = 0, SPI will send the high-order data (MSB) first; When SPI_CTRL1.LSBFF = 1, SPI will send low-order data (LSB) first.

User can selects the data frame by setting the SPI_CTRL1.DATFF bit.

19.3.2 SPI work mode

Master full duplex mode (MSEL=1, BIDIRMODE=0, RONLY=0)

The transfer process starts after data is written to the register SPI_DAT (transmit buffer). While sending the first bit of data, the data is transferred from the send buffer to the 8-bit shift register in parallel, and the SPI shifts the data serially to the MOSI pin in sequence according to the configuration of LSBFF; at the same time, in The data received on the MISO pin is serially shifted into the 8-bit shift register in the same order, and then transferred to the SPI_DAT register (receive buffer) in parallel. The software operation process is as follows (see Figure 19-5, the schematic diagram of TE/RNE/BUSY changes during continuous transmission in 5 host full-duplex mode):


1. Set SPI_CTRL1.SPIEN = 1, Enable SPI module.

- 2. Write the first data to be sent to the SPI_DAT register (this operation will clear SPI_STS.TE bit).
- 3. Wait for SPI_STS.TE bit to be set to '1', and write the second data to be sent into SPI_DAT. Wait for SPI_STS.RNE bit to be set to '1', read SPI_DAT to get the first received data, and the SPI_STS.RNE bit will be cleared by hardware while reading SPI_DAT. Repeat the above operation, sending subsequent data and receiving n-1 data at the same time;
- 4. Wait for SPI_STS.RNE bit to be set to '1' to receive the last data;
- 5. Wait for SPI_STS.TE to be set to '1', then wait for SPI_STS.BUSY bit to be cleared and turn off SPI module.

The process of data sending and receiving can also be realized in the interrupt handler generated by the rising edge of RNE or TE flag.

Figure 19-19-5 Schematic diagram of the change of TE/RNE/BUSY when the host is continuously transmitting in full duplex

Master one-way send-only mode (MSEL=1, BIDIRMODE=0, RONLY=0)

The transmission principle of the one-way send-only mode is the same as that of the full-duplex mode. The difference is that this mode will not read the received data, so the OVER bit in the SPI_STS register will be set to '1', and the software does not need to care about it. The software operation process is as follows (see Figure 19-6, the schematic diagram of TE/BUSY changes when the host transmits continuously in one-way only mode):

- 1. Enable SPI module, set SPIEN = 1.
- 2. Write the first data to be sent into SPI_DAT register (this operation will clear TE bit).
- 3. Wait for TE bit to be set to '1', and write the second data to be sent into SPI_DAT. Repeat this operation to send subsequent data;
- 4. After writing the last data to SPI_DAT, wait for SPI_STS.TE bit to set '1'; then wait for SPI_STS.BUSY bit to be cleared to complete the transmission of all data.

376 / 447

The process of data sending can also be implemented in the interrupt handler generated by the rising edge of the TE flag.

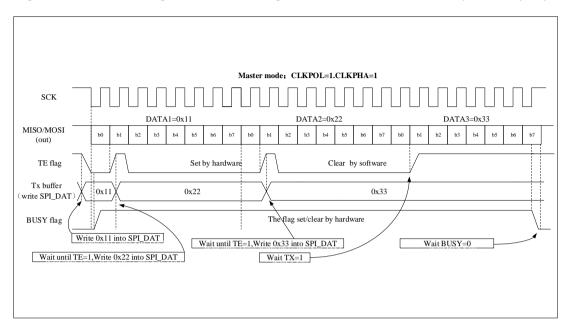
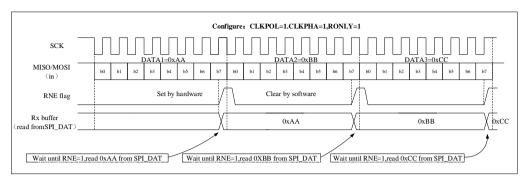


Figure 19-19-6 Schematic diagram of TE/BUSY change when the host transmits continuously in one-way only mode

Master one-way receive-only mode (MSEL=1, BIDIRMODE=0, RONLY=1)

When SPIEN=1, the receiving process starts. The data received on the MISO pin is serially shifted into the 8-bit shift register in sequence, and then transferred to the SPI_DAT register (receive buffer) in parallel. The software operation process is as follows (see Figure 19-7, the schematic diagram of RNE changes during continuous transmission in only receive mode (BIDIRMODE=0 and RONLY=1)):


- 1. Enable the receive-only mode (RONLY = 1).
- 2. Enable SPI module, set SPIEN = 1: in master mode, SCLK clock signal is generated immediately, and serial data is continuously received before SPI is turned off (SPIEN = 0); in slave mode, serial data is continuously received when the SPI master device pulls low the NSS signal and generates SCLK clock.
- 3. Wait for RNE bit to be set to '1', read the SPI_DAT register to get the received data, and the RNE bit will be cleared by hardware while reading SPI_DAT register. Repeat this operation to receive all data.

The process of data receiving can also be implemented in the interrupt handler generated by the rising edge of the RNE flag.

Figure 19-19-7 Schematic diagram of RNE change when continuous transmission occurs in receive-only mode (BIDIRMODE =

0 and RONLY = 1)

Master bidirectional send mode (MSEL=1, BIDIRMODE=1, BIDIROEN=1, RONLY=0)

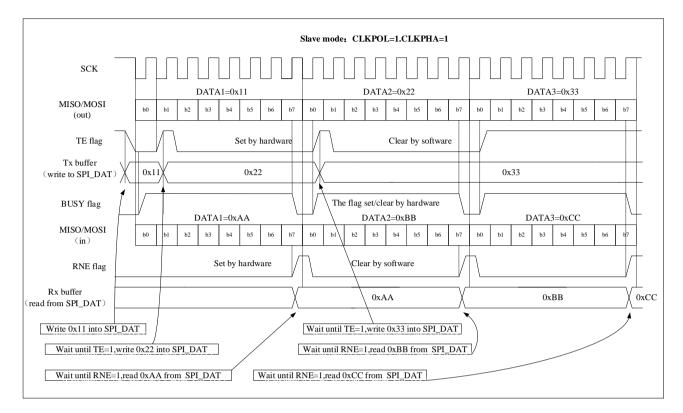
After data is written to register SPI_DAT (transmit buffer), the transmission process starts. This mode does not receive data. While sending the first bit of data, the data is transferred from the send buffer to the 8-bit shift register in parallel, and the SPI shifts the data to the MOSI transistor in sequence according to the configuration of LSBFF. on feet.

The software operation flow of the master bidirectional send mode is the same as that of the send-only mode.

Master bidirectional receive mode (MSEL=1, BIDIRMODE=1, BIDIROEN=0, RONLY=0)

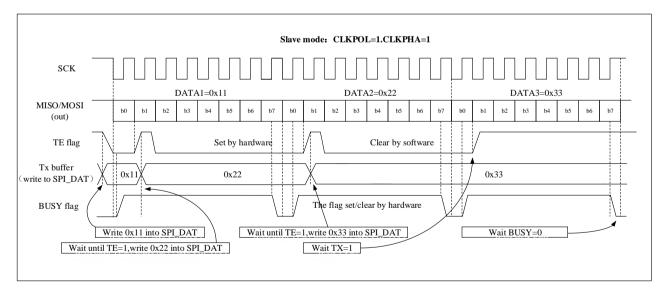
When SPIEN=1, BIDIROEN=0, the receiving process starts. In this mode, the MISO pin has no data output, and the received data is serially shifted into the 8-bit shift register in sequence, and then transferred to the SPI_DAT register (receive buffer) in parallel.

The software operation process of the host two-way receiving mode is the same as the receiving-only mode.


Slave full duplex mode (MSEL=0, BIDIRMODE=0并且RONLY=0)

The transmission process begins when the slave device receives the first edge of the clock signal. The software must ensure that the data to be sent has been written in the register SPI_DAT before the SPI master device starts the data transfer.

Figure 19-19-8 Schematic diagram of the change of TE/RNE/BUSY when the slave is continuously transmitting in full duplex


mode

Slave one-way send-only mode (MSEL=0, BIDIRMODE=0并且RONLY=0)

Figure 19-19-9 Schematic diagram of TE/BUSY change during continuous transmission in slave unidirectional transmit-only

mode

Slave receive-only mode (MSEL=0, BIDIRMODE=0并且RONLY=1)

The data reception process begins when the slave device receives the clock signal and the first data bit appears on its MOSI. The received data is sequentially shifted into the 8-bit shift register, and then transferred to the SPI_DAT register (receive buffer) in parallel.

Slave bidirectional send mode (MSEL=0, BIDIRMODE=1并且BIDIROEN=1)

The transmission process begins when the slave device receives the first edge of the clock signal. Data is not received in this mode, and the software must ensure that the data to be sent has been written into the register SPI_DAT before the SPI master device starts data transmission.

Slave bidirectional receive mode (MSEL=0, BIDIRMODE=1并且BIDIROEN=0)

Data transfer begins when the slave device receives the clock signal and the first data bit is present on its MOSI. There is no data output in this mode, and the received data is sequentially shifted into the 8-bit shift register, and then transferred to the SPI_DAT register (receive buffer) in parallel.

Note: The software operation process of the slave can refer to the master.

SPI initialization process

- 1. The baud rate of serial clock is defined by the SPI_CTRL1.BR[2:0] bits (this step is ignored if it is working in slave mode).
- 2. Select CLKPOL bit and CLKPHA bit to define the phase relationship between data transmission and serial clock (see Figure 19-19-4).
- 3. Set DATFF bit to define 8-bit or 16-bit data frame format.
- 4. Configure the SPI_CTRL1.LSBFF bit to define the frame format.
- 5. Configure the NSS mode as described above for the NSS function.
- 6. Run mode is configured by MSEL bit, BIDIRMODE bit, BIDIROEN bit and RONLY bit.
- 7. Set the SPIEN = 1 to enable SPI.

Basic send and receive process

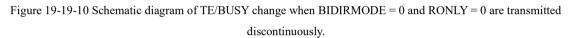
When SPI sends a data frame, it first loads the data frame from the data buffer into the shift register, and then starts to send the loaded data. When the data is transferred from the send buffer to the shift register, the send buffer empty flag is set (SPI_STS.TE = 1), and the next data can be loaded into the send buffer; if the TEINTEN bit is set (SPI_CTRL2.TEINTEN = 1), an interrupt will be generated; writing data to the SPI_DAT register will clear the SPI_STS.TE bit.

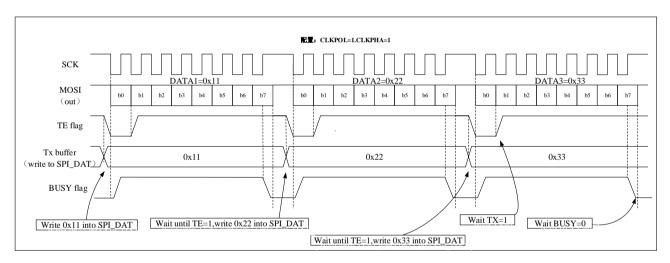
At the last edge of the sampling clock, when the data is transferred from the shift register to the receive buffer, the receive buffer non-empty flag is set (SPI_STS.RNE = 1), at this time the data is ready and can be read from the SPI_DAT register; if the receive buffer non-empty interrupt is enabled (SPI_CTRL2.RNEINTEN = 1), an interrupt will be generated; the SPI_STS.RNE bit can be cleared by reading the SPI_DAT register data.

In master mode, the sending process starts when data is written to the send buffer. If the next data has been written into the SPI_DAT register before the current data frame sending is completed, the continuous sending function can be achieved.

In slave mode, the NSS pin is low, and when the first clock edge arrives, the transmission process begins. In order to avoid accidental data transmission, software must write data to the transmit buffer before data transmission (it is recommended to enable the SPI module before the host sends the clock).

In some configurations, when the last data is sent, the BUSY flag (SPI_STS.BUSY) can be used to wait for the end of the data sending.


Continuous and discontinuous transmission


When sending data in master mode, if the software is fast enough to detect each TE (TE) rising edge (or TE interrupt), and the data is written to the SPI_DAT register immediately before the end of the ongoing transmission. At this time, the SPI clock remains continuous between the transmission of data items, and the BUSY bit will not be cleared, continuous communication can be achieved.

If the software is not fast enough, it will result in discontinuous communication; in this case, the SPI_STS.BUSY bit is cleared between the transmission of each data items (see figure below).

In master receive-only mode (RONLY = 1), communication is always continuous and the BUSY flag (BUSY) is always high.

In slave mode, the continuity of communication is determined by the SPI master device. However, even if the communication is continuous, the BUSY flag (BUSY) will be low for at least one SPI clock cycle between each data item (see Figure 19-9).

19.3.3 Status flag

The SPI_STS register has 3 flag bits to monitor the status of the SPI:

Send buffer empty flag bit (TE)

When the send buffer is empty, this bit is '1', and new data to be sent can be written into SPI_DATA at this time.

When the transmit buffer is not empty, this bit is cleared to '0'.

Receive buffer non-empty flag bit (RNE)

When the receiving buffer is not empty, this bit is '1', indicating that the valid data has been received in the receiving buffer.

381 / 447

Nations Technologies Inc. Tel: +86-755-86309900 Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

When reading the register SPI_DATA, this bit is cleared to '0'.

BUSY flag bit (BUSY)

The BUSY flag can detect whether the transmission is over, set and cleared by hardware (software operation is invalid).

When the SPI communication is in progress, the BUSY flag is set to '1', but in the two-way receiving mode of the master mode (MSEL=1, BIDIRMODE=1, BIDIROEN=0), the BUSY flag is set to '0' during reception. When the transmission ends or the I2S module is turned off, the flag is set to '0':

- End of transmission (except for continuous communication in master mode);
- Turn off the SPI module (SPIEN = 0);
- The master mode error occurs (MODERR = 1)

When the communication is discontinuous: the BUSY flag is cleared to '0' between the transmission of each data item.

When communication is continuous: in master mode, the BUSY flag remains high during the entire transfer process; In slave mode, the BUSY flag will be low for 1 SPI clock cycle between each data item transfer. So do not use the BUSY flag to handle the sending and receiving of each data item.

19.3.4 Turn off the SPI

In order to turn off the SPI module, different operation modes require different operation steps.

Master or slave full duplex mode

- 1. Wait for the RNE flag to be set to 1 and the last byte to be received;
- 2. Wait for the TE flag to be set to 1;
- 3. Wait for the BUSY flag to be cleared to 0;
- 4. Turn off the SPI module (SPIEN = 0).

One-way send-only mode or bidirectional send mode for master or slave

- 1. After writing the last byte to the SPI_DAT register, wait for the TE flag to be set to 1;
- 2. Wait for the BUSY flag to be cleared to 0;
- 3. Turn off the SPI module (SPIEN = 0).

One-way receive-only mode or bidirectional receive mode for master

- 1. Wait for the penultimate RNE to be set to 1;
- 2. Before closing the SPI module (SPIEN = 0), wait for 1 SPI clock cycle (using software delay);
- 3. Wait for the last RNE to be set before entering shutdown mode (or turning off the SPI module clock).

One-way receive-only mode or bidirectional receive mode for slave

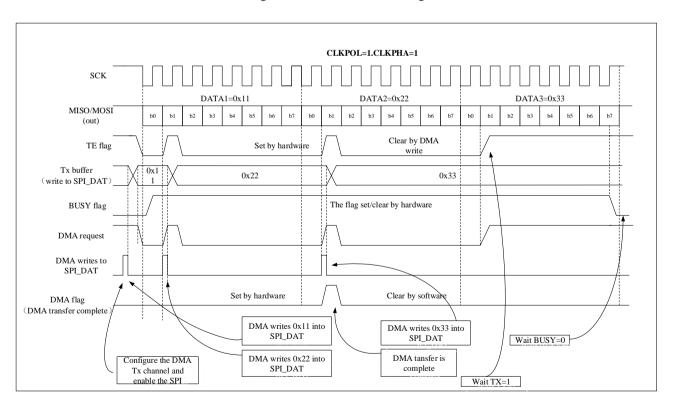
1. The SPI module can be turned off at any time (SPIEN = 0), and after the current transfer is over, the SPI module

382 / 447

will be turned off;

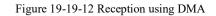
2. If you want to enter the shutdown mode, you must wait for the BUSY flag to be set to 0 before entering the shutdown mode (or turn off the SPI module clock).

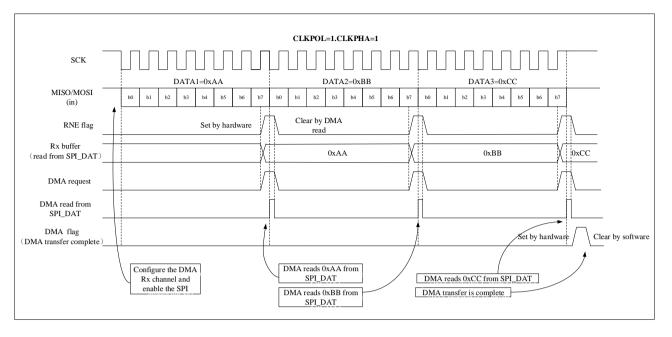
19.3.5 SPI communication using DMA


SPI uses DMA to transfer data, which releases the application program from the process of reading and writing the transceiver buffer, which greatly improves the system efficiency.

When the transmit buffer DMA is enabled (SPI_CTRL2 register TDMAEN=1), a DMA request is issued each time TE is set to '1', and the DMA automatically writes data to the SPI_DAT register, which clears the TE flag. When the receive buffer DMA is enabled (SPI_CTRL2 register RDMAEN =1), a DMA request is issued each time RNE is set to '1', and the DMA automatically reads data from the SPI_DAT register, which clears the RNE flag.

When only using SPI to send data, only need to enable the send DMA channel of SPI. At this time, because the received data has not been read, OVER is set to '1', and the software does not need to process this flag at this time.


When only using SPI to receive data, only need to enable the receive DMA channel of SPI.


In the send mode, when the DMA has transmitted all the data to be sent (the TXCF flag of the DMA_INTSTS register becomes '1'), you can monitor the BUSY flag to confirm the end of the SPI communication, which can avoid closing the SPI or entering the stop mode , the transmission of the last data is destroyed. So the software needs to wait for TE=1 first, and then wait for BUSY=0.

19.3.6 CRC calculation

SPI contains two independent hardware CRC calculators for data transmission and data reception to ensure the reliability of data transmission. CRC adopts different calculation methods according to the format of the data frame sent and/or received: 8-bit data frame adopts CRC8; 16-bit data frame adopts CRC16. The SPI_CRCPOLY register sets the polynomial value required for the calculation, and sets the CRCEN bit of the SPI_CTRL1 register to '1' to enable CRC calculation.

In the sending mode, after the last data is written into the sending buffer, set the CRCNEXT bit to '1', instructing the hardware to send the CRC value (the value of SPI_CRCTDAT) after sending this data. During the transmission of the CRC, the CRC calculation is stopped.

In receive mode, set the CRCNEXT bit to '1' after the penultimate data frame is received. The subsequent received CRC is compared with the SPI_CRCRDAT value. If the two are different, the CRCERR flag position of the SPI_STS register is '1', and when the ERRINTEN of the SPI_CTRL2 register is set to '1', an interrupt is generated.

In order to keep the synchronization of the next CRC calculation result of the master and slave devices, the CRC values at both ends of the master and slave should be cleared. Setting the CRCEN bit resets both SPI_CRCRDAT and SPI_CRCTDAT. Execute the steps in sequence: SPIEN=0; CRCEN=0; CRCEN=1; SPIEN=1.

It is worth mentioning that when SPI is configured as slave mode and CRC is enabled, as long as there is a clock pulse on the SCLK pin, even if the NSS pin is high, the CRC calculation will still be performed. This situation is common when the master device communicates with multiple slave devices alternately, and attention should be paid to avoid CRC misoperation.

When the SPI hardware CRC check is enabled (CRCEN=1) and the DMA mode is enabled, at the end of the communication, the hardware automatically completes the sending and receiving of the CRC byte.

19.3.7 Error flag

Master mode failure error (MODERR)

The following two conditions will cause the master mode failure error:

- NSS pin hardware management mode, the master device NSS pin is pulled low;
- NSS pin software management mode, the SSEL bit is set to 0.

When a master mode timing error occurs, the MODERR flag will be '1', if ERRINTEN=1, an interrupt will be generated; the SPIEN bit and the MSEL bit are write-protected, and the hardware will clear them to 0, the SPI is turned off, and it is forced to enter the slave mode.

The software performs a read or write operation to the SPI_STS register, and then writes the SPI_CTRL1 register to clear the MODERR bit (in a multi-master configuration, the NSS pin of the master device must be pulled high first).

Under normal configuration, the MODERR bit of the slave device cannot be set to '1'. However, in a multi-master configuration, a device can be in slave mode with the MODERR bit set; in this case, the MODERR bit indicates that a multi-master conflict may have occurred. The interrupt routine can perform a reset or return to the default state to recover from the error condition.

Overflow error (OVER)

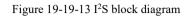
When RNE is set to '1', if there is still data sent to the receive buffer, an overflow error will occur. At this time, the OVER flag position is '1', if ERRINTEN=1, an interrupt will be generated. All newly received data will be lost, and the SPI DAT register is the previously unread data.

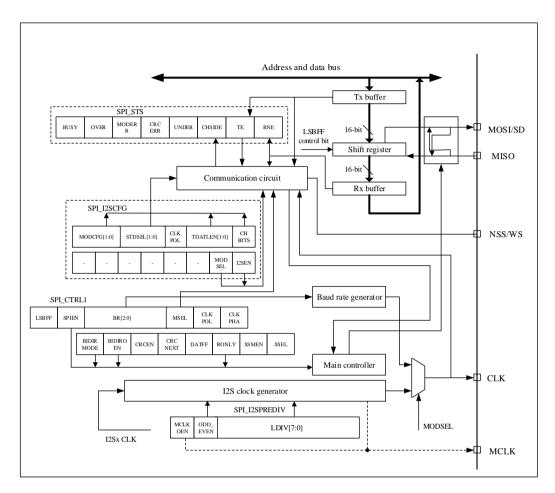
Reading the SPI_DAT register followed by the SPI_STS register clears the OVER bit.

CRC error (CRCERR)

The CRC error flag is used to check the validity of the received data. A CRC error is generated when the received CRC value does not match the value in the SPI_CRCRDAT register. At this time, the CRCERR flag position is '1', if ERRINTEN=1, an interrupt will be generated.

19.3.8 SPI interrupt


Interrupt event	Event flag bit	Enable control bit
Send buffer empty flag	TE	TEINTEN
Receive buffer non empty flag	RNE	RNEINTEN
Master mode failure event	MODERR	
Overflow error	OVER	ERRINTEN
CRC error flag	CRCERR	


Table 19-19-1 SPI interrupt request

19.4 I2S function description

The block diagram of I2S is shown in the figure below:

The I2S interface uses the same pins, flags and interrupts as the SPI interface. Setting the MODSEL = 1 selects the I2S audio interface.

I2S has a total of 4 pins, 3 of which are shared with SPI:

- CLK: Serial clock (shared with SCLK pin), CLK generates a pulse every time 1-bit audio data is sent.
- SD: Serial data (shared with MOSI pin), used for data send and receive;
- WS: Channel selection (shared with NSS pin), used as data control signal output in master mode, and used as input in slave mode;
- MCLK: master clock (independent mapping, optional), output 256 × Fs clock signal to ensure better synchronization between systems.

Note: F_S *is the sampling frequency of audio signal*

When set to master mode, I2S uses its own clock generator to generate the clock signal for communication.

386 / 447

19.4.1 Supported audio protocols

Four audio standards can be selected by setting the SPI_I2SCFG.STDSEL[1:0] bits:

- I²S Philips standard
- MSB alignment standard
- LSB alignment standard
- PCM standard

Supports time-division multiplexing of audio data on the left and right channels, and the left channel always sends data before the right channel. The CHSIDE bit of the register SPI_STS is used to distinguish which channel the received data belongs to. The CHSIDE bit is meaningless in the PCM protocol.

The TDATLEN bit of the register SPI_I2SCTRL sets the length of the data to be transmitted, and the CHBITS bit sets the number of data bits of the channel. Support four data formats to send data:

- 16-bit data is packed into 16-bit data frame
- 16-bit data is packed into a 32-bit data frame (the first 16 bits are meaningful data, and the last 16 bits are set to 0 by hardware)
- 24-bit data is packed into 32-bit data frame (the first 24-bit data is meaningful data, and the latter 8-bit data is set to 0 by hardware)
- 32-bit data is packed into 32-bit data frame

I2S uses the same SPI_DAT register as SPI to send and receive 16-bit wide data. If I2S needs to send or receive 24bit or 32-bit wide data, the CPU needs to read or write the SPI_DAT register twice. On the other hand, when I2S sends or receives 16-bit wide data, the CPU only needs to read or write the SPI_DAT register once.

Regardless of which data format and communication standard is used, I2S always sends the data high-order bit (MSB) first.

I2S Philips standard

In the I2S Philips standard, the sender changes data on the falling edge of the clock signal, and the receiver reads data on the rising edge. The WS signal is valid one clock cycle before sending the first bit of data (MSB), and starts to change on the falling edge of the clock signal.

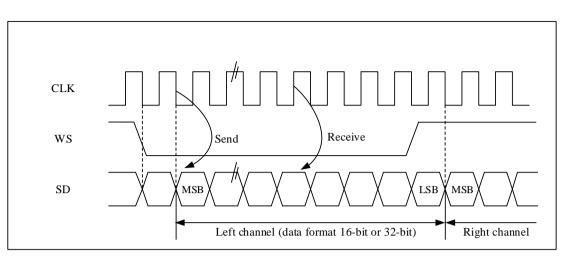
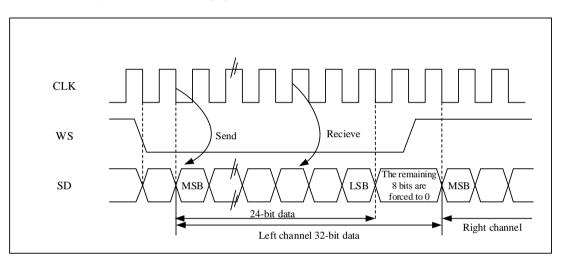



Figure 19-19-14 I²S Philips protocol waveform (16/32-bit full precision, CLKPOL = 0)

Figure 19-19-15 I²S Philips protocol standard waveform (24-bit frame, CLKPOL = 0)

When the 24-bit data is packed into the frame format of the 32-bit data frame, the register SPI_DAT needs to be read or written twice for each frame of data transmission. Example: Send 24-bit data 0x95AA66, write 0x95AA in SPI_DAT for the first time, write 0x66XX in SPI_DAT for the second time (only the upper 8 bits are valid, the lower 8 bits are meaningless, and can be any value); receive 24-bit data 0x95AA66, the first Read SPI_DAT for the first time to get 0x95AA, and read SPI_DAT for the second time to get 0x6600 (only the upper 8 bits are valid, and the lower 8 bits are always 0).

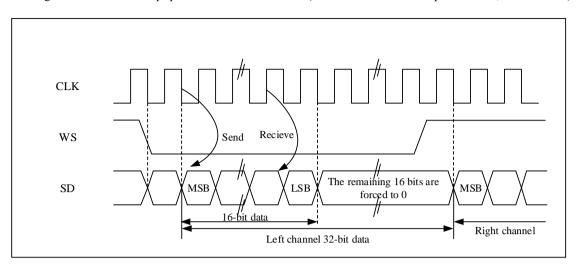


Figure 19-19-16 I²S Philips protocol standard waveform (16-bit extended to 32-bit packet frame, CLKPOL = 0)

When the 16-bit data is packed into the frame format of the 32-bit data frame, only one read and write operation is required for the register SPI_DAT. The lower 16 bits used to expand to 32 bits are set to 0x0000 by hardware. Example: 16-bit data to be sent or received is 0x89C1 (extended to 32-bit is 0x89C10000). When sending, the upper 16-bit halfword (0x89C1) needs to be written into the register SPI_DAT; the flag bit TE is '1', which means that new data can be written, and if the corresponding interrupt is enabled, an interrupt can be generated. Sending is done by hardware, even if the last 16 bits of 0x0000 have not been sent, TE will be set and a corresponding interrupt will be generated; when receiving, the flag bit RNE will be set to ' 1', an interrupt can be generated if the corresponding interrupt is enabled. In this way, there is more time between 2 reads and writes, which can prevent underflow or overflow from happening.

MSB alignment standard

In the MSB alignment standard, the sender changes data on the falling edge of the clock signal; the receiver reads data on the rising edge. The WS signal is generated simultaneously with the first data bit (MSB).

The standard data sending and receiving processing method is the same as the I2S Philips standard.

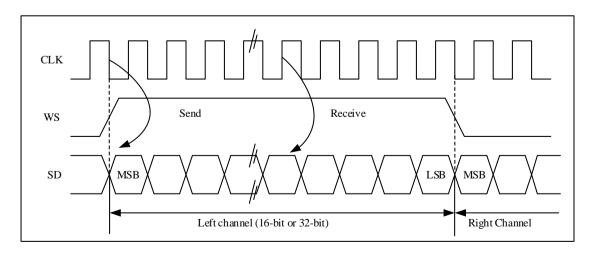


Figure 19-19-17 The MSB is aligned with 16-bit or 32-bit full precision, CLKPOL = 0.

Nations Technologies Inc. Tel: +86-755-86309900 Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

Figure 19-18 MSB aligns 24-bit data, CLKPOL = 0

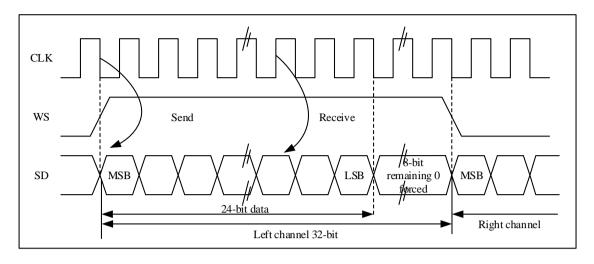
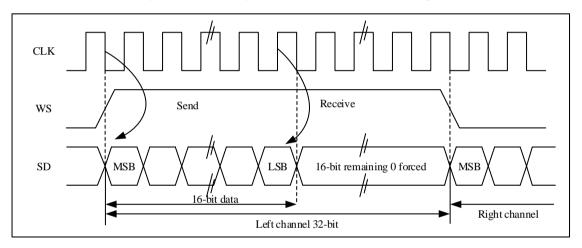



Figure 19-19 MSB-aligned 16-bit data is extended to 32-bit packet frame, CLKPOL = 0

LSB alignment standard

In 16-bit or 32-bit full-precision frame format, LSB alignment standard is the same as MSB alignment standard.

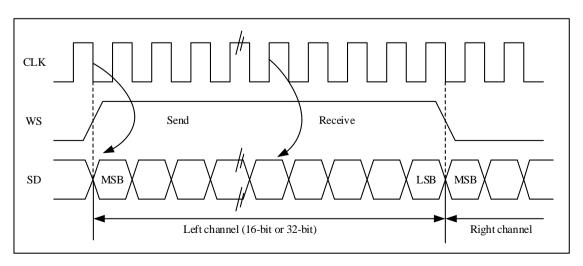
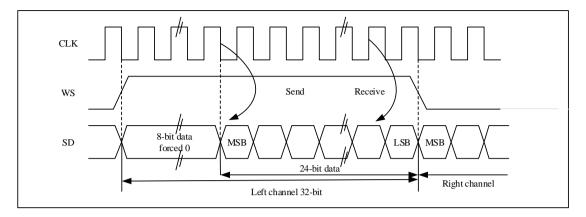



Figure 19-19-20 LSB alignment 16-bit or 32-bit full precision, CLKPOL = 0

Nations Technologies Inc. Tel: +86-755-86309900 Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

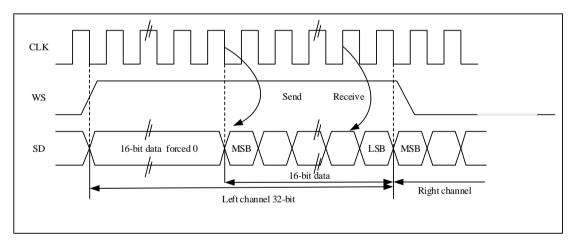


Figure 19-21 LSB aligns 24-bit data, CLKPOL = 0

When the 24-bit data is packed into the frame format of the 32-bit data frame, the register SPI_DAT needs to be read or written twice for each frame of data transmission. Example: To send 24-bit data 0x95AA66, the first SPI_DAT writes 0xXX95 (only the lower 8 bits are valid, the upper 8 bits are meaningless, and can be any value), and the second SPI_DAT writes 0xAA66. Receive 24-bit data 0x95AA66, read SPI_DAT for the first time to get 0x0095 (only the lower 8 bits are valid, and the upper 8 bits are always 0), and read SPI_DAT for the second time to get 0xAA66.

Figure 19-19-22 LSB aligned 16-bit data is extended to 32-bit packet frame, CLKPOL = 0

When the 16-bit data is packed into the frame format of the 32-bit data frame, only one read and write operation is required for the register SPI_DAT. The upper 16 bits used to expand to 32 bits are set to 0x0000 by hardware. Example: 16-bit data to be sent or received is 0x89C1 (extended to 32-bit is 0x000089C1). When sending, if TE is '1', the user needs to write the data to be sent (0x89C1). The upper 16 bits 0x0000 used for extension are first sent out by the hardware, and once valid data starts to be sent out from the SD pin, the next TE event occurs. When receiving, once valid data (not 0x0000 part) is received, the RNE event occurs. In this way, there is more time between 2 reads and writes, which can prevent underflow or overflow from happening.

PCM standard

In the PCM standard, there are two frame structures, short frame and long frame, which are selected by setting the PCMFSYNC bit of the register SPI_I2SCFG. The WS signal represents frame synchronization information. The effective time of the WS signal used for synchronization by the long frame is 13 bits; the length of the WS signal

used by the short frame for synchronization is 1 bit.

The standard data sending and receiving processing method is the same as the I2S Philips standard.

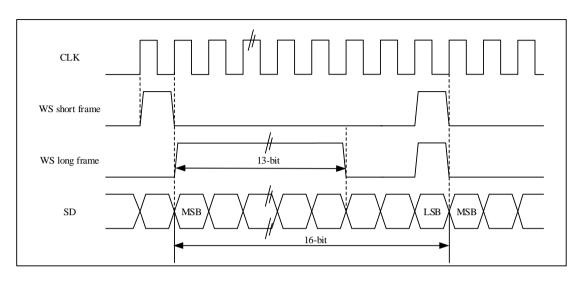
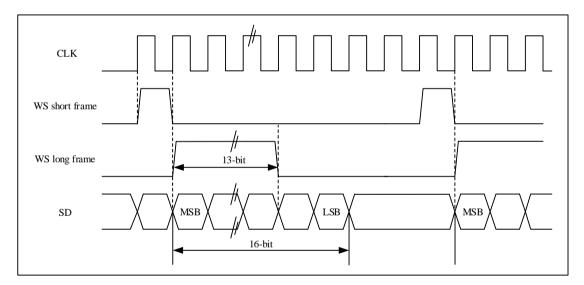
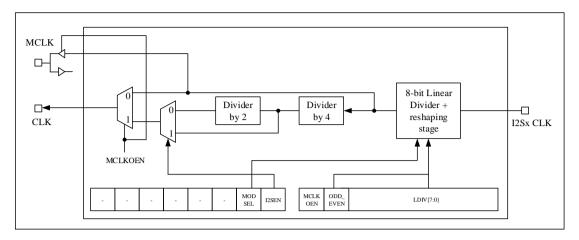



Figure 19-23 PCM standard waveform (16 bits)

Figure 19-24 PCM standard waveform (16-bit extended to 32-bit packet frame)



19.4.2 Clock generator

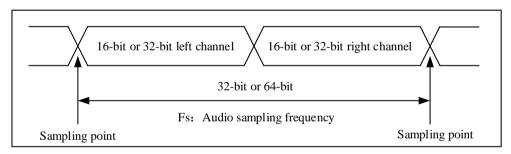
In the master mode, the linear divider needs to be set correctly in order to obtain the desired audio frequency.

Figure 19-19-25 I²S clock generator structure

Note: The clock source of I^2Sx CLK is HSI, HSE or PLL system clock that drives AHB clock.

The bit rate of I2S determines the data flow on the I2S data line and the frequency of the I2S clock signal.

I²S bit rate = number of bits per channel × number of channels × audio sampling frequency


For a signal with left and right channels and 16-bit audio, the I2S bit rate is calculated as:

$$I^2S$$
 bit rate = $16 \times 2 \times F_S$

If the packet length is 32 bits, there are:

$$I^2S$$
 bit rate = $32 \times 2 \times F_S$

Figure 19-19-26 Audio sampling frequency definition

Audio can be sampled at 96kHz, 48kHz, 44.1kHz, 32kHz, 22.05kHz, 16kHz, 11.025kHz, or 8kHz (or any value within this range). Set the linear divider by referring to the following formula:

CHBITS=0时, $F_S = I^2 SxCLK / [(16 \times 2) \times ((2 \times LDIV) + ODD_EVEN)]$ CHBITS=1时, $F_S = I^2 SxCLK / [(32 \times 2) \times ((2 \times LDIV) + ODD_EVEN)]$

The exact audio frequency can be obtained by referring to the clock configuration in the table below.

Table 19-19-2 Use the standard 8MHz HSE clock to get accurate audio frequency.

表格有变化

19.4.3 I2S send and receive sequence

I2S initialization process

- 1. The LDIV[7:0] and ODD_EVEN bits of the register SPI_I2SPREDIV configure prescaler related parameters, serial clock baud rate.
- 2. Set the CLKPOL bit of the register SPI_I2S_CFG to define the polarity of the communication clock when it is idle; MODSEL position '1' is configured as I2S mode, MODCFG[1:0] selects I2S master-slave mode and transmission direction (send or receive); set STDSEL[1:0] to select the required I2S standard (under the PCM standard, set the PCMFSYNC bit to select the synchronization mode); set TDATLEN[1:0] to select the number of data bits, set CHBITS to select the number of data bits for each channel.
- 3. If you need to use interrupt or DMA, the configuration is the same as SPI.
- 4. Finally start I2S communication, I2SEN bit '1'.

Master mode sending process

When I2S works in master mode, the pin CLK outputs the serial clock, and the pin WS generates the channel selection signal.

The sending process begins when data is written into the send buffer. When the data of the current channel is moved from the send buffer to the shift register in parallel, the flag bit TE is set to '1', at this time, the data of another channel should be written into SPI_DAT. Confirm the channel corresponding to the current data to be transmitted through the flag bit CHSIDE. The value of CHSIDE is updated when TE is set to '1'. A complete data frame includes the left channel and the right channel, and only part of the data frame cannot be transmitted. When the flag bit TE is set to '1', if the TEINTEN bit of the register SPI_CTRL2 is '1', an interrupt will be generated.

The operation of writing data depends on the selected I2S standard, see Section 19.4.1 for details.

When closing the I2S function, wait for the flag bit TE=1 and BUSY=0, and then clear the I2SEN bit to '0'.

Slave mode sending process

The sending process of the slave mode is similar to the master mode, the difference is:

When I2S works in slave mode, there is no need to configure the clock, and the pin CLK and pin WS are connected to the corresponding pins of the master device. The transmit process starts when the external master sends a clock signal and when the NSS_WS signal requests data transfer. The slave must be enabled and the I2S data register must be written before the external master can start communicating.

When the first clock edge representing the next data transmission arrives, the new data is still not written into the register SPI_DAT, that is, an underflow occurs, and the flag bit UNDER is set to '1'. If the ERRINTEN bit of the register SPI_CTRL2 is '1', An interrupt is generated, indicating that an error has occurred.

The flag bit CHSIDE indicates which channel the data to be transmitted corresponds to. Compared with the sending process of the master mode, in the slave mode, CHSIDE depends on the WS signal of the external master I2S (the

394 / 447

WS signal is '1' to send the left channel).

Master mode receiving process

Audio data is always received in 16-bit packets. According to the configured data and channel length, the received audio data will need to be sent to the receiving buffer once or twice.

When the data is transferred from the shift register to the receive buffer, the non-empty flag bit RNE of the receive buffer of the SPI_STS register is set to '1', at this time the data is ready and can be read from the SPI_DAT register; if the SPI_CTRL2 register RNEINTEN position' 1', an interrupt is generated; reading the SPI_DAT register clears the RNE bit. If the previously received data has not been read and new data is received, an overflow occurs, the flag bit OVER is set to '1', and if the ERRINTEN bit of the register SPI_CTRL2 is '1', an interrupt is generated, indicating An error has occurred.

The channel corresponding to the currently transmitted data is confirmed by the flag bit CHSIDE, and the value of CHSIDE is updated when RNE is set to '1'.

The operation of reading data depends on the selected I2S standard, see Section 19.4.1 for details.

When the I2S function is turned off, different audio standards, data length and channel length adopt different operation steps:

- Data length is 16 bits, channel length is 32 bits (TDATTLEN = 00, CHBITS = 1), LSB alignment standard (STDSEL = 10).
 - 1. Wait for the penultimate RNE flag bit to be set to' 1'.
 - 2. Software delay, waiting for 17 I²S clock cycles.
 - 3. Turn off I^2S (I2SEN = 0).
- The data length is 16 bits, the channel length is 32 bits (TDATLEN = 00 and CHBITS = 1), the MSB alignment standard (STDSEL = 01), I²S Philips standard (STDSEL = 00) or PCM standard (STDSEL = 11)
 - 1. Wait for the last RNE flag bit to be set to' 1'.
 - 2. Software delay, waiting for 1 I²S clock cycle.
 - 3. Turn off I^2S (I2SEN = 0).
- Other combinations of TDATLEN and CHBITS and any audio mode selected by STDSEL:
 - 1. Wait for the penultimate RNE flag bit to be set to' 1'.
 - 2. Software delay, waiting for 1 I²S clock cycle.
 - 3. Turn off I^2S (I2SEN = 0).

Slave mode receiving process

The receiving process of the slave mode is similar to the master mode, the difference is:

The flag bit CHSIDE indicates which channel the data to be transmitted corresponds to. Compared with the receive flow of the master mode, in the slave mode, CHSIDE depends on the WS signal of the external master I2S. When closing the I2S function, clear the I2SEN bit to '0' when the waiting flag bit RNE=1.

19.4.4 Status flag

There are the following 4 flag bits in the SPI STS register for monitoring the status of the I2S bus.

TX buffer empty flag (TE)

When the send buffer is empty, this flag is set to 1, indicating that new data can be written into the SPI_DAT register. When the send buffer is not empty, this flag is cleared to 0.

RX buffer not empty flag (RNE)

When the receiving buffer is not empty, this bit is '1', indicating that the valid data has been received in the receiving buffer.

When reading register SPI_DATA, this bit is cleared to '0' ...

BUSY flag (BUSY)

The BUSY flag can detect whether the transmission is over, set and cleared by hardware (software operation is invalid).

When the I2S communication is in progress, the BUSY flag is set to '1', but in the master receiving mode (MODCFG=11), the BUSY flag is set to '0' during reception. When the transmission ends or the I2S module is turned off, the flag is set to '0'.

In slave mode with continuous communication, the BUSY flag goes low for 1 I2S clock cycle between each data item transfer. Therefore, do not use the BUSY flag to handle the sending and receiving of every data item.

Channel flag (CHSIDE)

CHSIDE is used to indicate the channel where the data currently being sent and received is located. Under the PCM standard, this flag bit has no meaning.

In transmit mode, this flag is updated when TE is set to '1'; in receive mode, this flag is updated when RNE is set to '1'. In the process of sending and receiving, if an overflow (OVER) or underflow (UNDER) error occurs, this flag is meaningless, and I2S needs to be turned off and on again.

19.4.5 Error flag

The SPI_STS register has 2 error flag bits.

Overflow flag (OVER)

When RNE is set to '1', if there is still data sent to the receive buffer, an overflow error will occur. At this time, the OVER flag position is '1', if ERRINTEN=1, an interrupt will be generated. All newly received data will be lost, and the SPI_DAT register is the previously unread data.

Reading the SPI_DAT register followed by the SPI_STS register clears the OVER bit.

Underflow flag (UNDER)

In slave transmit mode, if the transmit buffer is still empty when the first clock edge of data transmission arrives, the UNDER flag is set to '1'. If ERRINTEN=1, an interrupt will be generated.

396 / 447

Reading register SPI_STS clears the UNDER bit.

19.4.6 I2S interrupt

The following table lists all I²S interrupts.

Table 19-19-3 I²S interrupt request

Interrupt event	Event flag bit	Enable control bit
Send buffer empty flag	TE	TEINTEN
Receive buffer non empty flag	RNE	RNEINTEN
Underflow flag bit	UNDER	
Overflow flag bit	OVER	ERRINTEN

19.4.7 DMA function

There is no data transmission protection function in I2S mode, so it does not support CRC function, and other DMA functions are exactly the same as SPI mode.

19.5 SPI and I2S register description

19.5.1 SPI register overview

Offset	Register	31	30	00	29 28	27	26 25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
000h	SPI_CTRL1			•		-	-	Res	erved					·			BIDIRMODE	BIDIROEN	CRCEN	CRCNEXT	DATFF	RONLY	SSMEN	SSEL	LSBFF	SPIEN	В	R[2:0)]	MSEL	CLKPOL	CLKPHA
	Reset Value																0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
004h	SPI_CTRL2											Rese	erved												TEINTEN	RNEINTEN	ERRINTEN	December	Keserved	SSOEN	TDMAEN	RDMAEN
	Reset Value																								0	0	0	_	-	0	0	0
008h	SPI_STS											Rese	erved												BUSY	OVER	MODERR	CRCERR	UNDER	CHSIDE	TE	RNE
	Reset Value																								0	0	0	0	0	0	1	0
	SPI_DAT																							DAT[[15:0]							
00Ch	Reset Value							Rese	erved								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
010h	SPI_CRCPOLY							Dere	erved														CR	CPOI	LY[15	:0]						
010h	Reset Value							Rest	ervea								0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
014h	SPI_CRCRDAT							D	erved														CR	CRD	AT[15	5:0]						
0141	Reset Value							Rest	aveu								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
018h	SPI_CRCTDAT		Reserved						CRCTDAT[15:0]																							
018h	Reset Value							Rest	ervea								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01Ch	SPI_12SCFG									Rese	erved										MODSEL	I2SEN	MOE [1:	OCFG :0]	PCMFSYNC	Reserved	STD [1:		CLKPOL	TDAT [1:		CHBITS

Table 19-19-4 SPI register overview

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
	Reset Value																					0	0	0	0	0		0	0	0	0	0	0
020h	SPI_I2SPREDIV											Reser	rved											MCLKOEN	ODD_EVEN				LDIV	[7:0]			
	Reset Value																							0	0	0	0	0	0	0	0	1	0

19.5.2 SPI control register 1 (SPI_CTRL1) (not used in I2S mode)

Address: 0x00

	15	14	13	12	11	10	9	8	7	6	5		3	2	1	0
BI M	DIR ODE	BIDIR OEN	CRCEN	CRC NEXT	DATFF	RONLY	SSMEN	SSEL	LSBFF	SPIEN		BR[2:0]	1	MSEL	CLKPOL	CLKPHA
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		rw		rw	rw	rw

Bit field	Name	Description
15	BIDIRMODE	Bidirectional data mode enable
		0: Select the "two-wire one-way" mode.
		1: Select the "one-wire bidirectional " mode.
		Note: Not used in I^2S mode.
14	BIDIROEN	Output enable in bidirectional mode
		0: Output disable (receive-only mode).
		1: Output enabled (send-only mode).
		In master mode, the "one-wire" data line is the MOSI pin, and in slave mode, the "one-wire"
		data line is the MISO pin.
		Note: Not used in I^2S mode.
13	CRCEN	Hardware CRC check enable
		0: Disable CRC calculation.
		1: Enable CRC calculation.
		Note: This bit can only be written when SPI is disabled ($SPI_CTRL1.SPIEN = 0$), otherwise an
		error will occur.
		This bit can only be used in full duplex mode.
		Note: Not used in I^2S mode.
12	CRCNEXT	Send CRC next
		0: The next sent value comes from the send buffer.
		1: The next send value comes from the CRC register.
		Note: This bit should be set immediately after the last data is written in SPI_DAT register.
		Note: Not used in I^2S mode.
11	DATFF	Data frame format
		0: 8-bit data frame format is used for sending/receiving.
		1: 16-bit data frame format is used for sending/receiving.
		Note: This bit can only be written when SPI is disabled ($SPI_CTRL1.SPIEN = 0$), otherwise an
		error will occur.

Bit field	Name	Description
		Note: Not used in I^2S mode.
10	RONLY	Only receive mode
		This bit, together with the SPI_CTRL1.BIDIRMODE bit, determines the transfer direction in
		two-wire one-way mode. In the application scenario of multiple slave devices, this bit is only set
		to 1 by the accessed slave device, and only the accessed slave device can output, so as to avoid
		data line conflicts.
		0: Full duplex (sending mode and receiving mode).
		1: Disable output (receive-only mode).
		Note: Not used in I^2S mode.
9	SSMEN	Software slave device management
		When the SPI_CTRL1.SSMEN bit is set to 1, the NSS pin level is determined by the value of
		the SPI_CTRL1.SSEL bit.
		0: Disable software slave device management.
		1: Enable software slave device management.
		Note: Not used in I^2S mode.
8	SSEL	Internal slave device selection
		This bit only has meaning when the SPI_CTRL1.SSMEN bit is set. It determines the NSS level,
		and I/O operations on the NSS pin have no effect.
		Note: Not used in I^2S mode.
7	LSBFF	Frame format
		0: Send MSB first.
		1: Send LSB first.
		Note: This bit cannot be changed during communication.
		Note: Not used in I^2S mode.
6	SPIEN	SPI enable
		0: Disable SPI device.
		1: Enable the SPI device.
		Note: Not used in I^2S mode.
		Note: When turning off the SPI device, please follow paragraph 0 section's procedure
		operation.
5:3	BR[2:0]	Baud rate control
		000: fPCLK/2
		001: fPCLK/4
		010: fPCLK/8
		011: fPCLK/16
		100: fPCLK/32
		101: fPCLK/64
		110: fPCLK/128
		111: fPCLK/256
		Note: This bit cannot be changed during communication.
		Note: Not used in I^2S mode.

Bit field	Name	Description
2	MSEL	Master device selection
		0: Configure as the slave device.
		1: Configure as the master device.
		Note: This bit cannot be changed during communication.
		Note: Not used in I^2S mode.
1	CLKPOL	Clock polarity
		0: In idle state, SCLK remains low.
		1: In idle state, SCLK remains high.
		Note: This bit cannot be changed during communication.
		Note: Not used in I^2S mode.
0	CLKPHA	Clock phase
		0: Data sampling starts from the first clock edge.
		1: Data sampling starts at the second clock edge.
		Note: This bit cannot be modified while communication is in progress.
		Note: Not used in I^2S mode.

19.5.3 SPI control register 2 (SPI_CTRL2)

Address: 0x04

15							8	7	6	5	4	3	2	1	0
	1	1	Rese	erved	1	1	1	TE INTEN	RNE INTEN	ERR INTEN	Rese	erved	SSOEN	TDMAEN	RDMAEN
								rw	rw	rw			rw	rw	rw

Bit field	Name	Description
15:8	Reserved	Forced by hardware to 0
7	TEINTEN	Send buffer empty interrupt enable
		0: Disable TE interrupt.
		1: Enable TE interrupt, and interrupt request is generated when TE flag is set to '1'.
6	RNEINTEN	Receive buffer non-empty interrupt enable
		0: Disable RNE interrupt.
		1: Enable RNE interrupt, and generate interrupt request when RNE flag is set to '1'.
5	ERRINTEN	Error interrupt enable
		When an error (CRCERR, OVER, UNDER, MODERR) is generated, this bit controls whether
		an interrupt is generated
		0: Disable error interrupt.
		1: Enable error interrupt.
4:3	Reserved	Forced by hardware to 0

Bit field	Name	Description
2	SSOEN	NSS output enable
		0: Disable NSS output in master mode, the device can work in multi-master mode.
		1: When the device is turned on, enable NSS output in the master mode, the device cannot work
		in the multi-master device mode.
		Note: Not used in I^2S mode.
1	TDMAEN	Send buffer DMA enable
		When this bit is set, a DMA request is issued as soon as the TE flag is set
		0: Disable send buffer DMA.
		1: Enable send buffer DMA.
0	RDMAEN	Receive buffer DMA enable
		When this bit is set, a DMA request is issued as soon as the RNE flag is set
		0: Disable receive buffer DMA.
		1: Enable receive buffer DMA.

19.5.4 SPI status register (SPI_STS)

Address: 0x08

15				8	7	6	5	4	3	2	1	0
	Rese	erved			BUSY	OVER	MODERR	CRCERR	UNDER	CHSIDE	TE	RNE
L I		l			r	r	r	rc_w0	r	r	r	r

Bit field	Name	Description
15:8	Reserved	Forced by hardware to 0
7	BUSY	Busy flag
		0: SPI is not busy.
		1: SPI is busy communicating or the send buffer is not empty.
		This bit is set or reset by hardware.
		Note: Use of this flag requires special attention, see section <u>19.3.3</u> and section <u>19.3.4</u> for
		details
6	OVER	Overflow flag
		0: No overflow error.
		1: An overflow error occurred.
		Note: This bit is set by hardware and cleared according to the sequence of software operations.
		For more information about software sequences, refer to <u>19.4.5</u> for details.
5	MODERR	Mode error
		0: No mode error.
		1: A mode error occurred.
		Note: This bit is set by hardware and cleared according to the sequence of software operations.
		For more information about software sequences, refer to <u>19.3.7</u> for details.
		Note: Not used in I^2S mode.

Bit field	Name	Description
4	CRCERR	CRC error flag
		0: The received CRC value matches the value the SPI_CRCRDAT register value.
		1: The received CRC value does not match the SPI_CRCRDAT register value.
		Note: this bit is set by hardware and cleared by software by writing 0.
		Note: Not used in I^2S mode.
3	UNDER	Underflow flag
		0: No underflow occurred.
		1: Underflow occurred.
		Note: This bit is set by hardware and cleared according to the sequence of software operations.
		For more information about software sequences, refer to 0 for details.
		Note: not used in SPI mode.
2	CHSIDE	Channel
		0: The left channel needs to be sent or received;
		1: The right channel needs to be sent or received.
		Note: not used in SPI mode. No meaning in PCM mode.
1	TE	The send buffer is empty
		0: The send buffer is not empty.
		1: The send buffer is empty.
0	RNE	Receive buffer is not empty
		0: The receive buffer is empty.
		1: The receive buffer is not empty.

19.5.5 SPI data register (SPI_DAT)

Address: 0x0C

	15		 										0
		1		I	I		DAT	[15:0]		Ī	I	1	
L			 	I	I		r	w	 	 1	I	I	
							r	w					

Bit field	Name	Description
15:0	DAT[15:0]	Data register
		Data to be sent or received
		The data register corresponds to two buffers: one for write (send buffer); The other is for read
		(receive buffer).Write operation writes data to send buffer; The read operation will return the
		data in the receive buffer.
		Note on SPI mode: According to the selection of the data frame format by the
		SPI_CTRL1.DATFF bit, the data sending and receiving can be 8-bit or 16-bit. To ensure correct
		operation, the data frame format needs to be determined before enabling the SPI.
		For 8-bit data, the buffer is 8-bit, and only SPI_DAT[7:0] is used when sending and receiving.
		When receiving, SPI_DAT[15:8] is forced to 0.

Bit field	Name	Description
		For 16-bit data, the buffer is 16-bit, and the entire data register is used when sending and
		receiving, that is, SPI_DAT[15:0].

19.5.6 SPI CRC polynomial register (SPI_CRCPOLY) (not used in I²S mode)

Address: 0x10

Reset value: 0x0007

15											0
	1	1	1		1	1	1	1	1	 1	
					CRCPO	LY[15:0]					
					entero	E1[15.0]					
		1									
					r	a. 7					
					1	w					

Bit field	Name	Description
15:0	CRCPOLY [15:0]	CRC polynomial register
		This register contains the polynomial used for the CRC calculation.
		The reset value is 0x0007, other values can be set according to the application.
		Note: not used in I ² s mode.

19.5.7 SPI RX CRC register (SPI_CRCRDAT) (not used in I²S mode)

Address offset: 0x14

Reset value: 0x0000

15									0
	1 1	1	I				 1	1	
				CRCRD	AT[15:0]				
1	1		 		I				
					r				

 Bit field
 name
 describe

 15:0
 CRCRDAT
 Receive CRC Register

 When CRC calculation is enabled, CRCRDAT[15:0] contains the CRC value calculated based on the received bytes. This register is reset when a '1' is written to the CRCEN bit of SPI_CTRL1. The CRC calculation uses the polynomial in SPI_CRCPOLY.

 When the data frame format is set to 8 bits, only the lower 8 bits participate in the calculation, and follow the CRC8 method; when the data frame format is 16 bits, all 16 bits in the register participate in the calculation, and follow the CRC16 standard.

 Note: Reading this register when the BUSY flag is '1' may result in incorrect values.

 Note: Not used in 12S mode..

19.5.8 SPI TX CRC register (SPI_CRCTDAT)

Address offset: 0x18

Reset value: 0x0000

	15												0
Г		1	1	1	1	1	1	I	1		1		
								CRCTD.	AT[15:0]				
			1				1						
				•									
								1	r				

Bit field	Name	Description
15:0	CRCTDAT	Send CRC register
		When CRC calculation is enabled, CRCTDAT[15:0] contains the CRC value calculated based
		on the bytes to be sent. This register is reset when a '1' is written to the CRCEN bit in
		SPI_CTRL1. The CRC calculation uses the polynomial in SPI_CRCPOLY.
		When the data frame format is set to 8 bits, only the lower 8 bits participate in the calculation,
		and follow the CRC8 method; when the data frame format is 16 bits, all 16 bits in the register
		participate in the calculation, and follow the CRC16 standard .
		Note: Reading this register when the BUSY flag is '1' may result in incorrect values.
		Note: Not used in I2S mode.

19.5.9 SPI_ I²S configuration register (SPI_I2SCFG)

Address offset: 0x1c

15			12	11	10	9	8	7	6	5	4	3	2	1	0
,	Rese	rved	1	MODSEL	I2SEN	MODC	FG[1:0]	PCM FSYNC	Reserved	STDSE	EL[1:0]	CLKPOL	TDATL	LEN[1:0]	CHBITS
				rw	rw	r	w	rw		r	N	rw	г	w	rw

Bit field	Name	Description
15:12	Reserved	Forced by hardware to 0
11	MODSEL	I ² S mode selection
		0: Select SPI mode.
		1: Select I ² S mode.
		Note: this bit can only be set when SPI or I^2S is turned off.
10	I ² SEN	I ² S enable
		0: Disable I ² S.
		1: Enable I ² S.
		Note: not used in SPI mode.
9:8	MODCFG	I ² S mode setting
		00: Slave device sends.
		01: Slave device receives.
		10: Master device sends.
		11: Master device receives.
		Note: This bit can only be set when I^2S is turned off.
		Note: not used in SPI mode.

Bit field	Name	Description
7	PCMFSYNC	PCM frame synchronization
		0: Short frame synchronization.
		1: Long frame synchronization.
		Note: This bit is only meaningful when $STDSEL = 11$ (used by the PCM standard).
		Note: not used in SPI mode.
6	Reserved	Forced by hardware to 0
5:4	STDSEL	Selection of I ² S standard
		00: I ² S Philips standard.
		01: High byte alignment standard (left alignment).
		10: Low byte alignment standard (right alignment).
		11: PCM standard.
		See for details of I ² S standard on section 19.4.1.
		Note: For correct operation, this bit can only be set when I^2S is turned off.
		Note: not used in SPI mode.
3	CLKPOL	Static clock polarity
		0: I2S clock static state is low level.
		1: I2S clock static state is high level.
		Note: For correct operation, this bit can only be set when I^2S is turned off.
		Note: not used in SPI mode.
2:1	TDATLEN	Length of data to be transmitted
		00: 16-bit data length.
		01: 24-bit data length;
		10: 32-bit data length;
		11: Not allowed.
		<i>Note: For correct operation, this bit can only be set when</i> I^2S <i>is turned off.</i>
		Note: not used in SPI mode.
0	CHBITS	Channel length (number of data bits per audio channel)
		0: 16 bits wide;
		1: 32 bits wide.
		Writing to this bit is meaningful only when SPI_I2SCFG.TDATLEN = 00, otherwise the
		channel length is fixed to 32 bits by hardware.
		Note: For correct operation, this bit can only be set when I^2S is turned off.
		Note: not used in SPI mode.

19.5.10 SPI_I²S prescaler register (SPI_I2SPREDIV)

Address: 0x20

Bit field	Name	Description
15:10	Reserved	Forced by hardware to 0
8	ODD_EVEN	Odd coefficient prescaler
		0: Actual frequency division factor = LDIV $\times 2$.
		1: Actual frequency division factor = $(LDIV \times 2) + 1$.
		See section $19.4.2$ for details.
		<i>Note: For correct operation, this bit can only be set when</i> I^2S <i>is turned off.</i>
		Note: not used in SPI mode.
7:0	LDIV	I ² S linear prescaler
		Disable setting LDIV $[7:0] = 0$ or LDIV $[7:0] = 1$
		See Section <u>19.4.2</u> for details.
		<i>Note: For correct operation, this bit can only be set when</i> I^2S <i>is turned off.</i>
		Note: not used in SPI mode.

20 Real-time clock (RTC)

20.1 RTC Description

The real-time clock (RTC) has a set of independent BCD timer/counters that continuously count. Under the corresponding software configuration, the calendar function can be provided. At the same time, the RTC provides an interrupt with a programmable alarm clock.

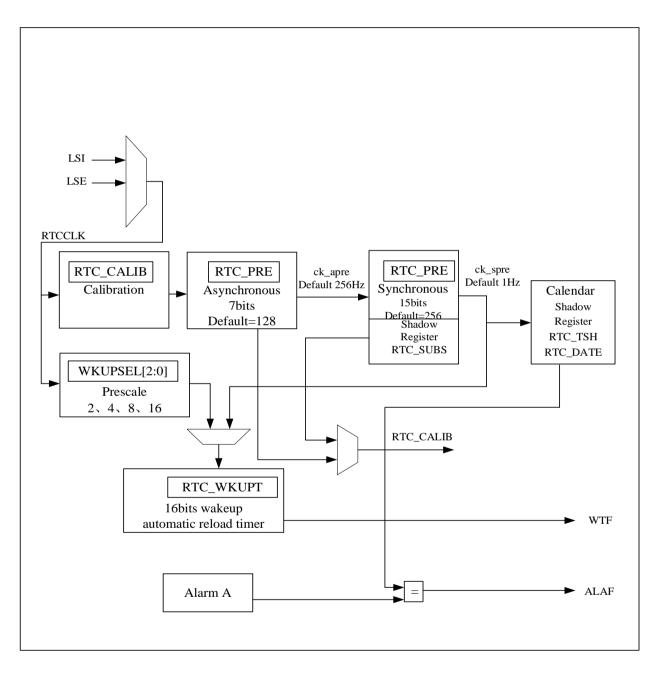
Two 32-bit registers contain decimal format (BCD) representation of subseconds, seconds, minutes, hours (12 or 24 hour format), day (day of week), day (number), month, and year.

Subsecond values are provided in binary format as separate 32-bit registers. Additional 32-bit registers contain programmable seconds, minutes, hours, day, day, month and year.

RTC provides automatic wake-up function in low power mode.

20.2 Specification

Real Time Clock (RTC) features include:


- **22**-bit programmable prescaler
- 16-bit programmable periodic wake-up timer for automatic wake-up in low-power modes
- Provides calendar functions in BCD format:
 - Accurate timing of seconds, minutes, hours, days, days, months and years
 - Provide individual sub-second values
 - With automatic leap year compensation function, can also perform daylight saving time compensation
 - A digital calibration function compensates for variations in crystal oscillator accuracy.
 - Provides 1 interrupt with programmable alarm for wake-up from low-power modes
- The following two RTC clock sources can be selected:
 - LSE oscillator clock;
 - LSI oscillator clock
- 2 dedicated maskable interrupts:
 - ♦ alarm interrupt
 - Wake-up Timer Interrupt
- After reset, all RTC registers (except RTC_CTRL, RTC_INITSTS[10:8]) are protected against possible accidental write access.

20.3 RTC function description

20.3.1 RTC block diagram

Figure 20-1 RTC block diagram

RTC includes the following functions:

- Calendar function in BCD format: accurate timing of sub-seconds, seconds, minutes, hours, day of the week, day, month and year.
- An alarm clock: sub-second, second, minute, hour, day of the week, day can be set.
- 16-bit programmable periodic wake-up timer for automatic wake-up in low-power modes

20.3.2 RTC clock and prescaler

The RTC clock source (RTCCLK) is selected between the LSE clock and the LSI oscillation clock by the clock controller (RCC). A programmable prescaler generates a 1Hz clock for updating the calendar. To reduce power consumption, the prescaler is divided into 2 programmable prescalers. Mainly as follows:

- 7-bit asynchronous prescaler configured via the DIVA bit of the RTC PRE register
- 15-bit synchronous prescaler configured via the DIVS bits of the RTC PRE register

To use 32.768 kHz LSE, you need to set the asynchronous frequency division factor to 128, and the synchronous frequency division factor to 256, and the internal clock frequency that can be obtained is 1 Hz (ck_spre). The minimum division factor is 1 and the maximum is 2^{22} . This corresponds to a maximum input frequency of approximately 4MHz.

The formula for f_{ck_apre} :

$$f_{ck_apre} = \frac{f_{RTCCLK}}{RTC_PRE.DIVA[6:0]+1}$$

The ck_apre clock is used to clock the binary RTC_SUBS sub-second down counter. When 0 is reached, reload the RTC SUBs with the contents of the DIVS.

The formula for f_{ck_spre} :

$$f_{ck_spre} = \frac{f_{RTCCLK}}{(RTC_PRE.DIVS[14:0]+1)*(RTC_PRE.DIVA[6:0]+1)}$$

The ck_spre clock can be used to update the calendar or as a time base for the 16-bit wake-up auto-reload timer. For shorter time-out times, a 16-bit wake-up auto-reload timer can also be run with RTCCLK divided by a programmable 4-bit asynchronous prescaler.

20.3.3 RTC calendar

The RTC calendar time and date registers are accessed through shadow registers synchronized to PCLK (APB clock). They can also be accessed directly to avoid waiting for synchronization time. The register comparison is as follows:

- RTC_SUBS set subsecond
- RTC_TSH set time
- RTC_DATE set date

Every two RTCCLK cycles, the current calendar value is copied into the shadow register and the RSYF bit of the

RTC_INITSTS register is set. No replication is performed in Standby and Sleep modes. When exiting these modes, the shadow registers are updated after a maximum of 2 RTCCLK cycles.

When the application reads the calendar register, it accesses the contents of the shadow register. The calendar registers can be accessed directly by setting the BYPS bit in the RTC_CTRL register. By default, this bit is cleared and the user accesses the shadow register.

When reading the RTC_SUBS, RTC_TSH or RTC_DATE registers in BYPS=0 mode, the frequency of the APB clock (fAPB) must be at least 367 / 400 times the frequency of the RTC clock (fRTCCLK). Shadow registers are reset by a system reset.

20.3.4 Programmable alarms

The RTC unit provides a programmable alarm: Alarm A. The following is a description of alarm clock A. The programmable alarm function can be enabled through the ALAEN bit in the RTC_CTRL register. The ALAF flag is set if the calendar subsecond, second, minute, hour, date matches the value programmed in the alarm registers RTC_ALRMASS and RTC_ALARMA. Each calendar field can be selected individually via the MASKx bits of the RTC_ALARMA register and the MASKSSBx bits of the RTC_ALRMASS register. The alarm interrupt can also be enabled through the ALAIEN bit in the RTC_CTRL register.

20.3.5 Periodic automatic wakeup

The periodic wake-up flag is generated by a 16-bit programmable auto-reload down-counter. The range of the wakeup timer can be extended to 17 bits. The wake-up function is enabled by the WTEN bit in the RTC_CTRL register.

This wake-up input clock is as follows:

■ RTC clock (RTCCLK) divided by 2/4/8/16.

Configurable wake-up interrupt period from 122 microseconds to 32 seconds with resolution down to 61 microseconds when RTCCLK is LSE (32.768kHz)

■ ck_spre (typically 1Hz internal clock)

When the ck_spre frequency is 1Hz, the available wake-up time is about 1s to 36h, and the resolution is 1 second. This larger programmable time range is divided into two parts:

- 1s to 18h when WKUPSEL [2:1] = 10
- ♦ About 18h to 36h when WKUPSEL [2:1] = 11. In the latter case, 2¹⁶ is added to the 16-bit counter current value. After completing the initialization sequence, the timer starts counting down. When the wake-up function is enabled in low-power mode, the down-counting remains active. Also, when the counter reaches 0, the WTF flag of the RTC_INTSTS register is set and the wakeup register is automatically reloaded with its reload value (RTC_WKUPT register value). Afterwards the WTF flag must be cleared by software.

The device can exit from low-power modes when the periodic wake-up interrupt is enabled by setting the WTIEN bit in the RTC_CTRL register.

20.3.6 RTC register write protection

After power-up or reset, all RTC registers except RTC_CTRL, RTC_INITSTS[10:8] are write-protected. Need to write RTC_CTRL .WRPT=1 first to unlock the write protection.

Writing to the RTC registers is then enabled by writing a key to the write protection register RTC_WRP. The RTC registers are unlocked by the following steps:

- Write "0xCA" into RTC_WRP register.
- Write "0x53" into RTC_WRP register.

Writing the wrong key will reactivate the write protection. However, the FSM only checks writes to this register, while we can choose to write to other registers. The protection mechanism is not affected by system reset.

20.3.7 Calendar initialization and configuration

To program the initial time and date calendar values, including time format and preallocator configuration, the following sequence is required:

- Set the INITM bit in the RTC_INITSTS register to enter initialization mode. In this mode, the calendar counter is stopped and its value can be updated
- Poll the RTC_INITSTS register bit INITF. The initialization phase mode is entered when INITF is set to 1. Takes approximately 2 RTCCLK clock cycles (due to clock synchronization)
- To generate a 1 Hz clock reference for the calendar counter, program two prescaler factors in the RTC_PRE register
- Load initial time and date values in shadow registers (RTC_TSH and RTC_DATE) and configure time format (12 or 24 hours) via HFMT bits in RTC_CTRL register
- Exit initialization mode by clearing the INITM bit. It then automatically loads the actual calendar counter value and restarts counting after 4 RTCCLK clock cycles

After the initialization sequence is complete, the calendar starts counting

20.3.8 Daylight saving time configuration

Daylight saving time management is managed through bits SU1H, AD1H and BAKP of the RTC_CTRL register. Using the SU1H or AD1H, the software only needs a single operation to decrease or increase an hour in the calendar without going through the initialization process.

Additionally, software can use the BAKP bit to record whether this operation was ever performed.

20.3.9 Alarm configuration

Please configure Alarm A in the following order:

■ Clear bit ALxEN in register RTC_CTRL Disable Alarm A

- Configure Alarm x Registers (RTC_ALRMxSS/RTC_ALARMx)
- Setting bit ALxEN in register RTC_CTRL to 1 enables alarm x.

Note: Due to clock synchronization, each change of the RTC_CTRL register needs to be performed approximately 2 RTCCLK clock cycles later.

20.3.10 Wakeup timer configuration

The wake-up timer auto-reload values are configured in the following order:

- Clear register RTC CTRL bit WTEN to disable wake-up timer
- Poll bit WTWF in RTC_INITSTS until it is set to 1 to ensure that access to the wake-up auto-reload timer and WKUPSEL[2:0] bits is allowed. After WTWF is set to 1, it needs to be delayed by about 2 RTCCLK clock cycles (due to clock synchronization)
- Configure wake-up auto-reload value WKUPT[15:0], wake-up clock selection (WKUPSEL[2:0] bits in RTC_CTRL). Set bit WTEN in RTC_CTRL to 1 to enable the timer again. The wake-up timer restarts counting. Due to clock synchronization, the WTWF bit is cleared 2 RTCCLK clock cycles after WTEN is cleared.

20.3.11 Calendar reading

1. When the BYPS control bit in register RTC_CTRL is cleared

For correct reading of the RTC calendar registers (RTC_SUBS, RTC_TSH, and RTC_DATE), the APB clock frequency (fPCLK) must be equal to or greater than 7 times the RTC clock frequency (fRTCCLK). This ensures the security of the synchronization mechanism.

If the APB clock frequency is less than 7 times the RTC clock frequency, software must read the calendar time and date registers twice. If the second read of RTC_TS gives the same result as the first read, you can be sure that the data is correct. Otherwise a third read access must be performed. In any case, the APB clock frequency cannot be lower than the RTC clock frequency.

RSYF is set to 1 in the RTC_INITSTS register every time the calendar register data is copied to the RTC_SUBS, RTC_TSH and RTC_DATE registers. Copying is performed every two RTCCLK cycles. To ensure point-in-time consistency between the 3 values, reading RTC_SUBS or RTC_TSH will lock the value in the high-order calendar shadow register until RTC_DATE is read. To prevent software from performing read access to the calendar, the time interval is less than 2 RTCCLK cycles. After reading the calendar for the first time, RSYF must be cleared by software, and software must wait until RSYF is set to 1 before reading the RTC_SUBS, RTC_TSH and RTC_DATE registers again.

After waking up from low-power mode, RSYF must be cleared by software. Software must then wait until RSYF is set again before reading the RTC_SUBS, RTC_TSH and RTC_DATE registers. The RSYF bit must be cleared after waking up and not before entering a low-power mode.

After a system reset, software must wait until RSYF is set to 1 before reading the RTC_SUBS, RTC_TSH, and RTC_DATE registers. In effect, a system reset resets the shadow registers to their default values.

After initialization, software must wait until RSYF is set before reading the RTC_SUBS, RTC_TSH, and RTC_DATE

registers.

After synchronization, software must wait until RSYF is set before reading the RTC_SUBS, RTC_TSH, and RTC DATE registers.

2. When bit BYPS is set to 1 in the RTC_CTRL register

Reading the calendar register can get the value directly from the calendar counter, so there is no need to wait for the RSF bit to be set. This is especially useful after exiting from low-power modes, where shadow registers are not updated. When the BYPS bit is set to 1, the results for different registers may not be consistent if the RTCCLK edge occurs between two read accesses to the register. Also, if an RTCCLK edge occurs during a read operation, the value in one of the registers may be incorrect. Software must read all registers twice, and then compare the two results to confirm that the data is consistent and correct. In addition, the software can also only compare the lowest bit of the results obtained by reading the calendar register twice.

Note: When BYPS=1, the instruction to read the calendar register requires an extra APB cycle to complete.

20.3.12 RTC sub-second register shift

The RTC can be synchronized with a high-precision remote clock. After reading the subsecond field (RTC_SUBS or RTC_TSSS), the precise offset between the remote clock and the time maintained by the RTC can be calculated. The RTC can then be adjusted to remove this offset by using RTC_SCTRL to shift its clock by a fraction of a second.

RTC_SUBS contains the value of the synchronous prescaler counter. This allows calculation of the precise time maintained by the RTC with a resolution of 1 / (DIVS + 1) seconds. Therefore, the resolution can be increased by increasing the value of the synchronous prescaler (DIVS[14:0]). When DIVS is set to 0x7FFF, the maximum resolution (30.52us, clock frequency is 32768 Hz clock) can be obtained.

However, increasing DIVS means that DIVA must be decreased in order to keep the sync prescaler output at 1 Hz. In this way, the output frequency of the asynchronous prescaler will increase, which will increase the dynamic power consumption of the RTC.

The RTC can be fine-tuned using the RTC Shift Control Register (RTC_SCTRL). RTC_SCTRL can be written to at a resolution of 370 / 400 with a size of 1/(DIVS + 1) seconds, shifting (delaying or advancing) the clock by up to 1 second. In this shift operation, the SUBF[14:0] value is added to the sub-second register SS[15:0]. This will delay the clock. If the AD1S bit is set to 1 at the same time, one second will be added and at the same time the time will be subtracted by a fraction of a second, thus advancing the clock.

Before starting the translation operation, the user must check that SS[15] = 0 to ensure that overflow does not occur. Whenever a write operation is made to the RTC_SCTRL register, the hardware sets the SHOPF flag, indicating that a panning operation is pending. This bit is cleared by hardware once the translation operation is complete.

20.3.13 RTC digital clock precision calibration

The RTC frequency can be digitally calibrated with a resolution of approximately 0.954 ppm and a range of - 487.1ppm to +488.5 ppm. Frequency correction is done through a series of small adjustments (adding and/or subtracting individual RTCCLK pulses). These trims are very evenly distributed, so the RTC is calibrated reasonably well, even when observed over a short period of time.

When the input frequency is 32768 Hz, the period of precision digital calibration is about 2^{20} RTCCLK pulses or 32 seconds. This period is maintained by a 20-bit counter cal_cnt[19:0] clocked by RTCCLK.

The fine calibration register (RTC_CALIB) specifies the number of RTCCLK clock cycles to decrement in a 32-second period:

- When CM[0] is set to 1, only one pulse is reduced in a period of 32 seconds
- When CM[1] is set to 1, 2 cycles will be reduced
- When CM[2] is set, 4 cycles will be reduced
- By analogy, until CM[8] is set to 1, 256 cycles will be reduced

Note: CM[8:0] (*RTC_CALIB*) specifies the number of *RTCCLK* pulses to decrement in a 32-second period. The *CM* can reduce the *RTC* frequency by up to 487.1ppm while the *CP* can be used to increase the frequency by 488.5ppm when using the appropriate resolution. Setting *CP* to "1" effectively inserts an extra *RTCCLK* pulse every 2¹¹ *RTCCLK* cycles, which means an additional 512 clocks per 32-second cycle.

When used with CMs and CPs, an offset of -511 to +512 RTCCLK periods can be added over a 32-second period, corresponding to a calibration range of -487.1 ppm to +488.5 ppm with a resolution of approximately 0.954 ppm.

If the input frequency (FRTCCLK) is known, the effective calibration frequency (FCAL) can be calculated by the following formula:

 $F_{CAL} = F_{RTCCLK} * [1 + (CP * 512 - CM) / (220 + CM - CP * 512)]$

When DIVA<3 Calibration

When the asynchronous prescaler value (DIVA bit in the RTC_PRE register) is less than 3, the CP bit will not be able to be set. If CP is already set and the value of the DIVA bit is less than 3, then CP is ignored and the calibration operates as if CP equals 0.

To perform calibration with DIVA less than 3, the synchronous prescaler value (DIVS) should be reduced to speed up 8 RTCCLK clock cycles per second, which means an increase of 256 clock cycles per 32 seconds. Thus, using only the CM bits, you can effectively add 255 to 256 clock pulses every 32 seconds (corresponding to a calibrated range of 243.3 ppm to 244.1 ppm).

At a nominal RTCCLK frequency of 32768 Hz, when DIVA is equal to 1 (division factor of 2), DIVS should be set to 16379 instead of 16383 (4 less). The only other relevant case is when DIVA is equal to 0 and DIVS should be set to 32759 instead of 32767 (8 less).

If DIVS is reduced in this way, the following formula is used to calculate the effective frequency of the calibration input clock:

 $F_{CAL} = F_{RTCCLK} * [1 + (256 - CM) / (220 + CM - 256)]$

In this case, if RTCCLK happens to be 32768.00 Hz, then when CM[7:0] equals 0x100 (the middle of the CM range), the setting is correct.

Verify RTC Calibration

By measuring the precise frequency of RTCCLK, the correct CM and CP values are calculated to ensure the accuracy

of the RTC.

The precise frequency of the RTC is measured over a finite time interval, which may result in a measurement error of up to 2 RTCCLK clock periods within the measurement period, depending on how the digital calibration period is aligned with the measurement period. However, this measurement error can be eliminated if the measurement period is the same as the calibration period. In this case, the only observed error was that due to the resolution of the digital calibration.

■ By default, the calibration period is 32 seconds

Using this mode, the accuracy of measuring the 1Hz output within exactly 32 seconds can guarantee a measurement error value within 0.477 ppm (0.5 RTCCLK period in 32 seconds due to calibration resolution limitation).

■ Set the CW16 bit of the RTC_CALIB register to force a 16-second calibration period

In this case, the RTC accuracy can be measured within 16 seconds with a maximum error of 0.954 ppm (0.5 RTCCLK period in 16 seconds). However, due to the reduced calibration resolution, the long-term RTC accuracy is also reduced to 0.954 ppm. When CW16 is set, the CM[0] bit is always 0.

■ Set the CW8 bit of the RTC_CALIB register to force an 8-second calibration period

In this case, the RTC accuracy can be measured within 8 seconds with a maximum error of 1.907 ppm (0.5 RTCCLK cycles over 8 seconds). Long-term RTC accuracy is also down to 1.907 ppm. When CW8 is set to 1, the CM[1:0] bits will always remain 00.

Dynamic recalibration

When bit INITF=0 in register RTC_INITSTS, the calibration register (RTC_CALIB) can be updated dynamically, using the following procedure:

- Poll register RTC_INITSTS bit RECPF (recalibration pending flag)
- If the flag is 0, write new values to RTC CALIB if necessary. Then set RECPF to 1 automatically
- The new calibration settings will take effect within three ck_apre cycles after a write to RTC_CALIB

20.3.14 RTC low power mode

Lower Power Mode	Description
Idle	No effect
Idle	RTC interrupt can take the chip out of Idle mode
	When the RTC clock source is LSE or LSI, the RTC keeps
Standby/Sleep	working. RTC alarm, RTC wake-up will cause the device to exit
	Standby/Sleep mode.

20.4 RTC Registers

Note: Due to clock synchronization, changes to RTC registers need to be performed approximately 2 RTCCLK clock cycles later.

20.4.1 RTC register Address Map

Offset	Register	31	30	29 28	27	26	25 24		23	5	77	21	20	19	18	17	16	15	14	13	12	11	10	6	~	7	9	5	4	3	2	1	0
000h	RTC_TSH				Re	serve	d			APM	MIN	HOT[1:0]		1	HOU	[3:0]		Reserved	М	IT[2:	0]		MIU	[3:0]		Reserved	s	CT[2	:0]	:	SCU[3:0]	
-	Reset Value									0)		0	0	0	0	0	R	0	0	0	0	0	0	0	R	0	0	0	0	0	0	0
004h	RTC_DATE			Rese	ruad					YF	۲T[3	3:0]			YRU	[3:0]		W	WDU[2:0] WDU[3:0]				Reserved	DAT	[1:0]	I	DAU	[3:0]					
00411	Reset Value			Kese	liveu				0	0)	0	0	0	0	0	0	0	0	1	0	0	0 0 1			Rese	0	0	0	0	0	1	
008h	RTC_CTRL]	Reserved	1							BAKP	SUIH	AD1H	Reserved	WITEN	Reserved	ALAIEN	Reserved	WTEN	Reserved	ALAEN	WRPT	HFMT	BYPS	Rese	erved	-	WKUPSEL[2:0]	
	Reset Value														0	0	0		0		0		0		0	0	0	0		1	0	0	0
00Ch	RTC_INITSTS			Reserved					/ed	RECPF					RECPF		Reserved WTF MTF Reserved ALAF INITM INITF					RSYF	INITSF	SHOPF	WTWF	Reserved	ALAWF						
	Reset Value																0		0 0				0	0	0	0	0	0	1		1		
010h	RTC_PRE			Reserved								DIV	/A[6:	:0]			Reserved					DIVS[14:0]											
	Reset Value											0	0	0	0	0	0	1	1	1	1	1	1	1	1								
014h	RTC_WKUPT							Res	erve	d														WI	KUP	T[15:	0]						
	Reset Value														1	1 1 1 1 1 1 1				1	1	1	1	1	1	1	1						
01Ch	RTC_ALARMA	MASK4	WKDSEL	DTT[1:0]	Ι)UTC	3:0]		MASK3	APM	W H	IOT[1	1:0]	1	HOU	[3:0]		MASK2	MIT[2:0] MIU[3:0]				MASK1	S	ET[2:	0]	:	SEU[3:0]				
	Reset Value	0	0	0 0	0							0	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0	0											
024h	RTC_WRP											F	Resei	rved														ł	KEY	[7:0]			
	Reset Value																									0	0	0	0	0	0	0	0
028h	RTC_SUBS							Res	erve	d															SS[1	5:0]							
	Reset Value																	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						0								
02Ch	RTC_SCTRL	AD1S		Reserved SUBF[14:0]																													
	Reset Value	0										0	0																				
03Ch	RTC_CALIB			Reserved $\stackrel{\circ}{\square}$ $\stackrel{\circ}{\square}$ $\stackrel{\circ}{\square}$ Reserved CM[8:0]																													
	Reset Value							0	0 0 0 0 0 0				0																				
044h	RTC_ALRMASS		Reserved MASKSSB[3:0]					Reserved SSV[14:0]						1																			
	Reset Value											0	0																				

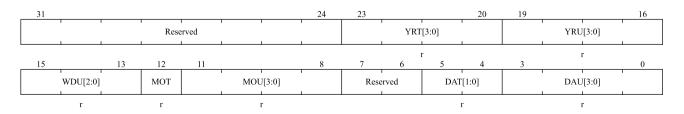
Table 20-1 RTC Register Address Map and Reset Value

20.4.2 RTC Calendar Time Register (RTC_TSH)

This register is a calendar time shadow register and can only be written in initialization mode.

Address offset: 0x00

Reset value: 0x0000 0000


31								23	22	21	20	19			16
	1		1	Reserved					APM	нот	[1:0]		HOU	[3:0]	
15	14		10	11			0	_	rw	r	N .	2	rv	N	â
			12	11			8	7	6		4				0
Reserved		MIT[2:0]	12		MIU	[3:0]	8	Reserved	6	SCT[2:0]	4	3	SCU	[3:0]	0

Bit field	Name	Description
31:23	Reserved	Always reads as 0.
22	APM	AM/PM format.
		0: AM format or 24-hour format
		1: PM format
21:20	HOT[1:0]	Describes the hour tens value in BCD format
19:16	HOU[3:0]	Describes the hour units value in BCD format
15	Reserved	Always reads as 0.
14:12	MIT[2:0]	Describes the minute tens value in BCD format
11:8	MIU[3:0]	Describes the minute units value in BCD format
7	Reserved	Always reads as 0.
6:4	SCT[2:0]	Describes the second tens value in BCD format
3:0	SCU[3:0]	Describes the second units value in BCD format

20.4.3 RTC Calendar Date Register (RTC_DATE)

This register is a calendar date shadow register and can only be written in initialization mode.

Address offset: 0x04

Bit field	Name	Description
31:24	Reserved	Always reads as 0.
23:20	YRT[3:0]	Describes the year tens value in BCD format
19:16	YRU[3:0]	Describes the year units value in BCD format
15:13	WDU[2:0]	Describes which Week day
12	МОТ	Describes the month tens value in BCD format
11:8	MOU[3:0]	Describes the month units value in BCD format
7:6	Reserved	Always reads as 0.
5:4	DAT[1:0]	Describes the date tens value in BCD format
3:0	DAU[3:0]	Describes the date units value in BCD format

20.4.4 RTC Control Register (RTC_CTRL)

Note: Due to clock synchronization, each change of the RTC_CTRL register needs to be performed after approximately 2 RTCCLK clock cycles.

Address offset: 0x08

31						-						19	18	17	16
			1			Reserved				1	1	1	BAKP	SU1H	AD1H
15	14	13	12	11	10	9	8	7	6	5	4	3	rw 2	rw	rw 0
Reserved	WTIEN	Reserved	ALAIEN	Reserved	WTEN	Reserved	ALAEN	WRPT	HFMT	BYPS	Rese	rved	W	KUPSEL[2	:0]
	rw		rw		rw		rw	rw	rw	rw				rw	

Bit field	Name	Description
31:19	Reserved	Always reads as 0.
18	BAKP	Daylight saving time record
		This bit is written by the user
17	SU1H	Subtract 1 hour (winter time change)
		1 hour will be subtracted to the calendar time when the current hour value is not 0.
		This bit is always read as 0.
		0: No effect.
		1: Subtracts 1 hour to the current time.
16	AD1H	Add 1 hour (summer time change)
		When this bit is set, 1 hour can be added to the calendar time. This bit is always read
		as.
		0: No effect.
		1: Adds 1 hour to the current time.
15	Reserved	Always reads as 0.

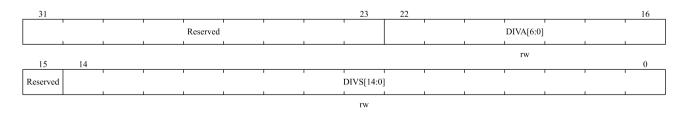
Bit field	Name	Description
14	WTIEN	Wakeup timer interrupt enable
		0: Disable wakeup timer interrupt.
		1: Enable wakeup timer interrupt.
13	Reserved	Always reads as 0.
12	ALAIEN	Alarm A interrupt enable
		0: Disable Alarm A interrupt
		1: Enable Alarm A interrupt
11	Reserved	Always reads as 0.
10	WTEN	Wakeup timer enable
		0: Disable wakeup timer
		1: Enable wakeup timer
9	Reserved	Always reads as 0.
8	ALAEN	Alarm A enable
		0: Disable Alarm A
		1: Enable Alarm A
7	WRPT	Unlock the write protection bit.
		0: Write protection takes effect
		1: Write protection disabled.
6	HFMT	Hour format bit
		0: 24 hour format
		1: Am/PM format
5	BYPS	Bypass values from the shadow registers
		0: Calendar values are copied from the shadow registers, which are refreshed every
		two RTCCLK cycles.
		1: Calendar values are copied directly from the calendar counters.
		Note: If the frequency of the APB1 clock falls below seven times the frequency of
		RTCCLK, RTC_CTRL.BYPS bit must be set to '1'
4:3	Reserved	Always reads as 0.
2:0	WKUPSEL[2:0]	Wakeup clock selection
		000: RTC clock is divided by 16
		001: RTC clock is divided by 8
		010: RTC clock is divided by 4
		011: RTC clock is divided by 2
		10x: ck_spre (usually 1Hz) clock is selected
		11x: ck_spre (usually 1Hz) clock is selected and 2 ¹⁶ is added to the
		RTC_WKUPT.WKUPT counter.

20.4.5 RTC Initial Status Register (RTC_INITSTS)

Address offset: 0x0C

31												18	17	16
		1	1	1	Rese	rved							RECPF	Reserved
15			11	10	9	8	7	6	5	4	3	2	r 1	0
	Reserved			WTF	Reserved	ALAF	INITM	INITF	RSYF	INITSF	SHOPF	WTWF	Reserved	ALAWF
		•	•	rc_w0		rc_w0	rw	r	rc_w0	r	r	r		 r

Bit field	Name	Description
31:17	Reserved	Always reads as 0.
16	RECPF	Recalibration pending flag
		The RECPF status flag is automatically set to '1' when software writes to the
		RTC_CALIB register, indicating that the RTC_CALIB register is blocked. After the
		new calibration settings are processed, this bit returns to '0'.
15:11	Reserved	Always reads as 0.
10	WTF	Wake up timer flag
		This flag is set by hardware when the value of wakeup auto-reload counter reaches 0.
		This flag is cleared by software by writing 0.
		This flag must be cleared by software at least 1.5 RTCCLK periods before WTF is set
		again.
9	Reserved	Always reads as 0.
8	ALAF	Alarm A flag
		This flag is set to '1' by hardware when the time/date registers value match the Alarm
		A register values.
		This flag can be cleared by software writing 0
7	INITM	Enter initialization mode
		0: Free running mode
		1: Enter initialization mode and set calendar time value, date value, and prescale
		value.
6	INITF	Initialization flag
		RTC is in initialization state when this bit is '1', and calendar time, date and prescale
		value can be updated.
		0: Calendar time, date and prescale value can not be updated
		1: Calendar time, date and prescale value can be updated
5	RSYF	Register synchronization flag
		This flag is set to '1' by hardware when the calendar value are copied into the shadow
		registers. This bit is cleared by hardware when in initialization mode, while a shift
		operation is pending (SHOPF=1), or when in bypass shadow register mode
		(RTC_CTRL.BYPS=1). This bit can also be cleared by software.
		It is cleared either by software or by hardware in initialization mode.
		0: Calendar shadow register not yet synchronized
		1: Calendar shadow register synchronized



Bit field	Name	Description
4	INITSF	Initialization status flag
		This flag is set to '1' by hardware when the calendar year field is different from 0 (which
		is the RTC domain reset state).
		0: Calendar has not been initialized
		1: Calendar has been initialized
3	SHOPF	Shift operation pending flag
		This flag is set to '1' by hardware as soon as a shift operation is initiated by a write to
		the RTC_SCTRL register. It is cleared by hardware when the corresponding shift
		operation has been completed, note that writing to the SHOPF bit has no effect.
		0: No shift operation is pending
		1: A shift operation is pending
2	WTWF	Wakeup timer write flag
		Set the WTEN bit to 0 in RTC_CTRL, after a maximum of 2 RTCCLKs, the hardware
		will set this bit to 1. Similarly, after the WTEN bit is set to 1, at most 2 RTCCLKs, the
		hardware clears this bit.
		When WTEN=0, WTWF=1, the wake-up timer value can be changed.
		0: Wakeup timer configuration update is not allowed
		1: Wakeup timer configuration update is allowed
1	Reserved	Always reads as 0.
0	ALAWF	Alarm A write flag.
		This flag is set to '1' by hardware when Alarm A values can be changed, after the
		RTC_CTRL.ALAEN bit has been set to 0.
		0: Alarm A update is not allowed
		1: Alarm A update is allowed

20.4.6 RTC Prescaler Register (RTC_PRE)

Address offset: 0x10

Reset value: 0x007F 00FF

Bit field	Name	Description
31:23	Reserved	Always reads as 0.
22:16	DIVA[6:0]	Asynchronous frequency division parameter bit.
		The formula is as follows:

Bit field	Name	Description
		ck_apre = RTCCLK/(DIVA+1)
15	Reserved	Always reads as 0.
14:0	DIVS[14:0]	Synchronous prescaler factor
		The formula is as follows:
		ck_spre = ck_apre/(DIVS+1)

20.4.7 RTC Wakeup Timer Register (RTC_WKUPT)

Address offset: 0x14

Reset value: 0x0000 FFFF

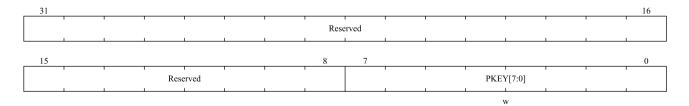
31												16
	1			I	Rese	erved	I		I	1		
	1		 	I I		1	1		1	I	II	
15												0
					WKUP	T[15:0]						

rw

Bit field	Name	Description
31:16	Reserved	Always reads as 0.
15:0	WKUPT[15:0]	Wake up auto-reload value bit.
		When the wake-up timer is enabled (WTEN is set to 1), the WTF flag is set to 1 every
		ck_wt period (WKUPT[15:0] + 1).
		The ck_wt period is selected by the WKUPSEL[2:0] bits of the RTC_CRTL register.
		Note: When WKUPSEL[2] = 1, the wake-up timer becomes 17 bits (WKUPSEL[1] is
		equivalent to WKUPT[16], that is, the most significant bit to be reloaded into the
		timer).
		The first assertion of WTF occurs (WKUPT +1) ck_wt cycles after the assertion of
		WTEN. It is forbidden to set WKUPT [15:0] to 0x0000 when WKUPSEL
		[2:0]=011(RTCCLK/2).

20.4.8 RTC Alarm A Register (RTC_ALARMA)

Address offset: 0x1C


31	30	29	28	27			24	23	22	21	20	19		16
MASK4	WKDSEL	DTT	`[1:0]		DTU[3:0]			MASK3	APM	нот	[1:0]	HOU[3:0]		
rw 15	rw 14	r	w 12	11	r	rw 8		rw 7	rw 6	rw 4		3	rw	0
MASK2		MIT[2:0]			MIU[3:0]		MASK1		SET[2:0]			SEU[3:0]		

Bit field	Name	Description
31	MASK4	Alarm A date mask bits.
		0: Alarm A is set if the date/day matches
		1: Date/day is irrelevant in alarm A comparison
30	WKDSEL	Week day selection
		0: DTU[3:0] represents the date units
		1: DTU[3:0] represents week day only. DTT[1:0] is not considered
29:28	DTT[1:0]	Describes the date tens value in BCD format
27:24	DTU[3:0]	Describes the date units value in BCD format
23	MASK3	Alarm hours mask
		0: If the hours match, alarm A is set
		1: In the alarm clock A comparison, the hour is irrelevant
22	APM	AM/PM notation
		0: AM or 24 hours format
		1: PM format
21:20	HOT[1:0]	Describes the hour tens value in BCD format
19:16	HOU[3:0]	Describes the hour units value in BCD format
15	MASK2	Alarm minutes mask
		0: If the minutes match, alarm A is set
		1: Minutes don't matter in alarm clock A comparison
14:12	MIT[2:0]	Describes the minute tens value in BCD format
11:8	MIU[3:0]	Describes the minute units value in BCD format
7	MASK1	Alarm seconds mask
		0: If the seconds match, alarm A is set
		1: In the alarm A comparison, the seconds are irrelevant
6:4	SET[2:0]	Describes the second tens value in BCD format
3:0	SEU[3:0]	Describes the second units value in BCD format

20.4.9 RTC Write Protection register (RTC_WRP)

Address offset: 0x24

Bit field	Name	Description
31:8	Reserved	Always reads as 0.
7:0	PKEY[7:0]	Write protection key.

Bit field	Name	Description
		This byte can be written to by software.
		Reading this byte always returns 0x00.
		For detail on how to unlock RTC register write protection, see chapter RTC register
		write protection.

20.4.10 RTC Sub-second Register (RTC_SUBS)

Address offset: 0x28

Reset value: 0x0000 0000

31				-			-			-	-		-		16
'	Reserved														
			I									I	I		
15							-								0
· ·	1 1		I	1			000	5.01		1		1	1		
	SS[15:0]														

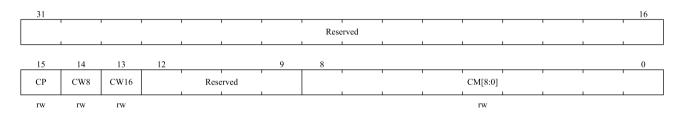
Bit field	Name	Description
31:16	Reserved	Always reads as 0.
15:0	SS[15:0]	Sub-second bit.
		SS[15:0] is the synchronous prescaler counter value. This subsecond value can be
		derived from the following formula:
		Subsecond value = $(DIVS - SS) / (DIVS + 1)$
		Note: SS can be greater than DIVS only after performing pan operation. In this case,
		the correct time/date is one second behind the time/date indicated by
		RTC_TSH/RTC_DATE.

20.4.11 RTC Shift Control Register (RTC_SCTRL)

Address offset: 0x2C

Reset value: 0x0000 0000

31	30								16
AD1S		1			Reserved				
w 15	14								 0
Reserved					SUBF[14:0]]			


Bit field	Name	Description
31	AD1S	Add one second
		0: no effect
		1: Add one second to the clock/calendar

Bit field	Name	Description
		This bit is write-only and always reads as 0. Writing to this bit has no effect when a
		panning operation is pending (SHOPF=1 in RTC_INITSTS).
		This function should be used in conjunction with SUBF (see description below) to
		efficiently add sub-second values to the clock of the atomic operation mechanism.
30:15	Reserved	Always reads as 0.
14:0	SUBF[14:0]	Subtract a fraction of a second
		This bit is write-only and always reads as 0. Writing to this bit has no effect when a
		translation operation is pending (SHOPF=1 in RTC_INTSTS).
		The value written to SUBF will be added to the synchronous prescaler counter. Since
		this counter counts down, this operation effectively subtracts (delays) the following
		from the clock:
		Delay (seconds) = SUBF / (DIVS + 1)
		When the AD1S function is used in conjunction with SUBF, it effectively adds a sub-
		second value to the clock (advancing the clock), which advances the clock by:
		Advance (seconds) = $(1 - (SUBF / (DIVS + 1)))$.
		Note: Writing to SUBF will clear RSYF. Software then waits until RSYF=1 to determine
		when the shadow registers have been updated to post-shift.

20.4.12 RTC Calibration Register (RTC_CALIB)

Address offset: 0x3C

Bit field	Name	Description
31:16	Reserved	Always reads as 0.
15	СР	Increase frequency of RTC by 488.5 ppm
		This feature should be used in conjunction with CM, which reduces the frequency of
		the calendar at high resolutions. If the input frequency is 32768 Hz, the number of
		RTCCLK pulses added in the 32-second window is calculated as follows:
		(512 * CP) - CM
		See RTC Precision Digital Calibration.
		0: Do not increase RTCCLK pulse
		1: Effectively inserts one RTCCLK pulse every 211 pulses (increases the frequency of
		the RTC by 488.5ppm).
14	CW8	Select an 8-second calibration cycle period

Bit field	Name	Description
		0: Not effect.
		1: Select an 8-second calibration period.
		When CW8 is set to '1', the 8-second calibration cycle period is selected.
		Note: when $CW8 = 1$, $CM[1:0]$ will always be' 00'
13	CW16	To select a 16-second calibration cycle period
		0: Not effect.
		1: Select a calibration period of 16 seconds. If CW8 = 1, this bit cannot be set to 1.
		Note: when $CW16 = 1$, $CM[0]$ will always be '0'
12:9	Reserved	Always reads as 0.
8:0	<u>CM[8:0]</u>	Negative calibration bits
		The frequency of the calendar is reduced by masking CM pulses within 2 ²⁰ RTCCLK
		pulses (32 seconds if the input frequency is 32768 Hz). Its resolution is 0.9537 ppm.
		To increase the frequency of the calendar, this function should be used in conjunction
		with the CP.

20.4.13 RTC Alarm A sub-second register (RTC_ALRMASS)

Address offset: 0x44

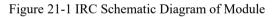
31			28	27			24	23	 				 16
	Rese	erved			MASKS	SSB[3:0]	1		1	Res	erved	1	
15	14				r	w		•					0
Reserved						1		SSV[14:0]			1	1	
								rw					

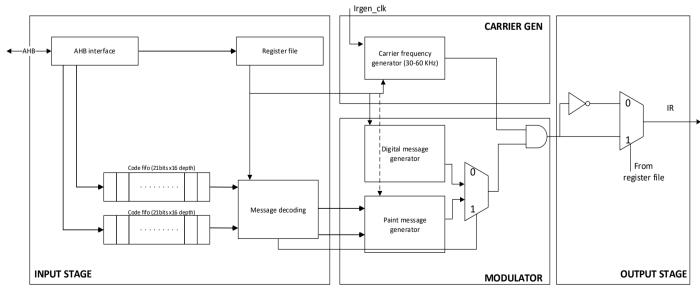
Bit field	Name	Description
31:28	Reserved	Always reads as 0.
27:24	MASKSSB[3:0]	Mask the most significant bit from this bits.
		0: Subseconds of alarm A are not compared. Set the alarm when the seconds unit is
		incremented (assuming the rest of the fields match).
		1: In Alarm A comparison, SSV[14:1] are don't care bits. Only SSV[0] is compared.
		2: In Alarm A comparison, SSV[14:2] are don't care bits. Only SSV[1:0] are
		compared.
		3: In Alarm A comparison, SSV[14:3] are don't care bits. Only SSV[2:0] is compared.
		12: In Alarm A comparison, SSV[14:12] are don't care bits. Compare SSV[11:0].
		13: In Alarm A comparison, SSV[14:13] are don't care bits. Compare SSV[12:0].
		14: SSV[14] is a don't care bit in Alarm A compare. Compare SSV[13:0].
		15: All 15 SSV bits are compared and must all match to activate the alarm.
		The overflow bit (bit 15) of the synchronous counter is never compared. This bit is

Bit field	Name	Description					
		not 0 only after a translation operation has been performed.					
23:15	Reserved	Always reads as 0.					
14:0	SSV[14:0]	Sub seconds value					
		This value is compared with the contents of the synchronous prescaler counter to					
		determine if Alarm A should be activated. Only bits 0 to MASKSSB-1 are compared.					

21 Infrared controller (IRC)

21.1 Introduction to IRC


By providing a flexible means, infrared generator supports software configure the infrared protocol signals commonly used by remote control products.


The IRC module has an effective message queue, in which the user can describe the waveform of a specific IR protocol with only a few bytes of user-defined commands that are independent of the protocol. See Figure 21-1 Schematic Diagram of IRC Module.

21.2 Main features of IRC

- Carrier frequency range: 30 kHz~60 kHz
- Support pulse width coding and pulse space coding
- Support Manchester coding
- Support carrier-free mode
- Support any combination of Mark code and Space code
- Provide 16 (depth) × 21-bit (width) Code FIFO for storing coded commands
- Support repeatedly sending commands configured by software
- Generate interrupt upon the end of transmission

21.3 Function description of IRC

Nations Technologies Inc. Tel: +86-755-86309900 Email: info@nationstech.com Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North. Nanshan District, Shenzhen, 518057, P.R.China

IR generator is a concept based on describing data in two different ways, and supports any IR protocol:

• Digital Message: representing logic 1 or 0. The duration of Mark and Space can be configured.

• Paint Message: representing a fully customized "paint" waveform. The effective way to describe this is to encode the symbol type (Mark/Space) and the symbol duration in a codeword so that the hardware can understand and correctly modulate accordingly.

The combination of commands consists of some control words that contain Digital Message or Paint Message in an effective way.

An example of NEC command of IR code is presented in the figure below:

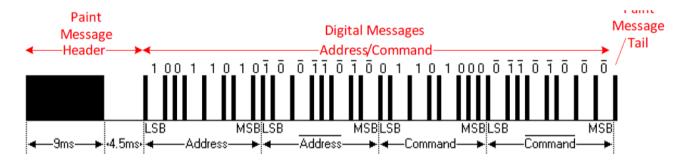


Figure 21-2 Schematic Diagram of Commands Corresponding to NEC Code

Refer to the following table for the coding of Digital Message and Paint Message:

Digital message code:

Bit	Name	Description
[20]	Message Type	1 = Digital message.
[19:16]	Message length	Payload effective bits-1
[15:0]	Message payload	Logic "0" and "1"

Paint message code:

Bit	Name	Description
[20]	Message type	0 = Paint message
[19:15]	Reserve	

[14]	Symbol type	1 = Mark 0 = Space
[13:0]	Duration	Mark/Space duration (cycles of carrier clock)

IRC controller consists of input user interface, carrier generator and modulator.

21.3.1 Input user interface

It consists of APB register interface, two FIFO and message decoding engine.

This sub block is responsible for system configuration, and for the storage and decoding of the coded words to be resided in the code FIFO.

Repeat FIFO can be used to load special commands. If a key is pressed but not released, for example, the same command has to be sent repeatedly at a specified interval.

The output of code FIFO is decoded by the message decoding engine and sent to the next sub module modulator in the form of a command.

This sub module is also responsible for triggering the repetition timer when a key is pressed repeatedly. The repetition time and the message to be sent vary depending on the protocol.

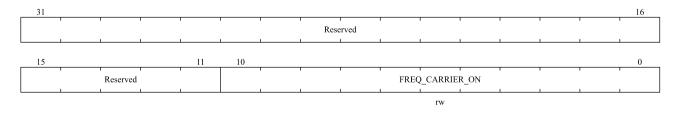
21.3.2 Carrier generator

This sub module, which is responsible for generating carrier frequency, has its own gated clock and can generate carrier clock with a frequency range of 30 - 60khz.

21.3.3 Modulator

The sub module is responsible for generating modulation signal which gates the carrier clock pulse sequence. The modulator state machine will make selection between Digital or Paint information and control the gating accordingly. Users can also program the signal reverse output.

21.4 IRC register


21.4.1 IRC register overview

			~	~	~	~		10					_	~	~~	~	10	10			~		0					Г	<u> </u>	1			
Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	2	9	5	4	3	5	-	0
000h	FREQ_CARR_ON										R	eserv	ed													RREQ_CARRIER_ON							
000h	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	FREQ_CARR_OFF										R	eserv	ed													FRE	EQ_C	ARR	IER_	OFF			
004h	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
008h	LOGIC_ONE_TIME								Rese	erved									Ι	.OGI	C_ON	NE_N	IARK	2			1	LOGI	C_01	NE_S	PAC	E	
008n	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
00Ch	LOGIC_ZERO_TIME								Rese	erved									L	OGIC	_ZEI	RO_N	/ARI	K			L	.OGI	C_ZE	RO_S	SPAC	Έ	
oocn	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
010h	IR_CTRL											-	Keserved											NO_CARR_MOD	IR_IRQ_EN	IR_LOGIC_ONE POPMAT	IR_LOGIC_ZER	IR_INVERT_OU	Reserved	IR_TX_START	IR_ENABLE	IR_REO_FIFO_R ester	IR_CODE_FIFO_ DECET
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
014h	IR_STATUS					-			-		-	Reserved	-	-	-							IR_IRQ_FLG	IR_BUSY		IR_REP_FIFO_W	RDS				IR_CODE_FIFO_	WORDS		
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.1.01	IR_REPAT_TIME				,	,	,		Rese	erved			,	,										IR_R	EPE	AT_T	IME						
018h	Derect Melers			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Reset Value	0	0	0	Ŭ		Reserved							IR_CODE_FIFO_DATA																			
010	IR_CODE_FIFO	0	0	0		L	eserve	ed	<u> </u>												IR_C	ODE	_FIF	O_DA	TA								
01Ch		0	0	0	0	L	eserve 0	ed 0	0	0	0	0	0	0	0	0	0	0	0	0	IR_C 0	ODE 0	_FIF 0	O_DA 0	TA 0	0	0	0	0	0	0	0	0
01Ch 020h	IR_CODE_FIFO				1	R0 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	0	-	0	0	0	0	0	0	0

Table 21-1 IRC Register overview

21.4.2 IRC carrier clock high-duration register (FREQ_CARR_ON)

Offset address: 0x00

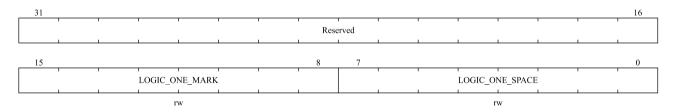
31:11	Reserved	Always read as 0.
-------	----------	-------------------

10:0	FREQ_CARRIER_ON	Define the high duration of carrier clock (the number of AHB bus clock cycles is not						
		allowed to be configured as 0)						

21.4.3 IRC carrier clock low-duration register (FREQ_CARR_OFF)

Offset address: 0x04

Reset value: 0x0000 0001


31															16
	I .				1		Rese	rved				1		1	
	1	I		1	1		1				1	1	I	1	
1.7					10										0
15	1			11	10		1								
		Reserved			FREQ_CARRIER_OFF										
L	1	1		1		1	1				1	I	I	I	
										rw					

31:11	Reserved	Always read as 0.					
10:0	FREQ_CARRIER_OFF	Define the low duration of carrier clock (the number of AHB bus clock cycles is not					
		allowed to be configured as 0)					

21.4.4 IRC logic 1 time configuration register (LOGIC_ONE_TIME)

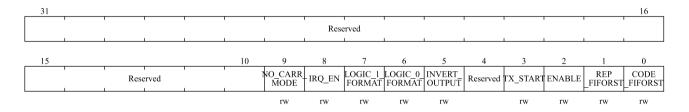
Offset address: 0x08

Reset value: 0x0000 0101

31:16	Reserved	Always read as 0.
15:8	LOGIC_ONE_MARK	Logic 1 MARK time (carrier clock cycle)
7:0	LOGIC_ONE_SPACE	Logic 1 SPACE time (carrier clock cycle)

21.4.5 IRC logic 0 time configuration register (LOGIC_ZERO_TIME)

Offset address: 0x0C



31													 16
		1				Rese	erved	1	1				
15			•			8	7						0
	1	1	LOGIC_ZE	RO_MARF	ι ζ		,	r I	1	LOGIC_ZE	RO_SPAC	E	
			r	w						r	w		

31:16	Reserved	Always read as 0.
15:8	LOGIC_ZERO_MARK	Logic 0 MARK time (carrier clock cycle)
7:0	LOGIC_ZERO_SPACE	Logic 0 SPACE time (carrier clock cycle)

21.4.6 IRC Control register (IR_CTRL)

Offset address: 0x10

31:10	Reserved	Always read as 0.
9	NO_CARR_MODE	Carrier-free mode selection:
		0: Carrier mode
		1: Enable carrier-free mode, and signal output has no carrier modulation
8	IR_IRQ_EN	IRC module interrupt enable selection
		0: Disable IRC interrupt
		1: Enable IRC interrupt
7	IR_LOGIC_ONE_FORMAT	Logic 1 format
		0: MARK information comes before SPACE information
		1: SPACE information comes before MARK information
6	IR_LOGIC_ZERO_FORMAT	Logical 0 format
		0: MARK information comes before SPACE information
		1: SPACE information comes before MARK information
5	IR_INVERT_OUTPUT	Infrared transmission signal reverse output enable
		0: Normal output of infrared transmission signal
		1: Reverse output of infrared transmission signal
4	Reserved	Always read as 0.
3	IR_TX_START	IR transmission control bit.
		0: IR transmission end (automatically clear CODE or REPEAT FIFO)

		1: IR transmission start command
		Note: After writing CODE or REPEAT FIFO data, write 1 to start transmission;
		When the word number of CODE or REPEAT FIFO is 0, write 0 to end
		transmission;
2	IR_ENABLE	IR module enable selection
		0: The IR module is not enabled, and the internal FIFO pointer is at reset value
		1: Start IR module enable
1	IR_REP_FIFO_RESET	REPEAT FIFO clear
		0: Do not empty REPEAT FIFO
		1: Clear REPEAT FIFO when IR_TX_START is valid
0	IR_CODE_FIFO_RESET	CODE FIFO clear
		0: Do not clear the CODE FIFO
		1: Clear CODE FIFO when IR_TX_START is valid

21.4.7 IRC status register (IR_STATUS)

Offset address: 0x14

Reset value: 0x0000 0000

31															16
							Rese	erved							
15			12	11	10	9			6	5				1	0
	Rese	erved	1	IR IRQ_FLG	IR_BUSY	Ι	R_REP_FIF	FO_WORD	s		IR	_CODE_F	i ifo_wori	DS	1
	rw rw rw											r	w		

31:12	Reserved	Always read as 0.
11	IR_IRQ_FLG	Transmission completion flag
		If IR_TX_START in IR_CTRL register is set and both CODE and REPEAT FIFO
		are cleared, the bit should be set by hardware.
		This bit is cleared by the software.
		If the IR_IRQ_EN in IR_CTRL register is set, an interrupt will be generated.
		0: Transmission completion not detected.
		1: Transmission completion detected.
10	IR_BUSY	IRC busy flag
		0: IRC module idle
		1: IRC module busy
9:6	IR_REP_FIFO_WORDS	Number of words in REPEAT FIFO
5:0	IR_CODE_FIFO_WORDS	Number of words in CODE FIFO

21.4.8 IRC repeat time register (IR_REPEAT_TIME)

Offset address: 0x18

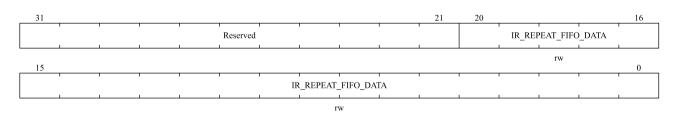
Reset value: 0x0000 0000

31							-				 			16
	1	1	I	1			Rese	erved		I	1	I	I	
		I	I				I	I		I	 I		I	
15														0
							IR_REPE	AT_TIME		1				
											· · · · ·			

31:16	Reserved	Always read as 0.
15:0	IR_REPEAT_TIME	Define the repetition time (number of carrier clock cycles).
		Repetition timer starts counting from the protocol frame header and stops after the
		defined repetition time.

21.4.9 IRC CODE FIFO data register (IR_CODE_FIFO)

Offset address: 0x1C


Reset value: 0x0000 0000

31:21	Reserved	Always read as 0.
20:0	IR_CODE_FIFO_DATA	Write data in CODE FIFO

21.4.10 IRC REPEAT FIFO data register (IR_REPEAT_FIFO)

Offset address: 0x20

31:21	Reserved	Always read as 0.
20:0	IR_REPEAT_FIFO_DATA	Write data in REPEAT FIFO

22 Key Detection (KEYSCAN)

22.1 Introduction to KEYSCAN

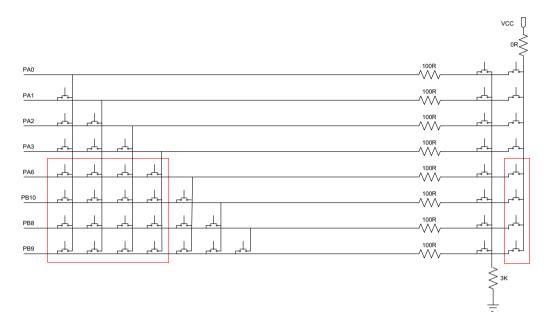
As a common IO interaction module, KEYSCAN module is mainly used in remote control and other scenarios where multiple buttons are required.

22.2 Main features of KEYSCAN

Mounted on the APB bus, KEYSCAN supports automatic scanning or low-power scanning during system sleep/non-sleep.

- Support 8/10/13 IO ports respectively corresponding to 44/65/104 keys.
- Button debounce, and configurable time.
- Support three modes: automatic scanning, software scanning and low-power scanning.
 - Automatic mode: it is able to configure an automatic scanning mode that allows for start at a fixed time interval.
 - Low power consumption mode: a canning mode that detects the key in the red box below to start a round for a total of three times
 - Software mode: scanning mode triggered by software.
- Support key interrupt and flag bit.
- All keys includes matrix keyboard area and independent keyboard area.
- Each column of independent key area only supports press one key. If, at this point, there is a key press in the independent key area, the operation on the matrix keyboard area will be considered invalid. If no key press occurs in the independent key area, the key detection module supports press one or more keys without electrical direct connection attribute in the area.

22.3 Function description of KEYSCAN


After the KEYSCAN function is enabled, a total of 13 IOs, including PA0/PA1/PA2/PA3/PA6 and PB10/PB8/PB9/PA4/PA5/PB0/PB1/PB2, can be used for key scanning. KEYSCAN supports at most 104 keys, including 78 keys at matrix keyboard area and 26 keys at independent keyboard area.

KEYSCAN will support 44 keys, including 28 keys at matrix keyboard area and 16 keys at independent keyboard area, when 8 IO keys are configured for scanning. PA4/PA5/PB0/PB1/PB2 are not used as keys.

KEYSCAN will support 65 keys, including 45 keys at matrix keyboard area and 20 keys at independent keyboard area, when 10 IO keys are configured for scanning. PB0/PB1/PB2 are not used as keys.

KEYSCAN will support 104 keys, including 78 keys at matrix keyboard area and 26 keys at independent keyboard area, when 13 IO keys are configured for scanning.

Figure 22-1 Configurable IOs- Wakeup Key Area in Low Power Consumption Mode

Figure 22-2 Configurable IOs- Wakeup Key Area in Low Power Consumption Mode

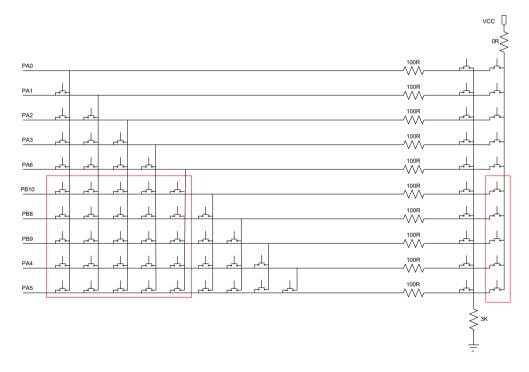


Figure 22-3 Configurable IOs- Wakeup Key Area in Low Power Consumption Mode

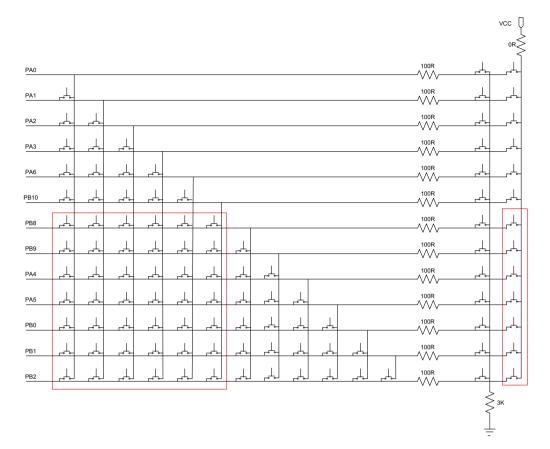


Table 22-1 Key Information Sheet of KEYSCAN

REG	BIT	KEY_ID														
KEY	[15:0			KPB2L	KPB1L	KPB0L	KPA5L	KPA4	KPB9L	KPB8L	KPB10	KPA6L	KPA3L	KPA2L	KPA1L	KPA0L
INF]							L			L					
00	[31:1 6]			KPB2H	KPB1H	КРВ0Н	KPA5 H	KPA4 H	KPB9 H	KPB8 H	KPB10 H	KPA6 H	KPA3 H	KPA2 H	KPA1 H	KPA0 H
KEY INF	[15:0	KPB10P B6	KPB10 PA3	KPB10 PA2	KPB10P A1	KPB10 PA0	KPA6P A3	KPA6P A2	KPA6P Al	KPA6P A0	KPA3P A2	KPA3P Al	KPA3P A0	KPA2P Al	KPA2P A0	KPA1 PA0
01	[31:1 6]			KPB9P B8	KPB9P B10	KPB9P A6	KPB9P A3	KPB9P A2	KPB9P Al	KPB9 PA0	KPB8P B10	KPB8P A6	KPB8P A3	KPB8P A2	KPB8P Al	KPB8P A0
KEY INF	[15:0]								KPA4P B9	KPA4P B8	KPA4P B10	KPA4P A6	KPA4P A3	KPA4P A2	KPA4P Al	KPA4P A0

02	[31:1 6]						KPA5P A4	KPA5P B9	KPA5P B8	KPA5P B10	KPA5P A6	KPA5P A3	KPA5P A2	KPA5P Al	KPA5P A0
KEY INF	[15:0					KPB0P A5	KPB0P A4	KPB0P B9	KPB0P B8	KPB0P B10	KPB0P A6	KPB0P A3	KPB0P A2	KPB0P Al	KPB0P A0
03	[31:1 6]				KPB1P B0	KPB1P A5	KPB1P A4	KPB1P B9	KPB1P B8	KPB1P B10	KPB1P A6	KPB1P A3	KPB1P A2	KPB1P A1	KPB1P A0
KEY INF	[15:0			KPB2 PB1	KPB2 PB0	KPB2 PA5	KPB2P A4	KPB2P B9	KPB2P B8	KPB2P B10	KPB2P A6	KPB2P A3	KPB2P A2	KPB2P Al	KPB2P A0
O4	[31:1 6]														

22.4 Description of KEYSCAN register

22.4.1 KEYSCAN register overview

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
000h	KEYCR					Keserved				KEY_IRP	KEY_INTEN				Reserved					KEY_INFO_CLR	SOFT_START	KEV MASK			KEY_WTS				KEY_DTS	KEYSCAN_MOD	Е	Reserved	KEY_EN
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
004h	KEYDATA0	R	eserv	ed						KE	YINI	701						R	eserv	ed							KEY	INFO	0	-			
004n	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
008h	KEYDATA1		Reserved								KEYINF03							Reserved									KEYINF02						
	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00071	KEYDATA2		-	R	eserv	ed						KE	YINI	705		-					Rese	erved							KEYINF	D4			
00Ch	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0101	KEYDATA3		R	eserv	ed						KE	YINF	FO7							Rese	rved							KE	YINF06				
010h	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
014h	KEYDATA4										Rese	rved															KE	EYIN	FO8				
014n	Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 22-2 KEYSCAN register overview

22.4.2 KEYSCAN control register (KEYCR)

Offset address: 0x00

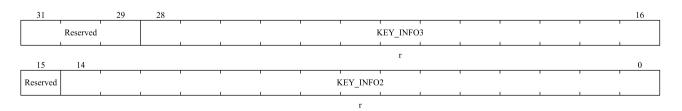
31					-	-	24	23	22	21				-	16
	1		Rese	rved	1	1	1	KEY_IRP	INTEN			Rese	rved	1	
15	14	13	12	11	10	9		rc_w1 7	rw 6		4	3	2	1	0
Rese	erved	INFO_CLR	SOFT START	KEY_	MASK		KEY_WTS			KEY_DTS		KEYSCA	N_MODE	Reserved	KEY_EN
		rw	rw	r	w		rw			rw		r	w		rw

Bit field	Name	Description
31:24	Reserved	Always read as 0.
23	KEY_IRP	Keyboard detection interrupt status bit, write 1 and clear
		0: Non interrupt
		1: Key press and the existence of interrupt is detected
22	KEY_INTEN	Interrupt enable bit
		0: Disable key interrupt
		1: Enable key interrupt
21:14	Reserved	Always read as 0.
13	KEY_INFO_CLR	KEYDATA information area clearing
		0: Do not clear any KEYDATA information
		1: Clear all KEYDATA information
12	SOFT_START	Software mode enable signal
		0: Do not start software mode scanning
		1: Start software mode scan
11:10	KEY_MASK	IO selection configuration
		00:13 IO, 104 keys at most
		01: 8 IO, 44 keys at most
		10: 10 IO, 65 keys at most
		Default: 13 IO, 104 keys at most
9:7	KEY_WTS	Time interval of each round of keyboard scanning
		000:0ms
		001:32ms
		010:64ms
		011:96ms
		100:128ms
		101:160ms
		110:192ms
		111:224ms
		Default:0ms
6:4	KEY_DTS	Debouncing time selection
		000:10ms
		001:20ms
		010:40ms

Bit field	Name	Description
		011:80ms
		100:160ms
		101:320ms
		110:640ms
		Default:10ms
3:2	KEYSCAN_MODE	Keyboard scanning mode selection
		00: Automatic mode
		01: Software mode
		10: Low power consumption mode
		Default: Automatic mode
1	Reserved	Always read as 0.
0	KEY_EN	Enable/disable keyboard scanning module
		0: Disable keyboard scanning
		1: Enable keyboard scanning module

22.4.3 KEYSCAN INFO register 0 (KEYDATA0)

Offset address: 0x04


Reset value: 0x0000 0000

31		29	28			-							16
	Reserved						ŀ	KEY_INFO	1				
15	1	13	12	1	1	1	1	r		1	1	I	0
	Reserved	15					ŀ	KEY_INFO	D				
	1		1		1	1		r		1		1	

31:29	Reserved	Always read as 0.
28:16	KEY_INFO1	Information on the first line of keys in the independent key area
15:13	Reserved	Always read as 0.
12:0	KEY_INFO0	Information on the second line of keys in the independent key area

22.4.4 KEYSCAN INFO register 1 (KEYDATA1)

Offset address: 0x08

31:29	Reserved	Always read as 0.
28:16	KEY_INFO3	Information on the keys from sixth line (PB8) to the seventh line (PB9) in the matrix
		keyboard area
15	Reserved	Always read as 0.
14:0	KEY_INFO2	Information on the keys from first line (PA1) to the fifth line (PB10) in the matrix
		keyboard area

22.4.5 KEYSCAN INFO register 2 (KEYDATA2)

Offset address: 0x0C

Reset value: 0x0000 0000

31						25	24		 					16
	1	1	Reserved	1	1	1			k	KEY_INFO	5	1	1	
15							8	7		r				0
			Rese	erved						KEY_	INFO4			
											r			

31:25	Reserved	Always read as 0.
24:16	KEY_INFO5	Information on the keys in the ninth line (PA5) in the matrix keyboard area
15:8	Reserved	Always read as 0.
7:0	KEY_INFO4	Information on the keys in the eighth line (PA4) in the matrix keyboard area

22.4.6 KEYSCAN INFO register 3 (KEYDATA3)

Offset address: 0x10

Reset value: 0x0000 0000

31				27	26								16
		Reserved						K	EY_INFO	7			
15					10	9			r				0
	1	Rese	erved						KEY_	INFO6		1	

31:27	Reserved	Always read as 0.
26:16	KEY_INFO7	Information on the keys in the eleventh line (PB1) in the matrix keyboard area
15:10	Reserved	Always read as 0.
9:0	KEY_INFO6	Information on the keys in the tenth line (PB0) in the matrix keyboard area

22.4.7 KEYSCAN INFO register 4 (KEYDATA4)

Offset address: 0x14

Reset value: 0x0000 0000

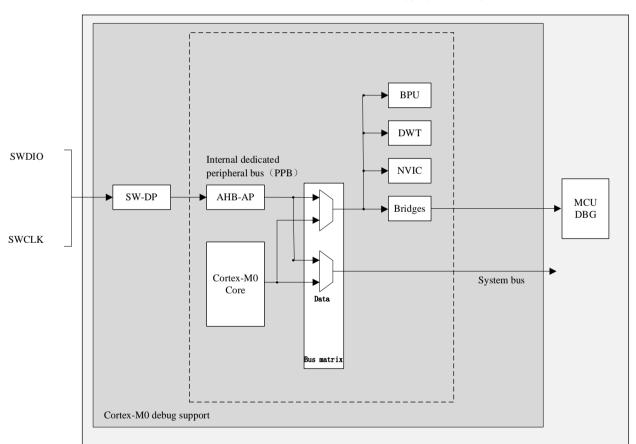
31												 	 16
		•		•	•		Rese	erved	•	•	•		
	1	1	1	1	1	1	1	1	1	1	1	 	
15			12	11								 	 0
	Rese	erved							KEY_	INFO8			
	1		1					1		r			,,

31:12	Reserved	Always read as 0.
11:0	KEY_INFO8	Information on the keys in the twelfth line (PB2) in the matrix keyboard area

For the detailed definition of the KEYSCAN INFO register, refer to the KEYSCAN key information table.

This register is readable, and the content of the INFO register is cleared by writing 1 to bit13 of the control register, and the bit corresponding to the detected key is updated after each key scan.

23 Debug support (DBG)


23.1 Overview

N32WB03x uses Cortex®-M0 core, which integrates hardware debugging module. Support instruction breakpoint (stop when instruction fetches value) and data breakpoint (stop when data access). When the core is stopped, the user can view the internal state of the core and the external state of the system. After the user's query operation is completed, the core and peripherals can be restored, and the corresponding program can continue to be executed.

The hardware debugging module of the N32WB03x core can be used when it is connected to the debugger (when it is not disabled).

N32WB03x supports the following debugging interfaces:

Serial interface

The ARM Cortex®-M0 core hardware debugging module can provide the following debugging functions:

- SW-DP: Serial debugging port
- AHP-AP: AHB access port

- BPU: Breakpoint generation
- DWT: Data trigger

Reference:

- Cortex[®]-M0 Technical Reference Manual (TRM)
- ARM debug interface V5 structure specification
- ARM Core Sight development tool set (r1p0 version) technical reference manual

23.2 SWD function

The debugging tool can call the debugging function through the above-mentioned SWD debugging interface.

23.2.1 Pin assignment

SWD (serial debug) interface consists of two pins: SWCLK (clock pin) and SWDIO (data input and output pin) to provide two-pin interface.

Refer to the GPIO chapter for the pin assignment of the SW debugging interface.

24 Version history

Date	Version	Modify
2022.09.19	V1.3	Initial version

25 Notice

This document is the exclusive property of Nations Technologies Inc. (Hereinafter referred to as NATIONS). This document, and the product of NATIONS described herein (Hereinafter referred to as the Product) are owned by NATIONS under the laws and treaties of the People's Republic of China and other applicable jurisdictions worldwide.

NATIONS does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. Names and brands of third party may be mentioned or referred thereto (if any) for identification purposes only.

NATIONS reserves the right to make changes, corrections, enhancements, modifications, and improvements to this document at any time without notice. Please contact NATIONS and obtain the latest version of this document before placing orders.

Although NATIONS has attempted to provide accurate and reliable information, NATIONS assumes no responsibility for the accuracy and reliability of this document.

It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. In no event shall NATIONS be liable for any direct, indirect, incidental, special, exemplary, or consequential damages arising in any way out of the use of this document or the Product.

NATIONS Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at user's risk. User shall indemnify NATIONS and hold NATIONS harmless from and against all claims, costs, damages, and other liabilities, arising from or related to any customer's Insecure Usage.

Any express or implied warranty with regard to this document or the Product, including, but not limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement are disclaimed to the fullest extent permitted by law.

Unless otherwise explicitly permitted by NATIONS, anyone may not use, duplicate, modify, transcribe or otherwise distribute this document for any purposes, in whole or in part.